1 // Copyright 2014 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // YUV->RGB conversion functions 11 // 12 // Author: Skal (pascal.massimino (at) gmail.com) 13 14 #include "./yuv.h" 15 16 #if defined(WEBP_USE_SSE2) 17 18 #include <emmintrin.h> 19 #include <string.h> // for memcpy 20 21 typedef union { // handy struct for converting SSE2 registers 22 int32_t i32[4]; 23 uint8_t u8[16]; 24 __m128i m; 25 } VP8kCstSSE2; 26 27 #if defined(WEBP_YUV_USE_SSE2_TABLES) 28 29 #include "./yuv_tables_sse2.h" 30 31 void VP8YUVInitSSE2(void) {} 32 33 #else 34 35 static int done_sse2 = 0; 36 static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256]; 37 38 void VP8YUVInitSSE2(void) { 39 if (!done_sse2) { 40 int i; 41 for (i = 0; i < 256; ++i) { 42 VP8kYtoRGBA[i].i32[0] = 43 VP8kYtoRGBA[i].i32[1] = 44 VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2; 45 VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2; 46 47 VP8kUtoRGBA[i].i32[0] = 0; 48 VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128); 49 VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128); 50 VP8kUtoRGBA[i].i32[3] = 0; 51 52 VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128); 53 VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128); 54 VP8kVtoRGBA[i].i32[2] = 0; 55 VP8kVtoRGBA[i].i32[3] = 0; 56 } 57 done_sse2 = 1; 58 59 #if 0 // code used to generate 'yuv_tables_sse2.h' 60 printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n"); 61 for (i = 0; i < 256; ++i) { 62 printf(" {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n", 63 VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1], 64 VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]); 65 } 66 printf("};\n\n"); 67 printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n"); 68 for (i = 0; i < 256; ++i) { 69 printf(" {{0, 0x%.8x, 0x%.8x, 0}},\n", 70 VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]); 71 } 72 printf("};\n\n"); 73 printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n"); 74 for (i = 0; i < 256; ++i) { 75 printf(" {{0x%.8x, 0x%.8x, 0, 0}},\n", 76 VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]); 77 } 78 printf("};\n\n"); 79 #endif 80 } 81 } 82 83 #endif // WEBP_YUV_USE_SSE2_TABLES 84 85 //----------------------------------------------------------------------------- 86 87 static WEBP_INLINE __m128i LoadUVPart(int u, int v) { 88 const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m); 89 const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m); 90 const __m128i uv_part = _mm_add_epi32(u_part, v_part); 91 return uv_part; 92 } 93 94 static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) { 95 const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m); 96 const __m128i rgba1 = _mm_add_epi32(y_part, uv_part); 97 const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2); 98 return rgba2; 99 } 100 101 static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) { 102 const __m128i uv_part = LoadUVPart(u, v); 103 return GetRGBA32bWithUV(y, uv_part); 104 } 105 106 static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v, 107 uint8_t* const rgb) { 108 const __m128i tmp0 = GetRGBA32b(y, u, v); 109 const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0); 110 const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1); 111 // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp 112 _mm_storel_epi64((__m128i*)rgb, tmp2); 113 } 114 115 static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v, 116 uint8_t* const bgr) { 117 const __m128i tmp0 = GetRGBA32b(y, u, v); 118 const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2)); 119 const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1); 120 const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2); 121 // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp 122 _mm_storel_epi64((__m128i*)bgr, tmp3); 123 } 124 125 //----------------------------------------------------------------------------- 126 // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. 127 128 #ifdef FANCY_UPSAMPLING 129 130 void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, 131 uint8_t* dst) { 132 int n; 133 for (n = 0; n < 32; n += 4) { 134 const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); 135 const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); 136 const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]); 137 const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]); 138 const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); 139 const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); 140 const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); 141 _mm_storeu_si128((__m128i*)dst, tmp2); 142 dst += 4 * 4; 143 } 144 } 145 146 void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, 147 uint8_t* dst) { 148 int n; 149 for (n = 0; n < 32; n += 2) { 150 const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); 151 const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); 152 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); 153 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); 154 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); 155 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); 156 _mm_storel_epi64((__m128i*)dst, tmp3); 157 dst += 4 * 2; 158 } 159 } 160 161 void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, 162 uint8_t* dst) { 163 int n; 164 uint8_t tmp0[2 * 3 + 5 + 15]; 165 uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align 166 for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory 167 YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3); 168 } 169 // Last two pixels are special: we write in a tmp buffer before sending 170 // to dst. 171 YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); 172 YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); 173 memcpy(dst + n * 3, tmp, 2 * 3); 174 } 175 176 void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, 177 uint8_t* dst) { 178 int n; 179 uint8_t tmp0[2 * 3 + 5 + 15]; 180 uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align 181 for (n = 0; n < 30; ++n) { 182 YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3); 183 } 184 YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); 185 YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); 186 memcpy(dst + n * 3, tmp, 2 * 3); 187 } 188 189 #endif // FANCY_UPSAMPLING 190 191 //----------------------------------------------------------------------------- 192 // Arbitrary-length row conversion functions 193 194 static void YuvToRgbaRowSSE2(const uint8_t* y, 195 const uint8_t* u, const uint8_t* v, 196 uint8_t* dst, int len) { 197 int n; 198 for (n = 0; n + 4 <= len; n += 4) { 199 const __m128i uv_0 = LoadUVPart(u[0], v[0]); 200 const __m128i uv_1 = LoadUVPart(u[1], v[1]); 201 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); 202 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); 203 const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1); 204 const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1); 205 const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); 206 const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); 207 const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); 208 _mm_storeu_si128((__m128i*)dst, tmp2); 209 dst += 4 * 4; 210 y += 4; 211 u += 2; 212 v += 2; 213 } 214 // Finish off 215 while (n < len) { 216 VP8YuvToRgba(y[0], u[0], v[0], dst); 217 dst += 4; 218 ++y; 219 u += (n & 1); 220 v += (n & 1); 221 ++n; 222 } 223 } 224 225 static void YuvToBgraRowSSE2(const uint8_t* y, 226 const uint8_t* u, const uint8_t* v, 227 uint8_t* dst, int len) { 228 int n; 229 for (n = 0; n + 2 <= len; n += 2) { 230 const __m128i uv_0 = LoadUVPart(u[0], v[0]); 231 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); 232 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); 233 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); 234 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); 235 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); 236 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); 237 _mm_storel_epi64((__m128i*)dst, tmp3); 238 dst += 4 * 2; 239 y += 2; 240 ++u; 241 ++v; 242 } 243 // Finish off 244 if (len & 1) { 245 VP8YuvToBgra(y[0], u[0], v[0], dst); 246 } 247 } 248 249 static void YuvToArgbRowSSE2(const uint8_t* y, 250 const uint8_t* u, const uint8_t* v, 251 uint8_t* dst, int len) { 252 int n; 253 for (n = 0; n + 2 <= len; n += 2) { 254 const __m128i uv_0 = LoadUVPart(u[0], v[0]); 255 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); 256 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); 257 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3)); 258 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3)); 259 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); 260 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); 261 _mm_storel_epi64((__m128i*)dst, tmp3); 262 dst += 4 * 2; 263 y += 2; 264 ++u; 265 ++v; 266 } 267 // Finish off 268 if (len & 1) { 269 VP8YuvToArgb(y[0], u[0], v[0], dst); 270 } 271 } 272 273 static void YuvToRgbRowSSE2(const uint8_t* y, 274 const uint8_t* u, const uint8_t* v, 275 uint8_t* dst, int len) { 276 int n; 277 for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory 278 YuvToRgbSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes 279 dst += 3; 280 ++y; 281 u += (n & 1); 282 v += (n & 1); 283 } 284 VP8YuvToRgb(y[0], u[0], v[0], dst); 285 if (len > 1) { 286 VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3); 287 } 288 } 289 290 static void YuvToBgrRowSSE2(const uint8_t* y, 291 const uint8_t* u, const uint8_t* v, 292 uint8_t* dst, int len) { 293 int n; 294 for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory 295 YuvToBgrSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes 296 dst += 3; 297 ++y; 298 u += (n & 1); 299 v += (n & 1); 300 } 301 VP8YuvToBgr(y[0], u[0], v[0], dst + 0); 302 if (len > 1) { 303 VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3); 304 } 305 } 306 307 #endif // WEBP_USE_SSE2 308 309 //------------------------------------------------------------------------------ 310 // Entry point 311 312 extern void WebPInitSamplersSSE2(void); 313 314 void WebPInitSamplersSSE2(void) { 315 #if defined(WEBP_USE_SSE2) 316 WebPSamplers[MODE_RGB] = YuvToRgbRowSSE2; 317 WebPSamplers[MODE_RGBA] = YuvToRgbaRowSSE2; 318 WebPSamplers[MODE_BGR] = YuvToBgrRowSSE2; 319 WebPSamplers[MODE_BGRA] = YuvToBgraRowSSE2; 320 WebPSamplers[MODE_ARGB] = YuvToArgbRowSSE2; 321 #endif // WEBP_USE_SSE2 322 } 323