Home | History | Annotate | Download | only in cctest
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "src/v8.h"
     29 #include "test/cctest/cctest.h"
     30 
     31 #include "src/arm/assembler-arm-inl.h"
     32 #include "src/arm/simulator-arm.h"
     33 #include "src/disassembler.h"
     34 #include "src/factory.h"
     35 #include "src/ostreams.h"
     36 
     37 using namespace v8::internal;
     38 
     39 
     40 // Define these function prototypes to match JSEntryFunction in execution.cc.
     41 typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
     42 typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
     43 typedef Object* (*F3)(void* p0, int p1, int p2, int p3, int p4);
     44 typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4);
     45 
     46 
     47 #define __ assm.
     48 
     49 TEST(0) {
     50   CcTest::InitializeVM();
     51   Isolate* isolate = CcTest::i_isolate();
     52   HandleScope scope(isolate);
     53 
     54   Assembler assm(isolate, NULL, 0);
     55 
     56   __ add(r0, r0, Operand(r1));
     57   __ mov(pc, Operand(lr));
     58 
     59   CodeDesc desc;
     60   assm.GetCode(&desc);
     61   Handle<Code> code = isolate->factory()->NewCode(
     62       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
     63 #ifdef DEBUG
     64   OFStream os(stdout);
     65   code->Print(os);
     66 #endif
     67   F2 f = FUNCTION_CAST<F2>(code->entry());
     68   int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 3, 4, 0, 0, 0));
     69   ::printf("f() = %d\n", res);
     70   CHECK_EQ(7, res);
     71 }
     72 
     73 
     74 TEST(1) {
     75   CcTest::InitializeVM();
     76   Isolate* isolate = CcTest::i_isolate();
     77   HandleScope scope(isolate);
     78 
     79   Assembler assm(isolate, NULL, 0);
     80   Label L, C;
     81 
     82   __ mov(r1, Operand(r0));
     83   __ mov(r0, Operand::Zero());
     84   __ b(&C);
     85 
     86   __ bind(&L);
     87   __ add(r0, r0, Operand(r1));
     88   __ sub(r1, r1, Operand(1));
     89 
     90   __ bind(&C);
     91   __ teq(r1, Operand::Zero());
     92   __ b(ne, &L);
     93   __ mov(pc, Operand(lr));
     94 
     95   CodeDesc desc;
     96   assm.GetCode(&desc);
     97   Handle<Code> code = isolate->factory()->NewCode(
     98       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
     99 #ifdef DEBUG
    100   OFStream os(stdout);
    101   code->Print(os);
    102 #endif
    103   F1 f = FUNCTION_CAST<F1>(code->entry());
    104   int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 100, 0, 0, 0, 0));
    105   ::printf("f() = %d\n", res);
    106   CHECK_EQ(5050, res);
    107 }
    108 
    109 
    110 TEST(2) {
    111   CcTest::InitializeVM();
    112   Isolate* isolate = CcTest::i_isolate();
    113   HandleScope scope(isolate);
    114 
    115   Assembler assm(isolate, NULL, 0);
    116   Label L, C;
    117 
    118   __ mov(r1, Operand(r0));
    119   __ mov(r0, Operand(1));
    120   __ b(&C);
    121 
    122   __ bind(&L);
    123   __ mul(r0, r1, r0);
    124   __ sub(r1, r1, Operand(1));
    125 
    126   __ bind(&C);
    127   __ teq(r1, Operand::Zero());
    128   __ b(ne, &L);
    129   __ mov(pc, Operand(lr));
    130 
    131   // some relocated stuff here, not executed
    132   __ RecordComment("dead code, just testing relocations");
    133   __ mov(r0, Operand(isolate->factory()->true_value()));
    134   __ RecordComment("dead code, just testing immediate operands");
    135   __ mov(r0, Operand(-1));
    136   __ mov(r0, Operand(0xFF000000));
    137   __ mov(r0, Operand(0xF0F0F0F0));
    138   __ mov(r0, Operand(0xFFF0FFFF));
    139 
    140   CodeDesc desc;
    141   assm.GetCode(&desc);
    142   Handle<Code> code = isolate->factory()->NewCode(
    143       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    144 #ifdef DEBUG
    145   OFStream os(stdout);
    146   code->Print(os);
    147 #endif
    148   F1 f = FUNCTION_CAST<F1>(code->entry());
    149   int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 10, 0, 0, 0, 0));
    150   ::printf("f() = %d\n", res);
    151   CHECK_EQ(3628800, res);
    152 }
    153 
    154 
    155 TEST(3) {
    156   CcTest::InitializeVM();
    157   Isolate* isolate = CcTest::i_isolate();
    158   HandleScope scope(isolate);
    159 
    160   typedef struct {
    161     int i;
    162     char c;
    163     int16_t s;
    164   } T;
    165   T t;
    166 
    167   Assembler assm(isolate, NULL, 0);
    168   Label L, C;
    169 
    170   __ mov(ip, Operand(sp));
    171   __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    172   __ sub(fp, ip, Operand(4));
    173   __ mov(r4, Operand(r0));
    174   __ ldr(r0, MemOperand(r4, OFFSET_OF(T, i)));
    175   __ mov(r2, Operand(r0, ASR, 1));
    176   __ str(r2, MemOperand(r4, OFFSET_OF(T, i)));
    177   __ ldrsb(r2, MemOperand(r4, OFFSET_OF(T, c)));
    178   __ add(r0, r2, Operand(r0));
    179   __ mov(r2, Operand(r2, LSL, 2));
    180   __ strb(r2, MemOperand(r4, OFFSET_OF(T, c)));
    181   __ ldrsh(r2, MemOperand(r4, OFFSET_OF(T, s)));
    182   __ add(r0, r2, Operand(r0));
    183   __ mov(r2, Operand(r2, ASR, 3));
    184   __ strh(r2, MemOperand(r4, OFFSET_OF(T, s)));
    185   __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
    186 
    187   CodeDesc desc;
    188   assm.GetCode(&desc);
    189   Handle<Code> code = isolate->factory()->NewCode(
    190       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    191 #ifdef DEBUG
    192   OFStream os(stdout);
    193   code->Print(os);
    194 #endif
    195   F3 f = FUNCTION_CAST<F3>(code->entry());
    196   t.i = 100000;
    197   t.c = 10;
    198   t.s = 1000;
    199   int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0));
    200   ::printf("f() = %d\n", res);
    201   CHECK_EQ(101010, res);
    202   CHECK_EQ(100000/2, t.i);
    203   CHECK_EQ(10*4, t.c);
    204   CHECK_EQ(1000/8, t.s);
    205 }
    206 
    207 
    208 TEST(4) {
    209   // Test the VFP floating point instructions.
    210   CcTest::InitializeVM();
    211   Isolate* isolate = CcTest::i_isolate();
    212   HandleScope scope(isolate);
    213 
    214   typedef struct {
    215     double a;
    216     double b;
    217     double c;
    218     double d;
    219     double e;
    220     double f;
    221     double g;
    222     double h;
    223     int i;
    224     double j;
    225     double m;
    226     double n;
    227     float x;
    228     float y;
    229   } T;
    230   T t;
    231 
    232   // Create a function that accepts &t, and loads, manipulates, and stores
    233   // the doubles and floats.
    234   Assembler assm(isolate, NULL, 0);
    235   Label L, C;
    236 
    237 
    238   if (CpuFeatures::IsSupported(VFP3)) {
    239     CpuFeatureScope scope(&assm, VFP3);
    240 
    241     __ mov(ip, Operand(sp));
    242     __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    243     __ sub(fp, ip, Operand(4));
    244 
    245     __ mov(r4, Operand(r0));
    246     __ vldr(d6, r4, OFFSET_OF(T, a));
    247     __ vldr(d7, r4, OFFSET_OF(T, b));
    248     __ vadd(d5, d6, d7);
    249     __ vstr(d5, r4, OFFSET_OF(T, c));
    250 
    251     __ vmla(d5, d6, d7);
    252     __ vmls(d5, d5, d6);
    253 
    254     __ vmov(r2, r3, d5);
    255     __ vmov(d4, r2, r3);
    256     __ vstr(d4, r4, OFFSET_OF(T, b));
    257 
    258     // Load t.x and t.y, switch values, and store back to the struct.
    259     __ vldr(s0, r4, OFFSET_OF(T, x));
    260     __ vldr(s31, r4, OFFSET_OF(T, y));
    261     __ vmov(s16, s0);
    262     __ vmov(s0, s31);
    263     __ vmov(s31, s16);
    264     __ vstr(s0, r4, OFFSET_OF(T, x));
    265     __ vstr(s31, r4, OFFSET_OF(T, y));
    266 
    267     // Move a literal into a register that can be encoded in the instruction.
    268     __ vmov(d4, 1.0);
    269     __ vstr(d4, r4, OFFSET_OF(T, e));
    270 
    271     // Move a literal into a register that requires 64 bits to encode.
    272     // 0x3ff0000010000000 = 1.000000059604644775390625
    273     __ vmov(d4, 1.000000059604644775390625);
    274     __ vstr(d4, r4, OFFSET_OF(T, d));
    275 
    276     // Convert from floating point to integer.
    277     __ vmov(d4, 2.0);
    278     __ vcvt_s32_f64(s31, d4);
    279     __ vstr(s31, r4, OFFSET_OF(T, i));
    280 
    281     // Convert from integer to floating point.
    282     __ mov(lr, Operand(42));
    283     __ vmov(s31, lr);
    284     __ vcvt_f64_s32(d4, s31);
    285     __ vstr(d4, r4, OFFSET_OF(T, f));
    286 
    287     // Convert from fixed point to floating point.
    288     __ mov(lr, Operand(2468));
    289     __ vmov(s8, lr);
    290     __ vcvt_f64_s32(d4, 2);
    291     __ vstr(d4, r4, OFFSET_OF(T, j));
    292 
    293     // Test vabs.
    294     __ vldr(d1, r4, OFFSET_OF(T, g));
    295     __ vabs(d0, d1);
    296     __ vstr(d0, r4, OFFSET_OF(T, g));
    297     __ vldr(d2, r4, OFFSET_OF(T, h));
    298     __ vabs(d0, d2);
    299     __ vstr(d0, r4, OFFSET_OF(T, h));
    300 
    301     // Test vneg.
    302     __ vldr(d1, r4, OFFSET_OF(T, m));
    303     __ vneg(d0, d1);
    304     __ vstr(d0, r4, OFFSET_OF(T, m));
    305     __ vldr(d1, r4, OFFSET_OF(T, n));
    306     __ vneg(d0, d1);
    307     __ vstr(d0, r4, OFFSET_OF(T, n));
    308 
    309     __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
    310 
    311     CodeDesc desc;
    312     assm.GetCode(&desc);
    313     Handle<Code> code = isolate->factory()->NewCode(
    314         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    315 #ifdef DEBUG
    316     OFStream os(stdout);
    317     code->Print(os);
    318 #endif
    319     F3 f = FUNCTION_CAST<F3>(code->entry());
    320     t.a = 1.5;
    321     t.b = 2.75;
    322     t.c = 17.17;
    323     t.d = 0.0;
    324     t.e = 0.0;
    325     t.f = 0.0;
    326     t.g = -2718.2818;
    327     t.h = 31415926.5;
    328     t.i = 0;
    329     t.j = 0;
    330     t.m = -2718.2818;
    331     t.n = 123.456;
    332     t.x = 4.5;
    333     t.y = 9.0;
    334     Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
    335     USE(dummy);
    336     CHECK_EQ(4.5, t.y);
    337     CHECK_EQ(9.0, t.x);
    338     CHECK_EQ(-123.456, t.n);
    339     CHECK_EQ(2718.2818, t.m);
    340     CHECK_EQ(2, t.i);
    341     CHECK_EQ(2718.2818, t.g);
    342     CHECK_EQ(31415926.5, t.h);
    343     CHECK_EQ(617.0, t.j);
    344     CHECK_EQ(42.0, t.f);
    345     CHECK_EQ(1.0, t.e);
    346     CHECK_EQ(1.000000059604644775390625, t.d);
    347     CHECK_EQ(4.25, t.c);
    348     CHECK_EQ(-4.1875, t.b);
    349     CHECK_EQ(1.5, t.a);
    350   }
    351 }
    352 
    353 
    354 TEST(5) {
    355   // Test the ARMv7 bitfield instructions.
    356   CcTest::InitializeVM();
    357   Isolate* isolate = CcTest::i_isolate();
    358   HandleScope scope(isolate);
    359 
    360   Assembler assm(isolate, NULL, 0);
    361 
    362   if (CpuFeatures::IsSupported(ARMv7)) {
    363     CpuFeatureScope scope(&assm, ARMv7);
    364     // On entry, r0 = 0xAAAAAAAA = 0b10..10101010.
    365     __ ubfx(r0, r0, 1, 12);  // 0b00..010101010101 = 0x555
    366     __ sbfx(r0, r0, 0, 5);   // 0b11..111111110101 = -11
    367     __ bfc(r0, 1, 3);        // 0b11..111111110001 = -15
    368     __ mov(r1, Operand(7));
    369     __ bfi(r0, r1, 3, 3);    // 0b11..111111111001 = -7
    370     __ mov(pc, Operand(lr));
    371 
    372     CodeDesc desc;
    373     assm.GetCode(&desc);
    374     Handle<Code> code = isolate->factory()->NewCode(
    375         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    376 #ifdef DEBUG
    377     OFStream os(stdout);
    378     code->Print(os);
    379 #endif
    380     F1 f = FUNCTION_CAST<F1>(code->entry());
    381     int res = reinterpret_cast<int>(
    382                 CALL_GENERATED_CODE(f, 0xAAAAAAAA, 0, 0, 0, 0));
    383     ::printf("f() = %d\n", res);
    384     CHECK_EQ(-7, res);
    385   }
    386 }
    387 
    388 
    389 TEST(6) {
    390   // Test saturating instructions.
    391   CcTest::InitializeVM();
    392   Isolate* isolate = CcTest::i_isolate();
    393   HandleScope scope(isolate);
    394 
    395   Assembler assm(isolate, NULL, 0);
    396 
    397   if (CpuFeatures::IsSupported(ARMv7)) {
    398     CpuFeatureScope scope(&assm, ARMv7);
    399     __ usat(r1, 8, Operand(r0));           // Sat 0xFFFF to 0-255 = 0xFF.
    400     __ usat(r2, 12, Operand(r0, ASR, 9));  // Sat (0xFFFF>>9) to 0-4095 = 0x7F.
    401     __ usat(r3, 1, Operand(r0, LSL, 16));  // Sat (0xFFFF<<16) to 0-1 = 0x0.
    402     __ add(r0, r1, Operand(r2));
    403     __ add(r0, r0, Operand(r3));
    404     __ mov(pc, Operand(lr));
    405 
    406     CodeDesc desc;
    407     assm.GetCode(&desc);
    408     Handle<Code> code = isolate->factory()->NewCode(
    409         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    410 #ifdef DEBUG
    411     OFStream os(stdout);
    412     code->Print(os);
    413 #endif
    414     F1 f = FUNCTION_CAST<F1>(code->entry());
    415     int res = reinterpret_cast<int>(
    416                 CALL_GENERATED_CODE(f, 0xFFFF, 0, 0, 0, 0));
    417     ::printf("f() = %d\n", res);
    418     CHECK_EQ(382, res);
    419   }
    420 }
    421 
    422 
    423 enum VCVTTypes {
    424   s32_f64,
    425   u32_f64
    426 };
    427 
    428 static void TestRoundingMode(VCVTTypes types,
    429                              VFPRoundingMode mode,
    430                              double value,
    431                              int expected,
    432                              bool expected_exception = false) {
    433   Isolate* isolate = CcTest::i_isolate();
    434   HandleScope scope(isolate);
    435 
    436   Assembler assm(isolate, NULL, 0);
    437 
    438   if (CpuFeatures::IsSupported(VFP3)) {
    439     CpuFeatureScope scope(&assm, VFP3);
    440 
    441     Label wrong_exception;
    442 
    443     __ vmrs(r1);
    444     // Set custom FPSCR.
    445     __ bic(r2, r1, Operand(kVFPRoundingModeMask | kVFPExceptionMask));
    446     __ orr(r2, r2, Operand(mode));
    447     __ vmsr(r2);
    448 
    449     // Load value, convert, and move back result to r0 if everything went well.
    450     __ vmov(d1, value);
    451     switch (types) {
    452       case s32_f64:
    453         __ vcvt_s32_f64(s0, d1, kFPSCRRounding);
    454         break;
    455 
    456       case u32_f64:
    457         __ vcvt_u32_f64(s0, d1, kFPSCRRounding);
    458         break;
    459 
    460       default:
    461         UNREACHABLE();
    462         break;
    463     }
    464     // Check for vfp exceptions
    465     __ vmrs(r2);
    466     __ tst(r2, Operand(kVFPExceptionMask));
    467     // Check that we behaved as expected.
    468     __ b(&wrong_exception,
    469          expected_exception ? eq : ne);
    470     // There was no exception. Retrieve the result and return.
    471     __ vmov(r0, s0);
    472     __ mov(pc, Operand(lr));
    473 
    474     // The exception behaviour is not what we expected.
    475     // Load a special value and return.
    476     __ bind(&wrong_exception);
    477     __ mov(r0, Operand(11223344));
    478     __ mov(pc, Operand(lr));
    479 
    480     CodeDesc desc;
    481     assm.GetCode(&desc);
    482     Handle<Code> code = isolate->factory()->NewCode(
    483         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    484 #ifdef DEBUG
    485     OFStream os(stdout);
    486     code->Print(os);
    487 #endif
    488     F1 f = FUNCTION_CAST<F1>(code->entry());
    489     int res = reinterpret_cast<int>(
    490                 CALL_GENERATED_CODE(f, 0, 0, 0, 0, 0));
    491     ::printf("res = %d\n", res);
    492     CHECK_EQ(expected, res);
    493   }
    494 }
    495 
    496 
    497 TEST(7) {
    498   CcTest::InitializeVM();
    499   // Test vfp rounding modes.
    500 
    501   // s32_f64 (double to integer).
    502 
    503   TestRoundingMode(s32_f64, RN,  0, 0);
    504   TestRoundingMode(s32_f64, RN,  0.5, 0);
    505   TestRoundingMode(s32_f64, RN, -0.5, 0);
    506   TestRoundingMode(s32_f64, RN,  1.5, 2);
    507   TestRoundingMode(s32_f64, RN, -1.5, -2);
    508   TestRoundingMode(s32_f64, RN,  123.7, 124);
    509   TestRoundingMode(s32_f64, RN, -123.7, -124);
    510   TestRoundingMode(s32_f64, RN,  123456.2,  123456);
    511   TestRoundingMode(s32_f64, RN, -123456.2, -123456);
    512   TestRoundingMode(s32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
    513   TestRoundingMode(s32_f64, RN, (kMaxInt + 0.49), kMaxInt);
    514   TestRoundingMode(s32_f64, RN, (kMaxInt + 1.0), kMaxInt, true);
    515   TestRoundingMode(s32_f64, RN, (kMaxInt + 0.5), kMaxInt, true);
    516   TestRoundingMode(s32_f64, RN, static_cast<double>(kMinInt), kMinInt);
    517   TestRoundingMode(s32_f64, RN, (kMinInt - 0.5), kMinInt);
    518   TestRoundingMode(s32_f64, RN, (kMinInt - 1.0), kMinInt, true);
    519   TestRoundingMode(s32_f64, RN, (kMinInt - 0.51), kMinInt, true);
    520 
    521   TestRoundingMode(s32_f64, RM,  0, 0);
    522   TestRoundingMode(s32_f64, RM,  0.5, 0);
    523   TestRoundingMode(s32_f64, RM, -0.5, -1);
    524   TestRoundingMode(s32_f64, RM,  123.7, 123);
    525   TestRoundingMode(s32_f64, RM, -123.7, -124);
    526   TestRoundingMode(s32_f64, RM,  123456.2,  123456);
    527   TestRoundingMode(s32_f64, RM, -123456.2, -123457);
    528   TestRoundingMode(s32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
    529   TestRoundingMode(s32_f64, RM, (kMaxInt + 0.5), kMaxInt);
    530   TestRoundingMode(s32_f64, RM, (kMaxInt + 1.0), kMaxInt, true);
    531   TestRoundingMode(s32_f64, RM, static_cast<double>(kMinInt), kMinInt);
    532   TestRoundingMode(s32_f64, RM, (kMinInt - 0.5), kMinInt, true);
    533   TestRoundingMode(s32_f64, RM, (kMinInt + 0.5), kMinInt);
    534 
    535   TestRoundingMode(s32_f64, RZ,  0, 0);
    536   TestRoundingMode(s32_f64, RZ,  0.5, 0);
    537   TestRoundingMode(s32_f64, RZ, -0.5, 0);
    538   TestRoundingMode(s32_f64, RZ,  123.7,  123);
    539   TestRoundingMode(s32_f64, RZ, -123.7, -123);
    540   TestRoundingMode(s32_f64, RZ,  123456.2,  123456);
    541   TestRoundingMode(s32_f64, RZ, -123456.2, -123456);
    542   TestRoundingMode(s32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
    543   TestRoundingMode(s32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
    544   TestRoundingMode(s32_f64, RZ, (kMaxInt + 1.0), kMaxInt, true);
    545   TestRoundingMode(s32_f64, RZ, static_cast<double>(kMinInt), kMinInt);
    546   TestRoundingMode(s32_f64, RZ, (kMinInt - 0.5), kMinInt);
    547   TestRoundingMode(s32_f64, RZ, (kMinInt - 1.0), kMinInt, true);
    548 
    549 
    550   // u32_f64 (double to integer).
    551 
    552   // Negative values.
    553   TestRoundingMode(u32_f64, RN, -0.5, 0);
    554   TestRoundingMode(u32_f64, RN, -123456.7, 0, true);
    555   TestRoundingMode(u32_f64, RN, static_cast<double>(kMinInt), 0, true);
    556   TestRoundingMode(u32_f64, RN, kMinInt - 1.0, 0, true);
    557 
    558   TestRoundingMode(u32_f64, RM, -0.5, 0, true);
    559   TestRoundingMode(u32_f64, RM, -123456.7, 0, true);
    560   TestRoundingMode(u32_f64, RM, static_cast<double>(kMinInt), 0, true);
    561   TestRoundingMode(u32_f64, RM, kMinInt - 1.0, 0, true);
    562 
    563   TestRoundingMode(u32_f64, RZ, -0.5, 0);
    564   TestRoundingMode(u32_f64, RZ, -123456.7, 0, true);
    565   TestRoundingMode(u32_f64, RZ, static_cast<double>(kMinInt), 0, true);
    566   TestRoundingMode(u32_f64, RZ, kMinInt - 1.0, 0, true);
    567 
    568   // Positive values.
    569   // kMaxInt is the maximum *signed* integer: 0x7fffffff.
    570   static const uint32_t kMaxUInt = 0xffffffffu;
    571   TestRoundingMode(u32_f64, RZ,  0, 0);
    572   TestRoundingMode(u32_f64, RZ,  0.5, 0);
    573   TestRoundingMode(u32_f64, RZ,  123.7,  123);
    574   TestRoundingMode(u32_f64, RZ,  123456.2,  123456);
    575   TestRoundingMode(u32_f64, RZ, static_cast<double>(kMaxInt), kMaxInt);
    576   TestRoundingMode(u32_f64, RZ, (kMaxInt + 0.5), kMaxInt);
    577   TestRoundingMode(u32_f64, RZ, (kMaxInt + 1.0),
    578                                 static_cast<uint32_t>(kMaxInt) + 1);
    579   TestRoundingMode(u32_f64, RZ, (kMaxUInt + 0.5), kMaxUInt);
    580   TestRoundingMode(u32_f64, RZ, (kMaxUInt + 1.0), kMaxUInt, true);
    581 
    582   TestRoundingMode(u32_f64, RM,  0, 0);
    583   TestRoundingMode(u32_f64, RM,  0.5, 0);
    584   TestRoundingMode(u32_f64, RM,  123.7, 123);
    585   TestRoundingMode(u32_f64, RM,  123456.2,  123456);
    586   TestRoundingMode(u32_f64, RM, static_cast<double>(kMaxInt), kMaxInt);
    587   TestRoundingMode(u32_f64, RM, (kMaxInt + 0.5), kMaxInt);
    588   TestRoundingMode(u32_f64, RM, (kMaxInt + 1.0),
    589                                 static_cast<uint32_t>(kMaxInt) + 1);
    590   TestRoundingMode(u32_f64, RM, (kMaxUInt + 0.5), kMaxUInt);
    591   TestRoundingMode(u32_f64, RM, (kMaxUInt + 1.0), kMaxUInt, true);
    592 
    593   TestRoundingMode(u32_f64, RN,  0, 0);
    594   TestRoundingMode(u32_f64, RN,  0.5, 0);
    595   TestRoundingMode(u32_f64, RN,  1.5, 2);
    596   TestRoundingMode(u32_f64, RN,  123.7, 124);
    597   TestRoundingMode(u32_f64, RN,  123456.2,  123456);
    598   TestRoundingMode(u32_f64, RN, static_cast<double>(kMaxInt), kMaxInt);
    599   TestRoundingMode(u32_f64, RN, (kMaxInt + 0.49), kMaxInt);
    600   TestRoundingMode(u32_f64, RN, (kMaxInt + 0.5),
    601                                 static_cast<uint32_t>(kMaxInt) + 1);
    602   TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.49), kMaxUInt);
    603   TestRoundingMode(u32_f64, RN, (kMaxUInt + 0.5), kMaxUInt, true);
    604   TestRoundingMode(u32_f64, RN, (kMaxUInt + 1.0), kMaxUInt, true);
    605 }
    606 
    607 
    608 TEST(8) {
    609   // Test VFP multi load/store with ia_w.
    610   CcTest::InitializeVM();
    611   Isolate* isolate = CcTest::i_isolate();
    612   HandleScope scope(isolate);
    613 
    614   typedef struct {
    615     double a;
    616     double b;
    617     double c;
    618     double d;
    619     double e;
    620     double f;
    621     double g;
    622     double h;
    623   } D;
    624   D d;
    625 
    626   typedef struct {
    627     float a;
    628     float b;
    629     float c;
    630     float d;
    631     float e;
    632     float f;
    633     float g;
    634     float h;
    635   } F;
    636   F f;
    637 
    638   // Create a function that uses vldm/vstm to move some double and
    639   // single precision values around in memory.
    640   Assembler assm(isolate, NULL, 0);
    641 
    642   __ mov(ip, Operand(sp));
    643   __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    644   __ sub(fp, ip, Operand(4));
    645 
    646   __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    647   __ vldm(ia_w, r4, d0, d3);
    648   __ vldm(ia_w, r4, d4, d7);
    649 
    650   __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    651   __ vstm(ia_w, r4, d6, d7);
    652   __ vstm(ia_w, r4, d0, d5);
    653 
    654   __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    655   __ vldm(ia_w, r4, s0, s3);
    656   __ vldm(ia_w, r4, s4, s7);
    657 
    658   __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    659   __ vstm(ia_w, r4, s6, s7);
    660   __ vstm(ia_w, r4, s0, s5);
    661 
    662   __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
    663 
    664   CodeDesc desc;
    665   assm.GetCode(&desc);
    666   Handle<Code> code = isolate->factory()->NewCode(
    667       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    668 #ifdef DEBUG
    669   OFStream os(stdout);
    670   code->Print(os);
    671 #endif
    672   F4 fn = FUNCTION_CAST<F4>(code->entry());
    673   d.a = 1.1;
    674   d.b = 2.2;
    675   d.c = 3.3;
    676   d.d = 4.4;
    677   d.e = 5.5;
    678   d.f = 6.6;
    679   d.g = 7.7;
    680   d.h = 8.8;
    681 
    682   f.a = 1.0;
    683   f.b = 2.0;
    684   f.c = 3.0;
    685   f.d = 4.0;
    686   f.e = 5.0;
    687   f.f = 6.0;
    688   f.g = 7.0;
    689   f.h = 8.0;
    690 
    691   Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0);
    692   USE(dummy);
    693 
    694   CHECK_EQ(7.7, d.a);
    695   CHECK_EQ(8.8, d.b);
    696   CHECK_EQ(1.1, d.c);
    697   CHECK_EQ(2.2, d.d);
    698   CHECK_EQ(3.3, d.e);
    699   CHECK_EQ(4.4, d.f);
    700   CHECK_EQ(5.5, d.g);
    701   CHECK_EQ(6.6, d.h);
    702 
    703   CHECK_EQ(7.0, f.a);
    704   CHECK_EQ(8.0, f.b);
    705   CHECK_EQ(1.0, f.c);
    706   CHECK_EQ(2.0, f.d);
    707   CHECK_EQ(3.0, f.e);
    708   CHECK_EQ(4.0, f.f);
    709   CHECK_EQ(5.0, f.g);
    710   CHECK_EQ(6.0, f.h);
    711 }
    712 
    713 
    714 TEST(9) {
    715   // Test VFP multi load/store with ia.
    716   CcTest::InitializeVM();
    717   Isolate* isolate = CcTest::i_isolate();
    718   HandleScope scope(isolate);
    719 
    720   typedef struct {
    721     double a;
    722     double b;
    723     double c;
    724     double d;
    725     double e;
    726     double f;
    727     double g;
    728     double h;
    729   } D;
    730   D d;
    731 
    732   typedef struct {
    733     float a;
    734     float b;
    735     float c;
    736     float d;
    737     float e;
    738     float f;
    739     float g;
    740     float h;
    741   } F;
    742   F f;
    743 
    744   // Create a function that uses vldm/vstm to move some double and
    745   // single precision values around in memory.
    746   Assembler assm(isolate, NULL, 0);
    747 
    748   __ mov(ip, Operand(sp));
    749   __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    750   __ sub(fp, ip, Operand(4));
    751 
    752   __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    753   __ vldm(ia, r4, d0, d3);
    754   __ add(r4, r4, Operand(4 * 8));
    755   __ vldm(ia, r4, d4, d7);
    756 
    757   __ add(r4, r0, Operand(OFFSET_OF(D, a)));
    758   __ vstm(ia, r4, d6, d7);
    759   __ add(r4, r4, Operand(2 * 8));
    760   __ vstm(ia, r4, d0, d5);
    761 
    762   __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    763   __ vldm(ia, r4, s0, s3);
    764   __ add(r4, r4, Operand(4 * 4));
    765   __ vldm(ia, r4, s4, s7);
    766 
    767   __ add(r4, r1, Operand(OFFSET_OF(F, a)));
    768   __ vstm(ia, r4, s6, s7);
    769   __ add(r4, r4, Operand(2 * 4));
    770   __ vstm(ia, r4, s0, s5);
    771 
    772   __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
    773 
    774   CodeDesc desc;
    775   assm.GetCode(&desc);
    776   Handle<Code> code = isolate->factory()->NewCode(
    777       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    778 #ifdef DEBUG
    779   OFStream os(stdout);
    780   code->Print(os);
    781 #endif
    782   F4 fn = FUNCTION_CAST<F4>(code->entry());
    783   d.a = 1.1;
    784   d.b = 2.2;
    785   d.c = 3.3;
    786   d.d = 4.4;
    787   d.e = 5.5;
    788   d.f = 6.6;
    789   d.g = 7.7;
    790   d.h = 8.8;
    791 
    792   f.a = 1.0;
    793   f.b = 2.0;
    794   f.c = 3.0;
    795   f.d = 4.0;
    796   f.e = 5.0;
    797   f.f = 6.0;
    798   f.g = 7.0;
    799   f.h = 8.0;
    800 
    801   Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0);
    802   USE(dummy);
    803 
    804   CHECK_EQ(7.7, d.a);
    805   CHECK_EQ(8.8, d.b);
    806   CHECK_EQ(1.1, d.c);
    807   CHECK_EQ(2.2, d.d);
    808   CHECK_EQ(3.3, d.e);
    809   CHECK_EQ(4.4, d.f);
    810   CHECK_EQ(5.5, d.g);
    811   CHECK_EQ(6.6, d.h);
    812 
    813   CHECK_EQ(7.0, f.a);
    814   CHECK_EQ(8.0, f.b);
    815   CHECK_EQ(1.0, f.c);
    816   CHECK_EQ(2.0, f.d);
    817   CHECK_EQ(3.0, f.e);
    818   CHECK_EQ(4.0, f.f);
    819   CHECK_EQ(5.0, f.g);
    820   CHECK_EQ(6.0, f.h);
    821 }
    822 
    823 
    824 TEST(10) {
    825   // Test VFP multi load/store with db_w.
    826   CcTest::InitializeVM();
    827   Isolate* isolate = CcTest::i_isolate();
    828   HandleScope scope(isolate);
    829 
    830   typedef struct {
    831     double a;
    832     double b;
    833     double c;
    834     double d;
    835     double e;
    836     double f;
    837     double g;
    838     double h;
    839   } D;
    840   D d;
    841 
    842   typedef struct {
    843     float a;
    844     float b;
    845     float c;
    846     float d;
    847     float e;
    848     float f;
    849     float g;
    850     float h;
    851   } F;
    852   F f;
    853 
    854   // Create a function that uses vldm/vstm to move some double and
    855   // single precision values around in memory.
    856   Assembler assm(isolate, NULL, 0);
    857 
    858   __ mov(ip, Operand(sp));
    859   __ stm(db_w, sp, r4.bit() | fp.bit() | lr.bit());
    860   __ sub(fp, ip, Operand(4));
    861 
    862   __ add(r4, r0, Operand(OFFSET_OF(D, h) + 8));
    863   __ vldm(db_w, r4, d4, d7);
    864   __ vldm(db_w, r4, d0, d3);
    865 
    866   __ add(r4, r0, Operand(OFFSET_OF(D, h) + 8));
    867   __ vstm(db_w, r4, d0, d5);
    868   __ vstm(db_w, r4, d6, d7);
    869 
    870   __ add(r4, r1, Operand(OFFSET_OF(F, h) + 4));
    871   __ vldm(db_w, r4, s4, s7);
    872   __ vldm(db_w, r4, s0, s3);
    873 
    874   __ add(r4, r1, Operand(OFFSET_OF(F, h) + 4));
    875   __ vstm(db_w, r4, s0, s5);
    876   __ vstm(db_w, r4, s6, s7);
    877 
    878   __ ldm(ia_w, sp, r4.bit() | fp.bit() | pc.bit());
    879 
    880   CodeDesc desc;
    881   assm.GetCode(&desc);
    882   Handle<Code> code = isolate->factory()->NewCode(
    883       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    884 #ifdef DEBUG
    885   OFStream os(stdout);
    886   code->Print(os);
    887 #endif
    888   F4 fn = FUNCTION_CAST<F4>(code->entry());
    889   d.a = 1.1;
    890   d.b = 2.2;
    891   d.c = 3.3;
    892   d.d = 4.4;
    893   d.e = 5.5;
    894   d.f = 6.6;
    895   d.g = 7.7;
    896   d.h = 8.8;
    897 
    898   f.a = 1.0;
    899   f.b = 2.0;
    900   f.c = 3.0;
    901   f.d = 4.0;
    902   f.e = 5.0;
    903   f.f = 6.0;
    904   f.g = 7.0;
    905   f.h = 8.0;
    906 
    907   Object* dummy = CALL_GENERATED_CODE(fn, &d, &f, 0, 0, 0);
    908   USE(dummy);
    909 
    910   CHECK_EQ(7.7, d.a);
    911   CHECK_EQ(8.8, d.b);
    912   CHECK_EQ(1.1, d.c);
    913   CHECK_EQ(2.2, d.d);
    914   CHECK_EQ(3.3, d.e);
    915   CHECK_EQ(4.4, d.f);
    916   CHECK_EQ(5.5, d.g);
    917   CHECK_EQ(6.6, d.h);
    918 
    919   CHECK_EQ(7.0, f.a);
    920   CHECK_EQ(8.0, f.b);
    921   CHECK_EQ(1.0, f.c);
    922   CHECK_EQ(2.0, f.d);
    923   CHECK_EQ(3.0, f.e);
    924   CHECK_EQ(4.0, f.f);
    925   CHECK_EQ(5.0, f.g);
    926   CHECK_EQ(6.0, f.h);
    927 }
    928 
    929 
    930 TEST(11) {
    931   // Test instructions using the carry flag.
    932   CcTest::InitializeVM();
    933   Isolate* isolate = CcTest::i_isolate();
    934   HandleScope scope(isolate);
    935 
    936   typedef struct {
    937     int32_t a;
    938     int32_t b;
    939     int32_t c;
    940     int32_t d;
    941   } I;
    942   I i;
    943 
    944   i.a = 0xabcd0001;
    945   i.b = 0xabcd0000;
    946 
    947   Assembler assm(isolate, NULL, 0);
    948 
    949   // Test HeapObject untagging.
    950   __ ldr(r1, MemOperand(r0, OFFSET_OF(I, a)));
    951   __ mov(r1, Operand(r1, ASR, 1), SetCC);
    952   __ adc(r1, r1, Operand(r1), LeaveCC, cs);
    953   __ str(r1, MemOperand(r0, OFFSET_OF(I, a)));
    954 
    955   __ ldr(r2, MemOperand(r0, OFFSET_OF(I, b)));
    956   __ mov(r2, Operand(r2, ASR, 1), SetCC);
    957   __ adc(r2, r2, Operand(r2), LeaveCC, cs);
    958   __ str(r2, MemOperand(r0, OFFSET_OF(I, b)));
    959 
    960   // Test corner cases.
    961   __ mov(r1, Operand(0xffffffff));
    962   __ mov(r2, Operand::Zero());
    963   __ mov(r3, Operand(r1, ASR, 1), SetCC);  // Set the carry.
    964   __ adc(r3, r1, Operand(r2));
    965   __ str(r3, MemOperand(r0, OFFSET_OF(I, c)));
    966 
    967   __ mov(r1, Operand(0xffffffff));
    968   __ mov(r2, Operand::Zero());
    969   __ mov(r3, Operand(r2, ASR, 1), SetCC);  // Unset the carry.
    970   __ adc(r3, r1, Operand(r2));
    971   __ str(r3, MemOperand(r0, OFFSET_OF(I, d)));
    972 
    973   __ mov(pc, Operand(lr));
    974 
    975   CodeDesc desc;
    976   assm.GetCode(&desc);
    977   Handle<Code> code = isolate->factory()->NewCode(
    978       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
    979 #ifdef DEBUG
    980   OFStream os(stdout);
    981   code->Print(os);
    982 #endif
    983   F3 f = FUNCTION_CAST<F3>(code->entry());
    984   Object* dummy = CALL_GENERATED_CODE(f, &i, 0, 0, 0, 0);
    985   USE(dummy);
    986 
    987   CHECK_EQ(0xabcd0001, i.a);
    988   CHECK_EQ(static_cast<int32_t>(0xabcd0000) >> 1, i.b);
    989   CHECK_EQ(0x00000000, i.c);
    990   CHECK_EQ(0xffffffff, i.d);
    991 }
    992 
    993 
    994 TEST(12) {
    995   // Test chaining of label usages within instructions (issue 1644).
    996   CcTest::InitializeVM();
    997   Isolate* isolate = CcTest::i_isolate();
    998   HandleScope scope(isolate);
    999 
   1000   Assembler assm(isolate, NULL, 0);
   1001   Label target;
   1002   __ b(eq, &target);
   1003   __ b(ne, &target);
   1004   __ bind(&target);
   1005   __ nop();
   1006 }
   1007 
   1008 
   1009 TEST(13) {
   1010   // Test VFP instructions using registers d16-d31.
   1011   CcTest::InitializeVM();
   1012   Isolate* isolate = CcTest::i_isolate();
   1013   HandleScope scope(isolate);
   1014 
   1015   if (!CpuFeatures::IsSupported(VFP32DREGS)) {
   1016     return;
   1017   }
   1018 
   1019   typedef struct {
   1020     double a;
   1021     double b;
   1022     double c;
   1023     double x;
   1024     double y;
   1025     double z;
   1026     double i;
   1027     double j;
   1028     double k;
   1029     uint32_t low;
   1030     uint32_t high;
   1031   } T;
   1032   T t;
   1033 
   1034   // Create a function that accepts &t, and loads, manipulates, and stores
   1035   // the doubles and floats.
   1036   Assembler assm(isolate, NULL, 0);
   1037   Label L, C;
   1038 
   1039 
   1040   if (CpuFeatures::IsSupported(VFP3)) {
   1041     CpuFeatureScope scope(&assm, VFP3);
   1042 
   1043     __ stm(db_w, sp, r4.bit() | lr.bit());
   1044 
   1045     // Load a, b, c into d16, d17, d18.
   1046     __ mov(r4, Operand(r0));
   1047     __ vldr(d16, r4, OFFSET_OF(T, a));
   1048     __ vldr(d17, r4, OFFSET_OF(T, b));
   1049     __ vldr(d18, r4, OFFSET_OF(T, c));
   1050 
   1051     __ vneg(d25, d16);
   1052     __ vadd(d25, d25, d17);
   1053     __ vsub(d25, d25, d18);
   1054     __ vmul(d25, d25, d25);
   1055     __ vdiv(d25, d25, d18);
   1056 
   1057     __ vmov(d16, d25);
   1058     __ vsqrt(d17, d25);
   1059     __ vneg(d17, d17);
   1060     __ vabs(d17, d17);
   1061     __ vmla(d18, d16, d17);
   1062 
   1063     // Store d16, d17, d18 into a, b, c.
   1064     __ mov(r4, Operand(r0));
   1065     __ vstr(d16, r4, OFFSET_OF(T, a));
   1066     __ vstr(d17, r4, OFFSET_OF(T, b));
   1067     __ vstr(d18, r4, OFFSET_OF(T, c));
   1068 
   1069     // Load x, y, z into d29-d31.
   1070     __ add(r4, r0, Operand(OFFSET_OF(T, x)));
   1071     __ vldm(ia_w, r4, d29, d31);
   1072 
   1073     // Swap d29 and d30 via r registers.
   1074     __ vmov(r1, r2, d29);
   1075     __ vmov(d29, d30);
   1076     __ vmov(d30, r1, r2);
   1077 
   1078     // Convert to and from integer.
   1079     __ vcvt_s32_f64(s1, d31);
   1080     __ vcvt_f64_u32(d31, s1);
   1081 
   1082     // Store d29-d31 into x, y, z.
   1083     __ add(r4, r0, Operand(OFFSET_OF(T, x)));
   1084     __ vstm(ia_w, r4, d29, d31);
   1085 
   1086     // Move constants into d20, d21, d22 and store into i, j, k.
   1087     __ vmov(d20, 14.7610017472335499);
   1088     __ vmov(d21, 16.0);
   1089     __ mov(r1, Operand(372106121));
   1090     __ mov(r2, Operand(1079146608));
   1091     __ vmov(d22, VmovIndexLo, r1);
   1092     __ vmov(d22, VmovIndexHi, r2);
   1093     __ add(r4, r0, Operand(OFFSET_OF(T, i)));
   1094     __ vstm(ia_w, r4, d20, d22);
   1095     // Move d22 into low and high.
   1096     __ vmov(r4, VmovIndexLo, d22);
   1097     __ str(r4, MemOperand(r0, OFFSET_OF(T, low)));
   1098     __ vmov(r4, VmovIndexHi, d22);
   1099     __ str(r4, MemOperand(r0, OFFSET_OF(T, high)));
   1100 
   1101     __ ldm(ia_w, sp, r4.bit() | pc.bit());
   1102 
   1103     CodeDesc desc;
   1104     assm.GetCode(&desc);
   1105     Handle<Code> code = isolate->factory()->NewCode(
   1106         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1107 #ifdef DEBUG
   1108     OFStream os(stdout);
   1109     code->Print(os);
   1110 #endif
   1111     F3 f = FUNCTION_CAST<F3>(code->entry());
   1112     t.a = 1.5;
   1113     t.b = 2.75;
   1114     t.c = 17.17;
   1115     t.x = 1.5;
   1116     t.y = 2.75;
   1117     t.z = 17.17;
   1118     Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
   1119     USE(dummy);
   1120     CHECK_EQ(14.7610017472335499, t.a);
   1121     CHECK_EQ(3.84200491244266251, t.b);
   1122     CHECK_EQ(73.8818412254460241, t.c);
   1123     CHECK_EQ(2.75, t.x);
   1124     CHECK_EQ(1.5, t.y);
   1125     CHECK_EQ(17.0, t.z);
   1126     CHECK_EQ(14.7610017472335499, t.i);
   1127     CHECK_EQ(16.0, t.j);
   1128     CHECK_EQ(73.8818412254460241, t.k);
   1129     CHECK_EQ(372106121, t.low);
   1130     CHECK_EQ(1079146608, t.high);
   1131   }
   1132 }
   1133 
   1134 
   1135 TEST(14) {
   1136   // Test the VFP Canonicalized Nan mode.
   1137   CcTest::InitializeVM();
   1138   Isolate* isolate = CcTest::i_isolate();
   1139   HandleScope scope(isolate);
   1140 
   1141   typedef struct {
   1142     double left;
   1143     double right;
   1144     double add_result;
   1145     double sub_result;
   1146     double mul_result;
   1147     double div_result;
   1148   } T;
   1149   T t;
   1150 
   1151   // Create a function that makes the four basic operations.
   1152   Assembler assm(isolate, NULL, 0);
   1153 
   1154   // Ensure FPSCR state (as JSEntryStub does).
   1155   Label fpscr_done;
   1156   __ vmrs(r1);
   1157   __ tst(r1, Operand(kVFPDefaultNaNModeControlBit));
   1158   __ b(ne, &fpscr_done);
   1159   __ orr(r1, r1, Operand(kVFPDefaultNaNModeControlBit));
   1160   __ vmsr(r1);
   1161   __ bind(&fpscr_done);
   1162 
   1163   __ vldr(d0, r0, OFFSET_OF(T, left));
   1164   __ vldr(d1, r0, OFFSET_OF(T, right));
   1165   __ vadd(d2, d0, d1);
   1166   __ vstr(d2, r0, OFFSET_OF(T, add_result));
   1167   __ vsub(d2, d0, d1);
   1168   __ vstr(d2, r0, OFFSET_OF(T, sub_result));
   1169   __ vmul(d2, d0, d1);
   1170   __ vstr(d2, r0, OFFSET_OF(T, mul_result));
   1171   __ vdiv(d2, d0, d1);
   1172   __ vstr(d2, r0, OFFSET_OF(T, div_result));
   1173 
   1174   __ mov(pc, Operand(lr));
   1175 
   1176   CodeDesc desc;
   1177   assm.GetCode(&desc);
   1178   Handle<Code> code = isolate->factory()->NewCode(
   1179       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1180 #ifdef DEBUG
   1181   OFStream os(stdout);
   1182   code->Print(os);
   1183 #endif
   1184   F3 f = FUNCTION_CAST<F3>(code->entry());
   1185   t.left = bit_cast<double>(kHoleNanInt64);
   1186   t.right = 1;
   1187   t.add_result = 0;
   1188   t.sub_result = 0;
   1189   t.mul_result = 0;
   1190   t.div_result = 0;
   1191   Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
   1192   USE(dummy);
   1193   const uint32_t kArmNanUpper32 = 0x7ff80000;
   1194   const uint32_t kArmNanLower32 = 0x00000000;
   1195 #ifdef DEBUG
   1196   const uint64_t kArmNanInt64 =
   1197       (static_cast<uint64_t>(kArmNanUpper32) << 32) | kArmNanLower32;
   1198   DCHECK(kArmNanInt64 != kHoleNanInt64);
   1199 #endif
   1200   // With VFP2 the sign of the canonicalized Nan is undefined. So
   1201   // we remove the sign bit for the upper tests.
   1202   CHECK_EQ(kArmNanUpper32,
   1203            (bit_cast<int64_t>(t.add_result) >> 32) & 0x7fffffff);
   1204   CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.add_result) & 0xffffffffu);
   1205   CHECK_EQ(kArmNanUpper32,
   1206            (bit_cast<int64_t>(t.sub_result) >> 32) & 0x7fffffff);
   1207   CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.sub_result) & 0xffffffffu);
   1208   CHECK_EQ(kArmNanUpper32,
   1209            (bit_cast<int64_t>(t.mul_result) >> 32) & 0x7fffffff);
   1210   CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.mul_result) & 0xffffffffu);
   1211   CHECK_EQ(kArmNanUpper32,
   1212            (bit_cast<int64_t>(t.div_result) >> 32) & 0x7fffffff);
   1213   CHECK_EQ(kArmNanLower32, bit_cast<int64_t>(t.div_result) & 0xffffffffu);
   1214 }
   1215 
   1216 
   1217 TEST(15) {
   1218   // Test the Neon instructions.
   1219   CcTest::InitializeVM();
   1220   Isolate* isolate = CcTest::i_isolate();
   1221   HandleScope scope(isolate);
   1222 
   1223   typedef struct {
   1224     uint32_t src0;
   1225     uint32_t src1;
   1226     uint32_t src2;
   1227     uint32_t src3;
   1228     uint32_t src4;
   1229     uint32_t src5;
   1230     uint32_t src6;
   1231     uint32_t src7;
   1232     uint32_t dst0;
   1233     uint32_t dst1;
   1234     uint32_t dst2;
   1235     uint32_t dst3;
   1236     uint32_t dst4;
   1237     uint32_t dst5;
   1238     uint32_t dst6;
   1239     uint32_t dst7;
   1240     uint32_t srcA0;
   1241     uint32_t srcA1;
   1242     uint32_t dstA0;
   1243     uint32_t dstA1;
   1244     uint32_t dstA2;
   1245     uint32_t dstA3;
   1246     uint32_t dstA4;
   1247     uint32_t dstA5;
   1248     uint32_t dstA6;
   1249     uint32_t dstA7;
   1250   } T;
   1251   T t;
   1252 
   1253   // Create a function that accepts &t, and loads, manipulates, and stores
   1254   // the doubles and floats.
   1255   Assembler assm(isolate, NULL, 0);
   1256 
   1257 
   1258   if (CpuFeatures::IsSupported(NEON)) {
   1259     CpuFeatureScope scope(&assm, NEON);
   1260 
   1261     __ stm(db_w, sp, r4.bit() | lr.bit());
   1262     // Move 32 bytes with neon.
   1263     __ add(r4, r0, Operand(OFFSET_OF(T, src0)));
   1264     __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4));
   1265     __ add(r4, r0, Operand(OFFSET_OF(T, dst0)));
   1266     __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(r4));
   1267 
   1268     // Expand 8 bytes into 8 words(16 bits).
   1269     __ add(r4, r0, Operand(OFFSET_OF(T, srcA0)));
   1270     __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(r4));
   1271     __ vmovl(NeonU8, q0, d0);
   1272     __ add(r4, r0, Operand(OFFSET_OF(T, dstA0)));
   1273     __ vst1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(r4));
   1274 
   1275     // The same expansion, but with different source and destination registers.
   1276     __ add(r4, r0, Operand(OFFSET_OF(T, srcA0)));
   1277     __ vld1(Neon8, NeonListOperand(d1), NeonMemOperand(r4));
   1278     __ vmovl(NeonU8, q1, d1);
   1279     __ add(r4, r0, Operand(OFFSET_OF(T, dstA4)));
   1280     __ vst1(Neon8, NeonListOperand(d2, 2), NeonMemOperand(r4));
   1281 
   1282     __ ldm(ia_w, sp, r4.bit() | pc.bit());
   1283 
   1284     CodeDesc desc;
   1285     assm.GetCode(&desc);
   1286     Handle<Code> code = isolate->factory()->NewCode(
   1287         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1288 #ifdef DEBUG
   1289     OFStream os(stdout);
   1290     code->Print(os);
   1291 #endif
   1292     F3 f = FUNCTION_CAST<F3>(code->entry());
   1293     t.src0 = 0x01020304;
   1294     t.src1 = 0x11121314;
   1295     t.src2 = 0x21222324;
   1296     t.src3 = 0x31323334;
   1297     t.src4 = 0x41424344;
   1298     t.src5 = 0x51525354;
   1299     t.src6 = 0x61626364;
   1300     t.src7 = 0x71727374;
   1301     t.dst0 = 0;
   1302     t.dst1 = 0;
   1303     t.dst2 = 0;
   1304     t.dst3 = 0;
   1305     t.dst4 = 0;
   1306     t.dst5 = 0;
   1307     t.dst6 = 0;
   1308     t.dst7 = 0;
   1309     t.srcA0 = 0x41424344;
   1310     t.srcA1 = 0x81828384;
   1311     t.dstA0 = 0;
   1312     t.dstA1 = 0;
   1313     t.dstA2 = 0;
   1314     t.dstA3 = 0;
   1315     t.dstA4 = 0;
   1316     t.dstA5 = 0;
   1317     t.dstA6 = 0;
   1318     t.dstA7 = 0;
   1319     Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
   1320     USE(dummy);
   1321     CHECK_EQ(0x01020304, t.dst0);
   1322     CHECK_EQ(0x11121314, t.dst1);
   1323     CHECK_EQ(0x21222324, t.dst2);
   1324     CHECK_EQ(0x31323334, t.dst3);
   1325     CHECK_EQ(0x41424344, t.dst4);
   1326     CHECK_EQ(0x51525354, t.dst5);
   1327     CHECK_EQ(0x61626364, t.dst6);
   1328     CHECK_EQ(0x71727374, t.dst7);
   1329     CHECK_EQ(0x00430044, t.dstA0);
   1330     CHECK_EQ(0x00410042, t.dstA1);
   1331     CHECK_EQ(0x00830084, t.dstA2);
   1332     CHECK_EQ(0x00810082, t.dstA3);
   1333     CHECK_EQ(0x00430044, t.dstA4);
   1334     CHECK_EQ(0x00410042, t.dstA5);
   1335     CHECK_EQ(0x00830084, t.dstA6);
   1336     CHECK_EQ(0x00810082, t.dstA7);
   1337   }
   1338 }
   1339 
   1340 
   1341 TEST(16) {
   1342   // Test the pkh, uxtb, uxtab and uxtb16 instructions.
   1343   CcTest::InitializeVM();
   1344   Isolate* isolate = CcTest::i_isolate();
   1345   HandleScope scope(isolate);
   1346 
   1347   typedef struct {
   1348     uint32_t src0;
   1349     uint32_t src1;
   1350     uint32_t src2;
   1351     uint32_t dst0;
   1352     uint32_t dst1;
   1353     uint32_t dst2;
   1354     uint32_t dst3;
   1355     uint32_t dst4;
   1356   } T;
   1357   T t;
   1358 
   1359   // Create a function that accepts &t, and loads, manipulates, and stores
   1360   // the doubles and floats.
   1361   Assembler assm(isolate, NULL, 0);
   1362 
   1363   __ stm(db_w, sp, r4.bit() | lr.bit());
   1364 
   1365   __ mov(r4, Operand(r0));
   1366   __ ldr(r0, MemOperand(r4, OFFSET_OF(T, src0)));
   1367   __ ldr(r1, MemOperand(r4, OFFSET_OF(T, src1)));
   1368 
   1369   __ pkhbt(r2, r0, Operand(r1, LSL, 8));
   1370   __ str(r2, MemOperand(r4, OFFSET_OF(T, dst0)));
   1371 
   1372   __ pkhtb(r2, r0, Operand(r1, ASR, 8));
   1373   __ str(r2, MemOperand(r4, OFFSET_OF(T, dst1)));
   1374 
   1375   __ uxtb16(r2, Operand(r0, ROR, 8));
   1376   __ str(r2, MemOperand(r4, OFFSET_OF(T, dst2)));
   1377 
   1378   __ uxtb(r2, Operand(r0, ROR, 8));
   1379   __ str(r2, MemOperand(r4, OFFSET_OF(T, dst3)));
   1380 
   1381   __ ldr(r0, MemOperand(r4, OFFSET_OF(T, src2)));
   1382   __ uxtab(r2, r0, Operand(r1, ROR, 8));
   1383   __ str(r2, MemOperand(r4, OFFSET_OF(T, dst4)));
   1384 
   1385   __ ldm(ia_w, sp, r4.bit() | pc.bit());
   1386 
   1387   CodeDesc desc;
   1388   assm.GetCode(&desc);
   1389   Handle<Code> code = isolate->factory()->NewCode(
   1390       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1391 #ifdef DEBUG
   1392   OFStream os(stdout);
   1393   code->Print(os);
   1394 #endif
   1395   F3 f = FUNCTION_CAST<F3>(code->entry());
   1396   t.src0 = 0x01020304;
   1397   t.src1 = 0x11121314;
   1398   t.src2 = 0x11121300;
   1399   t.dst0 = 0;
   1400   t.dst1 = 0;
   1401   t.dst2 = 0;
   1402   t.dst3 = 0;
   1403   t.dst4 = 0;
   1404   Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
   1405   USE(dummy);
   1406   CHECK_EQ(0x12130304, t.dst0);
   1407   CHECK_EQ(0x01021213, t.dst1);
   1408   CHECK_EQ(0x00010003, t.dst2);
   1409   CHECK_EQ(0x00000003, t.dst3);
   1410   CHECK_EQ(0x11121313, t.dst4);
   1411 }
   1412 
   1413 
   1414 TEST(17) {
   1415   // Test generating labels at high addresses.
   1416   // Should not assert.
   1417   CcTest::InitializeVM();
   1418   Isolate* isolate = CcTest::i_isolate();
   1419   HandleScope scope(isolate);
   1420 
   1421   // Generate a code segment that will be longer than 2^24 bytes.
   1422   Assembler assm(isolate, NULL, 0);
   1423   for (size_t i = 0; i < 1 << 23 ; ++i) {  // 2^23
   1424     __ nop();
   1425   }
   1426 
   1427   Label target;
   1428   __ b(eq, &target);
   1429   __ bind(&target);
   1430   __ nop();
   1431 }
   1432 
   1433 
   1434 #define TEST_SDIV(expected_, dividend_, divisor_) \
   1435     t.dividend = dividend_; \
   1436     t.divisor = divisor_; \
   1437     t.result = 0; \
   1438     dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0); \
   1439     CHECK_EQ(expected_, t.result);
   1440 
   1441 
   1442 TEST(18) {
   1443   // Test the sdiv.
   1444   CcTest::InitializeVM();
   1445   Isolate* isolate = CcTest::i_isolate();
   1446   HandleScope scope(isolate);
   1447 
   1448   typedef struct {
   1449     uint32_t dividend;
   1450     uint32_t divisor;
   1451     uint32_t result;
   1452   } T;
   1453   T t;
   1454 
   1455   Assembler assm(isolate, NULL, 0);
   1456 
   1457   if (CpuFeatures::IsSupported(SUDIV)) {
   1458     CpuFeatureScope scope(&assm, SUDIV);
   1459 
   1460     __ mov(r3, Operand(r0));
   1461 
   1462     __ ldr(r0, MemOperand(r3, OFFSET_OF(T, dividend)));
   1463     __ ldr(r1, MemOperand(r3, OFFSET_OF(T, divisor)));
   1464 
   1465     __ sdiv(r2, r0, r1);
   1466     __ str(r2, MemOperand(r3, OFFSET_OF(T, result)));
   1467 
   1468   __ bx(lr);
   1469 
   1470     CodeDesc desc;
   1471     assm.GetCode(&desc);
   1472     Handle<Code> code = isolate->factory()->NewCode(
   1473         desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
   1474 #ifdef DEBUG
   1475     OFStream os(stdout);
   1476     code->Print(os);
   1477 #endif
   1478     F3 f = FUNCTION_CAST<F3>(code->entry());
   1479     Object* dummy;
   1480     TEST_SDIV(1073741824, kMinInt, -2);
   1481     TEST_SDIV(kMinInt, kMinInt, -1);
   1482     TEST_SDIV(5, 10, 2);
   1483     TEST_SDIV(3, 10, 3);
   1484     TEST_SDIV(-5, 10, -2);
   1485     TEST_SDIV(-3, 10, -3);
   1486     TEST_SDIV(-5, -10, 2);
   1487     TEST_SDIV(-3, -10, 3);
   1488     TEST_SDIV(5, -10, -2);
   1489     TEST_SDIV(3, -10, -3);
   1490     USE(dummy);
   1491   }
   1492 }
   1493 
   1494 
   1495 #undef TEST_SDIV
   1496 
   1497 
   1498 TEST(code_relative_offset) {
   1499   // Test extracting the offset of a label from the beginning of the code
   1500   // in a register.
   1501   CcTest::InitializeVM();
   1502   Isolate* isolate = CcTest::i_isolate();
   1503   HandleScope scope(isolate);
   1504   // Initialize a code object that will contain the code.
   1505   Handle<Object> code_object(isolate->heap()->undefined_value(), isolate);
   1506 
   1507   Assembler assm(isolate, NULL, 0);
   1508 
   1509   Label start, target_away, target_faraway;
   1510 
   1511   __ stm(db_w, sp, r4.bit() | r5.bit() | lr.bit());
   1512 
   1513   // r3 is used as the address zero, the test will crash when we load it.
   1514   __ mov(r3, Operand::Zero());
   1515 
   1516   // r5 will be a pointer to the start of the code.
   1517   __ mov(r5, Operand(code_object));
   1518   __ mov_label_offset(r4, &start);
   1519 
   1520   __ mov_label_offset(r1, &target_faraway);
   1521   __ str(r1, MemOperand(sp, kPointerSize, NegPreIndex));
   1522 
   1523   __ mov_label_offset(r1, &target_away);
   1524 
   1525   // Jump straight to 'target_away' the first time and use the relative
   1526   // position the second time. This covers the case when extracting the
   1527   // position of a label which is linked.
   1528   __ mov(r2, Operand::Zero());
   1529   __ bind(&start);
   1530   __ cmp(r2, Operand::Zero());
   1531   __ b(eq, &target_away);
   1532   __ add(pc, r5, r1);
   1533   // Emit invalid instructions to push the label between 2^8 and 2^16
   1534   // instructions away. The test will crash if they are reached.
   1535   for (int i = 0; i < (1 << 10); i++) {
   1536     __ ldr(r3, MemOperand(r3));
   1537   }
   1538   __ bind(&target_away);
   1539   // This will be hit twice: r0 = r0 + 5 + 5.
   1540   __ add(r0, r0, Operand(5));
   1541 
   1542   __ ldr(r1, MemOperand(sp, kPointerSize, PostIndex), ne);
   1543   __ add(pc, r5, r4, LeaveCC, ne);
   1544 
   1545   __ mov(r2, Operand(1));
   1546   __ b(&start);
   1547   // Emit invalid instructions to push the label between 2^16 and 2^24
   1548   // instructions away. The test will crash if they are reached.
   1549   for (int i = 0; i < (1 << 21); i++) {
   1550     __ ldr(r3, MemOperand(r3));
   1551   }
   1552   __ bind(&target_faraway);
   1553   // r0 = r0 + 5 + 5 + 11
   1554   __ add(r0, r0, Operand(11));
   1555 
   1556   __ ldm(ia_w, sp, r4.bit() | r5.bit() | pc.bit());
   1557 
   1558   CodeDesc desc;
   1559   assm.GetCode(&desc);
   1560   Handle<Code> code = isolate->factory()->NewCode(
   1561       desc, Code::ComputeFlags(Code::STUB), code_object);
   1562   F1 f = FUNCTION_CAST<F1>(code->entry());
   1563   int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 21, 0, 0, 0, 0));
   1564   ::printf("f() = %d\n", res);
   1565   CHECK_EQ(42, res);
   1566 }
   1567 
   1568 #undef __
   1569