1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Main file for the SQLite library. The routines in this file 13 ** implement the programmer interface to the library. Routines in 14 ** other files are for internal use by SQLite and should not be 15 ** accessed by users of the library. 16 */ 17 #include "sqliteInt.h" 18 19 #ifdef SQLITE_ENABLE_FTS3 20 # include "fts3.h" 21 #endif 22 #ifdef SQLITE_ENABLE_RTREE 23 # include "rtree.h" 24 #endif 25 #ifdef SQLITE_ENABLE_ICU 26 # include "sqliteicu.h" 27 #endif 28 29 #ifndef SQLITE_AMALGAMATION 30 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 31 ** contains the text of SQLITE_VERSION macro. 32 */ 33 const char sqlite3_version[] = SQLITE_VERSION; 34 #endif 35 36 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 37 ** a pointer to the to the sqlite3_version[] string constant. 38 */ 39 const char *sqlite3_libversion(void){ return sqlite3_version; } 40 41 /* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a 42 ** pointer to a string constant whose value is the same as the 43 ** SQLITE_SOURCE_ID C preprocessor macro. 44 */ 45 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 46 47 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 48 ** returns an integer equal to SQLITE_VERSION_NUMBER. 49 */ 50 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 51 52 /* IMPLEMENTATION-OF: R-54823-41343 The sqlite3_threadsafe() function returns 53 ** zero if and only if SQLite was compiled mutexing code omitted due to 54 ** the SQLITE_THREADSAFE compile-time option being set to 0. 55 */ 56 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 57 58 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 59 /* 60 ** If the following function pointer is not NULL and if 61 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 62 ** I/O active are written using this function. These messages 63 ** are intended for debugging activity only. 64 */ 65 void (*sqlite3IoTrace)(const char*, ...) = 0; 66 #endif 67 68 /* 69 ** If the following global variable points to a string which is the 70 ** name of a directory, then that directory will be used to store 71 ** temporary files. 72 ** 73 ** See also the "PRAGMA temp_store_directory" SQL command. 74 */ 75 char *sqlite3_temp_directory = 0; 76 77 /* 78 ** Initialize SQLite. 79 ** 80 ** This routine must be called to initialize the memory allocation, 81 ** VFS, and mutex subsystems prior to doing any serious work with 82 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 83 ** this routine will be called automatically by key routines such as 84 ** sqlite3_open(). 85 ** 86 ** This routine is a no-op except on its very first call for the process, 87 ** or for the first call after a call to sqlite3_shutdown. 88 ** 89 ** The first thread to call this routine runs the initialization to 90 ** completion. If subsequent threads call this routine before the first 91 ** thread has finished the initialization process, then the subsequent 92 ** threads must block until the first thread finishes with the initialization. 93 ** 94 ** The first thread might call this routine recursively. Recursive 95 ** calls to this routine should not block, of course. Otherwise the 96 ** initialization process would never complete. 97 ** 98 ** Let X be the first thread to enter this routine. Let Y be some other 99 ** thread. Then while the initial invocation of this routine by X is 100 ** incomplete, it is required that: 101 ** 102 ** * Calls to this routine from Y must block until the outer-most 103 ** call by X completes. 104 ** 105 ** * Recursive calls to this routine from thread X return immediately 106 ** without blocking. 107 */ 108 int sqlite3_initialize(void){ 109 sqlite3_mutex *pMaster; /* The main static mutex */ 110 int rc; /* Result code */ 111 112 #ifdef SQLITE_OMIT_WSD 113 rc = sqlite3_wsd_init(4096, 24); 114 if( rc!=SQLITE_OK ){ 115 return rc; 116 } 117 #endif 118 119 /* If SQLite is already completely initialized, then this call 120 ** to sqlite3_initialize() should be a no-op. But the initialization 121 ** must be complete. So isInit must not be set until the very end 122 ** of this routine. 123 */ 124 if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; 125 126 /* Make sure the mutex subsystem is initialized. If unable to 127 ** initialize the mutex subsystem, return early with the error. 128 ** If the system is so sick that we are unable to allocate a mutex, 129 ** there is not much SQLite is going to be able to do. 130 ** 131 ** The mutex subsystem must take care of serializing its own 132 ** initialization. 133 */ 134 rc = sqlite3MutexInit(); 135 if( rc ) return rc; 136 137 /* Initialize the malloc() system and the recursive pInitMutex mutex. 138 ** This operation is protected by the STATIC_MASTER mutex. Note that 139 ** MutexAlloc() is called for a static mutex prior to initializing the 140 ** malloc subsystem - this implies that the allocation of a static 141 ** mutex must not require support from the malloc subsystem. 142 */ 143 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 144 sqlite3_mutex_enter(pMaster); 145 sqlite3GlobalConfig.isMutexInit = 1; 146 if( !sqlite3GlobalConfig.isMallocInit ){ 147 rc = sqlite3MallocInit(); 148 } 149 if( rc==SQLITE_OK ){ 150 sqlite3GlobalConfig.isMallocInit = 1; 151 if( !sqlite3GlobalConfig.pInitMutex ){ 152 sqlite3GlobalConfig.pInitMutex = 153 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 154 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 155 rc = SQLITE_NOMEM; 156 } 157 } 158 } 159 if( rc==SQLITE_OK ){ 160 sqlite3GlobalConfig.nRefInitMutex++; 161 } 162 sqlite3_mutex_leave(pMaster); 163 164 /* If rc is not SQLITE_OK at this point, then either the malloc 165 ** subsystem could not be initialized or the system failed to allocate 166 ** the pInitMutex mutex. Return an error in either case. */ 167 if( rc!=SQLITE_OK ){ 168 return rc; 169 } 170 171 /* Do the rest of the initialization under the recursive mutex so 172 ** that we will be able to handle recursive calls into 173 ** sqlite3_initialize(). The recursive calls normally come through 174 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 175 ** recursive calls might also be possible. 176 ** 177 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 178 ** to the xInit method, so the xInit method need not be threadsafe. 179 ** 180 ** The following mutex is what serializes access to the appdef pcache xInit 181 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 182 ** call to sqlite3PcacheInitialize(). 183 */ 184 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 185 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 186 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); 187 sqlite3GlobalConfig.inProgress = 1; 188 memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); 189 sqlite3RegisterGlobalFunctions(); 190 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 191 rc = sqlite3PcacheInitialize(); 192 } 193 if( rc==SQLITE_OK ){ 194 sqlite3GlobalConfig.isPCacheInit = 1; 195 rc = sqlite3OsInit(); 196 } 197 if( rc==SQLITE_OK ){ 198 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 199 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 200 sqlite3GlobalConfig.isInit = 1; 201 } 202 sqlite3GlobalConfig.inProgress = 0; 203 } 204 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 205 206 /* Go back under the static mutex and clean up the recursive 207 ** mutex to prevent a resource leak. 208 */ 209 sqlite3_mutex_enter(pMaster); 210 sqlite3GlobalConfig.nRefInitMutex--; 211 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 212 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 213 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 214 sqlite3GlobalConfig.pInitMutex = 0; 215 } 216 sqlite3_mutex_leave(pMaster); 217 218 /* The following is just a sanity check to make sure SQLite has 219 ** been compiled correctly. It is important to run this code, but 220 ** we don't want to run it too often and soak up CPU cycles for no 221 ** reason. So we run it once during initialization. 222 */ 223 #ifndef NDEBUG 224 #ifndef SQLITE_OMIT_FLOATING_POINT 225 /* This section of code's only "output" is via assert() statements. */ 226 if ( rc==SQLITE_OK ){ 227 u64 x = (((u64)1)<<63)-1; 228 double y; 229 assert(sizeof(x)==8); 230 assert(sizeof(x)==sizeof(y)); 231 memcpy(&y, &x, 8); 232 assert( sqlite3IsNaN(y) ); 233 } 234 #endif 235 #endif 236 237 return rc; 238 } 239 240 /* 241 ** Undo the effects of sqlite3_initialize(). Must not be called while 242 ** there are outstanding database connections or memory allocations or 243 ** while any part of SQLite is otherwise in use in any thread. This 244 ** routine is not threadsafe. But it is safe to invoke this routine 245 ** on when SQLite is already shut down. If SQLite is already shut down 246 ** when this routine is invoked, then this routine is a harmless no-op. 247 */ 248 int sqlite3_shutdown(void){ 249 if( sqlite3GlobalConfig.isInit ){ 250 sqlite3_os_end(); 251 sqlite3_reset_auto_extension(); 252 sqlite3GlobalConfig.isInit = 0; 253 } 254 if( sqlite3GlobalConfig.isPCacheInit ){ 255 sqlite3PcacheShutdown(); 256 sqlite3GlobalConfig.isPCacheInit = 0; 257 } 258 if( sqlite3GlobalConfig.isMallocInit ){ 259 sqlite3MallocEnd(); 260 sqlite3GlobalConfig.isMallocInit = 0; 261 } 262 if( sqlite3GlobalConfig.isMutexInit ){ 263 sqlite3MutexEnd(); 264 sqlite3GlobalConfig.isMutexInit = 0; 265 } 266 267 return SQLITE_OK; 268 } 269 270 /* 271 ** This API allows applications to modify the global configuration of 272 ** the SQLite library at run-time. 273 ** 274 ** This routine should only be called when there are no outstanding 275 ** database connections or memory allocations. This routine is not 276 ** threadsafe. Failure to heed these warnings can lead to unpredictable 277 ** behavior. 278 */ 279 int sqlite3_config(int op, ...){ 280 va_list ap; 281 int rc = SQLITE_OK; 282 283 /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while 284 ** the SQLite library is in use. */ 285 if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT; 286 287 va_start(ap, op); 288 switch( op ){ 289 290 /* Mutex configuration options are only available in a threadsafe 291 ** compile. 292 */ 293 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 294 case SQLITE_CONFIG_SINGLETHREAD: { 295 /* Disable all mutexing */ 296 sqlite3GlobalConfig.bCoreMutex = 0; 297 sqlite3GlobalConfig.bFullMutex = 0; 298 break; 299 } 300 case SQLITE_CONFIG_MULTITHREAD: { 301 /* Disable mutexing of database connections */ 302 /* Enable mutexing of core data structures */ 303 sqlite3GlobalConfig.bCoreMutex = 1; 304 sqlite3GlobalConfig.bFullMutex = 0; 305 break; 306 } 307 case SQLITE_CONFIG_SERIALIZED: { 308 /* Enable all mutexing */ 309 sqlite3GlobalConfig.bCoreMutex = 1; 310 sqlite3GlobalConfig.bFullMutex = 1; 311 break; 312 } 313 case SQLITE_CONFIG_MUTEX: { 314 /* Specify an alternative mutex implementation */ 315 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 316 break; 317 } 318 case SQLITE_CONFIG_GETMUTEX: { 319 /* Retrieve the current mutex implementation */ 320 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 321 break; 322 } 323 #endif 324 325 326 case SQLITE_CONFIG_MALLOC: { 327 /* Specify an alternative malloc implementation */ 328 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 329 break; 330 } 331 case SQLITE_CONFIG_GETMALLOC: { 332 /* Retrieve the current malloc() implementation */ 333 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 334 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 335 break; 336 } 337 case SQLITE_CONFIG_MEMSTATUS: { 338 /* Enable or disable the malloc status collection */ 339 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 340 break; 341 } 342 case SQLITE_CONFIG_SCRATCH: { 343 /* Designate a buffer for scratch memory space */ 344 sqlite3GlobalConfig.pScratch = va_arg(ap, void*); 345 sqlite3GlobalConfig.szScratch = va_arg(ap, int); 346 sqlite3GlobalConfig.nScratch = va_arg(ap, int); 347 break; 348 } 349 case SQLITE_CONFIG_PAGECACHE: { 350 /* Designate a buffer for page cache memory space */ 351 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 352 sqlite3GlobalConfig.szPage = va_arg(ap, int); 353 sqlite3GlobalConfig.nPage = va_arg(ap, int); 354 break; 355 } 356 357 case SQLITE_CONFIG_PCACHE: { 358 /* Specify an alternative page cache implementation */ 359 sqlite3GlobalConfig.pcache = *va_arg(ap, sqlite3_pcache_methods*); 360 break; 361 } 362 363 case SQLITE_CONFIG_GETPCACHE: { 364 if( sqlite3GlobalConfig.pcache.xInit==0 ){ 365 sqlite3PCacheSetDefault(); 366 } 367 *va_arg(ap, sqlite3_pcache_methods*) = sqlite3GlobalConfig.pcache; 368 break; 369 } 370 371 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 372 case SQLITE_CONFIG_HEAP: { 373 /* Designate a buffer for heap memory space */ 374 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 375 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 376 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 377 378 if( sqlite3GlobalConfig.mnReq<1 ){ 379 sqlite3GlobalConfig.mnReq = 1; 380 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 381 /* cap min request size at 2^12 */ 382 sqlite3GlobalConfig.mnReq = (1<<12); 383 } 384 385 if( sqlite3GlobalConfig.pHeap==0 ){ 386 /* If the heap pointer is NULL, then restore the malloc implementation 387 ** back to NULL pointers too. This will cause the malloc to go 388 ** back to its default implementation when sqlite3_initialize() is 389 ** run. 390 */ 391 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 392 }else{ 393 /* The heap pointer is not NULL, then install one of the 394 ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor 395 ** ENABLE_MEMSYS5 is defined, return an error. 396 */ 397 #ifdef SQLITE_ENABLE_MEMSYS3 398 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 399 #endif 400 #ifdef SQLITE_ENABLE_MEMSYS5 401 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 402 #endif 403 } 404 break; 405 } 406 #endif 407 408 case SQLITE_CONFIG_LOOKASIDE: { 409 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 410 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 411 break; 412 } 413 414 /* Record a pointer to the logger funcction and its first argument. 415 ** The default is NULL. Logging is disabled if the function pointer is 416 ** NULL. 417 */ 418 case SQLITE_CONFIG_LOG: { 419 /* MSVC is picky about pulling func ptrs from va lists. 420 ** http://support.microsoft.com/kb/47961 421 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 422 */ 423 typedef void(*LOGFUNC_t)(void*,int,const char*); 424 sqlite3GlobalConfig.xLog = va_arg(ap, LOGFUNC_t); 425 sqlite3GlobalConfig.pLogArg = va_arg(ap, void*); 426 break; 427 } 428 429 default: { 430 rc = SQLITE_ERROR; 431 break; 432 } 433 } 434 va_end(ap); 435 return rc; 436 } 437 438 /* 439 ** Set up the lookaside buffers for a database connection. 440 ** Return SQLITE_OK on success. 441 ** If lookaside is already active, return SQLITE_BUSY. 442 ** 443 ** The sz parameter is the number of bytes in each lookaside slot. 444 ** The cnt parameter is the number of slots. If pStart is NULL the 445 ** space for the lookaside memory is obtained from sqlite3_malloc(). 446 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 447 ** the lookaside memory. 448 */ 449 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 450 void *pStart; 451 if( db->lookaside.nOut ){ 452 return SQLITE_BUSY; 453 } 454 /* Free any existing lookaside buffer for this handle before 455 ** allocating a new one so we don't have to have space for 456 ** both at the same time. 457 */ 458 if( db->lookaside.bMalloced ){ 459 sqlite3_free(db->lookaside.pStart); 460 } 461 /* The size of a lookaside slot needs to be larger than a pointer 462 ** to be useful. 463 */ 464 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 465 if( cnt<0 ) cnt = 0; 466 if( sz==0 || cnt==0 ){ 467 sz = 0; 468 pStart = 0; 469 }else if( pBuf==0 ){ 470 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 471 sqlite3BeginBenignMalloc(); 472 pStart = sqlite3Malloc( sz*cnt ); /* IMP: R-61949-35727 */ 473 sqlite3EndBenignMalloc(); 474 }else{ 475 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 476 pStart = pBuf; 477 } 478 db->lookaside.pStart = pStart; 479 db->lookaside.pFree = 0; 480 db->lookaside.sz = (u16)sz; 481 if( pStart ){ 482 int i; 483 LookasideSlot *p; 484 assert( sz > (int)sizeof(LookasideSlot*) ); 485 p = (LookasideSlot*)pStart; 486 for(i=cnt-1; i>=0; i--){ 487 p->pNext = db->lookaside.pFree; 488 db->lookaside.pFree = p; 489 p = (LookasideSlot*)&((u8*)p)[sz]; 490 } 491 db->lookaside.pEnd = p; 492 db->lookaside.bEnabled = 1; 493 db->lookaside.bMalloced = pBuf==0 ?1:0; 494 }else{ 495 db->lookaside.pEnd = 0; 496 db->lookaside.bEnabled = 0; 497 db->lookaside.bMalloced = 0; 498 } 499 return SQLITE_OK; 500 } 501 502 /* 503 ** Return the mutex associated with a database connection. 504 */ 505 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 506 return db->mutex; 507 } 508 509 /* 510 ** Configuration settings for an individual database connection 511 */ 512 int sqlite3_db_config(sqlite3 *db, int op, ...){ 513 va_list ap; 514 int rc; 515 va_start(ap, op); 516 switch( op ){ 517 case SQLITE_DBCONFIG_LOOKASIDE: { 518 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 519 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 520 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 521 rc = setupLookaside(db, pBuf, sz, cnt); 522 break; 523 } 524 default: { 525 static const struct { 526 int op; /* The opcode */ 527 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 528 } aFlagOp[] = { 529 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 530 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 531 }; 532 unsigned int i; 533 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 534 for(i=0; i<ArraySize(aFlagOp); i++){ 535 if( aFlagOp[i].op==op ){ 536 int onoff = va_arg(ap, int); 537 int *pRes = va_arg(ap, int*); 538 int oldFlags = db->flags; 539 if( onoff>0 ){ 540 db->flags |= aFlagOp[i].mask; 541 }else if( onoff==0 ){ 542 db->flags &= ~aFlagOp[i].mask; 543 } 544 if( oldFlags!=db->flags ){ 545 sqlite3ExpirePreparedStatements(db); 546 } 547 if( pRes ){ 548 *pRes = (db->flags & aFlagOp[i].mask)!=0; 549 } 550 rc = SQLITE_OK; 551 break; 552 } 553 } 554 break; 555 } 556 } 557 va_end(ap); 558 return rc; 559 } 560 561 562 /* 563 ** Return true if the buffer z[0..n-1] contains all spaces. 564 */ 565 static int allSpaces(const char *z, int n){ 566 while( n>0 && z[n-1]==' ' ){ n--; } 567 return n==0; 568 } 569 570 /* 571 ** This is the default collating function named "BINARY" which is always 572 ** available. 573 ** 574 ** If the padFlag argument is not NULL then space padding at the end 575 ** of strings is ignored. This implements the RTRIM collation. 576 */ 577 static int binCollFunc( 578 void *padFlag, 579 int nKey1, const void *pKey1, 580 int nKey2, const void *pKey2 581 ){ 582 int rc, n; 583 n = nKey1<nKey2 ? nKey1 : nKey2; 584 rc = memcmp(pKey1, pKey2, n); 585 if( rc==0 ){ 586 if( padFlag 587 && allSpaces(((char*)pKey1)+n, nKey1-n) 588 && allSpaces(((char*)pKey2)+n, nKey2-n) 589 ){ 590 /* Leave rc unchanged at 0 */ 591 }else{ 592 rc = nKey1 - nKey2; 593 } 594 } 595 return rc; 596 } 597 598 /* 599 ** Another built-in collating sequence: NOCASE. 600 ** 601 ** This collating sequence is intended to be used for "case independant 602 ** comparison". SQLite's knowledge of upper and lower case equivalents 603 ** extends only to the 26 characters used in the English language. 604 ** 605 ** At the moment there is only a UTF-8 implementation. 606 */ 607 static int nocaseCollatingFunc( 608 void *NotUsed, 609 int nKey1, const void *pKey1, 610 int nKey2, const void *pKey2 611 ){ 612 int r = sqlite3StrNICmp( 613 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 614 UNUSED_PARAMETER(NotUsed); 615 if( 0==r ){ 616 r = nKey1-nKey2; 617 } 618 return r; 619 } 620 621 /* 622 ** Return the ROWID of the most recent insert 623 */ 624 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 625 return db->lastRowid; 626 } 627 628 /* 629 ** Return the number of changes in the most recent call to sqlite3_exec(). 630 */ 631 int sqlite3_changes(sqlite3 *db){ 632 return db->nChange; 633 } 634 635 /* 636 ** Return the number of changes since the database handle was opened. 637 */ 638 int sqlite3_total_changes(sqlite3 *db){ 639 return db->nTotalChange; 640 } 641 642 /* 643 ** Close all open savepoints. This function only manipulates fields of the 644 ** database handle object, it does not close any savepoints that may be open 645 ** at the b-tree/pager level. 646 */ 647 void sqlite3CloseSavepoints(sqlite3 *db){ 648 while( db->pSavepoint ){ 649 Savepoint *pTmp = db->pSavepoint; 650 db->pSavepoint = pTmp->pNext; 651 sqlite3DbFree(db, pTmp); 652 } 653 db->nSavepoint = 0; 654 db->nStatement = 0; 655 db->isTransactionSavepoint = 0; 656 } 657 658 /* 659 ** Invoke the destructor function associated with FuncDef p, if any. Except, 660 ** if this is not the last copy of the function, do not invoke it. Multiple 661 ** copies of a single function are created when create_function() is called 662 ** with SQLITE_ANY as the encoding. 663 */ 664 static void functionDestroy(sqlite3 *db, FuncDef *p){ 665 FuncDestructor *pDestructor = p->pDestructor; 666 if( pDestructor ){ 667 pDestructor->nRef--; 668 if( pDestructor->nRef==0 ){ 669 pDestructor->xDestroy(pDestructor->pUserData); 670 sqlite3DbFree(db, pDestructor); 671 } 672 } 673 } 674 675 /* 676 ** Close an existing SQLite database 677 */ 678 int sqlite3_close(sqlite3 *db){ 679 HashElem *i; /* Hash table iterator */ 680 int j; 681 682 if( !db ){ 683 return SQLITE_OK; 684 } 685 if( !sqlite3SafetyCheckSickOrOk(db) ){ 686 return SQLITE_MISUSE_BKPT; 687 } 688 sqlite3_mutex_enter(db->mutex); 689 690 /* Force xDestroy calls on all virtual tables */ 691 sqlite3ResetInternalSchema(db, -1); 692 693 /* If a transaction is open, the ResetInternalSchema() call above 694 ** will not have called the xDisconnect() method on any virtual 695 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 696 ** call will do so. We need to do this before the check for active 697 ** SQL statements below, as the v-table implementation may be storing 698 ** some prepared statements internally. 699 */ 700 sqlite3VtabRollback(db); 701 702 /* If there are any outstanding VMs, return SQLITE_BUSY. */ 703 if( db->pVdbe ){ 704 sqlite3Error(db, SQLITE_BUSY, 705 "unable to close due to unfinalised statements"); 706 sqlite3_mutex_leave(db->mutex); 707 return SQLITE_BUSY; 708 } 709 assert( sqlite3SafetyCheckSickOrOk(db) ); 710 711 for(j=0; j<db->nDb; j++){ 712 Btree *pBt = db->aDb[j].pBt; 713 if( pBt && sqlite3BtreeIsInBackup(pBt) ){ 714 sqlite3Error(db, SQLITE_BUSY, 715 "unable to close due to unfinished backup operation"); 716 sqlite3_mutex_leave(db->mutex); 717 return SQLITE_BUSY; 718 } 719 } 720 721 /* Free any outstanding Savepoint structures. */ 722 sqlite3CloseSavepoints(db); 723 724 for(j=0; j<db->nDb; j++){ 725 struct Db *pDb = &db->aDb[j]; 726 if( pDb->pBt ){ 727 sqlite3BtreeClose(pDb->pBt); 728 pDb->pBt = 0; 729 if( j!=1 ){ 730 pDb->pSchema = 0; 731 } 732 } 733 } 734 sqlite3ResetInternalSchema(db, -1); 735 736 /* Tell the code in notify.c that the connection no longer holds any 737 ** locks and does not require any further unlock-notify callbacks. 738 */ 739 sqlite3ConnectionClosed(db); 740 741 assert( db->nDb<=2 ); 742 assert( db->aDb==db->aDbStatic ); 743 for(j=0; j<ArraySize(db->aFunc.a); j++){ 744 FuncDef *pNext, *pHash, *p; 745 for(p=db->aFunc.a[j]; p; p=pHash){ 746 pHash = p->pHash; 747 while( p ){ 748 functionDestroy(db, p); 749 pNext = p->pNext; 750 sqlite3DbFree(db, p); 751 p = pNext; 752 } 753 } 754 } 755 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 756 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 757 /* Invoke any destructors registered for collation sequence user data. */ 758 for(j=0; j<3; j++){ 759 if( pColl[j].xDel ){ 760 pColl[j].xDel(pColl[j].pUser); 761 } 762 } 763 sqlite3DbFree(db, pColl); 764 } 765 sqlite3HashClear(&db->aCollSeq); 766 #ifndef SQLITE_OMIT_VIRTUALTABLE 767 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 768 Module *pMod = (Module *)sqliteHashData(i); 769 if( pMod->xDestroy ){ 770 pMod->xDestroy(pMod->pAux); 771 } 772 sqlite3DbFree(db, pMod); 773 } 774 sqlite3HashClear(&db->aModule); 775 #endif 776 777 sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ 778 if( db->pErr ){ 779 sqlite3ValueFree(db->pErr); 780 } 781 sqlite3CloseExtensions(db); 782 783 db->magic = SQLITE_MAGIC_ERROR; 784 785 /* The temp-database schema is allocated differently from the other schema 786 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 787 ** So it needs to be freed here. Todo: Why not roll the temp schema into 788 ** the same sqliteMalloc() as the one that allocates the database 789 ** structure? 790 */ 791 sqlite3DbFree(db, db->aDb[1].pSchema); 792 sqlite3_mutex_leave(db->mutex); 793 db->magic = SQLITE_MAGIC_CLOSED; 794 sqlite3_mutex_free(db->mutex); 795 assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ 796 if( db->lookaside.bMalloced ){ 797 sqlite3_free(db->lookaside.pStart); 798 } 799 sqlite3_free(db); 800 return SQLITE_OK; 801 } 802 803 /* 804 ** Rollback all database files. 805 */ 806 void sqlite3RollbackAll(sqlite3 *db){ 807 int i; 808 int inTrans = 0; 809 assert( sqlite3_mutex_held(db->mutex) ); 810 sqlite3BeginBenignMalloc(); 811 for(i=0; i<db->nDb; i++){ 812 if( db->aDb[i].pBt ){ 813 if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ 814 inTrans = 1; 815 } 816 sqlite3BtreeRollback(db->aDb[i].pBt); 817 db->aDb[i].inTrans = 0; 818 } 819 } 820 sqlite3VtabRollback(db); 821 sqlite3EndBenignMalloc(); 822 823 if( db->flags&SQLITE_InternChanges ){ 824 sqlite3ExpirePreparedStatements(db); 825 sqlite3ResetInternalSchema(db, -1); 826 } 827 828 /* Any deferred constraint violations have now been resolved. */ 829 db->nDeferredCons = 0; 830 831 /* If one has been configured, invoke the rollback-hook callback */ 832 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 833 db->xRollbackCallback(db->pRollbackArg); 834 } 835 } 836 837 /* 838 ** Return a static string that describes the kind of error specified in the 839 ** argument. 840 */ 841 const char *sqlite3ErrStr(int rc){ 842 static const char* const aMsg[] = { 843 /* SQLITE_OK */ "not an error", 844 /* SQLITE_ERROR */ "SQL logic error or missing database", 845 /* SQLITE_INTERNAL */ 0, 846 /* SQLITE_PERM */ "access permission denied", 847 /* SQLITE_ABORT */ "callback requested query abort", 848 /* SQLITE_BUSY */ "database is locked", 849 /* SQLITE_LOCKED */ "database table is locked", 850 /* SQLITE_NOMEM */ "out of memory", 851 /* SQLITE_READONLY */ "attempt to write a readonly database", 852 /* SQLITE_INTERRUPT */ "interrupted", 853 /* SQLITE_IOERR */ "disk I/O error", 854 /* SQLITE_CORRUPT */ "database disk image is malformed", 855 /* SQLITE_NOTFOUND */ "unknown operation", 856 /* SQLITE_FULL */ "database or disk is full", 857 /* SQLITE_CANTOPEN */ "unable to open database file", 858 /* SQLITE_PROTOCOL */ "locking protocol", 859 /* SQLITE_EMPTY */ "table contains no data", 860 /* SQLITE_SCHEMA */ "database schema has changed", 861 /* SQLITE_TOOBIG */ "string or blob too big", 862 /* SQLITE_CONSTRAINT */ "constraint failed", 863 /* SQLITE_MISMATCH */ "datatype mismatch", 864 /* SQLITE_MISUSE */ "library routine called out of sequence", 865 /* SQLITE_NOLFS */ "large file support is disabled", 866 /* SQLITE_AUTH */ "authorization denied", 867 /* SQLITE_FORMAT */ "auxiliary database format error", 868 /* SQLITE_RANGE */ "bind or column index out of range", 869 /* SQLITE_NOTADB */ "file is encrypted or is not a database", 870 }; 871 rc &= 0xff; 872 if( ALWAYS(rc>=0) && rc<(int)(sizeof(aMsg)/sizeof(aMsg[0])) && aMsg[rc]!=0 ){ 873 return aMsg[rc]; 874 }else{ 875 return "unknown error"; 876 } 877 } 878 879 /* 880 ** This routine implements a busy callback that sleeps and tries 881 ** again until a timeout value is reached. The timeout value is 882 ** an integer number of milliseconds passed in as the first 883 ** argument. 884 */ 885 static int sqliteDefaultBusyCallback( 886 void *ptr, /* Database connection */ 887 int count /* Number of times table has been busy */ 888 ){ 889 #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) 890 static const u8 delays[] = 891 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 892 static const u8 totals[] = 893 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 894 # define NDELAY ArraySize(delays) 895 sqlite3 *db = (sqlite3 *)ptr; 896 int timeout = db->busyTimeout; 897 int delay, prior; 898 899 assert( count>=0 ); 900 if( count < NDELAY ){ 901 delay = delays[count]; 902 prior = totals[count]; 903 }else{ 904 delay = delays[NDELAY-1]; 905 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 906 } 907 if( prior + delay > timeout ){ 908 delay = timeout - prior; 909 if( delay<=0 ) return 0; 910 } 911 sqlite3OsSleep(db->pVfs, delay*1000); 912 return 1; 913 #else 914 sqlite3 *db = (sqlite3 *)ptr; 915 int timeout = ((sqlite3 *)ptr)->busyTimeout; 916 if( (count+1)*1000 > timeout ){ 917 return 0; 918 } 919 sqlite3OsSleep(db->pVfs, 1000000); 920 return 1; 921 #endif 922 } 923 924 /* 925 ** Invoke the given busy handler. 926 ** 927 ** This routine is called when an operation failed with a lock. 928 ** If this routine returns non-zero, the lock is retried. If it 929 ** returns 0, the operation aborts with an SQLITE_BUSY error. 930 */ 931 int sqlite3InvokeBusyHandler(BusyHandler *p){ 932 int rc; 933 if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; 934 rc = p->xFunc(p->pArg, p->nBusy); 935 if( rc==0 ){ 936 p->nBusy = -1; 937 }else{ 938 p->nBusy++; 939 } 940 return rc; 941 } 942 943 /* 944 ** This routine sets the busy callback for an Sqlite database to the 945 ** given callback function with the given argument. 946 */ 947 int sqlite3_busy_handler( 948 sqlite3 *db, 949 int (*xBusy)(void*,int), 950 void *pArg 951 ){ 952 sqlite3_mutex_enter(db->mutex); 953 db->busyHandler.xFunc = xBusy; 954 db->busyHandler.pArg = pArg; 955 db->busyHandler.nBusy = 0; 956 sqlite3_mutex_leave(db->mutex); 957 return SQLITE_OK; 958 } 959 960 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 961 /* 962 ** This routine sets the progress callback for an Sqlite database to the 963 ** given callback function with the given argument. The progress callback will 964 ** be invoked every nOps opcodes. 965 */ 966 void sqlite3_progress_handler( 967 sqlite3 *db, 968 int nOps, 969 int (*xProgress)(void*), 970 void *pArg 971 ){ 972 sqlite3_mutex_enter(db->mutex); 973 if( nOps>0 ){ 974 db->xProgress = xProgress; 975 db->nProgressOps = nOps; 976 db->pProgressArg = pArg; 977 }else{ 978 db->xProgress = 0; 979 db->nProgressOps = 0; 980 db->pProgressArg = 0; 981 } 982 sqlite3_mutex_leave(db->mutex); 983 } 984 #endif 985 986 987 /* 988 ** This routine installs a default busy handler that waits for the 989 ** specified number of milliseconds before returning 0. 990 */ 991 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 992 if( ms>0 ){ 993 db->busyTimeout = ms; 994 sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); 995 }else{ 996 sqlite3_busy_handler(db, 0, 0); 997 } 998 return SQLITE_OK; 999 } 1000 1001 /* 1002 ** Cause any pending operation to stop at its earliest opportunity. 1003 */ 1004 void sqlite3_interrupt(sqlite3 *db){ 1005 db->u1.isInterrupted = 1; 1006 } 1007 1008 1009 /* 1010 ** This function is exactly the same as sqlite3_create_function(), except 1011 ** that it is designed to be called by internal code. The difference is 1012 ** that if a malloc() fails in sqlite3_create_function(), an error code 1013 ** is returned and the mallocFailed flag cleared. 1014 */ 1015 int sqlite3CreateFunc( 1016 sqlite3 *db, 1017 const char *zFunctionName, 1018 int nArg, 1019 int enc, 1020 void *pUserData, 1021 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1022 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1023 void (*xFinal)(sqlite3_context*), 1024 FuncDestructor *pDestructor 1025 ){ 1026 FuncDef *p; 1027 int nName; 1028 1029 assert( sqlite3_mutex_held(db->mutex) ); 1030 if( zFunctionName==0 || 1031 (xFunc && (xFinal || xStep)) || 1032 (!xFunc && (xFinal && !xStep)) || 1033 (!xFunc && (!xFinal && xStep)) || 1034 (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || 1035 (255<(nName = sqlite3Strlen30( zFunctionName))) ){ 1036 return SQLITE_MISUSE_BKPT; 1037 } 1038 1039 #ifndef SQLITE_OMIT_UTF16 1040 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1041 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1042 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1043 ** 1044 ** If SQLITE_ANY is specified, add three versions of the function 1045 ** to the hash table. 1046 */ 1047 if( enc==SQLITE_UTF16 ){ 1048 enc = SQLITE_UTF16NATIVE; 1049 }else if( enc==SQLITE_ANY ){ 1050 int rc; 1051 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, 1052 pUserData, xFunc, xStep, xFinal, pDestructor); 1053 if( rc==SQLITE_OK ){ 1054 rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, 1055 pUserData, xFunc, xStep, xFinal, pDestructor); 1056 } 1057 if( rc!=SQLITE_OK ){ 1058 return rc; 1059 } 1060 enc = SQLITE_UTF16BE; 1061 } 1062 #else 1063 enc = SQLITE_UTF8; 1064 #endif 1065 1066 /* Check if an existing function is being overridden or deleted. If so, 1067 ** and there are active VMs, then return SQLITE_BUSY. If a function 1068 ** is being overridden/deleted but there are no active VMs, allow the 1069 ** operation to continue but invalidate all precompiled statements. 1070 */ 1071 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); 1072 if( p && p->iPrefEnc==enc && p->nArg==nArg ){ 1073 if( db->activeVdbeCnt ){ 1074 sqlite3Error(db, SQLITE_BUSY, 1075 "unable to delete/modify user-function due to active statements"); 1076 assert( !db->mallocFailed ); 1077 return SQLITE_BUSY; 1078 }else{ 1079 sqlite3ExpirePreparedStatements(db); 1080 } 1081 } 1082 1083 p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 1); 1084 assert(p || db->mallocFailed); 1085 if( !p ){ 1086 return SQLITE_NOMEM; 1087 } 1088 1089 /* If an older version of the function with a configured destructor is 1090 ** being replaced invoke the destructor function here. */ 1091 functionDestroy(db, p); 1092 1093 if( pDestructor ){ 1094 pDestructor->nRef++; 1095 } 1096 p->pDestructor = pDestructor; 1097 p->flags = 0; 1098 p->xFunc = xFunc; 1099 p->xStep = xStep; 1100 p->xFinalize = xFinal; 1101 p->pUserData = pUserData; 1102 p->nArg = (u16)nArg; 1103 return SQLITE_OK; 1104 } 1105 1106 /* 1107 ** Create new user functions. 1108 */ 1109 int sqlite3_create_function( 1110 sqlite3 *db, 1111 const char *zFunc, 1112 int nArg, 1113 int enc, 1114 void *p, 1115 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1116 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1117 void (*xFinal)(sqlite3_context*) 1118 ){ 1119 return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep, 1120 xFinal, 0); 1121 } 1122 1123 int sqlite3_create_function_v2( 1124 sqlite3 *db, 1125 const char *zFunc, 1126 int nArg, 1127 int enc, 1128 void *p, 1129 void (*xFunc)(sqlite3_context*,int,sqlite3_value **), 1130 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 1131 void (*xFinal)(sqlite3_context*), 1132 void (*xDestroy)(void *) 1133 ){ 1134 int rc = SQLITE_ERROR; 1135 FuncDestructor *pArg = 0; 1136 sqlite3_mutex_enter(db->mutex); 1137 if( xDestroy ){ 1138 pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor)); 1139 if( !pArg ){ 1140 xDestroy(p); 1141 goto out; 1142 } 1143 pArg->xDestroy = xDestroy; 1144 pArg->pUserData = p; 1145 } 1146 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, xFunc, xStep, xFinal, pArg); 1147 if( pArg && pArg->nRef==0 ){ 1148 assert( rc!=SQLITE_OK ); 1149 xDestroy(p); 1150 sqlite3DbFree(db, pArg); 1151 } 1152 1153 out: 1154 rc = sqlite3ApiExit(db, rc); 1155 sqlite3_mutex_leave(db->mutex); 1156 return rc; 1157 } 1158 1159 #ifndef SQLITE_OMIT_UTF16 1160 int sqlite3_create_function16( 1161 sqlite3 *db, 1162 const void *zFunctionName, 1163 int nArg, 1164 int eTextRep, 1165 void *p, 1166 void (*xFunc)(sqlite3_context*,int,sqlite3_value**), 1167 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 1168 void (*xFinal)(sqlite3_context*) 1169 ){ 1170 int rc; 1171 char *zFunc8; 1172 sqlite3_mutex_enter(db->mutex); 1173 assert( !db->mallocFailed ); 1174 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 1175 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0); 1176 sqlite3DbFree(db, zFunc8); 1177 rc = sqlite3ApiExit(db, rc); 1178 sqlite3_mutex_leave(db->mutex); 1179 return rc; 1180 } 1181 #endif 1182 1183 1184 /* 1185 ** Declare that a function has been overloaded by a virtual table. 1186 ** 1187 ** If the function already exists as a regular global function, then 1188 ** this routine is a no-op. If the function does not exist, then create 1189 ** a new one that always throws a run-time error. 1190 ** 1191 ** When virtual tables intend to provide an overloaded function, they 1192 ** should call this routine to make sure the global function exists. 1193 ** A global function must exist in order for name resolution to work 1194 ** properly. 1195 */ 1196 int sqlite3_overload_function( 1197 sqlite3 *db, 1198 const char *zName, 1199 int nArg 1200 ){ 1201 int nName = sqlite3Strlen30(zName); 1202 int rc; 1203 sqlite3_mutex_enter(db->mutex); 1204 if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ 1205 sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, 1206 0, sqlite3InvalidFunction, 0, 0, 0); 1207 } 1208 rc = sqlite3ApiExit(db, SQLITE_OK); 1209 sqlite3_mutex_leave(db->mutex); 1210 return rc; 1211 } 1212 1213 #ifndef SQLITE_OMIT_TRACE 1214 /* 1215 ** Register a trace function. The pArg from the previously registered trace 1216 ** is returned. 1217 ** 1218 ** A NULL trace function means that no tracing is executes. A non-NULL 1219 ** trace is a pointer to a function that is invoked at the start of each 1220 ** SQL statement. 1221 */ 1222 void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ 1223 void *pOld; 1224 sqlite3_mutex_enter(db->mutex); 1225 pOld = db->pTraceArg; 1226 db->xTrace = xTrace; 1227 db->pTraceArg = pArg; 1228 sqlite3_mutex_leave(db->mutex); 1229 return pOld; 1230 } 1231 /* 1232 ** Register a profile function. The pArg from the previously registered 1233 ** profile function is returned. 1234 ** 1235 ** A NULL profile function means that no profiling is executes. A non-NULL 1236 ** profile is a pointer to a function that is invoked at the conclusion of 1237 ** each SQL statement that is run. 1238 */ 1239 void *sqlite3_profile( 1240 sqlite3 *db, 1241 void (*xProfile)(void*,const char*,sqlite_uint64), 1242 void *pArg 1243 ){ 1244 void *pOld; 1245 sqlite3_mutex_enter(db->mutex); 1246 pOld = db->pProfileArg; 1247 db->xProfile = xProfile; 1248 db->pProfileArg = pArg; 1249 sqlite3_mutex_leave(db->mutex); 1250 return pOld; 1251 } 1252 #endif /* SQLITE_OMIT_TRACE */ 1253 1254 /*** EXPERIMENTAL *** 1255 ** 1256 ** Register a function to be invoked when a transaction comments. 1257 ** If the invoked function returns non-zero, then the commit becomes a 1258 ** rollback. 1259 */ 1260 void *sqlite3_commit_hook( 1261 sqlite3 *db, /* Attach the hook to this database */ 1262 int (*xCallback)(void*), /* Function to invoke on each commit */ 1263 void *pArg /* Argument to the function */ 1264 ){ 1265 void *pOld; 1266 sqlite3_mutex_enter(db->mutex); 1267 pOld = db->pCommitArg; 1268 db->xCommitCallback = xCallback; 1269 db->pCommitArg = pArg; 1270 sqlite3_mutex_leave(db->mutex); 1271 return pOld; 1272 } 1273 1274 /* 1275 ** Register a callback to be invoked each time a row is updated, 1276 ** inserted or deleted using this database connection. 1277 */ 1278 void *sqlite3_update_hook( 1279 sqlite3 *db, /* Attach the hook to this database */ 1280 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 1281 void *pArg /* Argument to the function */ 1282 ){ 1283 void *pRet; 1284 sqlite3_mutex_enter(db->mutex); 1285 pRet = db->pUpdateArg; 1286 db->xUpdateCallback = xCallback; 1287 db->pUpdateArg = pArg; 1288 sqlite3_mutex_leave(db->mutex); 1289 return pRet; 1290 } 1291 1292 /* 1293 ** Register a callback to be invoked each time a transaction is rolled 1294 ** back by this database connection. 1295 */ 1296 void *sqlite3_rollback_hook( 1297 sqlite3 *db, /* Attach the hook to this database */ 1298 void (*xCallback)(void*), /* Callback function */ 1299 void *pArg /* Argument to the function */ 1300 ){ 1301 void *pRet; 1302 sqlite3_mutex_enter(db->mutex); 1303 pRet = db->pRollbackArg; 1304 db->xRollbackCallback = xCallback; 1305 db->pRollbackArg = pArg; 1306 sqlite3_mutex_leave(db->mutex); 1307 return pRet; 1308 } 1309 1310 #ifndef SQLITE_OMIT_WAL 1311 /* 1312 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 1313 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 1314 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 1315 ** wal_autocheckpoint()). 1316 */ 1317 int sqlite3WalDefaultHook( 1318 void *pClientData, /* Argument */ 1319 sqlite3 *db, /* Connection */ 1320 const char *zDb, /* Database */ 1321 int nFrame /* Size of WAL */ 1322 ){ 1323 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 1324 sqlite3BeginBenignMalloc(); 1325 sqlite3_wal_checkpoint(db, zDb); 1326 sqlite3EndBenignMalloc(); 1327 } 1328 return SQLITE_OK; 1329 } 1330 #endif /* SQLITE_OMIT_WAL */ 1331 1332 /* 1333 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 1334 ** a database after committing a transaction if there are nFrame or 1335 ** more frames in the log file. Passing zero or a negative value as the 1336 ** nFrame parameter disables automatic checkpoints entirely. 1337 ** 1338 ** The callback registered by this function replaces any existing callback 1339 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 1340 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 1341 ** configured by this function. 1342 */ 1343 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 1344 #ifdef SQLITE_OMIT_WAL 1345 UNUSED_PARAMETER(db); 1346 UNUSED_PARAMETER(nFrame); 1347 #else 1348 if( nFrame>0 ){ 1349 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 1350 }else{ 1351 sqlite3_wal_hook(db, 0, 0); 1352 } 1353 #endif 1354 return SQLITE_OK; 1355 } 1356 1357 /* 1358 ** Register a callback to be invoked each time a transaction is written 1359 ** into the write-ahead-log by this database connection. 1360 */ 1361 void *sqlite3_wal_hook( 1362 sqlite3 *db, /* Attach the hook to this db handle */ 1363 int(*xCallback)(void *, sqlite3*, const char*, int), 1364 void *pArg /* First argument passed to xCallback() */ 1365 ){ 1366 #ifndef SQLITE_OMIT_WAL 1367 void *pRet; 1368 sqlite3_mutex_enter(db->mutex); 1369 pRet = db->pWalArg; 1370 db->xWalCallback = xCallback; 1371 db->pWalArg = pArg; 1372 sqlite3_mutex_leave(db->mutex); 1373 return pRet; 1374 #else 1375 return 0; 1376 #endif 1377 } 1378 1379 /* 1380 ** Checkpoint database zDb. 1381 */ 1382 int sqlite3_wal_checkpoint_v2( 1383 sqlite3 *db, /* Database handle */ 1384 const char *zDb, /* Name of attached database (or NULL) */ 1385 int eMode, /* SQLITE_CHECKPOINT_* value */ 1386 int *pnLog, /* OUT: Size of WAL log in frames */ 1387 int *pnCkpt /* OUT: Total number of frames checkpointed */ 1388 ){ 1389 #ifdef SQLITE_OMIT_WAL 1390 return SQLITE_OK; 1391 #else 1392 int rc; /* Return code */ 1393 int iDb = SQLITE_MAX_ATTACHED; /* sqlite3.aDb[] index of db to checkpoint */ 1394 1395 /* Initialize the output variables to -1 in case an error occurs. */ 1396 if( pnLog ) *pnLog = -1; 1397 if( pnCkpt ) *pnCkpt = -1; 1398 1399 assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE ); 1400 assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART ); 1401 assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART ); 1402 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){ 1403 return SQLITE_MISUSE; 1404 } 1405 1406 sqlite3_mutex_enter(db->mutex); 1407 if( zDb && zDb[0] ){ 1408 iDb = sqlite3FindDbName(db, zDb); 1409 } 1410 if( iDb<0 ){ 1411 rc = SQLITE_ERROR; 1412 sqlite3Error(db, SQLITE_ERROR, "unknown database: %s", zDb); 1413 }else{ 1414 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 1415 sqlite3Error(db, rc, 0); 1416 } 1417 rc = sqlite3ApiExit(db, rc); 1418 sqlite3_mutex_leave(db->mutex); 1419 return rc; 1420 #endif 1421 } 1422 1423 1424 /* 1425 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 1426 ** to contains a zero-length string, all attached databases are 1427 ** checkpointed. 1428 */ 1429 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 1430 return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0); 1431 } 1432 1433 #ifndef SQLITE_OMIT_WAL 1434 /* 1435 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 1436 ** not currently open in WAL mode. 1437 ** 1438 ** If a transaction is open on the database being checkpointed, this 1439 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 1440 ** an error occurs while running the checkpoint, an SQLite error code is 1441 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 1442 ** 1443 ** The mutex on database handle db should be held by the caller. The mutex 1444 ** associated with the specific b-tree being checkpointed is taken by 1445 ** this function while the checkpoint is running. 1446 ** 1447 ** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are 1448 ** checkpointed. If an error is encountered it is returned immediately - 1449 ** no attempt is made to checkpoint any remaining databases. 1450 ** 1451 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 1452 */ 1453 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 1454 int rc = SQLITE_OK; /* Return code */ 1455 int i; /* Used to iterate through attached dbs */ 1456 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 1457 1458 assert( sqlite3_mutex_held(db->mutex) ); 1459 assert( !pnLog || *pnLog==-1 ); 1460 assert( !pnCkpt || *pnCkpt==-1 ); 1461 1462 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 1463 if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){ 1464 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 1465 pnLog = 0; 1466 pnCkpt = 0; 1467 if( rc==SQLITE_BUSY ){ 1468 bBusy = 1; 1469 rc = SQLITE_OK; 1470 } 1471 } 1472 } 1473 1474 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 1475 } 1476 #endif /* SQLITE_OMIT_WAL */ 1477 1478 /* 1479 ** This function returns true if main-memory should be used instead of 1480 ** a temporary file for transient pager files and statement journals. 1481 ** The value returned depends on the value of db->temp_store (runtime 1482 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 1483 ** following table describes the relationship between these two values 1484 ** and this functions return value. 1485 ** 1486 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 1487 ** ----------------- -------------- ------------------------------ 1488 ** 0 any file (return 0) 1489 ** 1 1 file (return 0) 1490 ** 1 2 memory (return 1) 1491 ** 1 0 file (return 0) 1492 ** 2 1 file (return 0) 1493 ** 2 2 memory (return 1) 1494 ** 2 0 memory (return 1) 1495 ** 3 any memory (return 1) 1496 */ 1497 int sqlite3TempInMemory(const sqlite3 *db){ 1498 #if SQLITE_TEMP_STORE==1 1499 return ( db->temp_store==2 ); 1500 #endif 1501 #if SQLITE_TEMP_STORE==2 1502 return ( db->temp_store!=1 ); 1503 #endif 1504 #if SQLITE_TEMP_STORE==3 1505 return 1; 1506 #endif 1507 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 1508 return 0; 1509 #endif 1510 } 1511 1512 /* 1513 ** Return UTF-8 encoded English language explanation of the most recent 1514 ** error. 1515 */ 1516 const char *sqlite3_errmsg(sqlite3 *db){ 1517 const char *z; 1518 if( !db ){ 1519 return sqlite3ErrStr(SQLITE_NOMEM); 1520 } 1521 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1522 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 1523 } 1524 sqlite3_mutex_enter(db->mutex); 1525 if( db->mallocFailed ){ 1526 z = sqlite3ErrStr(SQLITE_NOMEM); 1527 }else{ 1528 z = (char*)sqlite3_value_text(db->pErr); 1529 assert( !db->mallocFailed ); 1530 if( z==0 ){ 1531 z = sqlite3ErrStr(db->errCode); 1532 } 1533 } 1534 sqlite3_mutex_leave(db->mutex); 1535 return z; 1536 } 1537 1538 #ifndef SQLITE_OMIT_UTF16 1539 /* 1540 ** Return UTF-16 encoded English language explanation of the most recent 1541 ** error. 1542 */ 1543 const void *sqlite3_errmsg16(sqlite3 *db){ 1544 static const u16 outOfMem[] = { 1545 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 1546 }; 1547 static const u16 misuse[] = { 1548 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 1549 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 1550 'c', 'a', 'l', 'l', 'e', 'd', ' ', 1551 'o', 'u', 't', ' ', 1552 'o', 'f', ' ', 1553 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 1554 }; 1555 1556 const void *z; 1557 if( !db ){ 1558 return (void *)outOfMem; 1559 } 1560 if( !sqlite3SafetyCheckSickOrOk(db) ){ 1561 return (void *)misuse; 1562 } 1563 sqlite3_mutex_enter(db->mutex); 1564 if( db->mallocFailed ){ 1565 z = (void *)outOfMem; 1566 }else{ 1567 z = sqlite3_value_text16(db->pErr); 1568 if( z==0 ){ 1569 sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), 1570 SQLITE_UTF8, SQLITE_STATIC); 1571 z = sqlite3_value_text16(db->pErr); 1572 } 1573 /* A malloc() may have failed within the call to sqlite3_value_text16() 1574 ** above. If this is the case, then the db->mallocFailed flag needs to 1575 ** be cleared before returning. Do this directly, instead of via 1576 ** sqlite3ApiExit(), to avoid setting the database handle error message. 1577 */ 1578 db->mallocFailed = 0; 1579 } 1580 sqlite3_mutex_leave(db->mutex); 1581 return z; 1582 } 1583 #endif /* SQLITE_OMIT_UTF16 */ 1584 1585 /* 1586 ** Return the most recent error code generated by an SQLite routine. If NULL is 1587 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 1588 */ 1589 int sqlite3_errcode(sqlite3 *db){ 1590 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1591 return SQLITE_MISUSE_BKPT; 1592 } 1593 if( !db || db->mallocFailed ){ 1594 return SQLITE_NOMEM; 1595 } 1596 return db->errCode & db->errMask; 1597 } 1598 int sqlite3_extended_errcode(sqlite3 *db){ 1599 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 1600 return SQLITE_MISUSE_BKPT; 1601 } 1602 if( !db || db->mallocFailed ){ 1603 return SQLITE_NOMEM; 1604 } 1605 return db->errCode; 1606 } 1607 1608 /* 1609 ** Create a new collating function for database "db". The name is zName 1610 ** and the encoding is enc. 1611 */ 1612 static int createCollation( 1613 sqlite3* db, 1614 const char *zName, 1615 u8 enc, 1616 u8 collType, 1617 void* pCtx, 1618 int(*xCompare)(void*,int,const void*,int,const void*), 1619 void(*xDel)(void*) 1620 ){ 1621 CollSeq *pColl; 1622 int enc2; 1623 int nName = sqlite3Strlen30(zName); 1624 1625 assert( sqlite3_mutex_held(db->mutex) ); 1626 1627 /* If SQLITE_UTF16 is specified as the encoding type, transform this 1628 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 1629 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 1630 */ 1631 enc2 = enc; 1632 testcase( enc2==SQLITE_UTF16 ); 1633 testcase( enc2==SQLITE_UTF16_ALIGNED ); 1634 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 1635 enc2 = SQLITE_UTF16NATIVE; 1636 } 1637 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 1638 return SQLITE_MISUSE_BKPT; 1639 } 1640 1641 /* Check if this call is removing or replacing an existing collation 1642 ** sequence. If so, and there are active VMs, return busy. If there 1643 ** are no active VMs, invalidate any pre-compiled statements. 1644 */ 1645 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 1646 if( pColl && pColl->xCmp ){ 1647 if( db->activeVdbeCnt ){ 1648 sqlite3Error(db, SQLITE_BUSY, 1649 "unable to delete/modify collation sequence due to active statements"); 1650 return SQLITE_BUSY; 1651 } 1652 sqlite3ExpirePreparedStatements(db); 1653 1654 /* If collation sequence pColl was created directly by a call to 1655 ** sqlite3_create_collation, and not generated by synthCollSeq(), 1656 ** then any copies made by synthCollSeq() need to be invalidated. 1657 ** Also, collation destructor - CollSeq.xDel() - function may need 1658 ** to be called. 1659 */ 1660 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 1661 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); 1662 int j; 1663 for(j=0; j<3; j++){ 1664 CollSeq *p = &aColl[j]; 1665 if( p->enc==pColl->enc ){ 1666 if( p->xDel ){ 1667 p->xDel(p->pUser); 1668 } 1669 p->xCmp = 0; 1670 } 1671 } 1672 } 1673 } 1674 1675 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 1676 if( pColl==0 ) return SQLITE_NOMEM; 1677 pColl->xCmp = xCompare; 1678 pColl->pUser = pCtx; 1679 pColl->xDel = xDel; 1680 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 1681 pColl->type = collType; 1682 sqlite3Error(db, SQLITE_OK, 0); 1683 return SQLITE_OK; 1684 } 1685 1686 1687 /* 1688 ** This array defines hard upper bounds on limit values. The 1689 ** initializer must be kept in sync with the SQLITE_LIMIT_* 1690 ** #defines in sqlite3.h. 1691 */ 1692 static const int aHardLimit[] = { 1693 SQLITE_MAX_LENGTH, 1694 SQLITE_MAX_SQL_LENGTH, 1695 SQLITE_MAX_COLUMN, 1696 SQLITE_MAX_EXPR_DEPTH, 1697 SQLITE_MAX_COMPOUND_SELECT, 1698 SQLITE_MAX_VDBE_OP, 1699 SQLITE_MAX_FUNCTION_ARG, 1700 SQLITE_MAX_ATTACHED, 1701 SQLITE_MAX_LIKE_PATTERN_LENGTH, 1702 SQLITE_MAX_VARIABLE_NUMBER, 1703 SQLITE_MAX_TRIGGER_DEPTH, 1704 }; 1705 1706 /* 1707 ** Make sure the hard limits are set to reasonable values 1708 */ 1709 #if SQLITE_MAX_LENGTH<100 1710 # error SQLITE_MAX_LENGTH must be at least 100 1711 #endif 1712 #if SQLITE_MAX_SQL_LENGTH<100 1713 # error SQLITE_MAX_SQL_LENGTH must be at least 100 1714 #endif 1715 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 1716 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 1717 #endif 1718 #if SQLITE_MAX_COMPOUND_SELECT<2 1719 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 1720 #endif 1721 #if SQLITE_MAX_VDBE_OP<40 1722 # error SQLITE_MAX_VDBE_OP must be at least 40 1723 #endif 1724 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 1725 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 1726 #endif 1727 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>62 1728 # error SQLITE_MAX_ATTACHED must be between 0 and 62 1729 #endif 1730 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 1731 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 1732 #endif 1733 #if SQLITE_MAX_COLUMN>32767 1734 # error SQLITE_MAX_COLUMN must not exceed 32767 1735 #endif 1736 #if SQLITE_MAX_TRIGGER_DEPTH<1 1737 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 1738 #endif 1739 1740 1741 /* 1742 ** Change the value of a limit. Report the old value. 1743 ** If an invalid limit index is supplied, report -1. 1744 ** Make no changes but still report the old value if the 1745 ** new limit is negative. 1746 ** 1747 ** A new lower limit does not shrink existing constructs. 1748 ** It merely prevents new constructs that exceed the limit 1749 ** from forming. 1750 */ 1751 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 1752 int oldLimit; 1753 1754 1755 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 1756 ** there is a hard upper bound set at compile-time by a C preprocessor 1757 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 1758 ** "_MAX_".) 1759 */ 1760 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 1761 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 1762 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 1763 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 1764 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 1765 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 1766 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 1767 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 1768 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 1769 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 1770 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 1771 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 1772 assert( SQLITE_LIMIT_TRIGGER_DEPTH==(SQLITE_N_LIMIT-1) ); 1773 1774 1775 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 1776 return -1; 1777 } 1778 oldLimit = db->aLimit[limitId]; 1779 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 1780 if( newLimit>aHardLimit[limitId] ){ 1781 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 1782 } 1783 db->aLimit[limitId] = newLimit; 1784 } 1785 return oldLimit; /* IMP: R-53341-35419 */ 1786 } 1787 1788 /* 1789 ** This routine does the work of opening a database on behalf of 1790 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 1791 ** is UTF-8 encoded. 1792 */ 1793 static int openDatabase( 1794 const char *zFilename, /* Database filename UTF-8 encoded */ 1795 sqlite3 **ppDb, /* OUT: Returned database handle */ 1796 unsigned flags, /* Operational flags */ 1797 const char *zVfs /* Name of the VFS to use */ 1798 ){ 1799 sqlite3 *db; 1800 int rc; 1801 int isThreadsafe; 1802 1803 *ppDb = 0; 1804 #ifndef SQLITE_OMIT_AUTOINIT 1805 rc = sqlite3_initialize(); 1806 if( rc ) return rc; 1807 #endif 1808 1809 /* Only allow sensible combinations of bits in the flags argument. 1810 ** Throw an error if any non-sense combination is used. If we 1811 ** do not block illegal combinations here, it could trigger 1812 ** assert() statements in deeper layers. Sensible combinations 1813 ** are: 1814 ** 1815 ** 1: SQLITE_OPEN_READONLY 1816 ** 2: SQLITE_OPEN_READWRITE 1817 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 1818 */ 1819 assert( SQLITE_OPEN_READONLY == 0x01 ); 1820 assert( SQLITE_OPEN_READWRITE == 0x02 ); 1821 assert( SQLITE_OPEN_CREATE == 0x04 ); 1822 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 1823 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 1824 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 1825 if( ((1<<(flags&7)) & 0x46)==0 ) return SQLITE_MISUSE; 1826 1827 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 1828 isThreadsafe = 0; 1829 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 1830 isThreadsafe = 0; 1831 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 1832 isThreadsafe = 1; 1833 }else{ 1834 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 1835 } 1836 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 1837 flags &= ~SQLITE_OPEN_SHAREDCACHE; 1838 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 1839 flags |= SQLITE_OPEN_SHAREDCACHE; 1840 } 1841 1842 /* Remove harmful bits from the flags parameter 1843 ** 1844 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 1845 ** dealt with in the previous code block. Besides these, the only 1846 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 1847 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 1848 ** SQLITE_OPEN_PRIVATECACHE, and some reserved bits. Silently mask 1849 ** off all other flags. 1850 */ 1851 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 1852 SQLITE_OPEN_EXCLUSIVE | 1853 SQLITE_OPEN_MAIN_DB | 1854 SQLITE_OPEN_TEMP_DB | 1855 SQLITE_OPEN_TRANSIENT_DB | 1856 SQLITE_OPEN_MAIN_JOURNAL | 1857 SQLITE_OPEN_TEMP_JOURNAL | 1858 SQLITE_OPEN_SUBJOURNAL | 1859 SQLITE_OPEN_MASTER_JOURNAL | 1860 SQLITE_OPEN_NOMUTEX | 1861 SQLITE_OPEN_FULLMUTEX | 1862 SQLITE_OPEN_WAL 1863 ); 1864 1865 /* Allocate the sqlite data structure */ 1866 db = sqlite3MallocZero( sizeof(sqlite3) ); 1867 if( db==0 ) goto opendb_out; 1868 if( isThreadsafe ){ 1869 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 1870 if( db->mutex==0 ){ 1871 sqlite3_free(db); 1872 db = 0; 1873 goto opendb_out; 1874 } 1875 } 1876 sqlite3_mutex_enter(db->mutex); 1877 db->errMask = 0xff; 1878 db->nDb = 2; 1879 db->magic = SQLITE_MAGIC_BUSY; 1880 db->aDb = db->aDbStatic; 1881 1882 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 1883 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 1884 db->autoCommit = 1; 1885 db->nextAutovac = -1; 1886 db->nextPagesize = 0; 1887 db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger 1888 #if SQLITE_DEFAULT_FILE_FORMAT<4 1889 | SQLITE_LegacyFileFmt 1890 #endif 1891 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 1892 | SQLITE_LoadExtension 1893 #endif 1894 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 1895 | SQLITE_RecTriggers 1896 #endif 1897 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 1898 | SQLITE_ForeignKeys 1899 #endif 1900 ; 1901 sqlite3HashInit(&db->aCollSeq); 1902 #ifndef SQLITE_OMIT_VIRTUALTABLE 1903 sqlite3HashInit(&db->aModule); 1904 #endif 1905 1906 db->pVfs = sqlite3_vfs_find(zVfs); 1907 if( !db->pVfs ){ 1908 rc = SQLITE_ERROR; 1909 sqlite3Error(db, rc, "no such vfs: %s", zVfs); 1910 goto opendb_out; 1911 } 1912 1913 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 1914 ** and UTF-16, so add a version for each to avoid any unnecessary 1915 ** conversions. The only error that can occur here is a malloc() failure. 1916 */ 1917 createCollation(db, "BINARY", SQLITE_UTF8, SQLITE_COLL_BINARY, 0, 1918 binCollFunc, 0); 1919 createCollation(db, "BINARY", SQLITE_UTF16BE, SQLITE_COLL_BINARY, 0, 1920 binCollFunc, 0); 1921 createCollation(db, "BINARY", SQLITE_UTF16LE, SQLITE_COLL_BINARY, 0, 1922 binCollFunc, 0); 1923 createCollation(db, "RTRIM", SQLITE_UTF8, SQLITE_COLL_USER, (void*)1, 1924 binCollFunc, 0); 1925 if( db->mallocFailed ){ 1926 goto opendb_out; 1927 } 1928 db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0); 1929 assert( db->pDfltColl!=0 ); 1930 1931 /* Also add a UTF-8 case-insensitive collation sequence. */ 1932 createCollation(db, "NOCASE", SQLITE_UTF8, SQLITE_COLL_NOCASE, 0, 1933 nocaseCollatingFunc, 0); 1934 1935 /* Open the backend database driver */ 1936 db->openFlags = flags; 1937 rc = sqlite3BtreeOpen(zFilename, db, &db->aDb[0].pBt, 0, 1938 flags | SQLITE_OPEN_MAIN_DB); 1939 if( rc!=SQLITE_OK ){ 1940 if( rc==SQLITE_IOERR_NOMEM ){ 1941 rc = SQLITE_NOMEM; 1942 } 1943 sqlite3Error(db, rc, 0); 1944 goto opendb_out; 1945 } 1946 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 1947 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 1948 1949 1950 /* The default safety_level for the main database is 'full'; for the temp 1951 ** database it is 'NONE'. This matches the pager layer defaults. 1952 */ 1953 db->aDb[0].zName = "main"; 1954 db->aDb[0].safety_level = 3; 1955 db->aDb[1].zName = "temp"; 1956 db->aDb[1].safety_level = 1; 1957 1958 db->magic = SQLITE_MAGIC_OPEN; 1959 if( db->mallocFailed ){ 1960 goto opendb_out; 1961 } 1962 1963 /* Register all built-in functions, but do not attempt to read the 1964 ** database schema yet. This is delayed until the first time the database 1965 ** is accessed. 1966 */ 1967 sqlite3Error(db, SQLITE_OK, 0); 1968 sqlite3RegisterBuiltinFunctions(db); 1969 1970 /* Load automatic extensions - extensions that have been registered 1971 ** using the sqlite3_automatic_extension() API. 1972 */ 1973 sqlite3AutoLoadExtensions(db); 1974 rc = sqlite3_errcode(db); 1975 if( rc!=SQLITE_OK ){ 1976 goto opendb_out; 1977 } 1978 1979 #ifdef SQLITE_ENABLE_FTS1 1980 if( !db->mallocFailed ){ 1981 extern int sqlite3Fts1Init(sqlite3*); 1982 rc = sqlite3Fts1Init(db); 1983 } 1984 #endif 1985 1986 #ifdef SQLITE_ENABLE_FTS2 1987 if( !db->mallocFailed && rc==SQLITE_OK ){ 1988 extern int sqlite3Fts2Init(sqlite3*); 1989 rc = sqlite3Fts2Init(db); 1990 } 1991 #endif 1992 1993 #ifdef SQLITE_ENABLE_FTS3 1994 if( !db->mallocFailed && rc==SQLITE_OK ){ 1995 rc = sqlite3Fts3Init(db); 1996 } 1997 #endif 1998 1999 #ifdef SQLITE_ENABLE_ICU 2000 if( !db->mallocFailed && rc==SQLITE_OK ){ 2001 rc = sqlite3IcuInit(db); 2002 } 2003 #endif 2004 2005 #ifdef SQLITE_ENABLE_RTREE 2006 if( !db->mallocFailed && rc==SQLITE_OK){ 2007 rc = sqlite3RtreeInit(db); 2008 } 2009 #endif 2010 2011 sqlite3Error(db, rc, 0); 2012 2013 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 2014 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 2015 ** mode. Doing nothing at all also makes NORMAL the default. 2016 */ 2017 #ifdef SQLITE_DEFAULT_LOCKING_MODE 2018 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 2019 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 2020 SQLITE_DEFAULT_LOCKING_MODE); 2021 #endif 2022 2023 /* Enable the lookaside-malloc subsystem */ 2024 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 2025 sqlite3GlobalConfig.nLookaside); 2026 2027 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 2028 2029 opendb_out: 2030 if( db ){ 2031 assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); 2032 sqlite3_mutex_leave(db->mutex); 2033 } 2034 rc = sqlite3_errcode(db); 2035 if( rc==SQLITE_NOMEM ){ 2036 sqlite3_close(db); 2037 db = 0; 2038 }else if( rc!=SQLITE_OK ){ 2039 db->magic = SQLITE_MAGIC_SICK; 2040 } 2041 *ppDb = db; 2042 return sqlite3ApiExit(0, rc); 2043 } 2044 2045 /* 2046 ** Open a new database handle. 2047 */ 2048 int sqlite3_open( 2049 const char *zFilename, 2050 sqlite3 **ppDb 2051 ){ 2052 return openDatabase(zFilename, ppDb, 2053 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2054 } 2055 int sqlite3_open_v2( 2056 const char *filename, /* Database filename (UTF-8) */ 2057 sqlite3 **ppDb, /* OUT: SQLite db handle */ 2058 int flags, /* Flags */ 2059 const char *zVfs /* Name of VFS module to use */ 2060 ){ 2061 return openDatabase(filename, ppDb, flags, zVfs); 2062 } 2063 2064 #ifndef SQLITE_OMIT_UTF16 2065 /* 2066 ** Open a new database handle. 2067 */ 2068 int sqlite3_open16( 2069 const void *zFilename, 2070 sqlite3 **ppDb 2071 ){ 2072 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 2073 sqlite3_value *pVal; 2074 int rc; 2075 2076 assert( zFilename ); 2077 assert( ppDb ); 2078 *ppDb = 0; 2079 #ifndef SQLITE_OMIT_AUTOINIT 2080 rc = sqlite3_initialize(); 2081 if( rc ) return rc; 2082 #endif 2083 pVal = sqlite3ValueNew(0); 2084 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 2085 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 2086 if( zFilename8 ){ 2087 rc = openDatabase(zFilename8, ppDb, 2088 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 2089 assert( *ppDb || rc==SQLITE_NOMEM ); 2090 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 2091 ENC(*ppDb) = SQLITE_UTF16NATIVE; 2092 } 2093 }else{ 2094 rc = SQLITE_NOMEM; 2095 } 2096 sqlite3ValueFree(pVal); 2097 2098 return sqlite3ApiExit(0, rc); 2099 } 2100 #endif /* SQLITE_OMIT_UTF16 */ 2101 2102 /* 2103 ** Register a new collation sequence with the database handle db. 2104 */ 2105 int sqlite3_create_collation( 2106 sqlite3* db, 2107 const char *zName, 2108 int enc, 2109 void* pCtx, 2110 int(*xCompare)(void*,int,const void*,int,const void*) 2111 ){ 2112 int rc; 2113 sqlite3_mutex_enter(db->mutex); 2114 assert( !db->mallocFailed ); 2115 rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0); 2116 rc = sqlite3ApiExit(db, rc); 2117 sqlite3_mutex_leave(db->mutex); 2118 return rc; 2119 } 2120 2121 /* 2122 ** Register a new collation sequence with the database handle db. 2123 */ 2124 int sqlite3_create_collation_v2( 2125 sqlite3* db, 2126 const char *zName, 2127 int enc, 2128 void* pCtx, 2129 int(*xCompare)(void*,int,const void*,int,const void*), 2130 void(*xDel)(void*) 2131 ){ 2132 int rc; 2133 sqlite3_mutex_enter(db->mutex); 2134 assert( !db->mallocFailed ); 2135 rc = createCollation(db, zName, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, xDel); 2136 rc = sqlite3ApiExit(db, rc); 2137 sqlite3_mutex_leave(db->mutex); 2138 return rc; 2139 } 2140 2141 #ifndef SQLITE_OMIT_UTF16 2142 /* 2143 ** Register a new collation sequence with the database handle db. 2144 */ 2145 int sqlite3_create_collation16( 2146 sqlite3* db, 2147 const void *zName, 2148 int enc, 2149 void* pCtx, 2150 int(*xCompare)(void*,int,const void*,int,const void*) 2151 ){ 2152 int rc = SQLITE_OK; 2153 char *zName8; 2154 sqlite3_mutex_enter(db->mutex); 2155 assert( !db->mallocFailed ); 2156 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 2157 if( zName8 ){ 2158 rc = createCollation(db, zName8, (u8)enc, SQLITE_COLL_USER, pCtx, xCompare, 0); 2159 sqlite3DbFree(db, zName8); 2160 } 2161 rc = sqlite3ApiExit(db, rc); 2162 sqlite3_mutex_leave(db->mutex); 2163 return rc; 2164 } 2165 #endif /* SQLITE_OMIT_UTF16 */ 2166 2167 /* 2168 ** Register a collation sequence factory callback with the database handle 2169 ** db. Replace any previously installed collation sequence factory. 2170 */ 2171 int sqlite3_collation_needed( 2172 sqlite3 *db, 2173 void *pCollNeededArg, 2174 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 2175 ){ 2176 sqlite3_mutex_enter(db->mutex); 2177 db->xCollNeeded = xCollNeeded; 2178 db->xCollNeeded16 = 0; 2179 db->pCollNeededArg = pCollNeededArg; 2180 sqlite3_mutex_leave(db->mutex); 2181 return SQLITE_OK; 2182 } 2183 2184 #ifndef SQLITE_OMIT_UTF16 2185 /* 2186 ** Register a collation sequence factory callback with the database handle 2187 ** db. Replace any previously installed collation sequence factory. 2188 */ 2189 int sqlite3_collation_needed16( 2190 sqlite3 *db, 2191 void *pCollNeededArg, 2192 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 2193 ){ 2194 sqlite3_mutex_enter(db->mutex); 2195 db->xCollNeeded = 0; 2196 db->xCollNeeded16 = xCollNeeded16; 2197 db->pCollNeededArg = pCollNeededArg; 2198 sqlite3_mutex_leave(db->mutex); 2199 return SQLITE_OK; 2200 } 2201 #endif /* SQLITE_OMIT_UTF16 */ 2202 2203 #ifndef SQLITE_OMIT_DEPRECATED 2204 /* 2205 ** This function is now an anachronism. It used to be used to recover from a 2206 ** malloc() failure, but SQLite now does this automatically. 2207 */ 2208 int sqlite3_global_recover(void){ 2209 return SQLITE_OK; 2210 } 2211 #endif 2212 2213 /* 2214 ** Test to see whether or not the database connection is in autocommit 2215 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 2216 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 2217 ** by the next COMMIT or ROLLBACK. 2218 ** 2219 ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** 2220 */ 2221 int sqlite3_get_autocommit(sqlite3 *db){ 2222 return db->autoCommit; 2223 } 2224 2225 /* 2226 ** The following routines are subtitutes for constants SQLITE_CORRUPT, 2227 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error 2228 ** constants. They server two purposes: 2229 ** 2230 ** 1. Serve as a convenient place to set a breakpoint in a debugger 2231 ** to detect when version error conditions occurs. 2232 ** 2233 ** 2. Invoke sqlite3_log() to provide the source code location where 2234 ** a low-level error is first detected. 2235 */ 2236 int sqlite3CorruptError(int lineno){ 2237 testcase( sqlite3GlobalConfig.xLog!=0 ); 2238 sqlite3_log(SQLITE_CORRUPT, 2239 "database corruption at line %d of [%.10s]", 2240 lineno, 20+sqlite3_sourceid()); 2241 return SQLITE_CORRUPT; 2242 } 2243 int sqlite3MisuseError(int lineno){ 2244 testcase( sqlite3GlobalConfig.xLog!=0 ); 2245 sqlite3_log(SQLITE_MISUSE, 2246 "misuse at line %d of [%.10s]", 2247 lineno, 20+sqlite3_sourceid()); 2248 return SQLITE_MISUSE; 2249 } 2250 int sqlite3CantopenError(int lineno){ 2251 testcase( sqlite3GlobalConfig.xLog!=0 ); 2252 sqlite3_log(SQLITE_CANTOPEN, 2253 "cannot open file at line %d of [%.10s]", 2254 lineno, 20+sqlite3_sourceid()); 2255 return SQLITE_CANTOPEN; 2256 } 2257 2258 2259 #ifndef SQLITE_OMIT_DEPRECATED 2260 /* 2261 ** This is a convenience routine that makes sure that all thread-specific 2262 ** data for this thread has been deallocated. 2263 ** 2264 ** SQLite no longer uses thread-specific data so this routine is now a 2265 ** no-op. It is retained for historical compatibility. 2266 */ 2267 void sqlite3_thread_cleanup(void){ 2268 } 2269 #endif 2270 2271 /* 2272 ** Return meta information about a specific column of a database table. 2273 ** See comment in sqlite3.h (sqlite.h.in) for details. 2274 */ 2275 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2276 int sqlite3_table_column_metadata( 2277 sqlite3 *db, /* Connection handle */ 2278 const char *zDbName, /* Database name or NULL */ 2279 const char *zTableName, /* Table name */ 2280 const char *zColumnName, /* Column name */ 2281 char const **pzDataType, /* OUTPUT: Declared data type */ 2282 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 2283 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 2284 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 2285 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 2286 ){ 2287 int rc; 2288 char *zErrMsg = 0; 2289 Table *pTab = 0; 2290 Column *pCol = 0; 2291 int iCol; 2292 2293 char const *zDataType = 0; 2294 char const *zCollSeq = 0; 2295 int notnull = 0; 2296 int primarykey = 0; 2297 int autoinc = 0; 2298 2299 /* Ensure the database schema has been loaded */ 2300 sqlite3_mutex_enter(db->mutex); 2301 sqlite3BtreeEnterAll(db); 2302 rc = sqlite3Init(db, &zErrMsg); 2303 if( SQLITE_OK!=rc ){ 2304 goto error_out; 2305 } 2306 2307 /* Locate the table in question */ 2308 pTab = sqlite3FindTable(db, zTableName, zDbName); 2309 if( !pTab || pTab->pSelect ){ 2310 pTab = 0; 2311 goto error_out; 2312 } 2313 2314 /* Find the column for which info is requested */ 2315 if( sqlite3IsRowid(zColumnName) ){ 2316 iCol = pTab->iPKey; 2317 if( iCol>=0 ){ 2318 pCol = &pTab->aCol[iCol]; 2319 } 2320 }else{ 2321 for(iCol=0; iCol<pTab->nCol; iCol++){ 2322 pCol = &pTab->aCol[iCol]; 2323 if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ 2324 break; 2325 } 2326 } 2327 if( iCol==pTab->nCol ){ 2328 pTab = 0; 2329 goto error_out; 2330 } 2331 } 2332 2333 /* The following block stores the meta information that will be returned 2334 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 2335 ** and autoinc. At this point there are two possibilities: 2336 ** 2337 ** 1. The specified column name was rowid", "oid" or "_rowid_" 2338 ** and there is no explicitly declared IPK column. 2339 ** 2340 ** 2. The table is not a view and the column name identified an 2341 ** explicitly declared column. Copy meta information from *pCol. 2342 */ 2343 if( pCol ){ 2344 zDataType = pCol->zType; 2345 zCollSeq = pCol->zColl; 2346 notnull = pCol->notNull!=0; 2347 primarykey = pCol->isPrimKey!=0; 2348 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 2349 }else{ 2350 zDataType = "INTEGER"; 2351 primarykey = 1; 2352 } 2353 if( !zCollSeq ){ 2354 zCollSeq = "BINARY"; 2355 } 2356 2357 error_out: 2358 sqlite3BtreeLeaveAll(db); 2359 2360 /* Whether the function call succeeded or failed, set the output parameters 2361 ** to whatever their local counterparts contain. If an error did occur, 2362 ** this has the effect of zeroing all output parameters. 2363 */ 2364 if( pzDataType ) *pzDataType = zDataType; 2365 if( pzCollSeq ) *pzCollSeq = zCollSeq; 2366 if( pNotNull ) *pNotNull = notnull; 2367 if( pPrimaryKey ) *pPrimaryKey = primarykey; 2368 if( pAutoinc ) *pAutoinc = autoinc; 2369 2370 if( SQLITE_OK==rc && !pTab ){ 2371 sqlite3DbFree(db, zErrMsg); 2372 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 2373 zColumnName); 2374 rc = SQLITE_ERROR; 2375 } 2376 sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); 2377 sqlite3DbFree(db, zErrMsg); 2378 rc = sqlite3ApiExit(db, rc); 2379 sqlite3_mutex_leave(db->mutex); 2380 return rc; 2381 } 2382 #endif 2383 2384 /* 2385 ** Sleep for a little while. Return the amount of time slept. 2386 */ 2387 int sqlite3_sleep(int ms){ 2388 sqlite3_vfs *pVfs; 2389 int rc; 2390 pVfs = sqlite3_vfs_find(0); 2391 if( pVfs==0 ) return 0; 2392 2393 /* This function works in milliseconds, but the underlying OsSleep() 2394 ** API uses microseconds. Hence the 1000's. 2395 */ 2396 rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); 2397 return rc; 2398 } 2399 2400 /* 2401 ** Enable or disable the extended result codes. 2402 */ 2403 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 2404 sqlite3_mutex_enter(db->mutex); 2405 db->errMask = onoff ? 0xffffffff : 0xff; 2406 sqlite3_mutex_leave(db->mutex); 2407 return SQLITE_OK; 2408 } 2409 2410 /* 2411 ** Invoke the xFileControl method on a particular database. 2412 */ 2413 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 2414 int rc = SQLITE_ERROR; 2415 int iDb; 2416 sqlite3_mutex_enter(db->mutex); 2417 if( zDbName==0 ){ 2418 iDb = 0; 2419 }else{ 2420 for(iDb=0; iDb<db->nDb; iDb++){ 2421 if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; 2422 } 2423 } 2424 if( iDb<db->nDb ){ 2425 Btree *pBtree = db->aDb[iDb].pBt; 2426 if( pBtree ){ 2427 Pager *pPager; 2428 sqlite3_file *fd; 2429 sqlite3BtreeEnter(pBtree); 2430 pPager = sqlite3BtreePager(pBtree); 2431 assert( pPager!=0 ); 2432 fd = sqlite3PagerFile(pPager); 2433 assert( fd!=0 ); 2434 if( op==SQLITE_FCNTL_FILE_POINTER ){ 2435 *(sqlite3_file**)pArg = fd; 2436 rc = SQLITE_OK; 2437 }else if( fd->pMethods ){ 2438 rc = sqlite3OsFileControl(fd, op, pArg); 2439 }else{ 2440 rc = SQLITE_NOTFOUND; 2441 } 2442 sqlite3BtreeLeave(pBtree); 2443 } 2444 } 2445 sqlite3_mutex_leave(db->mutex); 2446 return rc; 2447 } 2448 2449 /* 2450 ** Interface to the testing logic. 2451 */ 2452 int sqlite3_test_control(int op, ...){ 2453 int rc = 0; 2454 #ifndef SQLITE_OMIT_BUILTIN_TEST 2455 va_list ap; 2456 va_start(ap, op); 2457 switch( op ){ 2458 2459 /* 2460 ** Save the current state of the PRNG. 2461 */ 2462 case SQLITE_TESTCTRL_PRNG_SAVE: { 2463 sqlite3PrngSaveState(); 2464 break; 2465 } 2466 2467 /* 2468 ** Restore the state of the PRNG to the last state saved using 2469 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 2470 ** this verb acts like PRNG_RESET. 2471 */ 2472 case SQLITE_TESTCTRL_PRNG_RESTORE: { 2473 sqlite3PrngRestoreState(); 2474 break; 2475 } 2476 2477 /* 2478 ** Reset the PRNG back to its uninitialized state. The next call 2479 ** to sqlite3_randomness() will reseed the PRNG using a single call 2480 ** to the xRandomness method of the default VFS. 2481 */ 2482 case SQLITE_TESTCTRL_PRNG_RESET: { 2483 sqlite3PrngResetState(); 2484 break; 2485 } 2486 2487 /* 2488 ** sqlite3_test_control(BITVEC_TEST, size, program) 2489 ** 2490 ** Run a test against a Bitvec object of size. The program argument 2491 ** is an array of integers that defines the test. Return -1 on a 2492 ** memory allocation error, 0 on success, or non-zero for an error. 2493 ** See the sqlite3BitvecBuiltinTest() for additional information. 2494 */ 2495 case SQLITE_TESTCTRL_BITVEC_TEST: { 2496 int sz = va_arg(ap, int); 2497 int *aProg = va_arg(ap, int*); 2498 rc = sqlite3BitvecBuiltinTest(sz, aProg); 2499 break; 2500 } 2501 2502 /* 2503 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 2504 ** 2505 ** Register hooks to call to indicate which malloc() failures 2506 ** are benign. 2507 */ 2508 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 2509 typedef void (*void_function)(void); 2510 void_function xBenignBegin; 2511 void_function xBenignEnd; 2512 xBenignBegin = va_arg(ap, void_function); 2513 xBenignEnd = va_arg(ap, void_function); 2514 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 2515 break; 2516 } 2517 2518 /* 2519 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 2520 ** 2521 ** Set the PENDING byte to the value in the argument, if X>0. 2522 ** Make no changes if X==0. Return the value of the pending byte 2523 ** as it existing before this routine was called. 2524 ** 2525 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 2526 ** an incompatible database file format. Changing the PENDING byte 2527 ** while any database connection is open results in undefined and 2528 ** dileterious behavior. 2529 */ 2530 case SQLITE_TESTCTRL_PENDING_BYTE: { 2531 rc = PENDING_BYTE; 2532 #ifndef SQLITE_OMIT_WSD 2533 { 2534 unsigned int newVal = va_arg(ap, unsigned int); 2535 if( newVal ) sqlite3PendingByte = newVal; 2536 } 2537 #endif 2538 break; 2539 } 2540 2541 /* 2542 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 2543 ** 2544 ** This action provides a run-time test to see whether or not 2545 ** assert() was enabled at compile-time. If X is true and assert() 2546 ** is enabled, then the return value is true. If X is true and 2547 ** assert() is disabled, then the return value is zero. If X is 2548 ** false and assert() is enabled, then the assertion fires and the 2549 ** process aborts. If X is false and assert() is disabled, then the 2550 ** return value is zero. 2551 */ 2552 case SQLITE_TESTCTRL_ASSERT: { 2553 volatile int x = 0; 2554 assert( (x = va_arg(ap,int))!=0 ); 2555 rc = x; 2556 break; 2557 } 2558 2559 2560 /* 2561 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 2562 ** 2563 ** This action provides a run-time test to see how the ALWAYS and 2564 ** NEVER macros were defined at compile-time. 2565 ** 2566 ** The return value is ALWAYS(X). 2567 ** 2568 ** The recommended test is X==2. If the return value is 2, that means 2569 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 2570 ** default setting. If the return value is 1, then ALWAYS() is either 2571 ** hard-coded to true or else it asserts if its argument is false. 2572 ** The first behavior (hard-coded to true) is the case if 2573 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 2574 ** behavior (assert if the argument to ALWAYS() is false) is the case if 2575 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 2576 ** 2577 ** The run-time test procedure might look something like this: 2578 ** 2579 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 2580 ** // ALWAYS() and NEVER() are no-op pass-through macros 2581 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 2582 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 2583 ** }else{ 2584 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 2585 ** } 2586 */ 2587 case SQLITE_TESTCTRL_ALWAYS: { 2588 int x = va_arg(ap,int); 2589 rc = ALWAYS(x); 2590 break; 2591 } 2592 2593 /* sqlite3_test_control(SQLITE_TESTCTRL_RESERVE, sqlite3 *db, int N) 2594 ** 2595 ** Set the nReserve size to N for the main database on the database 2596 ** connection db. 2597 */ 2598 case SQLITE_TESTCTRL_RESERVE: { 2599 sqlite3 *db = va_arg(ap, sqlite3*); 2600 int x = va_arg(ap,int); 2601 sqlite3_mutex_enter(db->mutex); 2602 sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); 2603 sqlite3_mutex_leave(db->mutex); 2604 break; 2605 } 2606 2607 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 2608 ** 2609 ** Enable or disable various optimizations for testing purposes. The 2610 ** argument N is a bitmask of optimizations to be disabled. For normal 2611 ** operation N should be 0. The idea is that a test program (like the 2612 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 2613 ** with various optimizations disabled to verify that the same answer 2614 ** is obtained in every case. 2615 */ 2616 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 2617 sqlite3 *db = va_arg(ap, sqlite3*); 2618 int x = va_arg(ap,int); 2619 db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask); 2620 break; 2621 } 2622 2623 #ifdef SQLITE_N_KEYWORD 2624 /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) 2625 ** 2626 ** If zWord is a keyword recognized by the parser, then return the 2627 ** number of keywords. Or if zWord is not a keyword, return 0. 2628 ** 2629 ** This test feature is only available in the amalgamation since 2630 ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite 2631 ** is built using separate source files. 2632 */ 2633 case SQLITE_TESTCTRL_ISKEYWORD: { 2634 const char *zWord = va_arg(ap, const char*); 2635 int n = sqlite3Strlen30(zWord); 2636 rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; 2637 break; 2638 } 2639 #endif 2640 2641 /* sqlite3_test_control(SQLITE_TESTCTRL_PGHDRSZ) 2642 ** 2643 ** Return the size of a pcache header in bytes. 2644 */ 2645 case SQLITE_TESTCTRL_PGHDRSZ: { 2646 rc = sizeof(PgHdr); 2647 break; 2648 } 2649 2650 /* sqlite3_test_control(SQLITE_TESTCTRL_SCRATCHMALLOC, sz, &pNew, pFree); 2651 ** 2652 ** Pass pFree into sqlite3ScratchFree(). 2653 ** If sz>0 then allocate a scratch buffer into pNew. 2654 */ 2655 case SQLITE_TESTCTRL_SCRATCHMALLOC: { 2656 void *pFree, **ppNew; 2657 int sz; 2658 sz = va_arg(ap, int); 2659 ppNew = va_arg(ap, void**); 2660 pFree = va_arg(ap, void*); 2661 if( sz ) *ppNew = sqlite3ScratchMalloc(sz); 2662 sqlite3ScratchFree(pFree); 2663 break; 2664 } 2665 2666 } 2667 va_end(ap); 2668 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 2669 return rc; 2670 } 2671