Home | History | Annotate | Download | only in bench
      1 /*
      2  * numa.c
      3  *
      4  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
      5  */
      6 
      7 #include "../perf.h"
      8 #include "../builtin.h"
      9 #include "../util/util.h"
     10 #include "../util/parse-options.h"
     11 
     12 #include "bench.h"
     13 
     14 #include <errno.h>
     15 #include <sched.h>
     16 #include <stdio.h>
     17 #include <assert.h>
     18 #include <malloc.h>
     19 #include <signal.h>
     20 #include <stdlib.h>
     21 #include <string.h>
     22 #include <unistd.h>
     23 #include <pthread.h>
     24 #include <sys/mman.h>
     25 #include <sys/time.h>
     26 #include <sys/wait.h>
     27 #include <sys/prctl.h>
     28 #include <sys/types.h>
     29 
     30 #include <numa.h>
     31 #include <numaif.h>
     32 
     33 /*
     34  * Regular printout to the terminal, supressed if -q is specified:
     35  */
     36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
     37 
     38 /*
     39  * Debug printf:
     40  */
     41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
     42 
     43 struct thread_data {
     44 	int			curr_cpu;
     45 	cpu_set_t		bind_cpumask;
     46 	int			bind_node;
     47 	u8			*process_data;
     48 	int			process_nr;
     49 	int			thread_nr;
     50 	int			task_nr;
     51 	unsigned int		loops_done;
     52 	u64			val;
     53 	u64			runtime_ns;
     54 	pthread_mutex_t		*process_lock;
     55 };
     56 
     57 /* Parameters set by options: */
     58 
     59 struct params {
     60 	/* Startup synchronization: */
     61 	bool			serialize_startup;
     62 
     63 	/* Task hierarchy: */
     64 	int			nr_proc;
     65 	int			nr_threads;
     66 
     67 	/* Working set sizes: */
     68 	const char		*mb_global_str;
     69 	const char		*mb_proc_str;
     70 	const char		*mb_proc_locked_str;
     71 	const char		*mb_thread_str;
     72 
     73 	double			mb_global;
     74 	double			mb_proc;
     75 	double			mb_proc_locked;
     76 	double			mb_thread;
     77 
     78 	/* Access patterns to the working set: */
     79 	bool			data_reads;
     80 	bool			data_writes;
     81 	bool			data_backwards;
     82 	bool			data_zero_memset;
     83 	bool			data_rand_walk;
     84 	u32			nr_loops;
     85 	u32			nr_secs;
     86 	u32			sleep_usecs;
     87 
     88 	/* Working set initialization: */
     89 	bool			init_zero;
     90 	bool			init_random;
     91 	bool			init_cpu0;
     92 
     93 	/* Misc options: */
     94 	int			show_details;
     95 	int			run_all;
     96 	int			thp;
     97 
     98 	long			bytes_global;
     99 	long			bytes_process;
    100 	long			bytes_process_locked;
    101 	long			bytes_thread;
    102 
    103 	int			nr_tasks;
    104 	bool			show_quiet;
    105 
    106 	bool			show_convergence;
    107 	bool			measure_convergence;
    108 
    109 	int			perturb_secs;
    110 	int			nr_cpus;
    111 	int			nr_nodes;
    112 
    113 	/* Affinity options -C and -N: */
    114 	char			*cpu_list_str;
    115 	char			*node_list_str;
    116 };
    117 
    118 
    119 /* Global, read-writable area, accessible to all processes and threads: */
    120 
    121 struct global_info {
    122 	u8			*data;
    123 
    124 	pthread_mutex_t		startup_mutex;
    125 	int			nr_tasks_started;
    126 
    127 	pthread_mutex_t		startup_done_mutex;
    128 
    129 	pthread_mutex_t		start_work_mutex;
    130 	int			nr_tasks_working;
    131 
    132 	pthread_mutex_t		stop_work_mutex;
    133 	u64			bytes_done;
    134 
    135 	struct thread_data	*threads;
    136 
    137 	/* Convergence latency measurement: */
    138 	bool			all_converged;
    139 	bool			stop_work;
    140 
    141 	int			print_once;
    142 
    143 	struct params		p;
    144 };
    145 
    146 static struct global_info	*g = NULL;
    147 
    148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
    149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
    150 
    151 struct params p0;
    152 
    153 static const struct option options[] = {
    154 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
    155 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
    156 
    157 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
    158 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
    159 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
    160 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
    161 
    162 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"),
    163 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"),
    164 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
    165 
    166 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
    167 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
    168 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
    169 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
    170 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
    171 
    172 
    173 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
    174 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
    175 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
    176 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
    177 
    178 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
    179 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
    180 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
    181 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
    182 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
    183 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"),
    184 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
    185 
    186 	/* Special option string parsing callbacks: */
    187         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
    188 			"bind the first N tasks to these specific cpus (the rest is unbound)",
    189 			parse_cpus_opt),
    190         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
    191 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
    192 			parse_nodes_opt),
    193 	OPT_END()
    194 };
    195 
    196 static const char * const bench_numa_usage[] = {
    197 	"perf bench numa <options>",
    198 	NULL
    199 };
    200 
    201 static const char * const numa_usage[] = {
    202 	"perf bench numa mem [<options>]",
    203 	NULL
    204 };
    205 
    206 static cpu_set_t bind_to_cpu(int target_cpu)
    207 {
    208 	cpu_set_t orig_mask, mask;
    209 	int ret;
    210 
    211 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
    212 	BUG_ON(ret);
    213 
    214 	CPU_ZERO(&mask);
    215 
    216 	if (target_cpu == -1) {
    217 		int cpu;
    218 
    219 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
    220 			CPU_SET(cpu, &mask);
    221 	} else {
    222 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
    223 		CPU_SET(target_cpu, &mask);
    224 	}
    225 
    226 	ret = sched_setaffinity(0, sizeof(mask), &mask);
    227 	BUG_ON(ret);
    228 
    229 	return orig_mask;
    230 }
    231 
    232 static cpu_set_t bind_to_node(int target_node)
    233 {
    234 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
    235 	cpu_set_t orig_mask, mask;
    236 	int cpu;
    237 	int ret;
    238 
    239 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
    240 	BUG_ON(!cpus_per_node);
    241 
    242 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
    243 	BUG_ON(ret);
    244 
    245 	CPU_ZERO(&mask);
    246 
    247 	if (target_node == -1) {
    248 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
    249 			CPU_SET(cpu, &mask);
    250 	} else {
    251 		int cpu_start = (target_node + 0) * cpus_per_node;
    252 		int cpu_stop  = (target_node + 1) * cpus_per_node;
    253 
    254 		BUG_ON(cpu_stop > g->p.nr_cpus);
    255 
    256 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
    257 			CPU_SET(cpu, &mask);
    258 	}
    259 
    260 	ret = sched_setaffinity(0, sizeof(mask), &mask);
    261 	BUG_ON(ret);
    262 
    263 	return orig_mask;
    264 }
    265 
    266 static void bind_to_cpumask(cpu_set_t mask)
    267 {
    268 	int ret;
    269 
    270 	ret = sched_setaffinity(0, sizeof(mask), &mask);
    271 	BUG_ON(ret);
    272 }
    273 
    274 static void mempol_restore(void)
    275 {
    276 	int ret;
    277 
    278 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
    279 
    280 	BUG_ON(ret);
    281 }
    282 
    283 static void bind_to_memnode(int node)
    284 {
    285 	unsigned long nodemask;
    286 	int ret;
    287 
    288 	if (node == -1)
    289 		return;
    290 
    291 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask));
    292 	nodemask = 1L << node;
    293 
    294 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
    295 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
    296 
    297 	BUG_ON(ret);
    298 }
    299 
    300 #define HPSIZE (2*1024*1024)
    301 
    302 #define set_taskname(fmt...)				\
    303 do {							\
    304 	char name[20];					\
    305 							\
    306 	snprintf(name, 20, fmt);			\
    307 	prctl(PR_SET_NAME, name);			\
    308 } while (0)
    309 
    310 static u8 *alloc_data(ssize_t bytes0, int map_flags,
    311 		      int init_zero, int init_cpu0, int thp, int init_random)
    312 {
    313 	cpu_set_t orig_mask;
    314 	ssize_t bytes;
    315 	u8 *buf;
    316 	int ret;
    317 
    318 	if (!bytes0)
    319 		return NULL;
    320 
    321 	/* Allocate and initialize all memory on CPU#0: */
    322 	if (init_cpu0) {
    323 		orig_mask = bind_to_node(0);
    324 		bind_to_memnode(0);
    325 	}
    326 
    327 	bytes = bytes0 + HPSIZE;
    328 
    329 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
    330 	BUG_ON(buf == (void *)-1);
    331 
    332 	if (map_flags == MAP_PRIVATE) {
    333 		if (thp > 0) {
    334 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
    335 			if (ret && !g->print_once) {
    336 				g->print_once = 1;
    337 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
    338 			}
    339 		}
    340 		if (thp < 0) {
    341 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
    342 			if (ret && !g->print_once) {
    343 				g->print_once = 1;
    344 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
    345 			}
    346 		}
    347 	}
    348 
    349 	if (init_zero) {
    350 		bzero(buf, bytes);
    351 	} else {
    352 		/* Initialize random contents, different in each word: */
    353 		if (init_random) {
    354 			u64 *wbuf = (void *)buf;
    355 			long off = rand();
    356 			long i;
    357 
    358 			for (i = 0; i < bytes/8; i++)
    359 				wbuf[i] = i + off;
    360 		}
    361 	}
    362 
    363 	/* Align to 2MB boundary: */
    364 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
    365 
    366 	/* Restore affinity: */
    367 	if (init_cpu0) {
    368 		bind_to_cpumask(orig_mask);
    369 		mempol_restore();
    370 	}
    371 
    372 	return buf;
    373 }
    374 
    375 static void free_data(void *data, ssize_t bytes)
    376 {
    377 	int ret;
    378 
    379 	if (!data)
    380 		return;
    381 
    382 	ret = munmap(data, bytes);
    383 	BUG_ON(ret);
    384 }
    385 
    386 /*
    387  * Create a shared memory buffer that can be shared between processes, zeroed:
    388  */
    389 static void * zalloc_shared_data(ssize_t bytes)
    390 {
    391 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
    392 }
    393 
    394 /*
    395  * Create a shared memory buffer that can be shared between processes:
    396  */
    397 static void * setup_shared_data(ssize_t bytes)
    398 {
    399 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
    400 }
    401 
    402 /*
    403  * Allocate process-local memory - this will either be shared between
    404  * threads of this process, or only be accessed by this thread:
    405  */
    406 static void * setup_private_data(ssize_t bytes)
    407 {
    408 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
    409 }
    410 
    411 /*
    412  * Return a process-shared (global) mutex:
    413  */
    414 static void init_global_mutex(pthread_mutex_t *mutex)
    415 {
    416 	pthread_mutexattr_t attr;
    417 
    418 	pthread_mutexattr_init(&attr);
    419 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
    420 	pthread_mutex_init(mutex, &attr);
    421 }
    422 
    423 static int parse_cpu_list(const char *arg)
    424 {
    425 	p0.cpu_list_str = strdup(arg);
    426 
    427 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
    428 
    429 	return 0;
    430 }
    431 
    432 static void parse_setup_cpu_list(void)
    433 {
    434 	struct thread_data *td;
    435 	char *str0, *str;
    436 	int t;
    437 
    438 	if (!g->p.cpu_list_str)
    439 		return;
    440 
    441 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
    442 
    443 	str0 = str = strdup(g->p.cpu_list_str);
    444 	t = 0;
    445 
    446 	BUG_ON(!str);
    447 
    448 	tprintf("# binding tasks to CPUs:\n");
    449 	tprintf("#  ");
    450 
    451 	while (true) {
    452 		int bind_cpu, bind_cpu_0, bind_cpu_1;
    453 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
    454 		int bind_len;
    455 		int step;
    456 		int mul;
    457 
    458 		tok = strsep(&str, ",");
    459 		if (!tok)
    460 			break;
    461 
    462 		tok_end = strstr(tok, "-");
    463 
    464 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
    465 		if (!tok_end) {
    466 			/* Single CPU specified: */
    467 			bind_cpu_0 = bind_cpu_1 = atol(tok);
    468 		} else {
    469 			/* CPU range specified (for example: "5-11"): */
    470 			bind_cpu_0 = atol(tok);
    471 			bind_cpu_1 = atol(tok_end + 1);
    472 		}
    473 
    474 		step = 1;
    475 		tok_step = strstr(tok, "#");
    476 		if (tok_step) {
    477 			step = atol(tok_step + 1);
    478 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
    479 		}
    480 
    481 		/*
    482 		 * Mask length.
    483 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
    484 		 * where the _4 means the next 4 CPUs are allowed.
    485 		 */
    486 		bind_len = 1;
    487 		tok_len = strstr(tok, "_");
    488 		if (tok_len) {
    489 			bind_len = atol(tok_len + 1);
    490 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
    491 		}
    492 
    493 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
    494 		mul = 1;
    495 		tok_mul = strstr(tok, "x");
    496 		if (tok_mul) {
    497 			mul = atol(tok_mul + 1);
    498 			BUG_ON(mul <= 0);
    499 		}
    500 
    501 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
    502 
    503 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus);
    504 		BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus);
    505 		BUG_ON(bind_cpu_0 > bind_cpu_1);
    506 
    507 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
    508 			int i;
    509 
    510 			for (i = 0; i < mul; i++) {
    511 				int cpu;
    512 
    513 				if (t >= g->p.nr_tasks) {
    514 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
    515 					goto out;
    516 				}
    517 				td = g->threads + t;
    518 
    519 				if (t)
    520 					tprintf(",");
    521 				if (bind_len > 1) {
    522 					tprintf("%2d/%d", bind_cpu, bind_len);
    523 				} else {
    524 					tprintf("%2d", bind_cpu);
    525 				}
    526 
    527 				CPU_ZERO(&td->bind_cpumask);
    528 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
    529 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
    530 					CPU_SET(cpu, &td->bind_cpumask);
    531 				}
    532 				t++;
    533 			}
    534 		}
    535 	}
    536 out:
    537 
    538 	tprintf("\n");
    539 
    540 	if (t < g->p.nr_tasks)
    541 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
    542 
    543 	free(str0);
    544 }
    545 
    546 static int parse_cpus_opt(const struct option *opt __maybe_unused,
    547 			  const char *arg, int unset __maybe_unused)
    548 {
    549 	if (!arg)
    550 		return -1;
    551 
    552 	return parse_cpu_list(arg);
    553 }
    554 
    555 static int parse_node_list(const char *arg)
    556 {
    557 	p0.node_list_str = strdup(arg);
    558 
    559 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
    560 
    561 	return 0;
    562 }
    563 
    564 static void parse_setup_node_list(void)
    565 {
    566 	struct thread_data *td;
    567 	char *str0, *str;
    568 	int t;
    569 
    570 	if (!g->p.node_list_str)
    571 		return;
    572 
    573 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
    574 
    575 	str0 = str = strdup(g->p.node_list_str);
    576 	t = 0;
    577 
    578 	BUG_ON(!str);
    579 
    580 	tprintf("# binding tasks to NODEs:\n");
    581 	tprintf("# ");
    582 
    583 	while (true) {
    584 		int bind_node, bind_node_0, bind_node_1;
    585 		char *tok, *tok_end, *tok_step, *tok_mul;
    586 		int step;
    587 		int mul;
    588 
    589 		tok = strsep(&str, ",");
    590 		if (!tok)
    591 			break;
    592 
    593 		tok_end = strstr(tok, "-");
    594 
    595 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
    596 		if (!tok_end) {
    597 			/* Single NODE specified: */
    598 			bind_node_0 = bind_node_1 = atol(tok);
    599 		} else {
    600 			/* NODE range specified (for example: "5-11"): */
    601 			bind_node_0 = atol(tok);
    602 			bind_node_1 = atol(tok_end + 1);
    603 		}
    604 
    605 		step = 1;
    606 		tok_step = strstr(tok, "#");
    607 		if (tok_step) {
    608 			step = atol(tok_step + 1);
    609 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
    610 		}
    611 
    612 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
    613 		mul = 1;
    614 		tok_mul = strstr(tok, "x");
    615 		if (tok_mul) {
    616 			mul = atol(tok_mul + 1);
    617 			BUG_ON(mul <= 0);
    618 		}
    619 
    620 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
    621 
    622 		BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes);
    623 		BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes);
    624 		BUG_ON(bind_node_0 > bind_node_1);
    625 
    626 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
    627 			int i;
    628 
    629 			for (i = 0; i < mul; i++) {
    630 				if (t >= g->p.nr_tasks) {
    631 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
    632 					goto out;
    633 				}
    634 				td = g->threads + t;
    635 
    636 				if (!t)
    637 					tprintf(" %2d", bind_node);
    638 				else
    639 					tprintf(",%2d", bind_node);
    640 
    641 				td->bind_node = bind_node;
    642 				t++;
    643 			}
    644 		}
    645 	}
    646 out:
    647 
    648 	tprintf("\n");
    649 
    650 	if (t < g->p.nr_tasks)
    651 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
    652 
    653 	free(str0);
    654 }
    655 
    656 static int parse_nodes_opt(const struct option *opt __maybe_unused,
    657 			  const char *arg, int unset __maybe_unused)
    658 {
    659 	if (!arg)
    660 		return -1;
    661 
    662 	return parse_node_list(arg);
    663 
    664 	return 0;
    665 }
    666 
    667 #define BIT(x) (1ul << x)
    668 
    669 static inline uint32_t lfsr_32(uint32_t lfsr)
    670 {
    671 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
    672 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
    673 }
    674 
    675 /*
    676  * Make sure there's real data dependency to RAM (when read
    677  * accesses are enabled), so the compiler, the CPU and the
    678  * kernel (KSM, zero page, etc.) cannot optimize away RAM
    679  * accesses:
    680  */
    681 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
    682 {
    683 	if (g->p.data_reads)
    684 		val += *data;
    685 	if (g->p.data_writes)
    686 		*data = val + 1;
    687 	return val;
    688 }
    689 
    690 /*
    691  * The worker process does two types of work, a forwards going
    692  * loop and a backwards going loop.
    693  *
    694  * We do this so that on multiprocessor systems we do not create
    695  * a 'train' of processing, with highly synchronized processes,
    696  * skewing the whole benchmark.
    697  */
    698 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
    699 {
    700 	long words = bytes/sizeof(u64);
    701 	u64 *data = (void *)__data;
    702 	long chunk_0, chunk_1;
    703 	u64 *d0, *d, *d1;
    704 	long off;
    705 	long i;
    706 
    707 	BUG_ON(!data && words);
    708 	BUG_ON(data && !words);
    709 
    710 	if (!data)
    711 		return val;
    712 
    713 	/* Very simple memset() work variant: */
    714 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
    715 		bzero(data, bytes);
    716 		return val;
    717 	}
    718 
    719 	/* Spread out by PID/TID nr and by loop nr: */
    720 	chunk_0 = words/nr_max;
    721 	chunk_1 = words/g->p.nr_loops;
    722 	off = nr*chunk_0 + loop*chunk_1;
    723 
    724 	while (off >= words)
    725 		off -= words;
    726 
    727 	if (g->p.data_rand_walk) {
    728 		u32 lfsr = nr + loop + val;
    729 		int j;
    730 
    731 		for (i = 0; i < words/1024; i++) {
    732 			long start, end;
    733 
    734 			lfsr = lfsr_32(lfsr);
    735 
    736 			start = lfsr % words;
    737 			end = min(start + 1024, words-1);
    738 
    739 			if (g->p.data_zero_memset) {
    740 				bzero(data + start, (end-start) * sizeof(u64));
    741 			} else {
    742 				for (j = start; j < end; j++)
    743 					val = access_data(data + j, val);
    744 			}
    745 		}
    746 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
    747 
    748 		d0 = data + off;
    749 		d  = data + off + 1;
    750 		d1 = data + words;
    751 
    752 		/* Process data forwards: */
    753 		for (;;) {
    754 			if (unlikely(d >= d1))
    755 				d = data;
    756 			if (unlikely(d == d0))
    757 				break;
    758 
    759 			val = access_data(d, val);
    760 
    761 			d++;
    762 		}
    763 	} else {
    764 		/* Process data backwards: */
    765 
    766 		d0 = data + off;
    767 		d  = data + off - 1;
    768 		d1 = data + words;
    769 
    770 		/* Process data forwards: */
    771 		for (;;) {
    772 			if (unlikely(d < data))
    773 				d = data + words-1;
    774 			if (unlikely(d == d0))
    775 				break;
    776 
    777 			val = access_data(d, val);
    778 
    779 			d--;
    780 		}
    781 	}
    782 
    783 	return val;
    784 }
    785 
    786 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
    787 {
    788 	unsigned int cpu;
    789 
    790 	cpu = sched_getcpu();
    791 
    792 	g->threads[task_nr].curr_cpu = cpu;
    793 	prctl(0, bytes_worked);
    794 }
    795 
    796 #define MAX_NR_NODES	64
    797 
    798 /*
    799  * Count the number of nodes a process's threads
    800  * are spread out on.
    801  *
    802  * A count of 1 means that the process is compressed
    803  * to a single node. A count of g->p.nr_nodes means it's
    804  * spread out on the whole system.
    805  */
    806 static int count_process_nodes(int process_nr)
    807 {
    808 	char node_present[MAX_NR_NODES] = { 0, };
    809 	int nodes;
    810 	int n, t;
    811 
    812 	for (t = 0; t < g->p.nr_threads; t++) {
    813 		struct thread_data *td;
    814 		int task_nr;
    815 		int node;
    816 
    817 		task_nr = process_nr*g->p.nr_threads + t;
    818 		td = g->threads + task_nr;
    819 
    820 		node = numa_node_of_cpu(td->curr_cpu);
    821 		node_present[node] = 1;
    822 	}
    823 
    824 	nodes = 0;
    825 
    826 	for (n = 0; n < MAX_NR_NODES; n++)
    827 		nodes += node_present[n];
    828 
    829 	return nodes;
    830 }
    831 
    832 /*
    833  * Count the number of distinct process-threads a node contains.
    834  *
    835  * A count of 1 means that the node contains only a single
    836  * process. If all nodes on the system contain at most one
    837  * process then we are well-converged.
    838  */
    839 static int count_node_processes(int node)
    840 {
    841 	int processes = 0;
    842 	int t, p;
    843 
    844 	for (p = 0; p < g->p.nr_proc; p++) {
    845 		for (t = 0; t < g->p.nr_threads; t++) {
    846 			struct thread_data *td;
    847 			int task_nr;
    848 			int n;
    849 
    850 			task_nr = p*g->p.nr_threads + t;
    851 			td = g->threads + task_nr;
    852 
    853 			n = numa_node_of_cpu(td->curr_cpu);
    854 			if (n == node) {
    855 				processes++;
    856 				break;
    857 			}
    858 		}
    859 	}
    860 
    861 	return processes;
    862 }
    863 
    864 static void calc_convergence_compression(int *strong)
    865 {
    866 	unsigned int nodes_min, nodes_max;
    867 	int p;
    868 
    869 	nodes_min = -1;
    870 	nodes_max =  0;
    871 
    872 	for (p = 0; p < g->p.nr_proc; p++) {
    873 		unsigned int nodes = count_process_nodes(p);
    874 
    875 		nodes_min = min(nodes, nodes_min);
    876 		nodes_max = max(nodes, nodes_max);
    877 	}
    878 
    879 	/* Strong convergence: all threads compress on a single node: */
    880 	if (nodes_min == 1 && nodes_max == 1) {
    881 		*strong = 1;
    882 	} else {
    883 		*strong = 0;
    884 		tprintf(" {%d-%d}", nodes_min, nodes_max);
    885 	}
    886 }
    887 
    888 static void calc_convergence(double runtime_ns_max, double *convergence)
    889 {
    890 	unsigned int loops_done_min, loops_done_max;
    891 	int process_groups;
    892 	int nodes[MAX_NR_NODES];
    893 	int distance;
    894 	int nr_min;
    895 	int nr_max;
    896 	int strong;
    897 	int sum;
    898 	int nr;
    899 	int node;
    900 	int cpu;
    901 	int t;
    902 
    903 	if (!g->p.show_convergence && !g->p.measure_convergence)
    904 		return;
    905 
    906 	for (node = 0; node < g->p.nr_nodes; node++)
    907 		nodes[node] = 0;
    908 
    909 	loops_done_min = -1;
    910 	loops_done_max = 0;
    911 
    912 	for (t = 0; t < g->p.nr_tasks; t++) {
    913 		struct thread_data *td = g->threads + t;
    914 		unsigned int loops_done;
    915 
    916 		cpu = td->curr_cpu;
    917 
    918 		/* Not all threads have written it yet: */
    919 		if (cpu < 0)
    920 			continue;
    921 
    922 		node = numa_node_of_cpu(cpu);
    923 
    924 		nodes[node]++;
    925 
    926 		loops_done = td->loops_done;
    927 		loops_done_min = min(loops_done, loops_done_min);
    928 		loops_done_max = max(loops_done, loops_done_max);
    929 	}
    930 
    931 	nr_max = 0;
    932 	nr_min = g->p.nr_tasks;
    933 	sum = 0;
    934 
    935 	for (node = 0; node < g->p.nr_nodes; node++) {
    936 		nr = nodes[node];
    937 		nr_min = min(nr, nr_min);
    938 		nr_max = max(nr, nr_max);
    939 		sum += nr;
    940 	}
    941 	BUG_ON(nr_min > nr_max);
    942 
    943 	BUG_ON(sum > g->p.nr_tasks);
    944 
    945 	if (0 && (sum < g->p.nr_tasks))
    946 		return;
    947 
    948 	/*
    949 	 * Count the number of distinct process groups present
    950 	 * on nodes - when we are converged this will decrease
    951 	 * to g->p.nr_proc:
    952 	 */
    953 	process_groups = 0;
    954 
    955 	for (node = 0; node < g->p.nr_nodes; node++) {
    956 		int processes = count_node_processes(node);
    957 
    958 		nr = nodes[node];
    959 		tprintf(" %2d/%-2d", nr, processes);
    960 
    961 		process_groups += processes;
    962 	}
    963 
    964 	distance = nr_max - nr_min;
    965 
    966 	tprintf(" [%2d/%-2d]", distance, process_groups);
    967 
    968 	tprintf(" l:%3d-%-3d (%3d)",
    969 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
    970 
    971 	if (loops_done_min && loops_done_max) {
    972 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
    973 
    974 		tprintf(" [%4.1f%%]", skew * 100.0);
    975 	}
    976 
    977 	calc_convergence_compression(&strong);
    978 
    979 	if (strong && process_groups == g->p.nr_proc) {
    980 		if (!*convergence) {
    981 			*convergence = runtime_ns_max;
    982 			tprintf(" (%6.1fs converged)\n", *convergence/1e9);
    983 			if (g->p.measure_convergence) {
    984 				g->all_converged = true;
    985 				g->stop_work = true;
    986 			}
    987 		}
    988 	} else {
    989 		if (*convergence) {
    990 			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
    991 			*convergence = 0;
    992 		}
    993 		tprintf("\n");
    994 	}
    995 }
    996 
    997 static void show_summary(double runtime_ns_max, int l, double *convergence)
    998 {
    999 	tprintf("\r #  %5.1f%%  [%.1f mins]",
   1000 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
   1001 
   1002 	calc_convergence(runtime_ns_max, convergence);
   1003 
   1004 	if (g->p.show_details >= 0)
   1005 		fflush(stdout);
   1006 }
   1007 
   1008 static void *worker_thread(void *__tdata)
   1009 {
   1010 	struct thread_data *td = __tdata;
   1011 	struct timeval start0, start, stop, diff;
   1012 	int process_nr = td->process_nr;
   1013 	int thread_nr = td->thread_nr;
   1014 	unsigned long last_perturbance;
   1015 	int task_nr = td->task_nr;
   1016 	int details = g->p.show_details;
   1017 	int first_task, last_task;
   1018 	double convergence = 0;
   1019 	u64 val = td->val;
   1020 	double runtime_ns_max;
   1021 	u8 *global_data;
   1022 	u8 *process_data;
   1023 	u8 *thread_data;
   1024 	u64 bytes_done;
   1025 	long work_done;
   1026 	u32 l;
   1027 
   1028 	bind_to_cpumask(td->bind_cpumask);
   1029 	bind_to_memnode(td->bind_node);
   1030 
   1031 	set_taskname("thread %d/%d", process_nr, thread_nr);
   1032 
   1033 	global_data = g->data;
   1034 	process_data = td->process_data;
   1035 	thread_data = setup_private_data(g->p.bytes_thread);
   1036 
   1037 	bytes_done = 0;
   1038 
   1039 	last_task = 0;
   1040 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
   1041 		last_task = 1;
   1042 
   1043 	first_task = 0;
   1044 	if (process_nr == 0 && thread_nr == 0)
   1045 		first_task = 1;
   1046 
   1047 	if (details >= 2) {
   1048 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
   1049 			process_nr, thread_nr, global_data, process_data, thread_data);
   1050 	}
   1051 
   1052 	if (g->p.serialize_startup) {
   1053 		pthread_mutex_lock(&g->startup_mutex);
   1054 		g->nr_tasks_started++;
   1055 		pthread_mutex_unlock(&g->startup_mutex);
   1056 
   1057 		/* Here we will wait for the main process to start us all at once: */
   1058 		pthread_mutex_lock(&g->start_work_mutex);
   1059 		g->nr_tasks_working++;
   1060 
   1061 		/* Last one wake the main process: */
   1062 		if (g->nr_tasks_working == g->p.nr_tasks)
   1063 			pthread_mutex_unlock(&g->startup_done_mutex);
   1064 
   1065 		pthread_mutex_unlock(&g->start_work_mutex);
   1066 	}
   1067 
   1068 	gettimeofday(&start0, NULL);
   1069 
   1070 	start = stop = start0;
   1071 	last_perturbance = start.tv_sec;
   1072 
   1073 	for (l = 0; l < g->p.nr_loops; l++) {
   1074 		start = stop;
   1075 
   1076 		if (g->stop_work)
   1077 			break;
   1078 
   1079 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
   1080 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
   1081 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
   1082 
   1083 		if (g->p.sleep_usecs) {
   1084 			pthread_mutex_lock(td->process_lock);
   1085 			usleep(g->p.sleep_usecs);
   1086 			pthread_mutex_unlock(td->process_lock);
   1087 		}
   1088 		/*
   1089 		 * Amount of work to be done under a process-global lock:
   1090 		 */
   1091 		if (g->p.bytes_process_locked) {
   1092 			pthread_mutex_lock(td->process_lock);
   1093 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
   1094 			pthread_mutex_unlock(td->process_lock);
   1095 		}
   1096 
   1097 		work_done = g->p.bytes_global + g->p.bytes_process +
   1098 			    g->p.bytes_process_locked + g->p.bytes_thread;
   1099 
   1100 		update_curr_cpu(task_nr, work_done);
   1101 		bytes_done += work_done;
   1102 
   1103 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
   1104 			continue;
   1105 
   1106 		td->loops_done = l;
   1107 
   1108 		gettimeofday(&stop, NULL);
   1109 
   1110 		/* Check whether our max runtime timed out: */
   1111 		if (g->p.nr_secs) {
   1112 			timersub(&stop, &start0, &diff);
   1113 			if (diff.tv_sec >= g->p.nr_secs) {
   1114 				g->stop_work = true;
   1115 				break;
   1116 			}
   1117 		}
   1118 
   1119 		/* Update the summary at most once per second: */
   1120 		if (start.tv_sec == stop.tv_sec)
   1121 			continue;
   1122 
   1123 		/*
   1124 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
   1125 		 * by migrating to CPU#0:
   1126 		 */
   1127 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
   1128 			cpu_set_t orig_mask;
   1129 			int target_cpu;
   1130 			int this_cpu;
   1131 
   1132 			last_perturbance = stop.tv_sec;
   1133 
   1134 			/*
   1135 			 * Depending on where we are running, move into
   1136 			 * the other half of the system, to create some
   1137 			 * real disturbance:
   1138 			 */
   1139 			this_cpu = g->threads[task_nr].curr_cpu;
   1140 			if (this_cpu < g->p.nr_cpus/2)
   1141 				target_cpu = g->p.nr_cpus-1;
   1142 			else
   1143 				target_cpu = 0;
   1144 
   1145 			orig_mask = bind_to_cpu(target_cpu);
   1146 
   1147 			/* Here we are running on the target CPU already */
   1148 			if (details >= 1)
   1149 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
   1150 
   1151 			bind_to_cpumask(orig_mask);
   1152 		}
   1153 
   1154 		if (details >= 3) {
   1155 			timersub(&stop, &start, &diff);
   1156 			runtime_ns_max = diff.tv_sec * 1000000000;
   1157 			runtime_ns_max += diff.tv_usec * 1000;
   1158 
   1159 			if (details >= 0) {
   1160 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n",
   1161 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
   1162 			}
   1163 			fflush(stdout);
   1164 		}
   1165 		if (!last_task)
   1166 			continue;
   1167 
   1168 		timersub(&stop, &start0, &diff);
   1169 		runtime_ns_max = diff.tv_sec * 1000000000ULL;
   1170 		runtime_ns_max += diff.tv_usec * 1000ULL;
   1171 
   1172 		show_summary(runtime_ns_max, l, &convergence);
   1173 	}
   1174 
   1175 	gettimeofday(&stop, NULL);
   1176 	timersub(&stop, &start0, &diff);
   1177 	td->runtime_ns = diff.tv_sec * 1000000000ULL;
   1178 	td->runtime_ns += diff.tv_usec * 1000ULL;
   1179 
   1180 	free_data(thread_data, g->p.bytes_thread);
   1181 
   1182 	pthread_mutex_lock(&g->stop_work_mutex);
   1183 	g->bytes_done += bytes_done;
   1184 	pthread_mutex_unlock(&g->stop_work_mutex);
   1185 
   1186 	return NULL;
   1187 }
   1188 
   1189 /*
   1190  * A worker process starts a couple of threads:
   1191  */
   1192 static void worker_process(int process_nr)
   1193 {
   1194 	pthread_mutex_t process_lock;
   1195 	struct thread_data *td;
   1196 	pthread_t *pthreads;
   1197 	u8 *process_data;
   1198 	int task_nr;
   1199 	int ret;
   1200 	int t;
   1201 
   1202 	pthread_mutex_init(&process_lock, NULL);
   1203 	set_taskname("process %d", process_nr);
   1204 
   1205 	/*
   1206 	 * Pick up the memory policy and the CPU binding of our first thread,
   1207 	 * so that we initialize memory accordingly:
   1208 	 */
   1209 	task_nr = process_nr*g->p.nr_threads;
   1210 	td = g->threads + task_nr;
   1211 
   1212 	bind_to_memnode(td->bind_node);
   1213 	bind_to_cpumask(td->bind_cpumask);
   1214 
   1215 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
   1216 	process_data = setup_private_data(g->p.bytes_process);
   1217 
   1218 	if (g->p.show_details >= 3) {
   1219 		printf(" # process %2d global mem: %p, process mem: %p\n",
   1220 			process_nr, g->data, process_data);
   1221 	}
   1222 
   1223 	for (t = 0; t < g->p.nr_threads; t++) {
   1224 		task_nr = process_nr*g->p.nr_threads + t;
   1225 		td = g->threads + task_nr;
   1226 
   1227 		td->process_data = process_data;
   1228 		td->process_nr   = process_nr;
   1229 		td->thread_nr    = t;
   1230 		td->task_nr	 = task_nr;
   1231 		td->val          = rand();
   1232 		td->curr_cpu	 = -1;
   1233 		td->process_lock = &process_lock;
   1234 
   1235 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
   1236 		BUG_ON(ret);
   1237 	}
   1238 
   1239 	for (t = 0; t < g->p.nr_threads; t++) {
   1240                 ret = pthread_join(pthreads[t], NULL);
   1241 		BUG_ON(ret);
   1242 	}
   1243 
   1244 	free_data(process_data, g->p.bytes_process);
   1245 	free(pthreads);
   1246 }
   1247 
   1248 static void print_summary(void)
   1249 {
   1250 	if (g->p.show_details < 0)
   1251 		return;
   1252 
   1253 	printf("\n ###\n");
   1254 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
   1255 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
   1256 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
   1257 			g->p.nr_loops, g->p.bytes_global/1024/1024);
   1258 	printf(" #      %5dx %5ldMB process shared mem operations\n",
   1259 			g->p.nr_loops, g->p.bytes_process/1024/1024);
   1260 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
   1261 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
   1262 
   1263 	printf(" ###\n");
   1264 
   1265 	printf("\n ###\n"); fflush(stdout);
   1266 }
   1267 
   1268 static void init_thread_data(void)
   1269 {
   1270 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
   1271 	int t;
   1272 
   1273 	g->threads = zalloc_shared_data(size);
   1274 
   1275 	for (t = 0; t < g->p.nr_tasks; t++) {
   1276 		struct thread_data *td = g->threads + t;
   1277 		int cpu;
   1278 
   1279 		/* Allow all nodes by default: */
   1280 		td->bind_node = -1;
   1281 
   1282 		/* Allow all CPUs by default: */
   1283 		CPU_ZERO(&td->bind_cpumask);
   1284 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
   1285 			CPU_SET(cpu, &td->bind_cpumask);
   1286 	}
   1287 }
   1288 
   1289 static void deinit_thread_data(void)
   1290 {
   1291 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
   1292 
   1293 	free_data(g->threads, size);
   1294 }
   1295 
   1296 static int init(void)
   1297 {
   1298 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
   1299 
   1300 	/* Copy over options: */
   1301 	g->p = p0;
   1302 
   1303 	g->p.nr_cpus = numa_num_configured_cpus();
   1304 
   1305 	g->p.nr_nodes = numa_max_node() + 1;
   1306 
   1307 	/* char array in count_process_nodes(): */
   1308 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
   1309 
   1310 	if (g->p.show_quiet && !g->p.show_details)
   1311 		g->p.show_details = -1;
   1312 
   1313 	/* Some memory should be specified: */
   1314 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
   1315 		return -1;
   1316 
   1317 	if (g->p.mb_global_str) {
   1318 		g->p.mb_global = atof(g->p.mb_global_str);
   1319 		BUG_ON(g->p.mb_global < 0);
   1320 	}
   1321 
   1322 	if (g->p.mb_proc_str) {
   1323 		g->p.mb_proc = atof(g->p.mb_proc_str);
   1324 		BUG_ON(g->p.mb_proc < 0);
   1325 	}
   1326 
   1327 	if (g->p.mb_proc_locked_str) {
   1328 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
   1329 		BUG_ON(g->p.mb_proc_locked < 0);
   1330 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
   1331 	}
   1332 
   1333 	if (g->p.mb_thread_str) {
   1334 		g->p.mb_thread = atof(g->p.mb_thread_str);
   1335 		BUG_ON(g->p.mb_thread < 0);
   1336 	}
   1337 
   1338 	BUG_ON(g->p.nr_threads <= 0);
   1339 	BUG_ON(g->p.nr_proc <= 0);
   1340 
   1341 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
   1342 
   1343 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
   1344 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
   1345 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
   1346 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
   1347 
   1348 	g->data = setup_shared_data(g->p.bytes_global);
   1349 
   1350 	/* Startup serialization: */
   1351 	init_global_mutex(&g->start_work_mutex);
   1352 	init_global_mutex(&g->startup_mutex);
   1353 	init_global_mutex(&g->startup_done_mutex);
   1354 	init_global_mutex(&g->stop_work_mutex);
   1355 
   1356 	init_thread_data();
   1357 
   1358 	tprintf("#\n");
   1359 	parse_setup_cpu_list();
   1360 	parse_setup_node_list();
   1361 	tprintf("#\n");
   1362 
   1363 	print_summary();
   1364 
   1365 	return 0;
   1366 }
   1367 
   1368 static void deinit(void)
   1369 {
   1370 	free_data(g->data, g->p.bytes_global);
   1371 	g->data = NULL;
   1372 
   1373 	deinit_thread_data();
   1374 
   1375 	free_data(g, sizeof(*g));
   1376 	g = NULL;
   1377 }
   1378 
   1379 /*
   1380  * Print a short or long result, depending on the verbosity setting:
   1381  */
   1382 static void print_res(const char *name, double val,
   1383 		      const char *txt_unit, const char *txt_short, const char *txt_long)
   1384 {
   1385 	if (!name)
   1386 		name = "main,";
   1387 
   1388 	if (g->p.show_quiet)
   1389 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
   1390 	else
   1391 		printf(" %14.3f %s\n", val, txt_long);
   1392 }
   1393 
   1394 static int __bench_numa(const char *name)
   1395 {
   1396 	struct timeval start, stop, diff;
   1397 	u64 runtime_ns_min, runtime_ns_sum;
   1398 	pid_t *pids, pid, wpid;
   1399 	double delta_runtime;
   1400 	double runtime_avg;
   1401 	double runtime_sec_max;
   1402 	double runtime_sec_min;
   1403 	int wait_stat;
   1404 	double bytes;
   1405 	int i, t;
   1406 
   1407 	if (init())
   1408 		return -1;
   1409 
   1410 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
   1411 	pid = -1;
   1412 
   1413 	/* All threads try to acquire it, this way we can wait for them to start up: */
   1414 	pthread_mutex_lock(&g->start_work_mutex);
   1415 
   1416 	if (g->p.serialize_startup) {
   1417 		tprintf(" #\n");
   1418 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
   1419 	}
   1420 
   1421 	gettimeofday(&start, NULL);
   1422 
   1423 	for (i = 0; i < g->p.nr_proc; i++) {
   1424 		pid = fork();
   1425 		dprintf(" # process %2d: PID %d\n", i, pid);
   1426 
   1427 		BUG_ON(pid < 0);
   1428 		if (!pid) {
   1429 			/* Child process: */
   1430 			worker_process(i);
   1431 
   1432 			exit(0);
   1433 		}
   1434 		pids[i] = pid;
   1435 
   1436 	}
   1437 	/* Wait for all the threads to start up: */
   1438 	while (g->nr_tasks_started != g->p.nr_tasks)
   1439 		usleep(1000);
   1440 
   1441 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
   1442 
   1443 	if (g->p.serialize_startup) {
   1444 		double startup_sec;
   1445 
   1446 		pthread_mutex_lock(&g->startup_done_mutex);
   1447 
   1448 		/* This will start all threads: */
   1449 		pthread_mutex_unlock(&g->start_work_mutex);
   1450 
   1451 		/* This mutex is locked - the last started thread will wake us: */
   1452 		pthread_mutex_lock(&g->startup_done_mutex);
   1453 
   1454 		gettimeofday(&stop, NULL);
   1455 
   1456 		timersub(&stop, &start, &diff);
   1457 
   1458 		startup_sec = diff.tv_sec * 1000000000.0;
   1459 		startup_sec += diff.tv_usec * 1000.0;
   1460 		startup_sec /= 1e9;
   1461 
   1462 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
   1463 		tprintf(" #\n");
   1464 
   1465 		start = stop;
   1466 		pthread_mutex_unlock(&g->startup_done_mutex);
   1467 	} else {
   1468 		gettimeofday(&start, NULL);
   1469 	}
   1470 
   1471 	/* Parent process: */
   1472 
   1473 
   1474 	for (i = 0; i < g->p.nr_proc; i++) {
   1475 		wpid = waitpid(pids[i], &wait_stat, 0);
   1476 		BUG_ON(wpid < 0);
   1477 		BUG_ON(!WIFEXITED(wait_stat));
   1478 
   1479 	}
   1480 
   1481 	runtime_ns_sum = 0;
   1482 	runtime_ns_min = -1LL;
   1483 
   1484 	for (t = 0; t < g->p.nr_tasks; t++) {
   1485 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
   1486 
   1487 		runtime_ns_sum += thread_runtime_ns;
   1488 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
   1489 	}
   1490 
   1491 	gettimeofday(&stop, NULL);
   1492 	timersub(&stop, &start, &diff);
   1493 
   1494 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
   1495 
   1496 	tprintf("\n ###\n");
   1497 	tprintf("\n");
   1498 
   1499 	runtime_sec_max = diff.tv_sec * 1000000000.0;
   1500 	runtime_sec_max += diff.tv_usec * 1000.0;
   1501 	runtime_sec_max /= 1e9;
   1502 
   1503 	runtime_sec_min = runtime_ns_min/1e9;
   1504 
   1505 	bytes = g->bytes_done;
   1506 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
   1507 
   1508 	if (g->p.measure_convergence) {
   1509 		print_res(name, runtime_sec_max,
   1510 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
   1511 	}
   1512 
   1513 	print_res(name, runtime_sec_max,
   1514 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
   1515 
   1516 	print_res(name, runtime_sec_min,
   1517 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
   1518 
   1519 	print_res(name, runtime_avg,
   1520 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
   1521 
   1522 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
   1523 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
   1524 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
   1525 
   1526 	print_res(name, bytes / g->p.nr_tasks / 1e9,
   1527 		"GB,", "data/thread",		"GB data processed, per thread");
   1528 
   1529 	print_res(name, bytes / 1e9,
   1530 		"GB,", "data-total",		"GB data processed, total");
   1531 
   1532 	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
   1533 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
   1534 
   1535 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
   1536 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
   1537 
   1538 	print_res(name, bytes / runtime_sec_max / 1e9,
   1539 		"GB/sec,", "total-speed",	"GB/sec total speed");
   1540 
   1541 	free(pids);
   1542 
   1543 	deinit();
   1544 
   1545 	return 0;
   1546 }
   1547 
   1548 #define MAX_ARGS 50
   1549 
   1550 static int command_size(const char **argv)
   1551 {
   1552 	int size = 0;
   1553 
   1554 	while (*argv) {
   1555 		size++;
   1556 		argv++;
   1557 	}
   1558 
   1559 	BUG_ON(size >= MAX_ARGS);
   1560 
   1561 	return size;
   1562 }
   1563 
   1564 static void init_params(struct params *p, const char *name, int argc, const char **argv)
   1565 {
   1566 	int i;
   1567 
   1568 	printf("\n # Running %s \"perf bench numa", name);
   1569 
   1570 	for (i = 0; i < argc; i++)
   1571 		printf(" %s", argv[i]);
   1572 
   1573 	printf("\"\n");
   1574 
   1575 	memset(p, 0, sizeof(*p));
   1576 
   1577 	/* Initialize nonzero defaults: */
   1578 
   1579 	p->serialize_startup		= 1;
   1580 	p->data_reads			= true;
   1581 	p->data_writes			= true;
   1582 	p->data_backwards		= true;
   1583 	p->data_rand_walk		= true;
   1584 	p->nr_loops			= -1;
   1585 	p->init_random			= true;
   1586 }
   1587 
   1588 static int run_bench_numa(const char *name, const char **argv)
   1589 {
   1590 	int argc = command_size(argv);
   1591 
   1592 	init_params(&p0, name, argc, argv);
   1593 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
   1594 	if (argc)
   1595 		goto err;
   1596 
   1597 	if (__bench_numa(name))
   1598 		goto err;
   1599 
   1600 	return 0;
   1601 
   1602 err:
   1603 	usage_with_options(numa_usage, options);
   1604 	return -1;
   1605 }
   1606 
   1607 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
   1608 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
   1609 
   1610 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
   1611 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
   1612 
   1613 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
   1614 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
   1615 
   1616 /*
   1617  * The built-in test-suite executed by "perf bench numa -a".
   1618  *
   1619  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
   1620  */
   1621 static const char *tests[][MAX_ARGS] = {
   1622    /* Basic single-stream NUMA bandwidth measurements: */
   1623    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
   1624 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
   1625    { "RAM-bw-local-NOTHP,",
   1626 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
   1627 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
   1628    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
   1629 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
   1630 
   1631    /* 2-stream NUMA bandwidth measurements: */
   1632    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
   1633 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
   1634    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
   1635 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
   1636 
   1637    /* Cross-stream NUMA bandwidth measurement: */
   1638    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
   1639 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
   1640 
   1641    /* Convergence latency measurements: */
   1642    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
   1643    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
   1644    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
   1645    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
   1646    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
   1647    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
   1648    { " 4x4-convergence-NOTHP,",
   1649 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
   1650    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
   1651    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
   1652    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
   1653    { " 8x4-convergence-NOTHP,",
   1654 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
   1655    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
   1656    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
   1657    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
   1658    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
   1659    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
   1660 
   1661    /* Various NUMA process/thread layout bandwidth measurements: */
   1662    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
   1663    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
   1664    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
   1665    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
   1666    { " 8x1-bw-process-NOTHP,",
   1667 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
   1668    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
   1669 
   1670    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
   1671    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
   1672    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
   1673    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
   1674 
   1675    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
   1676    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
   1677    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
   1678    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
   1679    { " 4x8-bw-thread-NOTHP,",
   1680 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
   1681    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
   1682    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
   1683 
   1684    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
   1685    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
   1686 
   1687    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
   1688    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
   1689    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
   1690    { "numa01-bw-thread-NOTHP,",
   1691 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
   1692 };
   1693 
   1694 static int bench_all(void)
   1695 {
   1696 	int nr = ARRAY_SIZE(tests);
   1697 	int ret;
   1698 	int i;
   1699 
   1700 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
   1701 	BUG_ON(ret < 0);
   1702 
   1703 	for (i = 0; i < nr; i++) {
   1704 		if (run_bench_numa(tests[i][0], tests[i] + 1))
   1705 			return -1;
   1706 	}
   1707 
   1708 	printf("\n");
   1709 
   1710 	return 0;
   1711 }
   1712 
   1713 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
   1714 {
   1715 	init_params(&p0, "main,", argc, argv);
   1716 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
   1717 	if (argc)
   1718 		goto err;
   1719 
   1720 	if (p0.run_all)
   1721 		return bench_all();
   1722 
   1723 	if (__bench_numa(NULL))
   1724 		goto err;
   1725 
   1726 	return 0;
   1727 
   1728 err:
   1729 	usage_with_options(numa_usage, options);
   1730 	return -1;
   1731 }
   1732