1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 pNew = &standin; 69 memset(pNew, 0, sizeof(*pNew)); 70 } 71 if( pEList==0 ){ 72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 73 } 74 pNew->pEList = pEList; 75 pNew->pSrc = pSrc; 76 pNew->pWhere = pWhere; 77 pNew->pGroupBy = pGroupBy; 78 pNew->pHaving = pHaving; 79 pNew->pOrderBy = pOrderBy; 80 pNew->selFlags = isDistinct ? SF_Distinct : 0; 81 pNew->op = TK_SELECT; 82 pNew->pLimit = pLimit; 83 pNew->pOffset = pOffset; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->addrOpenEphm[0] = -1; 86 pNew->addrOpenEphm[1] = -1; 87 pNew->addrOpenEphm[2] = -1; 88 if( db->mallocFailed ) { 89 clearSelect(db, pNew); 90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 91 pNew = 0; 92 } 93 return pNew; 94 } 95 96 /* 97 ** Delete the given Select structure and all of its substructures. 98 */ 99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 100 if( p ){ 101 clearSelect(db, p); 102 sqlite3DbFree(db, p); 103 } 104 } 105 106 /* 107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 108 ** type of join. Return an integer constant that expresses that type 109 ** in terms of the following bit values: 110 ** 111 ** JT_INNER 112 ** JT_CROSS 113 ** JT_OUTER 114 ** JT_NATURAL 115 ** JT_LEFT 116 ** JT_RIGHT 117 ** 118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 119 ** 120 ** If an illegal or unsupported join type is seen, then still return 121 ** a join type, but put an error in the pParse structure. 122 */ 123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 124 int jointype = 0; 125 Token *apAll[3]; 126 Token *p; 127 /* 0123456789 123456789 123456789 123 */ 128 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 129 static const struct { 130 u8 i; /* Beginning of keyword text in zKeyText[] */ 131 u8 nChar; /* Length of the keyword in characters */ 132 u8 code; /* Join type mask */ 133 } aKeyword[] = { 134 /* natural */ { 0, 7, JT_NATURAL }, 135 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 136 /* outer */ { 10, 5, JT_OUTER }, 137 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 138 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 139 /* inner */ { 23, 5, JT_INNER }, 140 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 141 }; 142 int i, j; 143 apAll[0] = pA; 144 apAll[1] = pB; 145 apAll[2] = pC; 146 for(i=0; i<3 && apAll[i]; i++){ 147 p = apAll[i]; 148 for(j=0; j<ArraySize(aKeyword); j++){ 149 if( p->n==aKeyword[j].nChar 150 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 151 jointype |= aKeyword[j].code; 152 break; 153 } 154 } 155 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 156 if( j>=ArraySize(aKeyword) ){ 157 jointype |= JT_ERROR; 158 break; 159 } 160 } 161 if( 162 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 163 (jointype & JT_ERROR)!=0 164 ){ 165 const char *zSp = " "; 166 assert( pB!=0 ); 167 if( pC==0 ){ zSp++; } 168 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 169 "%T %T%s%T", pA, pB, zSp, pC); 170 jointype = JT_INNER; 171 }else if( (jointype & JT_OUTER)!=0 172 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 173 sqlite3ErrorMsg(pParse, 174 "RIGHT and FULL OUTER JOINs are not currently supported"); 175 jointype = JT_INNER; 176 } 177 return jointype; 178 } 179 180 /* 181 ** Return the index of a column in a table. Return -1 if the column 182 ** is not contained in the table. 183 */ 184 static int columnIndex(Table *pTab, const char *zCol){ 185 int i; 186 for(i=0; i<pTab->nCol; i++){ 187 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 188 } 189 return -1; 190 } 191 192 /* 193 ** Search the first N tables in pSrc, from left to right, looking for a 194 ** table that has a column named zCol. 195 ** 196 ** When found, set *piTab and *piCol to the table index and column index 197 ** of the matching column and return TRUE. 198 ** 199 ** If not found, return FALSE. 200 */ 201 static int tableAndColumnIndex( 202 SrcList *pSrc, /* Array of tables to search */ 203 int N, /* Number of tables in pSrc->a[] to search */ 204 const char *zCol, /* Name of the column we are looking for */ 205 int *piTab, /* Write index of pSrc->a[] here */ 206 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 207 ){ 208 int i; /* For looping over tables in pSrc */ 209 int iCol; /* Index of column matching zCol */ 210 211 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 212 for(i=0; i<N; i++){ 213 iCol = columnIndex(pSrc->a[i].pTab, zCol); 214 if( iCol>=0 ){ 215 if( piTab ){ 216 *piTab = i; 217 *piCol = iCol; 218 } 219 return 1; 220 } 221 } 222 return 0; 223 } 224 225 /* 226 ** This function is used to add terms implied by JOIN syntax to the 227 ** WHERE clause expression of a SELECT statement. The new term, which 228 ** is ANDed with the existing WHERE clause, is of the form: 229 ** 230 ** (tab1.col1 = tab2.col2) 231 ** 232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 234 ** column iColRight of tab2. 235 */ 236 static void addWhereTerm( 237 Parse *pParse, /* Parsing context */ 238 SrcList *pSrc, /* List of tables in FROM clause */ 239 int iLeft, /* Index of first table to join in pSrc */ 240 int iColLeft, /* Index of column in first table */ 241 int iRight, /* Index of second table in pSrc */ 242 int iColRight, /* Index of column in second table */ 243 int isOuterJoin, /* True if this is an OUTER join */ 244 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 245 ){ 246 sqlite3 *db = pParse->db; 247 Expr *pE1; 248 Expr *pE2; 249 Expr *pEq; 250 251 assert( iLeft<iRight ); 252 assert( pSrc->nSrc>iRight ); 253 assert( pSrc->a[iLeft].pTab ); 254 assert( pSrc->a[iRight].pTab ); 255 256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 258 259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 260 if( pEq && isOuterJoin ){ 261 ExprSetProperty(pEq, EP_FromJoin); 262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 263 ExprSetIrreducible(pEq); 264 pEq->iRightJoinTable = (i16)pE2->iTable; 265 } 266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 267 } 268 269 /* 270 ** Set the EP_FromJoin property on all terms of the given expression. 271 ** And set the Expr.iRightJoinTable to iTable for every term in the 272 ** expression. 273 ** 274 ** The EP_FromJoin property is used on terms of an expression to tell 275 ** the LEFT OUTER JOIN processing logic that this term is part of the 276 ** join restriction specified in the ON or USING clause and not a part 277 ** of the more general WHERE clause. These terms are moved over to the 278 ** WHERE clause during join processing but we need to remember that they 279 ** originated in the ON or USING clause. 280 ** 281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 282 ** expression depends on table iRightJoinTable even if that table is not 283 ** explicitly mentioned in the expression. That information is needed 284 ** for cases like this: 285 ** 286 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 287 ** 288 ** The where clause needs to defer the handling of the t1.x=5 289 ** term until after the t2 loop of the join. In that way, a 290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 291 ** defer the handling of t1.x=5, it will be processed immediately 292 ** after the t1 loop and rows with t1.x!=5 will never appear in 293 ** the output, which is incorrect. 294 */ 295 static void setJoinExpr(Expr *p, int iTable){ 296 while( p ){ 297 ExprSetProperty(p, EP_FromJoin); 298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 299 ExprSetIrreducible(p); 300 p->iRightJoinTable = (i16)iTable; 301 setJoinExpr(p->pLeft, iTable); 302 p = p->pRight; 303 } 304 } 305 306 /* 307 ** This routine processes the join information for a SELECT statement. 308 ** ON and USING clauses are converted into extra terms of the WHERE clause. 309 ** NATURAL joins also create extra WHERE clause terms. 310 ** 311 ** The terms of a FROM clause are contained in the Select.pSrc structure. 312 ** The left most table is the first entry in Select.pSrc. The right-most 313 ** table is the last entry. The join operator is held in the entry to 314 ** the left. Thus entry 0 contains the join operator for the join between 315 ** entries 0 and 1. Any ON or USING clauses associated with the join are 316 ** also attached to the left entry. 317 ** 318 ** This routine returns the number of errors encountered. 319 */ 320 static int sqliteProcessJoin(Parse *pParse, Select *p){ 321 SrcList *pSrc; /* All tables in the FROM clause */ 322 int i, j; /* Loop counters */ 323 struct SrcList_item *pLeft; /* Left table being joined */ 324 struct SrcList_item *pRight; /* Right table being joined */ 325 326 pSrc = p->pSrc; 327 pLeft = &pSrc->a[0]; 328 pRight = &pLeft[1]; 329 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 330 Table *pLeftTab = pLeft->pTab; 331 Table *pRightTab = pRight->pTab; 332 int isOuter; 333 334 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 335 isOuter = (pRight->jointype & JT_OUTER)!=0; 336 337 /* When the NATURAL keyword is present, add WHERE clause terms for 338 ** every column that the two tables have in common. 339 */ 340 if( pRight->jointype & JT_NATURAL ){ 341 if( pRight->pOn || pRight->pUsing ){ 342 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 343 "an ON or USING clause", 0); 344 return 1; 345 } 346 for(j=0; j<pRightTab->nCol; j++){ 347 char *zName; /* Name of column in the right table */ 348 int iLeft; /* Matching left table */ 349 int iLeftCol; /* Matching column in the left table */ 350 351 zName = pRightTab->aCol[j].zName; 352 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 353 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 354 isOuter, &p->pWhere); 355 } 356 } 357 } 358 359 /* Disallow both ON and USING clauses in the same join 360 */ 361 if( pRight->pOn && pRight->pUsing ){ 362 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 363 "clauses in the same join"); 364 return 1; 365 } 366 367 /* Add the ON clause to the end of the WHERE clause, connected by 368 ** an AND operator. 369 */ 370 if( pRight->pOn ){ 371 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 372 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 373 pRight->pOn = 0; 374 } 375 376 /* Create extra terms on the WHERE clause for each column named 377 ** in the USING clause. Example: If the two tables to be joined are 378 ** A and B and the USING clause names X, Y, and Z, then add this 379 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 380 ** Report an error if any column mentioned in the USING clause is 381 ** not contained in both tables to be joined. 382 */ 383 if( pRight->pUsing ){ 384 IdList *pList = pRight->pUsing; 385 for(j=0; j<pList->nId; j++){ 386 char *zName; /* Name of the term in the USING clause */ 387 int iLeft; /* Table on the left with matching column name */ 388 int iLeftCol; /* Column number of matching column on the left */ 389 int iRightCol; /* Column number of matching column on the right */ 390 391 zName = pList->a[j].zName; 392 iRightCol = columnIndex(pRightTab, zName); 393 if( iRightCol<0 394 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 395 ){ 396 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 397 "not present in both tables", zName); 398 return 1; 399 } 400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 401 isOuter, &p->pWhere); 402 } 403 } 404 } 405 return 0; 406 } 407 408 /* 409 ** Insert code into "v" that will push the record on the top of the 410 ** stack into the sorter. 411 */ 412 static void pushOntoSorter( 413 Parse *pParse, /* Parser context */ 414 ExprList *pOrderBy, /* The ORDER BY clause */ 415 Select *pSelect, /* The whole SELECT statement */ 416 int regData /* Register holding data to be sorted */ 417 ){ 418 Vdbe *v = pParse->pVdbe; 419 int nExpr = pOrderBy->nExpr; 420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 421 int regRecord = sqlite3GetTempReg(pParse); 422 sqlite3ExprCacheClear(pParse); 423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 428 sqlite3ReleaseTempReg(pParse, regRecord); 429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 430 if( pSelect->iLimit ){ 431 int addr1, addr2; 432 int iLimit; 433 if( pSelect->iOffset ){ 434 iLimit = pSelect->iOffset+1; 435 }else{ 436 iLimit = pSelect->iLimit; 437 } 438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 441 sqlite3VdbeJumpHere(v, addr1); 442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 444 sqlite3VdbeJumpHere(v, addr2); 445 } 446 } 447 448 /* 449 ** Add code to implement the OFFSET 450 */ 451 static void codeOffset( 452 Vdbe *v, /* Generate code into this VM */ 453 Select *p, /* The SELECT statement being coded */ 454 int iContinue /* Jump here to skip the current record */ 455 ){ 456 if( p->iOffset && iContinue!=0 ){ 457 int addr; 458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 461 VdbeComment((v, "skip OFFSET records")); 462 sqlite3VdbeJumpHere(v, addr); 463 } 464 } 465 466 /* 467 ** Add code that will check to make sure the N registers starting at iMem 468 ** form a distinct entry. iTab is a sorting index that holds previously 469 ** seen combinations of the N values. A new entry is made in iTab 470 ** if the current N values are new. 471 ** 472 ** A jump to addrRepeat is made and the N+1 values are popped from the 473 ** stack if the top N elements are not distinct. 474 */ 475 static void codeDistinct( 476 Parse *pParse, /* Parsing and code generating context */ 477 int iTab, /* A sorting index used to test for distinctness */ 478 int addrRepeat, /* Jump to here if not distinct */ 479 int N, /* Number of elements */ 480 int iMem /* First element */ 481 ){ 482 Vdbe *v; 483 int r1; 484 485 v = pParse->pVdbe; 486 r1 = sqlite3GetTempReg(pParse); 487 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 490 sqlite3ReleaseTempReg(pParse, r1); 491 } 492 493 #ifndef SQLITE_OMIT_SUBQUERY 494 /* 495 ** Generate an error message when a SELECT is used within a subexpression 496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 497 ** column. We do this in a subroutine because the error used to occur 498 ** in multiple places. (The error only occurs in one place now, but we 499 ** retain the subroutine to minimize code disruption.) 500 */ 501 static int checkForMultiColumnSelectError( 502 Parse *pParse, /* Parse context. */ 503 SelectDest *pDest, /* Destination of SELECT results */ 504 int nExpr /* Number of result columns returned by SELECT */ 505 ){ 506 int eDest = pDest->eDest; 507 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 508 sqlite3ErrorMsg(pParse, "only a single result allowed for " 509 "a SELECT that is part of an expression"); 510 return 1; 511 }else{ 512 return 0; 513 } 514 } 515 #endif 516 517 /* 518 ** This routine generates the code for the inside of the inner loop 519 ** of a SELECT. 520 ** 521 ** If srcTab and nColumn are both zero, then the pEList expressions 522 ** are evaluated in order to get the data for this row. If nColumn>0 523 ** then data is pulled from srcTab and pEList is used only to get the 524 ** datatypes for each column. 525 */ 526 static void selectInnerLoop( 527 Parse *pParse, /* The parser context */ 528 Select *p, /* The complete select statement being coded */ 529 ExprList *pEList, /* List of values being extracted */ 530 int srcTab, /* Pull data from this table */ 531 int nColumn, /* Number of columns in the source table */ 532 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 533 int distinct, /* If >=0, make sure results are distinct */ 534 SelectDest *pDest, /* How to dispose of the results */ 535 int iContinue, /* Jump here to continue with next row */ 536 int iBreak /* Jump here to break out of the inner loop */ 537 ){ 538 Vdbe *v = pParse->pVdbe; 539 int i; 540 int hasDistinct; /* True if the DISTINCT keyword is present */ 541 int regResult; /* Start of memory holding result set */ 542 int eDest = pDest->eDest; /* How to dispose of results */ 543 int iParm = pDest->iParm; /* First argument to disposal method */ 544 int nResultCol; /* Number of result columns */ 545 546 assert( v ); 547 if( NEVER(v==0) ) return; 548 assert( pEList!=0 ); 549 hasDistinct = distinct>=0; 550 if( pOrderBy==0 && !hasDistinct ){ 551 codeOffset(v, p, iContinue); 552 } 553 554 /* Pull the requested columns. 555 */ 556 if( nColumn>0 ){ 557 nResultCol = nColumn; 558 }else{ 559 nResultCol = pEList->nExpr; 560 } 561 if( pDest->iMem==0 ){ 562 pDest->iMem = pParse->nMem+1; 563 pDest->nMem = nResultCol; 564 pParse->nMem += nResultCol; 565 }else{ 566 assert( pDest->nMem==nResultCol ); 567 } 568 regResult = pDest->iMem; 569 if( nColumn>0 ){ 570 for(i=0; i<nColumn; i++){ 571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 572 } 573 }else if( eDest!=SRT_Exists ){ 574 /* If the destination is an EXISTS(...) expression, the actual 575 ** values returned by the SELECT are not required. 576 */ 577 sqlite3ExprCacheClear(pParse); 578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 579 } 580 nColumn = nResultCol; 581 582 /* If the DISTINCT keyword was present on the SELECT statement 583 ** and this row has been seen before, then do not make this row 584 ** part of the result. 585 */ 586 if( hasDistinct ){ 587 assert( pEList!=0 ); 588 assert( pEList->nExpr==nColumn ); 589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 590 if( pOrderBy==0 ){ 591 codeOffset(v, p, iContinue); 592 } 593 } 594 595 switch( eDest ){ 596 /* In this mode, write each query result to the key of the temporary 597 ** table iParm. 598 */ 599 #ifndef SQLITE_OMIT_COMPOUND_SELECT 600 case SRT_Union: { 601 int r1; 602 r1 = sqlite3GetTempReg(pParse); 603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 604 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 605 sqlite3ReleaseTempReg(pParse, r1); 606 break; 607 } 608 609 /* Construct a record from the query result, but instead of 610 ** saving that record, use it as a key to delete elements from 611 ** the temporary table iParm. 612 */ 613 case SRT_Except: { 614 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 615 break; 616 } 617 #endif 618 619 /* Store the result as data using a unique key. 620 */ 621 case SRT_Table: 622 case SRT_EphemTab: { 623 int r1 = sqlite3GetTempReg(pParse); 624 testcase( eDest==SRT_Table ); 625 testcase( eDest==SRT_EphemTab ); 626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 627 if( pOrderBy ){ 628 pushOntoSorter(pParse, pOrderBy, p, r1); 629 }else{ 630 int r2 = sqlite3GetTempReg(pParse); 631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 634 sqlite3ReleaseTempReg(pParse, r2); 635 } 636 sqlite3ReleaseTempReg(pParse, r1); 637 break; 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 642 ** then there should be a single item on the stack. Write this 643 ** item into the set table with bogus data. 644 */ 645 case SRT_Set: { 646 assert( nColumn==1 ); 647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 648 if( pOrderBy ){ 649 /* At first glance you would think we could optimize out the 650 ** ORDER BY in this case since the order of entries in the set 651 ** does not matter. But there might be a LIMIT clause, in which 652 ** case the order does matter */ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 int r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 break; 662 } 663 664 /* If any row exist in the result set, record that fact and abort. 665 */ 666 case SRT_Exists: { 667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 668 /* The LIMIT clause will terminate the loop for us */ 669 break; 670 } 671 672 /* If this is a scalar select that is part of an expression, then 673 ** store the results in the appropriate memory cell and break out 674 ** of the scan loop. 675 */ 676 case SRT_Mem: { 677 assert( nColumn==1 ); 678 if( pOrderBy ){ 679 pushOntoSorter(pParse, pOrderBy, p, regResult); 680 }else{ 681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 682 /* The LIMIT clause will jump out of the loop for us */ 683 } 684 break; 685 } 686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 687 688 /* Send the data to the callback function or to a subroutine. In the 689 ** case of a subroutine, the subroutine itself is responsible for 690 ** popping the data from the stack. 691 */ 692 case SRT_Coroutine: 693 case SRT_Output: { 694 testcase( eDest==SRT_Coroutine ); 695 testcase( eDest==SRT_Output ); 696 if( pOrderBy ){ 697 int r1 = sqlite3GetTempReg(pParse); 698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 699 pushOntoSorter(pParse, pOrderBy, p, r1); 700 sqlite3ReleaseTempReg(pParse, r1); 701 }else if( eDest==SRT_Coroutine ){ 702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 703 }else{ 704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 706 } 707 break; 708 } 709 710 #if !defined(SQLITE_OMIT_TRIGGER) 711 /* Discard the results. This is used for SELECT statements inside 712 ** the body of a TRIGGER. The purpose of such selects is to call 713 ** user-defined functions that have side effects. We do not care 714 ** about the actual results of the select. 715 */ 716 default: { 717 assert( eDest==SRT_Discard ); 718 break; 719 } 720 #endif 721 } 722 723 /* Jump to the end of the loop if the LIMIT is reached. Except, if 724 ** there is a sorter, in which case the sorter has already limited 725 ** the output for us. 726 */ 727 if( pOrderBy==0 && p->iLimit ){ 728 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 729 } 730 } 731 732 /* 733 ** Given an expression list, generate a KeyInfo structure that records 734 ** the collating sequence for each expression in that expression list. 735 ** 736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 737 ** KeyInfo structure is appropriate for initializing a virtual index to 738 ** implement that clause. If the ExprList is the result set of a SELECT 739 ** then the KeyInfo structure is appropriate for initializing a virtual 740 ** index to implement a DISTINCT test. 741 ** 742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 743 ** function is responsible for seeing that this structure is eventually 744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 746 */ 747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 748 sqlite3 *db = pParse->db; 749 int nExpr; 750 KeyInfo *pInfo; 751 struct ExprList_item *pItem; 752 int i; 753 754 nExpr = pList->nExpr; 755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 756 if( pInfo ){ 757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 758 pInfo->nField = (u16)nExpr; 759 pInfo->enc = ENC(db); 760 pInfo->db = db; 761 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 762 CollSeq *pColl; 763 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 764 if( !pColl ){ 765 pColl = db->pDfltColl; 766 } 767 pInfo->aColl[i] = pColl; 768 pInfo->aSortOrder[i] = pItem->sortOrder; 769 } 770 } 771 return pInfo; 772 } 773 774 #ifndef SQLITE_OMIT_COMPOUND_SELECT 775 /* 776 ** Name of the connection operator, used for error messages. 777 */ 778 static const char *selectOpName(int id){ 779 char *z; 780 switch( id ){ 781 case TK_ALL: z = "UNION ALL"; break; 782 case TK_INTERSECT: z = "INTERSECT"; break; 783 case TK_EXCEPT: z = "EXCEPT"; break; 784 default: z = "UNION"; break; 785 } 786 return z; 787 } 788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 789 790 #ifndef SQLITE_OMIT_EXPLAIN 791 /* 792 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 793 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 794 ** where the caption is of the form: 795 ** 796 ** "USE TEMP B-TREE FOR xxx" 797 ** 798 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 799 ** is determined by the zUsage argument. 800 */ 801 static void explainTempTable(Parse *pParse, const char *zUsage){ 802 if( pParse->explain==2 ){ 803 Vdbe *v = pParse->pVdbe; 804 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 805 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 806 } 807 } 808 809 /* 810 ** Assign expression b to lvalue a. A second, no-op, version of this macro 811 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 812 ** in sqlite3Select() to assign values to structure member variables that 813 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 814 ** code with #ifndef directives. 815 */ 816 # define explainSetInteger(a, b) a = b 817 818 #else 819 /* No-op versions of the explainXXX() functions and macros. */ 820 # define explainTempTable(y,z) 821 # define explainSetInteger(y,z) 822 #endif 823 824 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 825 /* 826 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 827 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 828 ** where the caption is of one of the two forms: 829 ** 830 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 831 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 832 ** 833 ** where iSub1 and iSub2 are the integers passed as the corresponding 834 ** function parameters, and op is the text representation of the parameter 835 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 836 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 837 ** false, or the second form if it is true. 838 */ 839 static void explainComposite( 840 Parse *pParse, /* Parse context */ 841 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 842 int iSub1, /* Subquery id 1 */ 843 int iSub2, /* Subquery id 2 */ 844 int bUseTmp /* True if a temp table was used */ 845 ){ 846 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 847 if( pParse->explain==2 ){ 848 Vdbe *v = pParse->pVdbe; 849 char *zMsg = sqlite3MPrintf( 850 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 851 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 852 ); 853 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 854 } 855 } 856 #else 857 /* No-op versions of the explainXXX() functions and macros. */ 858 # define explainComposite(v,w,x,y,z) 859 #endif 860 861 /* 862 ** If the inner loop was generated using a non-null pOrderBy argument, 863 ** then the results were placed in a sorter. After the loop is terminated 864 ** we need to run the sorter and output the results. The following 865 ** routine generates the code needed to do that. 866 */ 867 static void generateSortTail( 868 Parse *pParse, /* Parsing context */ 869 Select *p, /* The SELECT statement */ 870 Vdbe *v, /* Generate code into this VDBE */ 871 int nColumn, /* Number of columns of data */ 872 SelectDest *pDest /* Write the sorted results here */ 873 ){ 874 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 875 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 876 int addr; 877 int iTab; 878 int pseudoTab = 0; 879 ExprList *pOrderBy = p->pOrderBy; 880 881 int eDest = pDest->eDest; 882 int iParm = pDest->iParm; 883 884 int regRow; 885 int regRowid; 886 887 iTab = pOrderBy->iECursor; 888 regRow = sqlite3GetTempReg(pParse); 889 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 890 pseudoTab = pParse->nTab++; 891 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 892 regRowid = 0; 893 }else{ 894 regRowid = sqlite3GetTempReg(pParse); 895 } 896 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 897 codeOffset(v, p, addrContinue); 898 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 899 switch( eDest ){ 900 case SRT_Table: 901 case SRT_EphemTab: { 902 testcase( eDest==SRT_Table ); 903 testcase( eDest==SRT_EphemTab ); 904 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 905 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 906 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 907 break; 908 } 909 #ifndef SQLITE_OMIT_SUBQUERY 910 case SRT_Set: { 911 assert( nColumn==1 ); 912 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 913 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 914 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 915 break; 916 } 917 case SRT_Mem: { 918 assert( nColumn==1 ); 919 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 920 /* The LIMIT clause will terminate the loop for us */ 921 break; 922 } 923 #endif 924 default: { 925 int i; 926 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 927 testcase( eDest==SRT_Output ); 928 testcase( eDest==SRT_Coroutine ); 929 for(i=0; i<nColumn; i++){ 930 assert( regRow!=pDest->iMem+i ); 931 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 932 if( i==0 ){ 933 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 934 } 935 } 936 if( eDest==SRT_Output ){ 937 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 938 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 939 }else{ 940 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 941 } 942 break; 943 } 944 } 945 sqlite3ReleaseTempReg(pParse, regRow); 946 sqlite3ReleaseTempReg(pParse, regRowid); 947 948 /* The bottom of the loop 949 */ 950 sqlite3VdbeResolveLabel(v, addrContinue); 951 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 952 sqlite3VdbeResolveLabel(v, addrBreak); 953 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 954 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 955 } 956 } 957 958 /* 959 ** Return a pointer to a string containing the 'declaration type' of the 960 ** expression pExpr. The string may be treated as static by the caller. 961 ** 962 ** The declaration type is the exact datatype definition extracted from the 963 ** original CREATE TABLE statement if the expression is a column. The 964 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 965 ** is considered a column can be complex in the presence of subqueries. The 966 ** result-set expression in all of the following SELECT statements is 967 ** considered a column by this function. 968 ** 969 ** SELECT col FROM tbl; 970 ** SELECT (SELECT col FROM tbl; 971 ** SELECT (SELECT col FROM tbl); 972 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 973 ** 974 ** The declaration type for any expression other than a column is NULL. 975 */ 976 static const char *columnType( 977 NameContext *pNC, 978 Expr *pExpr, 979 const char **pzOriginDb, 980 const char **pzOriginTab, 981 const char **pzOriginCol 982 ){ 983 char const *zType = 0; 984 char const *zOriginDb = 0; 985 char const *zOriginTab = 0; 986 char const *zOriginCol = 0; 987 int j; 988 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 989 990 switch( pExpr->op ){ 991 case TK_AGG_COLUMN: 992 case TK_COLUMN: { 993 /* The expression is a column. Locate the table the column is being 994 ** extracted from in NameContext.pSrcList. This table may be real 995 ** database table or a subquery. 996 */ 997 Table *pTab = 0; /* Table structure column is extracted from */ 998 Select *pS = 0; /* Select the column is extracted from */ 999 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1000 testcase( pExpr->op==TK_AGG_COLUMN ); 1001 testcase( pExpr->op==TK_COLUMN ); 1002 while( pNC && !pTab ){ 1003 SrcList *pTabList = pNC->pSrcList; 1004 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1005 if( j<pTabList->nSrc ){ 1006 pTab = pTabList->a[j].pTab; 1007 pS = pTabList->a[j].pSelect; 1008 }else{ 1009 pNC = pNC->pNext; 1010 } 1011 } 1012 1013 if( pTab==0 ){ 1014 /* At one time, code such as "SELECT new.x" within a trigger would 1015 ** cause this condition to run. Since then, we have restructured how 1016 ** trigger code is generated and so this condition is no longer 1017 ** possible. However, it can still be true for statements like 1018 ** the following: 1019 ** 1020 ** CREATE TABLE t1(col INTEGER); 1021 ** SELECT (SELECT t1.col) FROM FROM t1; 1022 ** 1023 ** when columnType() is called on the expression "t1.col" in the 1024 ** sub-select. In this case, set the column type to NULL, even 1025 ** though it should really be "INTEGER". 1026 ** 1027 ** This is not a problem, as the column type of "t1.col" is never 1028 ** used. When columnType() is called on the expression 1029 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1030 ** branch below. */ 1031 break; 1032 } 1033 1034 assert( pTab && pExpr->pTab==pTab ); 1035 if( pS ){ 1036 /* The "table" is actually a sub-select or a view in the FROM clause 1037 ** of the SELECT statement. Return the declaration type and origin 1038 ** data for the result-set column of the sub-select. 1039 */ 1040 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1041 /* If iCol is less than zero, then the expression requests the 1042 ** rowid of the sub-select or view. This expression is legal (see 1043 ** test case misc2.2.2) - it always evaluates to NULL. 1044 */ 1045 NameContext sNC; 1046 Expr *p = pS->pEList->a[iCol].pExpr; 1047 sNC.pSrcList = pS->pSrc; 1048 sNC.pNext = pNC; 1049 sNC.pParse = pNC->pParse; 1050 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1051 } 1052 }else if( ALWAYS(pTab->pSchema) ){ 1053 /* A real table */ 1054 assert( !pS ); 1055 if( iCol<0 ) iCol = pTab->iPKey; 1056 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1057 if( iCol<0 ){ 1058 zType = "INTEGER"; 1059 zOriginCol = "rowid"; 1060 }else{ 1061 zType = pTab->aCol[iCol].zType; 1062 zOriginCol = pTab->aCol[iCol].zName; 1063 } 1064 zOriginTab = pTab->zName; 1065 if( pNC->pParse ){ 1066 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1067 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 1068 } 1069 } 1070 break; 1071 } 1072 #ifndef SQLITE_OMIT_SUBQUERY 1073 case TK_SELECT: { 1074 /* The expression is a sub-select. Return the declaration type and 1075 ** origin info for the single column in the result set of the SELECT 1076 ** statement. 1077 */ 1078 NameContext sNC; 1079 Select *pS = pExpr->x.pSelect; 1080 Expr *p = pS->pEList->a[0].pExpr; 1081 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1082 sNC.pSrcList = pS->pSrc; 1083 sNC.pNext = pNC; 1084 sNC.pParse = pNC->pParse; 1085 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1086 break; 1087 } 1088 #endif 1089 } 1090 1091 if( pzOriginDb ){ 1092 assert( pzOriginTab && pzOriginCol ); 1093 *pzOriginDb = zOriginDb; 1094 *pzOriginTab = zOriginTab; 1095 *pzOriginCol = zOriginCol; 1096 } 1097 return zType; 1098 } 1099 1100 /* 1101 ** Generate code that will tell the VDBE the declaration types of columns 1102 ** in the result set. 1103 */ 1104 static void generateColumnTypes( 1105 Parse *pParse, /* Parser context */ 1106 SrcList *pTabList, /* List of tables */ 1107 ExprList *pEList /* Expressions defining the result set */ 1108 ){ 1109 #ifndef SQLITE_OMIT_DECLTYPE 1110 Vdbe *v = pParse->pVdbe; 1111 int i; 1112 NameContext sNC; 1113 sNC.pSrcList = pTabList; 1114 sNC.pParse = pParse; 1115 for(i=0; i<pEList->nExpr; i++){ 1116 Expr *p = pEList->a[i].pExpr; 1117 const char *zType; 1118 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1119 const char *zOrigDb = 0; 1120 const char *zOrigTab = 0; 1121 const char *zOrigCol = 0; 1122 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1123 1124 /* The vdbe must make its own copy of the column-type and other 1125 ** column specific strings, in case the schema is reset before this 1126 ** virtual machine is deleted. 1127 */ 1128 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1129 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1130 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1131 #else 1132 zType = columnType(&sNC, p, 0, 0, 0); 1133 #endif 1134 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1135 } 1136 #endif /* SQLITE_OMIT_DECLTYPE */ 1137 } 1138 1139 /* 1140 ** Generate code that will tell the VDBE the names of columns 1141 ** in the result set. This information is used to provide the 1142 ** azCol[] values in the callback. 1143 */ 1144 static void generateColumnNames( 1145 Parse *pParse, /* Parser context */ 1146 SrcList *pTabList, /* List of tables */ 1147 ExprList *pEList /* Expressions defining the result set */ 1148 ){ 1149 Vdbe *v = pParse->pVdbe; 1150 int i, j; 1151 sqlite3 *db = pParse->db; 1152 int fullNames, shortNames; 1153 1154 #ifndef SQLITE_OMIT_EXPLAIN 1155 /* If this is an EXPLAIN, skip this step */ 1156 if( pParse->explain ){ 1157 return; 1158 } 1159 #endif 1160 1161 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1162 pParse->colNamesSet = 1; 1163 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1164 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1165 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1166 for(i=0; i<pEList->nExpr; i++){ 1167 Expr *p; 1168 p = pEList->a[i].pExpr; 1169 if( NEVER(p==0) ) continue; 1170 if( pEList->a[i].zName ){ 1171 char *zName = pEList->a[i].zName; 1172 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1173 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1174 Table *pTab; 1175 char *zCol; 1176 int iCol = p->iColumn; 1177 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1178 if( pTabList->a[j].iCursor==p->iTable ) break; 1179 } 1180 assert( j<pTabList->nSrc ); 1181 pTab = pTabList->a[j].pTab; 1182 if( iCol<0 ) iCol = pTab->iPKey; 1183 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1184 if( iCol<0 ){ 1185 zCol = "rowid"; 1186 }else{ 1187 zCol = pTab->aCol[iCol].zName; 1188 } 1189 if( !shortNames && !fullNames ){ 1190 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1191 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1192 }else if( fullNames ){ 1193 char *zName = 0; 1194 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1195 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1196 }else{ 1197 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1198 } 1199 }else{ 1200 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1201 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1202 } 1203 } 1204 generateColumnTypes(pParse, pTabList, pEList); 1205 } 1206 1207 /* 1208 ** Given a an expression list (which is really the list of expressions 1209 ** that form the result set of a SELECT statement) compute appropriate 1210 ** column names for a table that would hold the expression list. 1211 ** 1212 ** All column names will be unique. 1213 ** 1214 ** Only the column names are computed. Column.zType, Column.zColl, 1215 ** and other fields of Column are zeroed. 1216 ** 1217 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1218 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1219 */ 1220 static int selectColumnsFromExprList( 1221 Parse *pParse, /* Parsing context */ 1222 ExprList *pEList, /* Expr list from which to derive column names */ 1223 int *pnCol, /* Write the number of columns here */ 1224 Column **paCol /* Write the new column list here */ 1225 ){ 1226 sqlite3 *db = pParse->db; /* Database connection */ 1227 int i, j; /* Loop counters */ 1228 int cnt; /* Index added to make the name unique */ 1229 Column *aCol, *pCol; /* For looping over result columns */ 1230 int nCol; /* Number of columns in the result set */ 1231 Expr *p; /* Expression for a single result column */ 1232 char *zName; /* Column name */ 1233 int nName; /* Size of name in zName[] */ 1234 1235 *pnCol = nCol = pEList->nExpr; 1236 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1237 if( aCol==0 ) return SQLITE_NOMEM; 1238 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1239 /* Get an appropriate name for the column 1240 */ 1241 p = pEList->a[i].pExpr; 1242 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1243 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1244 if( (zName = pEList->a[i].zName)!=0 ){ 1245 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1246 zName = sqlite3DbStrDup(db, zName); 1247 }else{ 1248 Expr *pColExpr = p; /* The expression that is the result column name */ 1249 Table *pTab; /* Table associated with this expression */ 1250 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1251 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1252 /* For columns use the column name name */ 1253 int iCol = pColExpr->iColumn; 1254 pTab = pColExpr->pTab; 1255 if( iCol<0 ) iCol = pTab->iPKey; 1256 zName = sqlite3MPrintf(db, "%s", 1257 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1258 }else if( pColExpr->op==TK_ID ){ 1259 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1260 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1261 }else{ 1262 /* Use the original text of the column expression as its name */ 1263 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1264 } 1265 } 1266 if( db->mallocFailed ){ 1267 sqlite3DbFree(db, zName); 1268 break; 1269 } 1270 1271 /* Make sure the column name is unique. If the name is not unique, 1272 ** append a integer to the name so that it becomes unique. 1273 */ 1274 nName = sqlite3Strlen30(zName); 1275 for(j=cnt=0; j<i; j++){ 1276 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1277 char *zNewName; 1278 zName[nName] = 0; 1279 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1280 sqlite3DbFree(db, zName); 1281 zName = zNewName; 1282 j = -1; 1283 if( zName==0 ) break; 1284 } 1285 } 1286 pCol->zName = zName; 1287 } 1288 if( db->mallocFailed ){ 1289 for(j=0; j<i; j++){ 1290 sqlite3DbFree(db, aCol[j].zName); 1291 } 1292 sqlite3DbFree(db, aCol); 1293 *paCol = 0; 1294 *pnCol = 0; 1295 return SQLITE_NOMEM; 1296 } 1297 return SQLITE_OK; 1298 } 1299 1300 /* 1301 ** Add type and collation information to a column list based on 1302 ** a SELECT statement. 1303 ** 1304 ** The column list presumably came from selectColumnNamesFromExprList(). 1305 ** The column list has only names, not types or collations. This 1306 ** routine goes through and adds the types and collations. 1307 ** 1308 ** This routine requires that all identifiers in the SELECT 1309 ** statement be resolved. 1310 */ 1311 static void selectAddColumnTypeAndCollation( 1312 Parse *pParse, /* Parsing contexts */ 1313 int nCol, /* Number of columns */ 1314 Column *aCol, /* List of columns */ 1315 Select *pSelect /* SELECT used to determine types and collations */ 1316 ){ 1317 sqlite3 *db = pParse->db; 1318 NameContext sNC; 1319 Column *pCol; 1320 CollSeq *pColl; 1321 int i; 1322 Expr *p; 1323 struct ExprList_item *a; 1324 1325 assert( pSelect!=0 ); 1326 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1327 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1328 if( db->mallocFailed ) return; 1329 memset(&sNC, 0, sizeof(sNC)); 1330 sNC.pSrcList = pSelect->pSrc; 1331 a = pSelect->pEList->a; 1332 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1333 p = a[i].pExpr; 1334 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1335 pCol->affinity = sqlite3ExprAffinity(p); 1336 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1337 pColl = sqlite3ExprCollSeq(pParse, p); 1338 if( pColl ){ 1339 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1340 } 1341 } 1342 } 1343 1344 /* 1345 ** Given a SELECT statement, generate a Table structure that describes 1346 ** the result set of that SELECT. 1347 */ 1348 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1349 Table *pTab; 1350 sqlite3 *db = pParse->db; 1351 int savedFlags; 1352 1353 savedFlags = db->flags; 1354 db->flags &= ~SQLITE_FullColNames; 1355 db->flags |= SQLITE_ShortColNames; 1356 sqlite3SelectPrep(pParse, pSelect, 0); 1357 if( pParse->nErr ) return 0; 1358 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1359 db->flags = savedFlags; 1360 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1361 if( pTab==0 ){ 1362 return 0; 1363 } 1364 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1365 ** is disabled */ 1366 assert( db->lookaside.bEnabled==0 ); 1367 pTab->nRef = 1; 1368 pTab->zName = 0; 1369 pTab->nRowEst = 1000000; 1370 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1371 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1372 pTab->iPKey = -1; 1373 if( db->mallocFailed ){ 1374 sqlite3DeleteTable(db, pTab); 1375 return 0; 1376 } 1377 return pTab; 1378 } 1379 1380 /* 1381 ** Get a VDBE for the given parser context. Create a new one if necessary. 1382 ** If an error occurs, return NULL and leave a message in pParse. 1383 */ 1384 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1385 Vdbe *v = pParse->pVdbe; 1386 if( v==0 ){ 1387 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1388 #ifndef SQLITE_OMIT_TRACE 1389 if( v ){ 1390 sqlite3VdbeAddOp0(v, OP_Trace); 1391 } 1392 #endif 1393 } 1394 return v; 1395 } 1396 1397 1398 /* 1399 ** Compute the iLimit and iOffset fields of the SELECT based on the 1400 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1401 ** that appear in the original SQL statement after the LIMIT and OFFSET 1402 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1403 ** are the integer memory register numbers for counters used to compute 1404 ** the limit and offset. If there is no limit and/or offset, then 1405 ** iLimit and iOffset are negative. 1406 ** 1407 ** This routine changes the values of iLimit and iOffset only if 1408 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1409 ** iOffset should have been preset to appropriate default values 1410 ** (usually but not always -1) prior to calling this routine. 1411 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1412 ** redefined. The UNION ALL operator uses this property to force 1413 ** the reuse of the same limit and offset registers across multiple 1414 ** SELECT statements. 1415 */ 1416 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1417 Vdbe *v = 0; 1418 int iLimit = 0; 1419 int iOffset; 1420 int addr1, n; 1421 if( p->iLimit ) return; 1422 1423 /* 1424 ** "LIMIT -1" always shows all rows. There is some 1425 ** contraversy about what the correct behavior should be. 1426 ** The current implementation interprets "LIMIT 0" to mean 1427 ** no rows. 1428 */ 1429 sqlite3ExprCacheClear(pParse); 1430 assert( p->pOffset==0 || p->pLimit!=0 ); 1431 if( p->pLimit ){ 1432 p->iLimit = iLimit = ++pParse->nMem; 1433 v = sqlite3GetVdbe(pParse); 1434 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1435 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1436 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1437 VdbeComment((v, "LIMIT counter")); 1438 if( n==0 ){ 1439 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1440 }else{ 1441 if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; 1442 } 1443 }else{ 1444 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1445 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1446 VdbeComment((v, "LIMIT counter")); 1447 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1448 } 1449 if( p->pOffset ){ 1450 p->iOffset = iOffset = ++pParse->nMem; 1451 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1452 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1453 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1454 VdbeComment((v, "OFFSET counter")); 1455 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1456 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1457 sqlite3VdbeJumpHere(v, addr1); 1458 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1459 VdbeComment((v, "LIMIT+OFFSET")); 1460 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1461 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1462 sqlite3VdbeJumpHere(v, addr1); 1463 } 1464 } 1465 } 1466 1467 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1468 /* 1469 ** Return the appropriate collating sequence for the iCol-th column of 1470 ** the result set for the compound-select statement "p". Return NULL if 1471 ** the column has no default collating sequence. 1472 ** 1473 ** The collating sequence for the compound select is taken from the 1474 ** left-most term of the select that has a collating sequence. 1475 */ 1476 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1477 CollSeq *pRet; 1478 if( p->pPrior ){ 1479 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1480 }else{ 1481 pRet = 0; 1482 } 1483 assert( iCol>=0 ); 1484 if( pRet==0 && iCol<p->pEList->nExpr ){ 1485 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1486 } 1487 return pRet; 1488 } 1489 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1490 1491 /* Forward reference */ 1492 static int multiSelectOrderBy( 1493 Parse *pParse, /* Parsing context */ 1494 Select *p, /* The right-most of SELECTs to be coded */ 1495 SelectDest *pDest /* What to do with query results */ 1496 ); 1497 1498 1499 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1500 /* 1501 ** This routine is called to process a compound query form from 1502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1503 ** INTERSECT 1504 ** 1505 ** "p" points to the right-most of the two queries. the query on the 1506 ** left is p->pPrior. The left query could also be a compound query 1507 ** in which case this routine will be called recursively. 1508 ** 1509 ** The results of the total query are to be written into a destination 1510 ** of type eDest with parameter iParm. 1511 ** 1512 ** Example 1: Consider a three-way compound SQL statement. 1513 ** 1514 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1515 ** 1516 ** This statement is parsed up as follows: 1517 ** 1518 ** SELECT c FROM t3 1519 ** | 1520 ** `-----> SELECT b FROM t2 1521 ** | 1522 ** `------> SELECT a FROM t1 1523 ** 1524 ** The arrows in the diagram above represent the Select.pPrior pointer. 1525 ** So if this routine is called with p equal to the t3 query, then 1526 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1527 ** 1528 ** Notice that because of the way SQLite parses compound SELECTs, the 1529 ** individual selects always group from left to right. 1530 */ 1531 static int multiSelect( 1532 Parse *pParse, /* Parsing context */ 1533 Select *p, /* The right-most of SELECTs to be coded */ 1534 SelectDest *pDest /* What to do with query results */ 1535 ){ 1536 int rc = SQLITE_OK; /* Success code from a subroutine */ 1537 Select *pPrior; /* Another SELECT immediately to our left */ 1538 Vdbe *v; /* Generate code to this VDBE */ 1539 SelectDest dest; /* Alternative data destination */ 1540 Select *pDelete = 0; /* Chain of simple selects to delete */ 1541 sqlite3 *db; /* Database connection */ 1542 #ifndef SQLITE_OMIT_EXPLAIN 1543 int iSub1; /* EQP id of left-hand query */ 1544 int iSub2; /* EQP id of right-hand query */ 1545 #endif 1546 1547 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1548 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1549 */ 1550 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1551 db = pParse->db; 1552 pPrior = p->pPrior; 1553 assert( pPrior->pRightmost!=pPrior ); 1554 assert( pPrior->pRightmost==p->pRightmost ); 1555 dest = *pDest; 1556 if( pPrior->pOrderBy ){ 1557 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1558 selectOpName(p->op)); 1559 rc = 1; 1560 goto multi_select_end; 1561 } 1562 if( pPrior->pLimit ){ 1563 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1564 selectOpName(p->op)); 1565 rc = 1; 1566 goto multi_select_end; 1567 } 1568 1569 v = sqlite3GetVdbe(pParse); 1570 assert( v!=0 ); /* The VDBE already created by calling function */ 1571 1572 /* Create the destination temporary table if necessary 1573 */ 1574 if( dest.eDest==SRT_EphemTab ){ 1575 assert( p->pEList ); 1576 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1577 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1578 dest.eDest = SRT_Table; 1579 } 1580 1581 /* Make sure all SELECTs in the statement have the same number of elements 1582 ** in their result sets. 1583 */ 1584 assert( p->pEList && pPrior->pEList ); 1585 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1586 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1587 " do not have the same number of result columns", selectOpName(p->op)); 1588 rc = 1; 1589 goto multi_select_end; 1590 } 1591 1592 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1593 */ 1594 if( p->pOrderBy ){ 1595 return multiSelectOrderBy(pParse, p, pDest); 1596 } 1597 1598 /* Generate code for the left and right SELECT statements. 1599 */ 1600 switch( p->op ){ 1601 case TK_ALL: { 1602 int addr = 0; 1603 int nLimit; 1604 assert( !pPrior->pLimit ); 1605 pPrior->pLimit = p->pLimit; 1606 pPrior->pOffset = p->pOffset; 1607 explainSetInteger(iSub1, pParse->iNextSelectId); 1608 rc = sqlite3Select(pParse, pPrior, &dest); 1609 p->pLimit = 0; 1610 p->pOffset = 0; 1611 if( rc ){ 1612 goto multi_select_end; 1613 } 1614 p->pPrior = 0; 1615 p->iLimit = pPrior->iLimit; 1616 p->iOffset = pPrior->iOffset; 1617 if( p->iLimit ){ 1618 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1619 VdbeComment((v, "Jump ahead if LIMIT reached")); 1620 } 1621 explainSetInteger(iSub2, pParse->iNextSelectId); 1622 rc = sqlite3Select(pParse, p, &dest); 1623 testcase( rc!=SQLITE_OK ); 1624 pDelete = p->pPrior; 1625 p->pPrior = pPrior; 1626 p->nSelectRow += pPrior->nSelectRow; 1627 if( pPrior->pLimit 1628 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 1629 && p->nSelectRow > (double)nLimit 1630 ){ 1631 p->nSelectRow = (double)nLimit; 1632 } 1633 if( addr ){ 1634 sqlite3VdbeJumpHere(v, addr); 1635 } 1636 break; 1637 } 1638 case TK_EXCEPT: 1639 case TK_UNION: { 1640 int unionTab; /* Cursor number of the temporary table holding result */ 1641 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1642 int priorOp; /* The SRT_ operation to apply to prior selects */ 1643 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1644 int addr; 1645 SelectDest uniondest; 1646 1647 testcase( p->op==TK_EXCEPT ); 1648 testcase( p->op==TK_UNION ); 1649 priorOp = SRT_Union; 1650 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1651 /* We can reuse a temporary table generated by a SELECT to our 1652 ** right. 1653 */ 1654 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1655 ** of a 3-way or more compound */ 1656 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1657 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1658 unionTab = dest.iParm; 1659 }else{ 1660 /* We will need to create our own temporary table to hold the 1661 ** intermediate results. 1662 */ 1663 unionTab = pParse->nTab++; 1664 assert( p->pOrderBy==0 ); 1665 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1666 assert( p->addrOpenEphm[0] == -1 ); 1667 p->addrOpenEphm[0] = addr; 1668 p->pRightmost->selFlags |= SF_UsesEphemeral; 1669 assert( p->pEList ); 1670 } 1671 1672 /* Code the SELECT statements to our left 1673 */ 1674 assert( !pPrior->pOrderBy ); 1675 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1676 explainSetInteger(iSub1, pParse->iNextSelectId); 1677 rc = sqlite3Select(pParse, pPrior, &uniondest); 1678 if( rc ){ 1679 goto multi_select_end; 1680 } 1681 1682 /* Code the current SELECT statement 1683 */ 1684 if( p->op==TK_EXCEPT ){ 1685 op = SRT_Except; 1686 }else{ 1687 assert( p->op==TK_UNION ); 1688 op = SRT_Union; 1689 } 1690 p->pPrior = 0; 1691 pLimit = p->pLimit; 1692 p->pLimit = 0; 1693 pOffset = p->pOffset; 1694 p->pOffset = 0; 1695 uniondest.eDest = op; 1696 explainSetInteger(iSub2, pParse->iNextSelectId); 1697 rc = sqlite3Select(pParse, p, &uniondest); 1698 testcase( rc!=SQLITE_OK ); 1699 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1700 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1701 sqlite3ExprListDelete(db, p->pOrderBy); 1702 pDelete = p->pPrior; 1703 p->pPrior = pPrior; 1704 p->pOrderBy = 0; 1705 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 1706 sqlite3ExprDelete(db, p->pLimit); 1707 p->pLimit = pLimit; 1708 p->pOffset = pOffset; 1709 p->iLimit = 0; 1710 p->iOffset = 0; 1711 1712 /* Convert the data in the temporary table into whatever form 1713 ** it is that we currently need. 1714 */ 1715 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1716 if( dest.eDest!=priorOp ){ 1717 int iCont, iBreak, iStart; 1718 assert( p->pEList ); 1719 if( dest.eDest==SRT_Output ){ 1720 Select *pFirst = p; 1721 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1722 generateColumnNames(pParse, 0, pFirst->pEList); 1723 } 1724 iBreak = sqlite3VdbeMakeLabel(v); 1725 iCont = sqlite3VdbeMakeLabel(v); 1726 computeLimitRegisters(pParse, p, iBreak); 1727 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1728 iStart = sqlite3VdbeCurrentAddr(v); 1729 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1730 0, -1, &dest, iCont, iBreak); 1731 sqlite3VdbeResolveLabel(v, iCont); 1732 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1733 sqlite3VdbeResolveLabel(v, iBreak); 1734 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1735 } 1736 break; 1737 } 1738 default: assert( p->op==TK_INTERSECT ); { 1739 int tab1, tab2; 1740 int iCont, iBreak, iStart; 1741 Expr *pLimit, *pOffset; 1742 int addr; 1743 SelectDest intersectdest; 1744 int r1; 1745 1746 /* INTERSECT is different from the others since it requires 1747 ** two temporary tables. Hence it has its own case. Begin 1748 ** by allocating the tables we will need. 1749 */ 1750 tab1 = pParse->nTab++; 1751 tab2 = pParse->nTab++; 1752 assert( p->pOrderBy==0 ); 1753 1754 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1755 assert( p->addrOpenEphm[0] == -1 ); 1756 p->addrOpenEphm[0] = addr; 1757 p->pRightmost->selFlags |= SF_UsesEphemeral; 1758 assert( p->pEList ); 1759 1760 /* Code the SELECTs to our left into temporary table "tab1". 1761 */ 1762 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1763 explainSetInteger(iSub1, pParse->iNextSelectId); 1764 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1765 if( rc ){ 1766 goto multi_select_end; 1767 } 1768 1769 /* Code the current SELECT into temporary table "tab2" 1770 */ 1771 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1772 assert( p->addrOpenEphm[1] == -1 ); 1773 p->addrOpenEphm[1] = addr; 1774 p->pPrior = 0; 1775 pLimit = p->pLimit; 1776 p->pLimit = 0; 1777 pOffset = p->pOffset; 1778 p->pOffset = 0; 1779 intersectdest.iParm = tab2; 1780 explainSetInteger(iSub2, pParse->iNextSelectId); 1781 rc = sqlite3Select(pParse, p, &intersectdest); 1782 testcase( rc!=SQLITE_OK ); 1783 pDelete = p->pPrior; 1784 p->pPrior = pPrior; 1785 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 1786 sqlite3ExprDelete(db, p->pLimit); 1787 p->pLimit = pLimit; 1788 p->pOffset = pOffset; 1789 1790 /* Generate code to take the intersection of the two temporary 1791 ** tables. 1792 */ 1793 assert( p->pEList ); 1794 if( dest.eDest==SRT_Output ){ 1795 Select *pFirst = p; 1796 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1797 generateColumnNames(pParse, 0, pFirst->pEList); 1798 } 1799 iBreak = sqlite3VdbeMakeLabel(v); 1800 iCont = sqlite3VdbeMakeLabel(v); 1801 computeLimitRegisters(pParse, p, iBreak); 1802 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1803 r1 = sqlite3GetTempReg(pParse); 1804 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1805 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1806 sqlite3ReleaseTempReg(pParse, r1); 1807 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1808 0, -1, &dest, iCont, iBreak); 1809 sqlite3VdbeResolveLabel(v, iCont); 1810 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1811 sqlite3VdbeResolveLabel(v, iBreak); 1812 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1813 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1814 break; 1815 } 1816 } 1817 1818 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 1819 1820 /* Compute collating sequences used by 1821 ** temporary tables needed to implement the compound select. 1822 ** Attach the KeyInfo structure to all temporary tables. 1823 ** 1824 ** This section is run by the right-most SELECT statement only. 1825 ** SELECT statements to the left always skip this part. The right-most 1826 ** SELECT might also skip this part if it has no ORDER BY clause and 1827 ** no temp tables are required. 1828 */ 1829 if( p->selFlags & SF_UsesEphemeral ){ 1830 int i; /* Loop counter */ 1831 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1832 Select *pLoop; /* For looping through SELECT statements */ 1833 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1834 int nCol; /* Number of columns in result set */ 1835 1836 assert( p->pRightmost==p ); 1837 nCol = p->pEList->nExpr; 1838 pKeyInfo = sqlite3DbMallocZero(db, 1839 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1840 if( !pKeyInfo ){ 1841 rc = SQLITE_NOMEM; 1842 goto multi_select_end; 1843 } 1844 1845 pKeyInfo->enc = ENC(db); 1846 pKeyInfo->nField = (u16)nCol; 1847 1848 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1849 *apColl = multiSelectCollSeq(pParse, p, i); 1850 if( 0==*apColl ){ 1851 *apColl = db->pDfltColl; 1852 } 1853 } 1854 1855 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1856 for(i=0; i<2; i++){ 1857 int addr = pLoop->addrOpenEphm[i]; 1858 if( addr<0 ){ 1859 /* If [0] is unused then [1] is also unused. So we can 1860 ** always safely abort as soon as the first unused slot is found */ 1861 assert( pLoop->addrOpenEphm[1]<0 ); 1862 break; 1863 } 1864 sqlite3VdbeChangeP2(v, addr, nCol); 1865 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1866 pLoop->addrOpenEphm[i] = -1; 1867 } 1868 } 1869 sqlite3DbFree(db, pKeyInfo); 1870 } 1871 1872 multi_select_end: 1873 pDest->iMem = dest.iMem; 1874 pDest->nMem = dest.nMem; 1875 sqlite3SelectDelete(db, pDelete); 1876 return rc; 1877 } 1878 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1879 1880 /* 1881 ** Code an output subroutine for a coroutine implementation of a 1882 ** SELECT statment. 1883 ** 1884 ** The data to be output is contained in pIn->iMem. There are 1885 ** pIn->nMem columns to be output. pDest is where the output should 1886 ** be sent. 1887 ** 1888 ** regReturn is the number of the register holding the subroutine 1889 ** return address. 1890 ** 1891 ** If regPrev>0 then it is the first register in a vector that 1892 ** records the previous output. mem[regPrev] is a flag that is false 1893 ** if there has been no previous output. If regPrev>0 then code is 1894 ** generated to suppress duplicates. pKeyInfo is used for comparing 1895 ** keys. 1896 ** 1897 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1898 ** iBreak. 1899 */ 1900 static int generateOutputSubroutine( 1901 Parse *pParse, /* Parsing context */ 1902 Select *p, /* The SELECT statement */ 1903 SelectDest *pIn, /* Coroutine supplying data */ 1904 SelectDest *pDest, /* Where to send the data */ 1905 int regReturn, /* The return address register */ 1906 int regPrev, /* Previous result register. No uniqueness if 0 */ 1907 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1908 int p4type, /* The p4 type for pKeyInfo */ 1909 int iBreak /* Jump here if we hit the LIMIT */ 1910 ){ 1911 Vdbe *v = pParse->pVdbe; 1912 int iContinue; 1913 int addr; 1914 1915 addr = sqlite3VdbeCurrentAddr(v); 1916 iContinue = sqlite3VdbeMakeLabel(v); 1917 1918 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1919 */ 1920 if( regPrev ){ 1921 int j1, j2; 1922 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1923 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1924 (char*)pKeyInfo, p4type); 1925 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1926 sqlite3VdbeJumpHere(v, j1); 1927 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1928 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1929 } 1930 if( pParse->db->mallocFailed ) return 0; 1931 1932 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1933 */ 1934 codeOffset(v, p, iContinue); 1935 1936 switch( pDest->eDest ){ 1937 /* Store the result as data using a unique key. 1938 */ 1939 case SRT_Table: 1940 case SRT_EphemTab: { 1941 int r1 = sqlite3GetTempReg(pParse); 1942 int r2 = sqlite3GetTempReg(pParse); 1943 testcase( pDest->eDest==SRT_Table ); 1944 testcase( pDest->eDest==SRT_EphemTab ); 1945 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1946 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1947 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1948 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1949 sqlite3ReleaseTempReg(pParse, r2); 1950 sqlite3ReleaseTempReg(pParse, r1); 1951 break; 1952 } 1953 1954 #ifndef SQLITE_OMIT_SUBQUERY 1955 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1956 ** then there should be a single item on the stack. Write this 1957 ** item into the set table with bogus data. 1958 */ 1959 case SRT_Set: { 1960 int r1; 1961 assert( pIn->nMem==1 ); 1962 p->affinity = 1963 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1964 r1 = sqlite3GetTempReg(pParse); 1965 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1966 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1967 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1968 sqlite3ReleaseTempReg(pParse, r1); 1969 break; 1970 } 1971 1972 #if 0 /* Never occurs on an ORDER BY query */ 1973 /* If any row exist in the result set, record that fact and abort. 1974 */ 1975 case SRT_Exists: { 1976 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1977 /* The LIMIT clause will terminate the loop for us */ 1978 break; 1979 } 1980 #endif 1981 1982 /* If this is a scalar select that is part of an expression, then 1983 ** store the results in the appropriate memory cell and break out 1984 ** of the scan loop. 1985 */ 1986 case SRT_Mem: { 1987 assert( pIn->nMem==1 ); 1988 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1989 /* The LIMIT clause will jump out of the loop for us */ 1990 break; 1991 } 1992 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1993 1994 /* The results are stored in a sequence of registers 1995 ** starting at pDest->iMem. Then the co-routine yields. 1996 */ 1997 case SRT_Coroutine: { 1998 if( pDest->iMem==0 ){ 1999 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2000 pDest->nMem = pIn->nMem; 2001 } 2002 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2003 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2004 break; 2005 } 2006 2007 /* If none of the above, then the result destination must be 2008 ** SRT_Output. This routine is never called with any other 2009 ** destination other than the ones handled above or SRT_Output. 2010 ** 2011 ** For SRT_Output, results are stored in a sequence of registers. 2012 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2013 ** return the next row of result. 2014 */ 2015 default: { 2016 assert( pDest->eDest==SRT_Output ); 2017 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2018 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2019 break; 2020 } 2021 } 2022 2023 /* Jump to the end of the loop if the LIMIT is reached. 2024 */ 2025 if( p->iLimit ){ 2026 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2027 } 2028 2029 /* Generate the subroutine return 2030 */ 2031 sqlite3VdbeResolveLabel(v, iContinue); 2032 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2033 2034 return addr; 2035 } 2036 2037 /* 2038 ** Alternative compound select code generator for cases when there 2039 ** is an ORDER BY clause. 2040 ** 2041 ** We assume a query of the following form: 2042 ** 2043 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2044 ** 2045 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2046 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2047 ** co-routines. Then run the co-routines in parallel and merge the results 2048 ** into the output. In addition to the two coroutines (called selectA and 2049 ** selectB) there are 7 subroutines: 2050 ** 2051 ** outA: Move the output of the selectA coroutine into the output 2052 ** of the compound query. 2053 ** 2054 ** outB: Move the output of the selectB coroutine into the output 2055 ** of the compound query. (Only generated for UNION and 2056 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2057 ** appears only in B.) 2058 ** 2059 ** AltB: Called when there is data from both coroutines and A<B. 2060 ** 2061 ** AeqB: Called when there is data from both coroutines and A==B. 2062 ** 2063 ** AgtB: Called when there is data from both coroutines and A>B. 2064 ** 2065 ** EofA: Called when data is exhausted from selectA. 2066 ** 2067 ** EofB: Called when data is exhausted from selectB. 2068 ** 2069 ** The implementation of the latter five subroutines depend on which 2070 ** <operator> is used: 2071 ** 2072 ** 2073 ** UNION ALL UNION EXCEPT INTERSECT 2074 ** ------------- ----------------- -------------- ----------------- 2075 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2076 ** 2077 ** AeqB: outA, nextA nextA nextA outA, nextA 2078 ** 2079 ** AgtB: outB, nextB outB, nextB nextB nextB 2080 ** 2081 ** EofA: outB, nextB outB, nextB halt halt 2082 ** 2083 ** EofB: outA, nextA outA, nextA outA, nextA halt 2084 ** 2085 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2086 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2087 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2088 ** following nextX causes a jump to the end of the select processing. 2089 ** 2090 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2091 ** within the output subroutine. The regPrev register set holds the previously 2092 ** output value. A comparison is made against this value and the output 2093 ** is skipped if the next results would be the same as the previous. 2094 ** 2095 ** The implementation plan is to implement the two coroutines and seven 2096 ** subroutines first, then put the control logic at the bottom. Like this: 2097 ** 2098 ** goto Init 2099 ** coA: coroutine for left query (A) 2100 ** coB: coroutine for right query (B) 2101 ** outA: output one row of A 2102 ** outB: output one row of B (UNION and UNION ALL only) 2103 ** EofA: ... 2104 ** EofB: ... 2105 ** AltB: ... 2106 ** AeqB: ... 2107 ** AgtB: ... 2108 ** Init: initialize coroutine registers 2109 ** yield coA 2110 ** if eof(A) goto EofA 2111 ** yield coB 2112 ** if eof(B) goto EofB 2113 ** Cmpr: Compare A, B 2114 ** Jump AltB, AeqB, AgtB 2115 ** End: ... 2116 ** 2117 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2118 ** actually called using Gosub and they do not Return. EofA and EofB loop 2119 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2120 ** and AgtB jump to either L2 or to one of EofA or EofB. 2121 */ 2122 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2123 static int multiSelectOrderBy( 2124 Parse *pParse, /* Parsing context */ 2125 Select *p, /* The right-most of SELECTs to be coded */ 2126 SelectDest *pDest /* What to do with query results */ 2127 ){ 2128 int i, j; /* Loop counters */ 2129 Select *pPrior; /* Another SELECT immediately to our left */ 2130 Vdbe *v; /* Generate code to this VDBE */ 2131 SelectDest destA; /* Destination for coroutine A */ 2132 SelectDest destB; /* Destination for coroutine B */ 2133 int regAddrA; /* Address register for select-A coroutine */ 2134 int regEofA; /* Flag to indicate when select-A is complete */ 2135 int regAddrB; /* Address register for select-B coroutine */ 2136 int regEofB; /* Flag to indicate when select-B is complete */ 2137 int addrSelectA; /* Address of the select-A coroutine */ 2138 int addrSelectB; /* Address of the select-B coroutine */ 2139 int regOutA; /* Address register for the output-A subroutine */ 2140 int regOutB; /* Address register for the output-B subroutine */ 2141 int addrOutA; /* Address of the output-A subroutine */ 2142 int addrOutB = 0; /* Address of the output-B subroutine */ 2143 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2144 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2145 int addrAltB; /* Address of the A<B subroutine */ 2146 int addrAeqB; /* Address of the A==B subroutine */ 2147 int addrAgtB; /* Address of the A>B subroutine */ 2148 int regLimitA; /* Limit register for select-A */ 2149 int regLimitB; /* Limit register for select-A */ 2150 int regPrev; /* A range of registers to hold previous output */ 2151 int savedLimit; /* Saved value of p->iLimit */ 2152 int savedOffset; /* Saved value of p->iOffset */ 2153 int labelCmpr; /* Label for the start of the merge algorithm */ 2154 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2155 int j1; /* Jump instructions that get retargetted */ 2156 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2157 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2158 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2159 sqlite3 *db; /* Database connection */ 2160 ExprList *pOrderBy; /* The ORDER BY clause */ 2161 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2162 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2163 #ifndef SQLITE_OMIT_EXPLAIN 2164 int iSub1; /* EQP id of left-hand query */ 2165 int iSub2; /* EQP id of right-hand query */ 2166 #endif 2167 2168 assert( p->pOrderBy!=0 ); 2169 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2170 db = pParse->db; 2171 v = pParse->pVdbe; 2172 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2173 labelEnd = sqlite3VdbeMakeLabel(v); 2174 labelCmpr = sqlite3VdbeMakeLabel(v); 2175 2176 2177 /* Patch up the ORDER BY clause 2178 */ 2179 op = p->op; 2180 pPrior = p->pPrior; 2181 assert( pPrior->pOrderBy==0 ); 2182 pOrderBy = p->pOrderBy; 2183 assert( pOrderBy ); 2184 nOrderBy = pOrderBy->nExpr; 2185 2186 /* For operators other than UNION ALL we have to make sure that 2187 ** the ORDER BY clause covers every term of the result set. Add 2188 ** terms to the ORDER BY clause as necessary. 2189 */ 2190 if( op!=TK_ALL ){ 2191 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2192 struct ExprList_item *pItem; 2193 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2194 assert( pItem->iCol>0 ); 2195 if( pItem->iCol==i ) break; 2196 } 2197 if( j==nOrderBy ){ 2198 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2199 if( pNew==0 ) return SQLITE_NOMEM; 2200 pNew->flags |= EP_IntValue; 2201 pNew->u.iValue = i; 2202 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2203 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2204 } 2205 } 2206 } 2207 2208 /* Compute the comparison permutation and keyinfo that is used with 2209 ** the permutation used to determine if the next 2210 ** row of results comes from selectA or selectB. Also add explicit 2211 ** collations to the ORDER BY clause terms so that when the subqueries 2212 ** to the right and the left are evaluated, they use the correct 2213 ** collation. 2214 */ 2215 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2216 if( aPermute ){ 2217 struct ExprList_item *pItem; 2218 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2219 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2220 aPermute[i] = pItem->iCol - 1; 2221 } 2222 pKeyMerge = 2223 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2224 if( pKeyMerge ){ 2225 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2226 pKeyMerge->nField = (u16)nOrderBy; 2227 pKeyMerge->enc = ENC(db); 2228 for(i=0; i<nOrderBy; i++){ 2229 CollSeq *pColl; 2230 Expr *pTerm = pOrderBy->a[i].pExpr; 2231 if( pTerm->flags & EP_ExpCollate ){ 2232 pColl = pTerm->pColl; 2233 }else{ 2234 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2235 pTerm->flags |= EP_ExpCollate; 2236 pTerm->pColl = pColl; 2237 } 2238 pKeyMerge->aColl[i] = pColl; 2239 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2240 } 2241 } 2242 }else{ 2243 pKeyMerge = 0; 2244 } 2245 2246 /* Reattach the ORDER BY clause to the query. 2247 */ 2248 p->pOrderBy = pOrderBy; 2249 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2250 2251 /* Allocate a range of temporary registers and the KeyInfo needed 2252 ** for the logic that removes duplicate result rows when the 2253 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2254 */ 2255 if( op==TK_ALL ){ 2256 regPrev = 0; 2257 }else{ 2258 int nExpr = p->pEList->nExpr; 2259 assert( nOrderBy>=nExpr || db->mallocFailed ); 2260 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2261 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2262 pKeyDup = sqlite3DbMallocZero(db, 2263 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2264 if( pKeyDup ){ 2265 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2266 pKeyDup->nField = (u16)nExpr; 2267 pKeyDup->enc = ENC(db); 2268 for(i=0; i<nExpr; i++){ 2269 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2270 pKeyDup->aSortOrder[i] = 0; 2271 } 2272 } 2273 } 2274 2275 /* Separate the left and the right query from one another 2276 */ 2277 p->pPrior = 0; 2278 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2279 if( pPrior->pPrior==0 ){ 2280 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2281 } 2282 2283 /* Compute the limit registers */ 2284 computeLimitRegisters(pParse, p, labelEnd); 2285 if( p->iLimit && op==TK_ALL ){ 2286 regLimitA = ++pParse->nMem; 2287 regLimitB = ++pParse->nMem; 2288 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2289 regLimitA); 2290 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2291 }else{ 2292 regLimitA = regLimitB = 0; 2293 } 2294 sqlite3ExprDelete(db, p->pLimit); 2295 p->pLimit = 0; 2296 sqlite3ExprDelete(db, p->pOffset); 2297 p->pOffset = 0; 2298 2299 regAddrA = ++pParse->nMem; 2300 regEofA = ++pParse->nMem; 2301 regAddrB = ++pParse->nMem; 2302 regEofB = ++pParse->nMem; 2303 regOutA = ++pParse->nMem; 2304 regOutB = ++pParse->nMem; 2305 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2306 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2307 2308 /* Jump past the various subroutines and coroutines to the main 2309 ** merge loop 2310 */ 2311 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2312 addrSelectA = sqlite3VdbeCurrentAddr(v); 2313 2314 2315 /* Generate a coroutine to evaluate the SELECT statement to the 2316 ** left of the compound operator - the "A" select. 2317 */ 2318 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2319 pPrior->iLimit = regLimitA; 2320 explainSetInteger(iSub1, pParse->iNextSelectId); 2321 sqlite3Select(pParse, pPrior, &destA); 2322 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2323 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2324 VdbeNoopComment((v, "End coroutine for left SELECT")); 2325 2326 /* Generate a coroutine to evaluate the SELECT statement on 2327 ** the right - the "B" select 2328 */ 2329 addrSelectB = sqlite3VdbeCurrentAddr(v); 2330 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2331 savedLimit = p->iLimit; 2332 savedOffset = p->iOffset; 2333 p->iLimit = regLimitB; 2334 p->iOffset = 0; 2335 explainSetInteger(iSub2, pParse->iNextSelectId); 2336 sqlite3Select(pParse, p, &destB); 2337 p->iLimit = savedLimit; 2338 p->iOffset = savedOffset; 2339 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2340 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2341 VdbeNoopComment((v, "End coroutine for right SELECT")); 2342 2343 /* Generate a subroutine that outputs the current row of the A 2344 ** select as the next output row of the compound select. 2345 */ 2346 VdbeNoopComment((v, "Output routine for A")); 2347 addrOutA = generateOutputSubroutine(pParse, 2348 p, &destA, pDest, regOutA, 2349 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2350 2351 /* Generate a subroutine that outputs the current row of the B 2352 ** select as the next output row of the compound select. 2353 */ 2354 if( op==TK_ALL || op==TK_UNION ){ 2355 VdbeNoopComment((v, "Output routine for B")); 2356 addrOutB = generateOutputSubroutine(pParse, 2357 p, &destB, pDest, regOutB, 2358 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2359 } 2360 2361 /* Generate a subroutine to run when the results from select A 2362 ** are exhausted and only data in select B remains. 2363 */ 2364 VdbeNoopComment((v, "eof-A subroutine")); 2365 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2366 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2367 }else{ 2368 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2369 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2370 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2371 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2372 p->nSelectRow += pPrior->nSelectRow; 2373 } 2374 2375 /* Generate a subroutine to run when the results from select B 2376 ** are exhausted and only data in select A remains. 2377 */ 2378 if( op==TK_INTERSECT ){ 2379 addrEofB = addrEofA; 2380 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2381 }else{ 2382 VdbeNoopComment((v, "eof-B subroutine")); 2383 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2384 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2385 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2386 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2387 } 2388 2389 /* Generate code to handle the case of A<B 2390 */ 2391 VdbeNoopComment((v, "A-lt-B subroutine")); 2392 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2393 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2394 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2395 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2396 2397 /* Generate code to handle the case of A==B 2398 */ 2399 if( op==TK_ALL ){ 2400 addrAeqB = addrAltB; 2401 }else if( op==TK_INTERSECT ){ 2402 addrAeqB = addrAltB; 2403 addrAltB++; 2404 }else{ 2405 VdbeNoopComment((v, "A-eq-B subroutine")); 2406 addrAeqB = 2407 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2408 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2409 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2410 } 2411 2412 /* Generate code to handle the case of A>B 2413 */ 2414 VdbeNoopComment((v, "A-gt-B subroutine")); 2415 addrAgtB = sqlite3VdbeCurrentAddr(v); 2416 if( op==TK_ALL || op==TK_UNION ){ 2417 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2418 } 2419 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2420 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2421 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2422 2423 /* This code runs once to initialize everything. 2424 */ 2425 sqlite3VdbeJumpHere(v, j1); 2426 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2427 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2428 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2429 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2430 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2431 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2432 2433 /* Implement the main merge loop 2434 */ 2435 sqlite3VdbeResolveLabel(v, labelCmpr); 2436 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2437 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2438 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2439 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2440 2441 /* Release temporary registers 2442 */ 2443 if( regPrev ){ 2444 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2445 } 2446 2447 /* Jump to the this point in order to terminate the query. 2448 */ 2449 sqlite3VdbeResolveLabel(v, labelEnd); 2450 2451 /* Set the number of output columns 2452 */ 2453 if( pDest->eDest==SRT_Output ){ 2454 Select *pFirst = pPrior; 2455 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2456 generateColumnNames(pParse, 0, pFirst->pEList); 2457 } 2458 2459 /* Reassembly the compound query so that it will be freed correctly 2460 ** by the calling function */ 2461 if( p->pPrior ){ 2462 sqlite3SelectDelete(db, p->pPrior); 2463 } 2464 p->pPrior = pPrior; 2465 2466 /*** TBD: Insert subroutine calls to close cursors on incomplete 2467 **** subqueries ****/ 2468 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2469 return SQLITE_OK; 2470 } 2471 #endif 2472 2473 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2474 /* Forward Declarations */ 2475 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2476 static void substSelect(sqlite3*, Select *, int, ExprList *); 2477 2478 /* 2479 ** Scan through the expression pExpr. Replace every reference to 2480 ** a column in table number iTable with a copy of the iColumn-th 2481 ** entry in pEList. (But leave references to the ROWID column 2482 ** unchanged.) 2483 ** 2484 ** This routine is part of the flattening procedure. A subquery 2485 ** whose result set is defined by pEList appears as entry in the 2486 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2487 ** FORM clause entry is iTable. This routine make the necessary 2488 ** changes to pExpr so that it refers directly to the source table 2489 ** of the subquery rather the result set of the subquery. 2490 */ 2491 static Expr *substExpr( 2492 sqlite3 *db, /* Report malloc errors to this connection */ 2493 Expr *pExpr, /* Expr in which substitution occurs */ 2494 int iTable, /* Table to be substituted */ 2495 ExprList *pEList /* Substitute expressions */ 2496 ){ 2497 if( pExpr==0 ) return 0; 2498 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2499 if( pExpr->iColumn<0 ){ 2500 pExpr->op = TK_NULL; 2501 }else{ 2502 Expr *pNew; 2503 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2504 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2505 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2506 if( pNew && pExpr->pColl ){ 2507 pNew->pColl = pExpr->pColl; 2508 } 2509 sqlite3ExprDelete(db, pExpr); 2510 pExpr = pNew; 2511 } 2512 }else{ 2513 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2514 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2515 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2516 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2517 }else{ 2518 substExprList(db, pExpr->x.pList, iTable, pEList); 2519 } 2520 } 2521 return pExpr; 2522 } 2523 static void substExprList( 2524 sqlite3 *db, /* Report malloc errors here */ 2525 ExprList *pList, /* List to scan and in which to make substitutes */ 2526 int iTable, /* Table to be substituted */ 2527 ExprList *pEList /* Substitute values */ 2528 ){ 2529 int i; 2530 if( pList==0 ) return; 2531 for(i=0; i<pList->nExpr; i++){ 2532 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2533 } 2534 } 2535 static void substSelect( 2536 sqlite3 *db, /* Report malloc errors here */ 2537 Select *p, /* SELECT statement in which to make substitutions */ 2538 int iTable, /* Table to be replaced */ 2539 ExprList *pEList /* Substitute values */ 2540 ){ 2541 SrcList *pSrc; 2542 struct SrcList_item *pItem; 2543 int i; 2544 if( !p ) return; 2545 substExprList(db, p->pEList, iTable, pEList); 2546 substExprList(db, p->pGroupBy, iTable, pEList); 2547 substExprList(db, p->pOrderBy, iTable, pEList); 2548 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2549 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2550 substSelect(db, p->pPrior, iTable, pEList); 2551 pSrc = p->pSrc; 2552 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2553 if( ALWAYS(pSrc) ){ 2554 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2555 substSelect(db, pItem->pSelect, iTable, pEList); 2556 } 2557 } 2558 } 2559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2560 2561 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2562 /* 2563 ** This routine attempts to flatten subqueries in order to speed 2564 ** execution. It returns 1 if it makes changes and 0 if no flattening 2565 ** occurs. 2566 ** 2567 ** To understand the concept of flattening, consider the following 2568 ** query: 2569 ** 2570 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2571 ** 2572 ** The default way of implementing this query is to execute the 2573 ** subquery first and store the results in a temporary table, then 2574 ** run the outer query on that temporary table. This requires two 2575 ** passes over the data. Furthermore, because the temporary table 2576 ** has no indices, the WHERE clause on the outer query cannot be 2577 ** optimized. 2578 ** 2579 ** This routine attempts to rewrite queries such as the above into 2580 ** a single flat select, like this: 2581 ** 2582 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2583 ** 2584 ** The code generated for this simpification gives the same result 2585 ** but only has to scan the data once. And because indices might 2586 ** exist on the table t1, a complete scan of the data might be 2587 ** avoided. 2588 ** 2589 ** Flattening is only attempted if all of the following are true: 2590 ** 2591 ** (1) The subquery and the outer query do not both use aggregates. 2592 ** 2593 ** (2) The subquery is not an aggregate or the outer query is not a join. 2594 ** 2595 ** (3) The subquery is not the right operand of a left outer join 2596 ** (Originally ticket #306. Strengthened by ticket #3300) 2597 ** 2598 ** (4) The subquery is not DISTINCT. 2599 ** 2600 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2601 ** sub-queries that were excluded from this optimization. Restriction 2602 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2603 ** 2604 ** (6) The subquery does not use aggregates or the outer query is not 2605 ** DISTINCT. 2606 ** 2607 ** (7) The subquery has a FROM clause. 2608 ** 2609 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2610 ** 2611 ** (9) The subquery does not use LIMIT or the outer query does not use 2612 ** aggregates. 2613 ** 2614 ** (10) The subquery does not use aggregates or the outer query does not 2615 ** use LIMIT. 2616 ** 2617 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2618 ** 2619 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2620 ** a separate restriction deriving from ticket #350. 2621 ** 2622 ** (13) The subquery and outer query do not both use LIMIT. 2623 ** 2624 ** (14) The subquery does not use OFFSET. 2625 ** 2626 ** (15) The outer query is not part of a compound select or the 2627 ** subquery does not have a LIMIT clause. 2628 ** (See ticket #2339 and ticket [02a8e81d44]). 2629 ** 2630 ** (16) The outer query is not an aggregate or the subquery does 2631 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2632 ** until we introduced the group_concat() function. 2633 ** 2634 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2635 ** compound clause made up entirely of non-aggregate queries, and 2636 ** the parent query: 2637 ** 2638 ** * is not itself part of a compound select, 2639 ** * is not an aggregate or DISTINCT query, and 2640 ** * has no other tables or sub-selects in the FROM clause. 2641 ** 2642 ** The parent and sub-query may contain WHERE clauses. Subject to 2643 ** rules (11), (13) and (14), they may also contain ORDER BY, 2644 ** LIMIT and OFFSET clauses. 2645 ** 2646 ** (18) If the sub-query is a compound select, then all terms of the 2647 ** ORDER by clause of the parent must be simple references to 2648 ** columns of the sub-query. 2649 ** 2650 ** (19) The subquery does not use LIMIT or the outer query does not 2651 ** have a WHERE clause. 2652 ** 2653 ** (20) If the sub-query is a compound select, then it must not use 2654 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2655 ** somewhat by saying that the terms of the ORDER BY clause must 2656 ** appear as unmodified result columns in the outer query. But 2657 ** have other optimizations in mind to deal with that case. 2658 ** 2659 ** (21) The subquery does not use LIMIT or the outer query is not 2660 ** DISTINCT. (See ticket [752e1646fc]). 2661 ** 2662 ** In this routine, the "p" parameter is a pointer to the outer query. 2663 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2664 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2665 ** 2666 ** If flattening is not attempted, this routine is a no-op and returns 0. 2667 ** If flattening is attempted this routine returns 1. 2668 ** 2669 ** All of the expression analysis must occur on both the outer query and 2670 ** the subquery before this routine runs. 2671 */ 2672 static int flattenSubquery( 2673 Parse *pParse, /* Parsing context */ 2674 Select *p, /* The parent or outer SELECT statement */ 2675 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2676 int isAgg, /* True if outer SELECT uses aggregate functions */ 2677 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2678 ){ 2679 const char *zSavedAuthContext = pParse->zAuthContext; 2680 Select *pParent; 2681 Select *pSub; /* The inner query or "subquery" */ 2682 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2683 SrcList *pSrc; /* The FROM clause of the outer query */ 2684 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2685 ExprList *pList; /* The result set of the outer query */ 2686 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2687 int i; /* Loop counter */ 2688 Expr *pWhere; /* The WHERE clause */ 2689 struct SrcList_item *pSubitem; /* The subquery */ 2690 sqlite3 *db = pParse->db; 2691 2692 /* Check to see if flattening is permitted. Return 0 if not. 2693 */ 2694 assert( p!=0 ); 2695 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2696 if( db->flags & SQLITE_QueryFlattener ) return 0; 2697 pSrc = p->pSrc; 2698 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2699 pSubitem = &pSrc->a[iFrom]; 2700 iParent = pSubitem->iCursor; 2701 pSub = pSubitem->pSelect; 2702 assert( pSub!=0 ); 2703 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2704 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2705 pSubSrc = pSub->pSrc; 2706 assert( pSubSrc ); 2707 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2708 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2709 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2710 ** became arbitrary expressions, we were forced to add restrictions (13) 2711 ** and (14). */ 2712 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2713 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2714 if( p->pRightmost && pSub->pLimit ){ 2715 return 0; /* Restriction (15) */ 2716 } 2717 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2718 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2719 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2720 return 0; /* Restrictions (8)(9) */ 2721 } 2722 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2723 return 0; /* Restriction (6) */ 2724 } 2725 if( p->pOrderBy && pSub->pOrderBy ){ 2726 return 0; /* Restriction (11) */ 2727 } 2728 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2729 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2730 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 2731 return 0; /* Restriction (21) */ 2732 } 2733 2734 /* OBSOLETE COMMENT 1: 2735 ** Restriction 3: If the subquery is a join, make sure the subquery is 2736 ** not used as the right operand of an outer join. Examples of why this 2737 ** is not allowed: 2738 ** 2739 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2740 ** 2741 ** If we flatten the above, we would get 2742 ** 2743 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2744 ** 2745 ** which is not at all the same thing. 2746 ** 2747 ** OBSOLETE COMMENT 2: 2748 ** Restriction 12: If the subquery is the right operand of a left outer 2749 ** join, make sure the subquery has no WHERE clause. 2750 ** An examples of why this is not allowed: 2751 ** 2752 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2753 ** 2754 ** If we flatten the above, we would get 2755 ** 2756 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2757 ** 2758 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2759 ** effectively converts the OUTER JOIN into an INNER JOIN. 2760 ** 2761 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2762 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2763 ** is fraught with danger. Best to avoid the whole thing. If the 2764 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2765 */ 2766 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2767 return 0; 2768 } 2769 2770 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2771 ** use only the UNION ALL operator. And none of the simple select queries 2772 ** that make up the compound SELECT are allowed to be aggregate or distinct 2773 ** queries. 2774 */ 2775 if( pSub->pPrior ){ 2776 if( pSub->pOrderBy ){ 2777 return 0; /* Restriction 20 */ 2778 } 2779 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2780 return 0; 2781 } 2782 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2783 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2784 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2785 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2786 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2787 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2788 ){ 2789 return 0; 2790 } 2791 } 2792 2793 /* Restriction 18. */ 2794 if( p->pOrderBy ){ 2795 int ii; 2796 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2797 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2798 } 2799 } 2800 } 2801 2802 /***** If we reach this point, flattening is permitted. *****/ 2803 2804 /* Authorize the subquery */ 2805 pParse->zAuthContext = pSubitem->zName; 2806 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2807 pParse->zAuthContext = zSavedAuthContext; 2808 2809 /* If the sub-query is a compound SELECT statement, then (by restrictions 2810 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2811 ** be of the form: 2812 ** 2813 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2814 ** 2815 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2816 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2817 ** OFFSET clauses and joins them to the left-hand-side of the original 2818 ** using UNION ALL operators. In this case N is the number of simple 2819 ** select statements in the compound sub-query. 2820 ** 2821 ** Example: 2822 ** 2823 ** SELECT a+1 FROM ( 2824 ** SELECT x FROM tab 2825 ** UNION ALL 2826 ** SELECT y FROM tab 2827 ** UNION ALL 2828 ** SELECT abs(z*2) FROM tab2 2829 ** ) WHERE a!=5 ORDER BY 1 2830 ** 2831 ** Transformed into: 2832 ** 2833 ** SELECT x+1 FROM tab WHERE x+1!=5 2834 ** UNION ALL 2835 ** SELECT y+1 FROM tab WHERE y+1!=5 2836 ** UNION ALL 2837 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2838 ** ORDER BY 1 2839 ** 2840 ** We call this the "compound-subquery flattening". 2841 */ 2842 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2843 Select *pNew; 2844 ExprList *pOrderBy = p->pOrderBy; 2845 Expr *pLimit = p->pLimit; 2846 Select *pPrior = p->pPrior; 2847 p->pOrderBy = 0; 2848 p->pSrc = 0; 2849 p->pPrior = 0; 2850 p->pLimit = 0; 2851 pNew = sqlite3SelectDup(db, p, 0); 2852 p->pLimit = pLimit; 2853 p->pOrderBy = pOrderBy; 2854 p->pSrc = pSrc; 2855 p->op = TK_ALL; 2856 p->pRightmost = 0; 2857 if( pNew==0 ){ 2858 pNew = pPrior; 2859 }else{ 2860 pNew->pPrior = pPrior; 2861 pNew->pRightmost = 0; 2862 } 2863 p->pPrior = pNew; 2864 if( db->mallocFailed ) return 1; 2865 } 2866 2867 /* Begin flattening the iFrom-th entry of the FROM clause 2868 ** in the outer query. 2869 */ 2870 pSub = pSub1 = pSubitem->pSelect; 2871 2872 /* Delete the transient table structure associated with the 2873 ** subquery 2874 */ 2875 sqlite3DbFree(db, pSubitem->zDatabase); 2876 sqlite3DbFree(db, pSubitem->zName); 2877 sqlite3DbFree(db, pSubitem->zAlias); 2878 pSubitem->zDatabase = 0; 2879 pSubitem->zName = 0; 2880 pSubitem->zAlias = 0; 2881 pSubitem->pSelect = 0; 2882 2883 /* Defer deleting the Table object associated with the 2884 ** subquery until code generation is 2885 ** complete, since there may still exist Expr.pTab entries that 2886 ** refer to the subquery even after flattening. Ticket #3346. 2887 ** 2888 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2889 */ 2890 if( ALWAYS(pSubitem->pTab!=0) ){ 2891 Table *pTabToDel = pSubitem->pTab; 2892 if( pTabToDel->nRef==1 ){ 2893 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2894 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2895 pToplevel->pZombieTab = pTabToDel; 2896 }else{ 2897 pTabToDel->nRef--; 2898 } 2899 pSubitem->pTab = 0; 2900 } 2901 2902 /* The following loop runs once for each term in a compound-subquery 2903 ** flattening (as described above). If we are doing a different kind 2904 ** of flattening - a flattening other than a compound-subquery flattening - 2905 ** then this loop only runs once. 2906 ** 2907 ** This loop moves all of the FROM elements of the subquery into the 2908 ** the FROM clause of the outer query. Before doing this, remember 2909 ** the cursor number for the original outer query FROM element in 2910 ** iParent. The iParent cursor will never be used. Subsequent code 2911 ** will scan expressions looking for iParent references and replace 2912 ** those references with expressions that resolve to the subquery FROM 2913 ** elements we are now copying in. 2914 */ 2915 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2916 int nSubSrc; 2917 u8 jointype = 0; 2918 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2919 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2920 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2921 2922 if( pSrc ){ 2923 assert( pParent==p ); /* First time through the loop */ 2924 jointype = pSubitem->jointype; 2925 }else{ 2926 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2927 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2928 if( pSrc==0 ){ 2929 assert( db->mallocFailed ); 2930 break; 2931 } 2932 } 2933 2934 /* The subquery uses a single slot of the FROM clause of the outer 2935 ** query. If the subquery has more than one element in its FROM clause, 2936 ** then expand the outer query to make space for it to hold all elements 2937 ** of the subquery. 2938 ** 2939 ** Example: 2940 ** 2941 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2942 ** 2943 ** The outer query has 3 slots in its FROM clause. One slot of the 2944 ** outer query (the middle slot) is used by the subquery. The next 2945 ** block of code will expand the out query to 4 slots. The middle 2946 ** slot is expanded to two slots in order to make space for the 2947 ** two elements in the FROM clause of the subquery. 2948 */ 2949 if( nSubSrc>1 ){ 2950 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2951 if( db->mallocFailed ){ 2952 break; 2953 } 2954 } 2955 2956 /* Transfer the FROM clause terms from the subquery into the 2957 ** outer query. 2958 */ 2959 for(i=0; i<nSubSrc; i++){ 2960 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2961 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2962 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2963 } 2964 pSrc->a[iFrom].jointype = jointype; 2965 2966 /* Now begin substituting subquery result set expressions for 2967 ** references to the iParent in the outer query. 2968 ** 2969 ** Example: 2970 ** 2971 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2972 ** \ \_____________ subquery __________/ / 2973 ** \_____________________ outer query ______________________________/ 2974 ** 2975 ** We look at every expression in the outer query and every place we see 2976 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2977 */ 2978 pList = pParent->pEList; 2979 for(i=0; i<pList->nExpr; i++){ 2980 if( pList->a[i].zName==0 ){ 2981 const char *zSpan = pList->a[i].zSpan; 2982 if( ALWAYS(zSpan) ){ 2983 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2984 } 2985 } 2986 } 2987 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2988 if( isAgg ){ 2989 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2990 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2991 } 2992 if( pSub->pOrderBy ){ 2993 assert( pParent->pOrderBy==0 ); 2994 pParent->pOrderBy = pSub->pOrderBy; 2995 pSub->pOrderBy = 0; 2996 }else if( pParent->pOrderBy ){ 2997 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2998 } 2999 if( pSub->pWhere ){ 3000 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3001 }else{ 3002 pWhere = 0; 3003 } 3004 if( subqueryIsAgg ){ 3005 assert( pParent->pHaving==0 ); 3006 pParent->pHaving = pParent->pWhere; 3007 pParent->pWhere = pWhere; 3008 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3009 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3010 sqlite3ExprDup(db, pSub->pHaving, 0)); 3011 assert( pParent->pGroupBy==0 ); 3012 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3013 }else{ 3014 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3015 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3016 } 3017 3018 /* The flattened query is distinct if either the inner or the 3019 ** outer query is distinct. 3020 */ 3021 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3022 3023 /* 3024 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3025 ** 3026 ** One is tempted to try to add a and b to combine the limits. But this 3027 ** does not work if either limit is negative. 3028 */ 3029 if( pSub->pLimit ){ 3030 pParent->pLimit = pSub->pLimit; 3031 pSub->pLimit = 0; 3032 } 3033 } 3034 3035 /* Finially, delete what is left of the subquery and return 3036 ** success. 3037 */ 3038 sqlite3SelectDelete(db, pSub1); 3039 3040 return 1; 3041 } 3042 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3043 3044 /* 3045 ** Analyze the SELECT statement passed as an argument to see if it 3046 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3047 ** it is, or 0 otherwise. At present, a query is considered to be 3048 ** a min()/max() query if: 3049 ** 3050 ** 1. There is a single object in the FROM clause. 3051 ** 3052 ** 2. There is a single expression in the result set, and it is 3053 ** either min(x) or max(x), where x is a column reference. 3054 */ 3055 static u8 minMaxQuery(Select *p){ 3056 Expr *pExpr; 3057 ExprList *pEList = p->pEList; 3058 3059 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3060 pExpr = pEList->a[0].pExpr; 3061 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3062 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 3063 pEList = pExpr->x.pList; 3064 if( pEList==0 || pEList->nExpr!=1 ) return 0; 3065 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3066 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 3067 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 3068 return WHERE_ORDERBY_MIN; 3069 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 3070 return WHERE_ORDERBY_MAX; 3071 } 3072 return WHERE_ORDERBY_NORMAL; 3073 } 3074 3075 /* 3076 ** The select statement passed as the first argument is an aggregate query. 3077 ** The second argment is the associated aggregate-info object. This 3078 ** function tests if the SELECT is of the form: 3079 ** 3080 ** SELECT count(*) FROM <tbl> 3081 ** 3082 ** where table is a database table, not a sub-select or view. If the query 3083 ** does match this pattern, then a pointer to the Table object representing 3084 ** <tbl> is returned. Otherwise, 0 is returned. 3085 */ 3086 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3087 Table *pTab; 3088 Expr *pExpr; 3089 3090 assert( !p->pGroupBy ); 3091 3092 if( p->pWhere || p->pEList->nExpr!=1 3093 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3094 ){ 3095 return 0; 3096 } 3097 pTab = p->pSrc->a[0].pTab; 3098 pExpr = p->pEList->a[0].pExpr; 3099 assert( pTab && !pTab->pSelect && pExpr ); 3100 3101 if( IsVirtual(pTab) ) return 0; 3102 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3103 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 3104 if( pExpr->flags&EP_Distinct ) return 0; 3105 3106 return pTab; 3107 } 3108 3109 /* 3110 ** If the source-list item passed as an argument was augmented with an 3111 ** INDEXED BY clause, then try to locate the specified index. If there 3112 ** was such a clause and the named index cannot be found, return 3113 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3114 ** pFrom->pIndex and return SQLITE_OK. 3115 */ 3116 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3117 if( pFrom->pTab && pFrom->zIndex ){ 3118 Table *pTab = pFrom->pTab; 3119 char *zIndex = pFrom->zIndex; 3120 Index *pIdx; 3121 for(pIdx=pTab->pIndex; 3122 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3123 pIdx=pIdx->pNext 3124 ); 3125 if( !pIdx ){ 3126 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3127 pParse->checkSchema = 1; 3128 return SQLITE_ERROR; 3129 } 3130 pFrom->pIndex = pIdx; 3131 } 3132 return SQLITE_OK; 3133 } 3134 3135 /* 3136 ** This routine is a Walker callback for "expanding" a SELECT statement. 3137 ** "Expanding" means to do the following: 3138 ** 3139 ** (1) Make sure VDBE cursor numbers have been assigned to every 3140 ** element of the FROM clause. 3141 ** 3142 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3143 ** defines FROM clause. When views appear in the FROM clause, 3144 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3145 ** that implements the view. A copy is made of the view's SELECT 3146 ** statement so that we can freely modify or delete that statement 3147 ** without worrying about messing up the presistent representation 3148 ** of the view. 3149 ** 3150 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3151 ** on joins and the ON and USING clause of joins. 3152 ** 3153 ** (4) Scan the list of columns in the result set (pEList) looking 3154 ** for instances of the "*" operator or the TABLE.* operator. 3155 ** If found, expand each "*" to be every column in every table 3156 ** and TABLE.* to be every column in TABLE. 3157 ** 3158 */ 3159 static int selectExpander(Walker *pWalker, Select *p){ 3160 Parse *pParse = pWalker->pParse; 3161 int i, j, k; 3162 SrcList *pTabList; 3163 ExprList *pEList; 3164 struct SrcList_item *pFrom; 3165 sqlite3 *db = pParse->db; 3166 3167 if( db->mallocFailed ){ 3168 return WRC_Abort; 3169 } 3170 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3171 return WRC_Prune; 3172 } 3173 p->selFlags |= SF_Expanded; 3174 pTabList = p->pSrc; 3175 pEList = p->pEList; 3176 3177 /* Make sure cursor numbers have been assigned to all entries in 3178 ** the FROM clause of the SELECT statement. 3179 */ 3180 sqlite3SrcListAssignCursors(pParse, pTabList); 3181 3182 /* Look up every table named in the FROM clause of the select. If 3183 ** an entry of the FROM clause is a subquery instead of a table or view, 3184 ** then create a transient table structure to describe the subquery. 3185 */ 3186 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3187 Table *pTab; 3188 if( pFrom->pTab!=0 ){ 3189 /* This statement has already been prepared. There is no need 3190 ** to go further. */ 3191 assert( i==0 ); 3192 return WRC_Prune; 3193 } 3194 if( pFrom->zName==0 ){ 3195 #ifndef SQLITE_OMIT_SUBQUERY 3196 Select *pSel = pFrom->pSelect; 3197 /* A sub-query in the FROM clause of a SELECT */ 3198 assert( pSel!=0 ); 3199 assert( pFrom->pTab==0 ); 3200 sqlite3WalkSelect(pWalker, pSel); 3201 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3202 if( pTab==0 ) return WRC_Abort; 3203 pTab->nRef = 1; 3204 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3205 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3206 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3207 pTab->iPKey = -1; 3208 pTab->nRowEst = 1000000; 3209 pTab->tabFlags |= TF_Ephemeral; 3210 #endif 3211 }else{ 3212 /* An ordinary table or view name in the FROM clause */ 3213 assert( pFrom->pTab==0 ); 3214 pFrom->pTab = pTab = 3215 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3216 if( pTab==0 ) return WRC_Abort; 3217 pTab->nRef++; 3218 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3219 if( pTab->pSelect || IsVirtual(pTab) ){ 3220 /* We reach here if the named table is a really a view */ 3221 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3222 assert( pFrom->pSelect==0 ); 3223 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3224 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3225 } 3226 #endif 3227 } 3228 3229 /* Locate the index named by the INDEXED BY clause, if any. */ 3230 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3231 return WRC_Abort; 3232 } 3233 } 3234 3235 /* Process NATURAL keywords, and ON and USING clauses of joins. 3236 */ 3237 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3238 return WRC_Abort; 3239 } 3240 3241 /* For every "*" that occurs in the column list, insert the names of 3242 ** all columns in all tables. And for every TABLE.* insert the names 3243 ** of all columns in TABLE. The parser inserted a special expression 3244 ** with the TK_ALL operator for each "*" that it found in the column list. 3245 ** The following code just has to locate the TK_ALL expressions and expand 3246 ** each one to the list of all columns in all tables. 3247 ** 3248 ** The first loop just checks to see if there are any "*" operators 3249 ** that need expanding. 3250 */ 3251 for(k=0; k<pEList->nExpr; k++){ 3252 Expr *pE = pEList->a[k].pExpr; 3253 if( pE->op==TK_ALL ) break; 3254 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3255 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3256 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3257 } 3258 if( k<pEList->nExpr ){ 3259 /* 3260 ** If we get here it means the result set contains one or more "*" 3261 ** operators that need to be expanded. Loop through each expression 3262 ** in the result set and expand them one by one. 3263 */ 3264 struct ExprList_item *a = pEList->a; 3265 ExprList *pNew = 0; 3266 int flags = pParse->db->flags; 3267 int longNames = (flags & SQLITE_FullColNames)!=0 3268 && (flags & SQLITE_ShortColNames)==0; 3269 3270 for(k=0; k<pEList->nExpr; k++){ 3271 Expr *pE = a[k].pExpr; 3272 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3273 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3274 /* This particular expression does not need to be expanded. 3275 */ 3276 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3277 if( pNew ){ 3278 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3279 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3280 a[k].zName = 0; 3281 a[k].zSpan = 0; 3282 } 3283 a[k].pExpr = 0; 3284 }else{ 3285 /* This expression is a "*" or a "TABLE.*" and needs to be 3286 ** expanded. */ 3287 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3288 char *zTName; /* text of name of TABLE */ 3289 if( pE->op==TK_DOT ){ 3290 assert( pE->pLeft!=0 ); 3291 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3292 zTName = pE->pLeft->u.zToken; 3293 }else{ 3294 zTName = 0; 3295 } 3296 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3297 Table *pTab = pFrom->pTab; 3298 char *zTabName = pFrom->zAlias; 3299 if( zTabName==0 ){ 3300 zTabName = pTab->zName; 3301 } 3302 if( db->mallocFailed ) break; 3303 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3304 continue; 3305 } 3306 tableSeen = 1; 3307 for(j=0; j<pTab->nCol; j++){ 3308 Expr *pExpr, *pRight; 3309 char *zName = pTab->aCol[j].zName; 3310 char *zColname; /* The computed column name */ 3311 char *zToFree; /* Malloced string that needs to be freed */ 3312 Token sColname; /* Computed column name as a token */ 3313 3314 /* If a column is marked as 'hidden' (currently only possible 3315 ** for virtual tables), do not include it in the expanded 3316 ** result-set list. 3317 */ 3318 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3319 assert(IsVirtual(pTab)); 3320 continue; 3321 } 3322 3323 if( i>0 && zTName==0 ){ 3324 if( (pFrom->jointype & JT_NATURAL)!=0 3325 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3326 ){ 3327 /* In a NATURAL join, omit the join columns from the 3328 ** table to the right of the join */ 3329 continue; 3330 } 3331 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3332 /* In a join with a USING clause, omit columns in the 3333 ** using clause from the table on the right. */ 3334 continue; 3335 } 3336 } 3337 pRight = sqlite3Expr(db, TK_ID, zName); 3338 zColname = zName; 3339 zToFree = 0; 3340 if( longNames || pTabList->nSrc>1 ){ 3341 Expr *pLeft; 3342 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3343 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3344 if( longNames ){ 3345 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3346 zToFree = zColname; 3347 } 3348 }else{ 3349 pExpr = pRight; 3350 } 3351 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3352 sColname.z = zColname; 3353 sColname.n = sqlite3Strlen30(zColname); 3354 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3355 sqlite3DbFree(db, zToFree); 3356 } 3357 } 3358 if( !tableSeen ){ 3359 if( zTName ){ 3360 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3361 }else{ 3362 sqlite3ErrorMsg(pParse, "no tables specified"); 3363 } 3364 } 3365 } 3366 } 3367 sqlite3ExprListDelete(db, pEList); 3368 p->pEList = pNew; 3369 } 3370 #if SQLITE_MAX_COLUMN 3371 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3372 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3373 } 3374 #endif 3375 return WRC_Continue; 3376 } 3377 3378 /* 3379 ** No-op routine for the parse-tree walker. 3380 ** 3381 ** When this routine is the Walker.xExprCallback then expression trees 3382 ** are walked without any actions being taken at each node. Presumably, 3383 ** when this routine is used for Walker.xExprCallback then 3384 ** Walker.xSelectCallback is set to do something useful for every 3385 ** subquery in the parser tree. 3386 */ 3387 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3388 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3389 return WRC_Continue; 3390 } 3391 3392 /* 3393 ** This routine "expands" a SELECT statement and all of its subqueries. 3394 ** For additional information on what it means to "expand" a SELECT 3395 ** statement, see the comment on the selectExpand worker callback above. 3396 ** 3397 ** Expanding a SELECT statement is the first step in processing a 3398 ** SELECT statement. The SELECT statement must be expanded before 3399 ** name resolution is performed. 3400 ** 3401 ** If anything goes wrong, an error message is written into pParse. 3402 ** The calling function can detect the problem by looking at pParse->nErr 3403 ** and/or pParse->db->mallocFailed. 3404 */ 3405 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3406 Walker w; 3407 w.xSelectCallback = selectExpander; 3408 w.xExprCallback = exprWalkNoop; 3409 w.pParse = pParse; 3410 sqlite3WalkSelect(&w, pSelect); 3411 } 3412 3413 3414 #ifndef SQLITE_OMIT_SUBQUERY 3415 /* 3416 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3417 ** interface. 3418 ** 3419 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3420 ** information to the Table structure that represents the result set 3421 ** of that subquery. 3422 ** 3423 ** The Table structure that represents the result set was constructed 3424 ** by selectExpander() but the type and collation information was omitted 3425 ** at that point because identifiers had not yet been resolved. This 3426 ** routine is called after identifier resolution. 3427 */ 3428 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3429 Parse *pParse; 3430 int i; 3431 SrcList *pTabList; 3432 struct SrcList_item *pFrom; 3433 3434 assert( p->selFlags & SF_Resolved ); 3435 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3436 p->selFlags |= SF_HasTypeInfo; 3437 pParse = pWalker->pParse; 3438 pTabList = p->pSrc; 3439 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3440 Table *pTab = pFrom->pTab; 3441 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3442 /* A sub-query in the FROM clause of a SELECT */ 3443 Select *pSel = pFrom->pSelect; 3444 assert( pSel ); 3445 while( pSel->pPrior ) pSel = pSel->pPrior; 3446 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3447 } 3448 } 3449 } 3450 return WRC_Continue; 3451 } 3452 #endif 3453 3454 3455 /* 3456 ** This routine adds datatype and collating sequence information to 3457 ** the Table structures of all FROM-clause subqueries in a 3458 ** SELECT statement. 3459 ** 3460 ** Use this routine after name resolution. 3461 */ 3462 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3463 #ifndef SQLITE_OMIT_SUBQUERY 3464 Walker w; 3465 w.xSelectCallback = selectAddSubqueryTypeInfo; 3466 w.xExprCallback = exprWalkNoop; 3467 w.pParse = pParse; 3468 sqlite3WalkSelect(&w, pSelect); 3469 #endif 3470 } 3471 3472 3473 /* 3474 ** This routine sets of a SELECT statement for processing. The 3475 ** following is accomplished: 3476 ** 3477 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3478 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3479 ** * ON and USING clauses are shifted into WHERE statements 3480 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3481 ** * Identifiers in expression are matched to tables. 3482 ** 3483 ** This routine acts recursively on all subqueries within the SELECT. 3484 */ 3485 void sqlite3SelectPrep( 3486 Parse *pParse, /* The parser context */ 3487 Select *p, /* The SELECT statement being coded. */ 3488 NameContext *pOuterNC /* Name context for container */ 3489 ){ 3490 sqlite3 *db; 3491 if( NEVER(p==0) ) return; 3492 db = pParse->db; 3493 if( p->selFlags & SF_HasTypeInfo ) return; 3494 sqlite3SelectExpand(pParse, p); 3495 if( pParse->nErr || db->mallocFailed ) return; 3496 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3497 if( pParse->nErr || db->mallocFailed ) return; 3498 sqlite3SelectAddTypeInfo(pParse, p); 3499 } 3500 3501 /* 3502 ** Reset the aggregate accumulator. 3503 ** 3504 ** The aggregate accumulator is a set of memory cells that hold 3505 ** intermediate results while calculating an aggregate. This 3506 ** routine simply stores NULLs in all of those memory cells. 3507 */ 3508 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3509 Vdbe *v = pParse->pVdbe; 3510 int i; 3511 struct AggInfo_func *pFunc; 3512 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3513 return; 3514 } 3515 for(i=0; i<pAggInfo->nColumn; i++){ 3516 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3517 } 3518 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3519 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3520 if( pFunc->iDistinct>=0 ){ 3521 Expr *pE = pFunc->pExpr; 3522 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3523 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3524 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3525 "argument"); 3526 pFunc->iDistinct = -1; 3527 }else{ 3528 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3529 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3530 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3531 } 3532 } 3533 } 3534 } 3535 3536 /* 3537 ** Invoke the OP_AggFinalize opcode for every aggregate function 3538 ** in the AggInfo structure. 3539 */ 3540 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3541 Vdbe *v = pParse->pVdbe; 3542 int i; 3543 struct AggInfo_func *pF; 3544 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3545 ExprList *pList = pF->pExpr->x.pList; 3546 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3547 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3548 (void*)pF->pFunc, P4_FUNCDEF); 3549 } 3550 } 3551 3552 /* 3553 ** Update the accumulator memory cells for an aggregate based on 3554 ** the current cursor position. 3555 */ 3556 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3557 Vdbe *v = pParse->pVdbe; 3558 int i; 3559 struct AggInfo_func *pF; 3560 struct AggInfo_col *pC; 3561 3562 pAggInfo->directMode = 1; 3563 sqlite3ExprCacheClear(pParse); 3564 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3565 int nArg; 3566 int addrNext = 0; 3567 int regAgg; 3568 ExprList *pList = pF->pExpr->x.pList; 3569 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3570 if( pList ){ 3571 nArg = pList->nExpr; 3572 regAgg = sqlite3GetTempRange(pParse, nArg); 3573 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3574 }else{ 3575 nArg = 0; 3576 regAgg = 0; 3577 } 3578 if( pF->iDistinct>=0 ){ 3579 addrNext = sqlite3VdbeMakeLabel(v); 3580 assert( nArg==1 ); 3581 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3582 } 3583 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3584 CollSeq *pColl = 0; 3585 struct ExprList_item *pItem; 3586 int j; 3587 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3588 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3589 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3590 } 3591 if( !pColl ){ 3592 pColl = pParse->db->pDfltColl; 3593 } 3594 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3595 } 3596 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3597 (void*)pF->pFunc, P4_FUNCDEF); 3598 sqlite3VdbeChangeP5(v, (u8)nArg); 3599 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3600 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3601 if( addrNext ){ 3602 sqlite3VdbeResolveLabel(v, addrNext); 3603 sqlite3ExprCacheClear(pParse); 3604 } 3605 } 3606 3607 /* Before populating the accumulator registers, clear the column cache. 3608 ** Otherwise, if any of the required column values are already present 3609 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3610 ** to pC->iMem. But by the time the value is used, the original register 3611 ** may have been used, invalidating the underlying buffer holding the 3612 ** text or blob value. See ticket [883034dcb5]. 3613 ** 3614 ** Another solution would be to change the OP_SCopy used to copy cached 3615 ** values to an OP_Copy. 3616 */ 3617 sqlite3ExprCacheClear(pParse); 3618 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3619 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3620 } 3621 pAggInfo->directMode = 0; 3622 sqlite3ExprCacheClear(pParse); 3623 } 3624 3625 /* 3626 ** Add a single OP_Explain instruction to the VDBE to explain a simple 3627 ** count(*) query ("SELECT count(*) FROM pTab"). 3628 */ 3629 #ifndef SQLITE_OMIT_EXPLAIN 3630 static void explainSimpleCount( 3631 Parse *pParse, /* Parse context */ 3632 Table *pTab, /* Table being queried */ 3633 Index *pIdx /* Index used to optimize scan, or NULL */ 3634 ){ 3635 if( pParse->explain==2 ){ 3636 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", 3637 pTab->zName, 3638 pIdx ? "USING COVERING INDEX " : "", 3639 pIdx ? pIdx->zName : "", 3640 pTab->nRowEst 3641 ); 3642 sqlite3VdbeAddOp4( 3643 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 3644 ); 3645 } 3646 } 3647 #else 3648 # define explainSimpleCount(a,b,c) 3649 #endif 3650 3651 /* 3652 ** Generate code for the SELECT statement given in the p argument. 3653 ** 3654 ** The results are distributed in various ways depending on the 3655 ** contents of the SelectDest structure pointed to by argument pDest 3656 ** as follows: 3657 ** 3658 ** pDest->eDest Result 3659 ** ------------ ------------------------------------------- 3660 ** SRT_Output Generate a row of output (using the OP_ResultRow 3661 ** opcode) for each row in the result set. 3662 ** 3663 ** SRT_Mem Only valid if the result is a single column. 3664 ** Store the first column of the first result row 3665 ** in register pDest->iParm then abandon the rest 3666 ** of the query. This destination implies "LIMIT 1". 3667 ** 3668 ** SRT_Set The result must be a single column. Store each 3669 ** row of result as the key in table pDest->iParm. 3670 ** Apply the affinity pDest->affinity before storing 3671 ** results. Used to implement "IN (SELECT ...)". 3672 ** 3673 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3674 ** 3675 ** SRT_Except Remove results from the temporary table pDest->iParm. 3676 ** 3677 ** SRT_Table Store results in temporary table pDest->iParm. 3678 ** This is like SRT_EphemTab except that the table 3679 ** is assumed to already be open. 3680 ** 3681 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3682 ** the result there. The cursor is left open after 3683 ** returning. This is like SRT_Table except that 3684 ** this destination uses OP_OpenEphemeral to create 3685 ** the table first. 3686 ** 3687 ** SRT_Coroutine Generate a co-routine that returns a new row of 3688 ** results each time it is invoked. The entry point 3689 ** of the co-routine is stored in register pDest->iParm. 3690 ** 3691 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3692 ** set is not empty. 3693 ** 3694 ** SRT_Discard Throw the results away. This is used by SELECT 3695 ** statements within triggers whose only purpose is 3696 ** the side-effects of functions. 3697 ** 3698 ** This routine returns the number of errors. If any errors are 3699 ** encountered, then an appropriate error message is left in 3700 ** pParse->zErrMsg. 3701 ** 3702 ** This routine does NOT free the Select structure passed in. The 3703 ** calling function needs to do that. 3704 */ 3705 int sqlite3Select( 3706 Parse *pParse, /* The parser context */ 3707 Select *p, /* The SELECT statement being coded. */ 3708 SelectDest *pDest /* What to do with the query results */ 3709 ){ 3710 int i, j; /* Loop counters */ 3711 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3712 Vdbe *v; /* The virtual machine under construction */ 3713 int isAgg; /* True for select lists like "count(*)" */ 3714 ExprList *pEList; /* List of columns to extract. */ 3715 SrcList *pTabList; /* List of tables to select from */ 3716 Expr *pWhere; /* The WHERE clause. May be NULL */ 3717 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3718 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3719 Expr *pHaving; /* The HAVING clause. May be NULL */ 3720 int isDistinct; /* True if the DISTINCT keyword is present */ 3721 int distinct; /* Table to use for the distinct set */ 3722 int rc = 1; /* Value to return from this function */ 3723 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3724 AggInfo sAggInfo; /* Information used by aggregate queries */ 3725 int iEnd; /* Address of the end of the query */ 3726 sqlite3 *db; /* The database connection */ 3727 3728 #ifndef SQLITE_OMIT_EXPLAIN 3729 int iRestoreSelectId = pParse->iSelectId; 3730 pParse->iSelectId = pParse->iNextSelectId++; 3731 #endif 3732 3733 db = pParse->db; 3734 if( p==0 || db->mallocFailed || pParse->nErr ){ 3735 return 1; 3736 } 3737 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3738 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3739 3740 if( IgnorableOrderby(pDest) ){ 3741 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3742 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3743 /* If ORDER BY makes no difference in the output then neither does 3744 ** DISTINCT so it can be removed too. */ 3745 sqlite3ExprListDelete(db, p->pOrderBy); 3746 p->pOrderBy = 0; 3747 p->selFlags &= ~SF_Distinct; 3748 } 3749 sqlite3SelectPrep(pParse, p, 0); 3750 pOrderBy = p->pOrderBy; 3751 pTabList = p->pSrc; 3752 pEList = p->pEList; 3753 if( pParse->nErr || db->mallocFailed ){ 3754 goto select_end; 3755 } 3756 isAgg = (p->selFlags & SF_Aggregate)!=0; 3757 assert( pEList!=0 ); 3758 3759 /* Begin generating code. 3760 */ 3761 v = sqlite3GetVdbe(pParse); 3762 if( v==0 ) goto select_end; 3763 3764 /* If writing to memory or generating a set 3765 ** only a single column may be output. 3766 */ 3767 #ifndef SQLITE_OMIT_SUBQUERY 3768 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3769 goto select_end; 3770 } 3771 #endif 3772 3773 /* Generate code for all sub-queries in the FROM clause 3774 */ 3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3776 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3777 struct SrcList_item *pItem = &pTabList->a[i]; 3778 SelectDest dest; 3779 Select *pSub = pItem->pSelect; 3780 int isAggSub; 3781 3782 if( pSub==0 || pItem->isPopulated ) continue; 3783 3784 /* Increment Parse.nHeight by the height of the largest expression 3785 ** tree refered to by this, the parent select. The child select 3786 ** may contain expression trees of at most 3787 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3788 ** more conservative than necessary, but much easier than enforcing 3789 ** an exact limit. 3790 */ 3791 pParse->nHeight += sqlite3SelectExprHeight(p); 3792 3793 /* Check to see if the subquery can be absorbed into the parent. */ 3794 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3795 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3796 if( isAggSub ){ 3797 isAgg = 1; 3798 p->selFlags |= SF_Aggregate; 3799 } 3800 i = -1; 3801 }else{ 3802 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3803 assert( pItem->isPopulated==0 ); 3804 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 3805 sqlite3Select(pParse, pSub, &dest); 3806 pItem->isPopulated = 1; 3807 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 3808 } 3809 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3810 goto select_end; 3811 } 3812 pParse->nHeight -= sqlite3SelectExprHeight(p); 3813 pTabList = p->pSrc; 3814 if( !IgnorableOrderby(pDest) ){ 3815 pOrderBy = p->pOrderBy; 3816 } 3817 } 3818 pEList = p->pEList; 3819 #endif 3820 pWhere = p->pWhere; 3821 pGroupBy = p->pGroupBy; 3822 pHaving = p->pHaving; 3823 isDistinct = (p->selFlags & SF_Distinct)!=0; 3824 3825 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3826 /* If there is are a sequence of queries, do the earlier ones first. 3827 */ 3828 if( p->pPrior ){ 3829 if( p->pRightmost==0 ){ 3830 Select *pLoop, *pRight = 0; 3831 int cnt = 0; 3832 int mxSelect; 3833 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3834 pLoop->pRightmost = p; 3835 pLoop->pNext = pRight; 3836 pRight = pLoop; 3837 } 3838 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3839 if( mxSelect && cnt>mxSelect ){ 3840 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3841 goto select_end; 3842 } 3843 } 3844 rc = multiSelect(pParse, p, pDest); 3845 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 3846 return rc; 3847 } 3848 #endif 3849 3850 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3851 ** GROUP BY might use an index, DISTINCT never does. 3852 */ 3853 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3854 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3855 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3856 pGroupBy = p->pGroupBy; 3857 p->selFlags &= ~SF_Distinct; 3858 } 3859 3860 /* If there is both a GROUP BY and an ORDER BY clause and they are 3861 ** identical, then disable the ORDER BY clause since the GROUP BY 3862 ** will cause elements to come out in the correct order. This is 3863 ** an optimization - the correct answer should result regardless. 3864 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3865 ** to disable this optimization for testing purposes. 3866 */ 3867 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3868 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3869 pOrderBy = 0; 3870 } 3871 3872 /* If there is an ORDER BY clause, then this sorting 3873 ** index might end up being unused if the data can be 3874 ** extracted in pre-sorted order. If that is the case, then the 3875 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3876 ** we figure out that the sorting index is not needed. The addrSortIndex 3877 ** variable is used to facilitate that change. 3878 */ 3879 if( pOrderBy ){ 3880 KeyInfo *pKeyInfo; 3881 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3882 pOrderBy->iECursor = pParse->nTab++; 3883 p->addrOpenEphm[2] = addrSortIndex = 3884 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3885 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3886 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3887 }else{ 3888 addrSortIndex = -1; 3889 } 3890 3891 /* If the output is destined for a temporary table, open that table. 3892 */ 3893 if( pDest->eDest==SRT_EphemTab ){ 3894 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3895 } 3896 3897 /* Set the limiter. 3898 */ 3899 iEnd = sqlite3VdbeMakeLabel(v); 3900 p->nSelectRow = (double)LARGEST_INT64; 3901 computeLimitRegisters(pParse, p, iEnd); 3902 3903 /* Open a virtual index to use for the distinct set. 3904 */ 3905 if( p->selFlags & SF_Distinct ){ 3906 KeyInfo *pKeyInfo; 3907 assert( isAgg || pGroupBy ); 3908 distinct = pParse->nTab++; 3909 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3910 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3911 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3912 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 3913 }else{ 3914 distinct = -1; 3915 } 3916 3917 /* Aggregate and non-aggregate queries are handled differently */ 3918 if( !isAgg && pGroupBy==0 ){ 3919 /* This case is for non-aggregate queries 3920 ** Begin the database scan 3921 */ 3922 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3923 if( pWInfo==0 ) goto select_end; 3924 if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; 3925 3926 /* If sorting index that was created by a prior OP_OpenEphemeral 3927 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3928 ** into an OP_Noop. 3929 */ 3930 if( addrSortIndex>=0 && pOrderBy==0 ){ 3931 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3932 p->addrOpenEphm[2] = -1; 3933 } 3934 3935 /* Use the standard inner loop 3936 */ 3937 assert(!isDistinct); 3938 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3939 pWInfo->iContinue, pWInfo->iBreak); 3940 3941 /* End the database scan loop. 3942 */ 3943 sqlite3WhereEnd(pWInfo); 3944 }else{ 3945 /* This is the processing for aggregate queries */ 3946 NameContext sNC; /* Name context for processing aggregate information */ 3947 int iAMem; /* First Mem address for storing current GROUP BY */ 3948 int iBMem; /* First Mem address for previous GROUP BY */ 3949 int iUseFlag; /* Mem address holding flag indicating that at least 3950 ** one row of the input to the aggregator has been 3951 ** processed */ 3952 int iAbortFlag; /* Mem address which causes query abort if positive */ 3953 int groupBySort; /* Rows come from source in GROUP BY order */ 3954 int addrEnd; /* End of processing for this SELECT */ 3955 3956 /* Remove any and all aliases between the result set and the 3957 ** GROUP BY clause. 3958 */ 3959 if( pGroupBy ){ 3960 int k; /* Loop counter */ 3961 struct ExprList_item *pItem; /* For looping over expression in a list */ 3962 3963 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3964 pItem->iAlias = 0; 3965 } 3966 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3967 pItem->iAlias = 0; 3968 } 3969 if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; 3970 }else{ 3971 p->nSelectRow = (double)1; 3972 } 3973 3974 3975 /* Create a label to jump to when we want to abort the query */ 3976 addrEnd = sqlite3VdbeMakeLabel(v); 3977 3978 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3979 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3980 ** SELECT statement. 3981 */ 3982 memset(&sNC, 0, sizeof(sNC)); 3983 sNC.pParse = pParse; 3984 sNC.pSrcList = pTabList; 3985 sNC.pAggInfo = &sAggInfo; 3986 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3987 sAggInfo.pGroupBy = pGroupBy; 3988 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3989 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3990 if( pHaving ){ 3991 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3992 } 3993 sAggInfo.nAccumulator = sAggInfo.nColumn; 3994 for(i=0; i<sAggInfo.nFunc; i++){ 3995 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3996 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3997 } 3998 if( db->mallocFailed ) goto select_end; 3999 4000 /* Processing for aggregates with GROUP BY is very different and 4001 ** much more complex than aggregates without a GROUP BY. 4002 */ 4003 if( pGroupBy ){ 4004 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4005 int j1; /* A-vs-B comparision jump */ 4006 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4007 int regOutputRow; /* Return address register for output subroutine */ 4008 int addrSetAbort; /* Set the abort flag and return */ 4009 int addrTopOfLoop; /* Top of the input loop */ 4010 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4011 int addrReset; /* Subroutine for resetting the accumulator */ 4012 int regReset; /* Return address register for reset subroutine */ 4013 4014 /* If there is a GROUP BY clause we might need a sorting index to 4015 ** implement it. Allocate that sorting index now. If it turns out 4016 ** that we do not need it after all, the OpenEphemeral instruction 4017 ** will be converted into a Noop. 4018 */ 4019 sAggInfo.sortingIdx = pParse->nTab++; 4020 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 4021 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4022 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4023 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 4024 4025 /* Initialize memory locations used by GROUP BY aggregate processing 4026 */ 4027 iUseFlag = ++pParse->nMem; 4028 iAbortFlag = ++pParse->nMem; 4029 regOutputRow = ++pParse->nMem; 4030 addrOutputRow = sqlite3VdbeMakeLabel(v); 4031 regReset = ++pParse->nMem; 4032 addrReset = sqlite3VdbeMakeLabel(v); 4033 iAMem = pParse->nMem + 1; 4034 pParse->nMem += pGroupBy->nExpr; 4035 iBMem = pParse->nMem + 1; 4036 pParse->nMem += pGroupBy->nExpr; 4037 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4038 VdbeComment((v, "clear abort flag")); 4039 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4040 VdbeComment((v, "indicate accumulator empty")); 4041 4042 /* Begin a loop that will extract all source rows in GROUP BY order. 4043 ** This might involve two separate loops with an OP_Sort in between, or 4044 ** it might be a single loop that uses an index to extract information 4045 ** in the right order to begin with. 4046 */ 4047 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4048 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 4049 if( pWInfo==0 ) goto select_end; 4050 if( pGroupBy==0 ){ 4051 /* The optimizer is able to deliver rows in group by order so 4052 ** we do not have to sort. The OP_OpenEphemeral table will be 4053 ** cancelled later because we still need to use the pKeyInfo 4054 */ 4055 pGroupBy = p->pGroupBy; 4056 groupBySort = 0; 4057 }else{ 4058 /* Rows are coming out in undetermined order. We have to push 4059 ** each row into a sorting index, terminate the first loop, 4060 ** then loop over the sorting index in order to get the output 4061 ** in sorted order 4062 */ 4063 int regBase; 4064 int regRecord; 4065 int nCol; 4066 int nGroupBy; 4067 4068 explainTempTable(pParse, 4069 isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY"); 4070 4071 groupBySort = 1; 4072 nGroupBy = pGroupBy->nExpr; 4073 nCol = nGroupBy + 1; 4074 j = nGroupBy+1; 4075 for(i=0; i<sAggInfo.nColumn; i++){ 4076 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4077 nCol++; 4078 j++; 4079 } 4080 } 4081 regBase = sqlite3GetTempRange(pParse, nCol); 4082 sqlite3ExprCacheClear(pParse); 4083 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4084 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4085 j = nGroupBy+1; 4086 for(i=0; i<sAggInfo.nColumn; i++){ 4087 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4088 if( pCol->iSorterColumn>=j ){ 4089 int r1 = j + regBase; 4090 int r2; 4091 4092 r2 = sqlite3ExprCodeGetColumn(pParse, 4093 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 4094 if( r1!=r2 ){ 4095 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4096 } 4097 j++; 4098 } 4099 } 4100 regRecord = sqlite3GetTempReg(pParse); 4101 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4102 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 4103 sqlite3ReleaseTempReg(pParse, regRecord); 4104 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4105 sqlite3WhereEnd(pWInfo); 4106 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 4107 VdbeComment((v, "GROUP BY sort")); 4108 sAggInfo.useSortingIdx = 1; 4109 sqlite3ExprCacheClear(pParse); 4110 } 4111 4112 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4113 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4114 ** Then compare the current GROUP BY terms against the GROUP BY terms 4115 ** from the previous row currently stored in a0, a1, a2... 4116 */ 4117 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4118 sqlite3ExprCacheClear(pParse); 4119 for(j=0; j<pGroupBy->nExpr; j++){ 4120 if( groupBySort ){ 4121 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 4122 }else{ 4123 sAggInfo.directMode = 1; 4124 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4125 } 4126 } 4127 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4128 (char*)pKeyInfo, P4_KEYINFO); 4129 j1 = sqlite3VdbeCurrentAddr(v); 4130 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4131 4132 /* Generate code that runs whenever the GROUP BY changes. 4133 ** Changes in the GROUP BY are detected by the previous code 4134 ** block. If there were no changes, this block is skipped. 4135 ** 4136 ** This code copies current group by terms in b0,b1,b2,... 4137 ** over to a0,a1,a2. It then calls the output subroutine 4138 ** and resets the aggregate accumulator registers in preparation 4139 ** for the next GROUP BY batch. 4140 */ 4141 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4142 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4143 VdbeComment((v, "output one row")); 4144 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4145 VdbeComment((v, "check abort flag")); 4146 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4147 VdbeComment((v, "reset accumulator")); 4148 4149 /* Update the aggregate accumulators based on the content of 4150 ** the current row 4151 */ 4152 sqlite3VdbeJumpHere(v, j1); 4153 updateAccumulator(pParse, &sAggInfo); 4154 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4155 VdbeComment((v, "indicate data in accumulator")); 4156 4157 /* End of the loop 4158 */ 4159 if( groupBySort ){ 4160 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4161 }else{ 4162 sqlite3WhereEnd(pWInfo); 4163 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4164 } 4165 4166 /* Output the final row of result 4167 */ 4168 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4169 VdbeComment((v, "output final row")); 4170 4171 /* Jump over the subroutines 4172 */ 4173 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4174 4175 /* Generate a subroutine that outputs a single row of the result 4176 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4177 ** is less than or equal to zero, the subroutine is a no-op. If 4178 ** the processing calls for the query to abort, this subroutine 4179 ** increments the iAbortFlag memory location before returning in 4180 ** order to signal the caller to abort. 4181 */ 4182 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4184 VdbeComment((v, "set abort flag")); 4185 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4186 sqlite3VdbeResolveLabel(v, addrOutputRow); 4187 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4188 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4189 VdbeComment((v, "Groupby result generator entry point")); 4190 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4191 finalizeAggFunctions(pParse, &sAggInfo); 4192 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4193 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4194 distinct, pDest, 4195 addrOutputRow+1, addrSetAbort); 4196 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4197 VdbeComment((v, "end groupby result generator")); 4198 4199 /* Generate a subroutine that will reset the group-by accumulator 4200 */ 4201 sqlite3VdbeResolveLabel(v, addrReset); 4202 resetAccumulator(pParse, &sAggInfo); 4203 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4204 4205 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4206 else { 4207 ExprList *pDel = 0; 4208 #ifndef SQLITE_OMIT_BTREECOUNT 4209 Table *pTab; 4210 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4211 /* If isSimpleCount() returns a pointer to a Table structure, then 4212 ** the SQL statement is of the form: 4213 ** 4214 ** SELECT count(*) FROM <tbl> 4215 ** 4216 ** where the Table structure returned represents table <tbl>. 4217 ** 4218 ** This statement is so common that it is optimized specially. The 4219 ** OP_Count instruction is executed either on the intkey table that 4220 ** contains the data for table <tbl> or on one of its indexes. It 4221 ** is better to execute the op on an index, as indexes are almost 4222 ** always spread across less pages than their corresponding tables. 4223 */ 4224 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4225 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4226 Index *pIdx; /* Iterator variable */ 4227 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4228 Index *pBest = 0; /* Best index found so far */ 4229 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4230 4231 sqlite3CodeVerifySchema(pParse, iDb); 4232 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4233 4234 /* Search for the index that has the least amount of columns. If 4235 ** there is such an index, and it has less columns than the table 4236 ** does, then we can assume that it consumes less space on disk and 4237 ** will therefore be cheaper to scan to determine the query result. 4238 ** In this case set iRoot to the root page number of the index b-tree 4239 ** and pKeyInfo to the KeyInfo structure required to navigate the 4240 ** index. 4241 ** 4242 ** In practice the KeyInfo structure will not be used. It is only 4243 ** passed to keep OP_OpenRead happy. 4244 */ 4245 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4246 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4247 pBest = pIdx; 4248 } 4249 } 4250 if( pBest && pBest->nColumn<pTab->nCol ){ 4251 iRoot = pBest->tnum; 4252 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4253 } 4254 4255 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4256 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4257 if( pKeyInfo ){ 4258 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4259 } 4260 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4261 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4262 explainSimpleCount(pParse, pTab, pBest); 4263 }else 4264 #endif /* SQLITE_OMIT_BTREECOUNT */ 4265 { 4266 /* Check if the query is of one of the following forms: 4267 ** 4268 ** SELECT min(x) FROM ... 4269 ** SELECT max(x) FROM ... 4270 ** 4271 ** If it is, then ask the code in where.c to attempt to sort results 4272 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4273 ** If where.c is able to produce results sorted in this order, then 4274 ** add vdbe code to break out of the processing loop after the 4275 ** first iteration (since the first iteration of the loop is 4276 ** guaranteed to operate on the row with the minimum or maximum 4277 ** value of x, the only row required). 4278 ** 4279 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4280 ** modify behaviour as follows: 4281 ** 4282 ** + If the query is a "SELECT min(x)", then the loop coded by 4283 ** where.c should not iterate over any values with a NULL value 4284 ** for x. 4285 ** 4286 ** + The optimizer code in where.c (the thing that decides which 4287 ** index or indices to use) should place a different priority on 4288 ** satisfying the 'ORDER BY' clause than it does in other cases. 4289 ** Refer to code and comments in where.c for details. 4290 */ 4291 ExprList *pMinMax = 0; 4292 u8 flag = minMaxQuery(p); 4293 if( flag ){ 4294 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4295 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4296 pDel = pMinMax; 4297 if( pMinMax && !db->mallocFailed ){ 4298 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4299 pMinMax->a[0].pExpr->op = TK_COLUMN; 4300 } 4301 } 4302 4303 /* This case runs if the aggregate has no GROUP BY clause. The 4304 ** processing is much simpler since there is only a single row 4305 ** of output. 4306 */ 4307 resetAccumulator(pParse, &sAggInfo); 4308 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4309 if( pWInfo==0 ){ 4310 sqlite3ExprListDelete(db, pDel); 4311 goto select_end; 4312 } 4313 updateAccumulator(pParse, &sAggInfo); 4314 if( !pMinMax && flag ){ 4315 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4316 VdbeComment((v, "%s() by index", 4317 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4318 } 4319 sqlite3WhereEnd(pWInfo); 4320 finalizeAggFunctions(pParse, &sAggInfo); 4321 } 4322 4323 pOrderBy = 0; 4324 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4325 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4326 pDest, addrEnd, addrEnd); 4327 sqlite3ExprListDelete(db, pDel); 4328 } 4329 sqlite3VdbeResolveLabel(v, addrEnd); 4330 4331 } /* endif aggregate query */ 4332 4333 if( distinct>=0 ){ 4334 explainTempTable(pParse, "DISTINCT"); 4335 } 4336 4337 /* If there is an ORDER BY clause, then we need to sort the results 4338 ** and send them to the callback one by one. 4339 */ 4340 if( pOrderBy ){ 4341 explainTempTable(pParse, "ORDER BY"); 4342 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4343 } 4344 4345 /* Jump here to skip this query 4346 */ 4347 sqlite3VdbeResolveLabel(v, iEnd); 4348 4349 /* The SELECT was successfully coded. Set the return code to 0 4350 ** to indicate no errors. 4351 */ 4352 rc = 0; 4353 4354 /* Control jumps to here if an error is encountered above, or upon 4355 ** successful coding of the SELECT. 4356 */ 4357 select_end: 4358 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4359 4360 /* Identify column names if results of the SELECT are to be output. 4361 */ 4362 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4363 generateColumnNames(pParse, pTabList, pEList); 4364 } 4365 4366 sqlite3DbFree(db, sAggInfo.aCol); 4367 sqlite3DbFree(db, sAggInfo.aFunc); 4368 return rc; 4369 } 4370 4371 #if defined(SQLITE_DEBUG) 4372 /* 4373 ******************************************************************************* 4374 ** The following code is used for testing and debugging only. The code 4375 ** that follows does not appear in normal builds. 4376 ** 4377 ** These routines are used to print out the content of all or part of a 4378 ** parse structures such as Select or Expr. Such printouts are useful 4379 ** for helping to understand what is happening inside the code generator 4380 ** during the execution of complex SELECT statements. 4381 ** 4382 ** These routine are not called anywhere from within the normal 4383 ** code base. Then are intended to be called from within the debugger 4384 ** or from temporary "printf" statements inserted for debugging. 4385 */ 4386 void sqlite3PrintExpr(Expr *p){ 4387 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4388 sqlite3DebugPrintf("(%s", p->u.zToken); 4389 }else{ 4390 sqlite3DebugPrintf("(%d", p->op); 4391 } 4392 if( p->pLeft ){ 4393 sqlite3DebugPrintf(" "); 4394 sqlite3PrintExpr(p->pLeft); 4395 } 4396 if( p->pRight ){ 4397 sqlite3DebugPrintf(" "); 4398 sqlite3PrintExpr(p->pRight); 4399 } 4400 sqlite3DebugPrintf(")"); 4401 } 4402 void sqlite3PrintExprList(ExprList *pList){ 4403 int i; 4404 for(i=0; i<pList->nExpr; i++){ 4405 sqlite3PrintExpr(pList->a[i].pExpr); 4406 if( i<pList->nExpr-1 ){ 4407 sqlite3DebugPrintf(", "); 4408 } 4409 } 4410 } 4411 void sqlite3PrintSelect(Select *p, int indent){ 4412 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4413 sqlite3PrintExprList(p->pEList); 4414 sqlite3DebugPrintf("\n"); 4415 if( p->pSrc ){ 4416 char *zPrefix; 4417 int i; 4418 zPrefix = "FROM"; 4419 for(i=0; i<p->pSrc->nSrc; i++){ 4420 struct SrcList_item *pItem = &p->pSrc->a[i]; 4421 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4422 zPrefix = ""; 4423 if( pItem->pSelect ){ 4424 sqlite3DebugPrintf("(\n"); 4425 sqlite3PrintSelect(pItem->pSelect, indent+10); 4426 sqlite3DebugPrintf("%*s)", indent+8, ""); 4427 }else if( pItem->zName ){ 4428 sqlite3DebugPrintf("%s", pItem->zName); 4429 } 4430 if( pItem->pTab ){ 4431 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4432 } 4433 if( pItem->zAlias ){ 4434 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4435 } 4436 if( i<p->pSrc->nSrc-1 ){ 4437 sqlite3DebugPrintf(","); 4438 } 4439 sqlite3DebugPrintf("\n"); 4440 } 4441 } 4442 if( p->pWhere ){ 4443 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4444 sqlite3PrintExpr(p->pWhere); 4445 sqlite3DebugPrintf("\n"); 4446 } 4447 if( p->pGroupBy ){ 4448 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4449 sqlite3PrintExprList(p->pGroupBy); 4450 sqlite3DebugPrintf("\n"); 4451 } 4452 if( p->pHaving ){ 4453 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4454 sqlite3PrintExpr(p->pHaving); 4455 sqlite3DebugPrintf("\n"); 4456 } 4457 if( p->pOrderBy ){ 4458 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4459 sqlite3PrintExprList(p->pOrderBy); 4460 sqlite3DebugPrintf("\n"); 4461 } 4462 } 4463 /* End of the structure debug printing code 4464 *****************************************************************************/ 4465 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4466