Home | History | Annotate | Download | only in fts3
      1 /*
      2 ** 2006 Oct 10
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 ******************************************************************************
     12 **
     13 ** This is an SQLite module implementing full-text search.
     14 */
     15 
     16 /*
     17 ** The code in this file is only compiled if:
     18 **
     19 **     * The FTS3 module is being built as an extension
     20 **       (in which case SQLITE_CORE is not defined), or
     21 **
     22 **     * The FTS3 module is being built into the core of
     23 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
     24 */
     25 
     26 /* The full-text index is stored in a series of b+tree (-like)
     27 ** structures called segments which map terms to doclists.  The
     28 ** structures are like b+trees in layout, but are constructed from the
     29 ** bottom up in optimal fashion and are not updatable.  Since trees
     30 ** are built from the bottom up, things will be described from the
     31 ** bottom up.
     32 **
     33 **
     34 **** Varints ****
     35 ** The basic unit of encoding is a variable-length integer called a
     36 ** varint.  We encode variable-length integers in little-endian order
     37 ** using seven bits * per byte as follows:
     38 **
     39 ** KEY:
     40 **         A = 0xxxxxxx    7 bits of data and one flag bit
     41 **         B = 1xxxxxxx    7 bits of data and one flag bit
     42 **
     43 **  7 bits - A
     44 ** 14 bits - BA
     45 ** 21 bits - BBA
     46 ** and so on.
     47 **
     48 ** This is similar in concept to how sqlite encodes "varints" but
     49 ** the encoding is not the same.  SQLite varints are big-endian
     50 ** are are limited to 9 bytes in length whereas FTS3 varints are
     51 ** little-endian and can be up to 10 bytes in length (in theory).
     52 **
     53 ** Example encodings:
     54 **
     55 **     1:    0x01
     56 **   127:    0x7f
     57 **   128:    0x81 0x00
     58 **
     59 **
     60 **** Document lists ****
     61 ** A doclist (document list) holds a docid-sorted list of hits for a
     62 ** given term.  Doclists hold docids and associated token positions.
     63 ** A docid is the unique integer identifier for a single document.
     64 ** A position is the index of a word within the document.  The first
     65 ** word of the document has a position of 0.
     66 **
     67 ** FTS3 used to optionally store character offsets using a compile-time
     68 ** option.  But that functionality is no longer supported.
     69 **
     70 ** A doclist is stored like this:
     71 **
     72 ** array {
     73 **   varint docid;
     74 **   array {                (position list for column 0)
     75 **     varint position;     (2 more than the delta from previous position)
     76 **   }
     77 **   array {
     78 **     varint POS_COLUMN;   (marks start of position list for new column)
     79 **     varint column;       (index of new column)
     80 **     array {
     81 **       varint position;   (2 more than the delta from previous position)
     82 **     }
     83 **   }
     84 **   varint POS_END;        (marks end of positions for this document.
     85 ** }
     86 **
     87 ** Here, array { X } means zero or more occurrences of X, adjacent in
     88 ** memory.  A "position" is an index of a token in the token stream
     89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
     90 ** in the same logical place as the position element, and act as sentinals
     91 ** ending a position list array.  POS_END is 0.  POS_COLUMN is 1.
     92 ** The positions numbers are not stored literally but rather as two more
     93 ** than the difference from the prior position, or the just the position plus
     94 ** 2 for the first position.  Example:
     95 **
     96 **   label:       A B C D E  F  G H   I  J K
     97 **   value:     123 5 9 1 1 14 35 0 234 72 0
     98 **
     99 ** The 123 value is the first docid.  For column zero in this document
    100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3).  The 1
    101 ** at D signals the start of a new column; the 1 at E indicates that the
    102 ** new column is column number 1.  There are two positions at 12 and 45
    103 ** (14-2 and 35-2+12).  The 0 at H indicate the end-of-document.  The
    104 ** 234 at I is the next docid.  It has one position 72 (72-2) and then
    105 ** terminates with the 0 at K.
    106 **
    107 ** A "position-list" is the list of positions for multiple columns for
    108 ** a single docid.  A "column-list" is the set of positions for a single
    109 ** column.  Hence, a position-list consists of one or more column-lists,
    110 ** a document record consists of a docid followed by a position-list and
    111 ** a doclist consists of one or more document records.
    112 **
    113 ** A bare doclist omits the position information, becoming an
    114 ** array of varint-encoded docids.
    115 **
    116 **** Segment leaf nodes ****
    117 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
    118 ** nodes are written using LeafWriter, and read using LeafReader (to
    119 ** iterate through a single leaf node's data) and LeavesReader (to
    120 ** iterate through a segment's entire leaf layer).  Leaf nodes have
    121 ** the format:
    122 **
    123 ** varint iHeight;             (height from leaf level, always 0)
    124 ** varint nTerm;               (length of first term)
    125 ** char pTerm[nTerm];          (content of first term)
    126 ** varint nDoclist;            (length of term's associated doclist)
    127 ** char pDoclist[nDoclist];    (content of doclist)
    128 ** array {
    129 **                             (further terms are delta-encoded)
    130 **   varint nPrefix;           (length of prefix shared with previous term)
    131 **   varint nSuffix;           (length of unshared suffix)
    132 **   char pTermSuffix[nSuffix];(unshared suffix of next term)
    133 **   varint nDoclist;          (length of term's associated doclist)
    134 **   char pDoclist[nDoclist];  (content of doclist)
    135 ** }
    136 **
    137 ** Here, array { X } means zero or more occurrences of X, adjacent in
    138 ** memory.
    139 **
    140 ** Leaf nodes are broken into blocks which are stored contiguously in
    141 ** the %_segments table in sorted order.  This means that when the end
    142 ** of a node is reached, the next term is in the node with the next
    143 ** greater node id.
    144 **
    145 ** New data is spilled to a new leaf node when the current node
    146 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
    147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
    148 ** node (a leaf node with a single term and doclist).  The goal of
    149 ** these settings is to pack together groups of small doclists while
    150 ** making it efficient to directly access large doclists.  The
    151 ** assumption is that large doclists represent terms which are more
    152 ** likely to be query targets.
    153 **
    154 ** TODO(shess) It may be useful for blocking decisions to be more
    155 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
    156 ** node rather than splitting into 2k and .5k nodes.  My intuition is
    157 ** that this might extend through 2x or 4x the pagesize.
    158 **
    159 **
    160 **** Segment interior nodes ****
    161 ** Segment interior nodes store blockids for subtree nodes and terms
    162 ** to describe what data is stored by the each subtree.  Interior
    163 ** nodes are written using InteriorWriter, and read using
    164 ** InteriorReader.  InteriorWriters are created as needed when
    165 ** SegmentWriter creates new leaf nodes, or when an interior node
    166 ** itself grows too big and must be split.  The format of interior
    167 ** nodes:
    168 **
    169 ** varint iHeight;           (height from leaf level, always >0)
    170 ** varint iBlockid;          (block id of node's leftmost subtree)
    171 ** optional {
    172 **   varint nTerm;           (length of first term)
    173 **   char pTerm[nTerm];      (content of first term)
    174 **   array {
    175 **                                (further terms are delta-encoded)
    176 **     varint nPrefix;            (length of shared prefix with previous term)
    177 **     varint nSuffix;            (length of unshared suffix)
    178 **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
    179 **   }
    180 ** }
    181 **
    182 ** Here, optional { X } means an optional element, while array { X }
    183 ** means zero or more occurrences of X, adjacent in memory.
    184 **
    185 ** An interior node encodes n terms separating n+1 subtrees.  The
    186 ** subtree blocks are contiguous, so only the first subtree's blockid
    187 ** is encoded.  The subtree at iBlockid will contain all terms less
    188 ** than the first term encoded (or all terms if no term is encoded).
    189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
    190 ** than pTerm[i+1], the subtree for that term will be rooted at
    191 ** iBlockid+i.  Interior nodes only store enough term data to
    192 ** distinguish adjacent children (if the rightmost term of the left
    193 ** child is "something", and the leftmost term of the right child is
    194 ** "wicked", only "w" is stored).
    195 **
    196 ** New data is spilled to a new interior node at the same height when
    197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
    198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
    199 ** interior nodes and making the tree too skinny.  The interior nodes
    200 ** at a given height are naturally tracked by interior nodes at
    201 ** height+1, and so on.
    202 **
    203 **
    204 **** Segment directory ****
    205 ** The segment directory in table %_segdir stores meta-information for
    206 ** merging and deleting segments, and also the root node of the
    207 ** segment's tree.
    208 **
    209 ** The root node is the top node of the segment's tree after encoding
    210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
    211 ** This could be either a leaf node or an interior node.  If the top
    212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
    213 ** and a new root interior node is generated (which should always fit
    214 ** within ROOT_MAX because it only needs space for 2 varints, the
    215 ** height and the blockid of the previous root).
    216 **
    217 ** The meta-information in the segment directory is:
    218 **   level               - segment level (see below)
    219 **   idx                 - index within level
    220 **                       - (level,idx uniquely identify a segment)
    221 **   start_block         - first leaf node
    222 **   leaves_end_block    - last leaf node
    223 **   end_block           - last block (including interior nodes)
    224 **   root                - contents of root node
    225 **
    226 ** If the root node is a leaf node, then start_block,
    227 ** leaves_end_block, and end_block are all 0.
    228 **
    229 **
    230 **** Segment merging ****
    231 ** To amortize update costs, segments are grouped into levels and
    232 ** merged in batches.  Each increase in level represents exponentially
    233 ** more documents.
    234 **
    235 ** New documents (actually, document updates) are tokenized and
    236 ** written individually (using LeafWriter) to a level 0 segment, with
    237 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
    238 ** level 0 segments are merged into a single level 1 segment.  Level 1
    239 ** is populated like level 0, and eventually MERGE_COUNT level 1
    240 ** segments are merged to a single level 2 segment (representing
    241 ** MERGE_COUNT^2 updates), and so on.
    242 **
    243 ** A segment merge traverses all segments at a given level in
    244 ** parallel, performing a straightforward sorted merge.  Since segment
    245 ** leaf nodes are written in to the %_segments table in order, this
    246 ** merge traverses the underlying sqlite disk structures efficiently.
    247 ** After the merge, all segment blocks from the merged level are
    248 ** deleted.
    249 **
    250 ** MERGE_COUNT controls how often we merge segments.  16 seems to be
    251 ** somewhat of a sweet spot for insertion performance.  32 and 64 show
    252 ** very similar performance numbers to 16 on insertion, though they're
    253 ** a tiny bit slower (perhaps due to more overhead in merge-time
    254 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
    255 ** 16, 2 about 66% slower than 16.
    256 **
    257 ** At query time, high MERGE_COUNT increases the number of segments
    258 ** which need to be scanned and merged.  For instance, with 100k docs
    259 ** inserted:
    260 **
    261 **    MERGE_COUNT   segments
    262 **       16           25
    263 **        8           12
    264 **        4           10
    265 **        2            6
    266 **
    267 ** This appears to have only a moderate impact on queries for very
    268 ** frequent terms (which are somewhat dominated by segment merge
    269 ** costs), and infrequent and non-existent terms still seem to be fast
    270 ** even with many segments.
    271 **
    272 ** TODO(shess) That said, it would be nice to have a better query-side
    273 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
    274 ** optimizations to things like doclist merging will swing the sweet
    275 ** spot around.
    276 **
    277 **
    278 **
    279 **** Handling of deletions and updates ****
    280 ** Since we're using a segmented structure, with no docid-oriented
    281 ** index into the term index, we clearly cannot simply update the term
    282 ** index when a document is deleted or updated.  For deletions, we
    283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
    284 ** we simply write the new doclist.  Segment merges overwrite older
    285 ** data for a particular docid with newer data, so deletes or updates
    286 ** will eventually overtake the earlier data and knock it out.  The
    287 ** query logic likewise merges doclists so that newer data knocks out
    288 ** older data.
    289 **
    290 ** TODO(shess) Provide a VACUUM type operation to clear out all
    291 ** deletions and duplications.  This would basically be a forced merge
    292 ** into a single segment.
    293 */
    294 #define CHROMIUM_FTS3_CHANGES 1
    295 
    296 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
    297 
    298 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
    299 # define SQLITE_CORE 1
    300 #endif
    301 
    302 #include "fts3Int.h"
    303 
    304 #include <assert.h>
    305 #include <stdlib.h>
    306 #include <stddef.h>
    307 #include <stdio.h>
    308 #include <string.h>
    309 #include <stdarg.h>
    310 
    311 #include "fts3.h"
    312 #ifndef SQLITE_CORE
    313 # include "sqlite3ext.h"
    314   SQLITE_EXTENSION_INIT1
    315 #endif
    316 
    317 /*
    318 ** Write a 64-bit variable-length integer to memory starting at p[0].
    319 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
    320 ** The number of bytes written is returned.
    321 */
    322 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
    323   unsigned char *q = (unsigned char *) p;
    324   sqlite_uint64 vu = v;
    325   do{
    326     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
    327     vu >>= 7;
    328   }while( vu!=0 );
    329   q[-1] &= 0x7f;  /* turn off high bit in final byte */
    330   assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
    331   return (int) (q - (unsigned char *)p);
    332 }
    333 
    334 /*
    335 ** Read a 64-bit variable-length integer from memory starting at p[0].
    336 ** Return the number of bytes read, or 0 on error.
    337 ** The value is stored in *v.
    338 */
    339 int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
    340   const unsigned char *q = (const unsigned char *) p;
    341   sqlite_uint64 x = 0, y = 1;
    342   while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
    343     x += y * (*q++ & 0x7f);
    344     y <<= 7;
    345   }
    346   x += y * (*q++);
    347   *v = (sqlite_int64) x;
    348   return (int) (q - (unsigned char *)p);
    349 }
    350 
    351 /*
    352 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
    353 ** 32-bit integer before it is returned.
    354 */
    355 int sqlite3Fts3GetVarint32(const char *p, int *pi){
    356  sqlite_int64 i;
    357  int ret = sqlite3Fts3GetVarint(p, &i);
    358  *pi = (int) i;
    359  return ret;
    360 }
    361 
    362 /*
    363 ** Return the number of bytes required to encode v as a varint
    364 */
    365 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
    366   int i = 0;
    367   do{
    368     i++;
    369     v >>= 7;
    370   }while( v!=0 );
    371   return i;
    372 }
    373 
    374 /*
    375 ** Convert an SQL-style quoted string into a normal string by removing
    376 ** the quote characters.  The conversion is done in-place.  If the
    377 ** input does not begin with a quote character, then this routine
    378 ** is a no-op.
    379 **
    380 ** Examples:
    381 **
    382 **     "abc"   becomes   abc
    383 **     'xyz'   becomes   xyz
    384 **     [pqr]   becomes   pqr
    385 **     `mno`   becomes   mno
    386 **
    387 */
    388 void sqlite3Fts3Dequote(char *z){
    389   char quote;                     /* Quote character (if any ) */
    390 
    391   quote = z[0];
    392   if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
    393     int iIn = 1;                  /* Index of next byte to read from input */
    394     int iOut = 0;                 /* Index of next byte to write to output */
    395 
    396     /* If the first byte was a '[', then the close-quote character is a ']' */
    397     if( quote=='[' ) quote = ']';
    398 
    399     while( ALWAYS(z[iIn]) ){
    400       if( z[iIn]==quote ){
    401         if( z[iIn+1]!=quote ) break;
    402         z[iOut++] = quote;
    403         iIn += 2;
    404       }else{
    405         z[iOut++] = z[iIn++];
    406       }
    407     }
    408     z[iOut] = '\0';
    409   }
    410 }
    411 
    412 /*
    413 ** Read a single varint from the doclist at *pp and advance *pp to point
    414 ** to the first byte past the end of the varint.  Add the value of the varint
    415 ** to *pVal.
    416 */
    417 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
    418   sqlite3_int64 iVal;
    419   *pp += sqlite3Fts3GetVarint(*pp, &iVal);
    420   *pVal += iVal;
    421 }
    422 
    423 /*
    424 ** As long as *pp has not reached its end (pEnd), then do the same
    425 ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
    426 ** But if we have reached the end of the varint, just set *pp=0 and
    427 ** leave *pVal unchanged.
    428 */
    429 static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){
    430   if( *pp>=pEnd ){
    431     *pp = 0;
    432   }else{
    433     fts3GetDeltaVarint(pp, pVal);
    434   }
    435 }
    436 
    437 /*
    438 ** The xDisconnect() virtual table method.
    439 */
    440 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
    441   Fts3Table *p = (Fts3Table *)pVtab;
    442   int i;
    443 
    444   assert( p->nPendingData==0 );
    445   assert( p->pSegments==0 );
    446 
    447   /* Free any prepared statements held */
    448   for(i=0; i<SizeofArray(p->aStmt); i++){
    449     sqlite3_finalize(p->aStmt[i]);
    450   }
    451   sqlite3_free(p->zSegmentsTbl);
    452   sqlite3_free(p->zReadExprlist);
    453   sqlite3_free(p->zWriteExprlist);
    454 
    455   /* Invoke the tokenizer destructor to free the tokenizer. */
    456   p->pTokenizer->pModule->xDestroy(p->pTokenizer);
    457 
    458   sqlite3_free(p);
    459   return SQLITE_OK;
    460 }
    461 
    462 /*
    463 ** Construct one or more SQL statements from the format string given
    464 ** and then evaluate those statements. The success code is written
    465 ** into *pRc.
    466 **
    467 ** If *pRc is initially non-zero then this routine is a no-op.
    468 */
    469 static void fts3DbExec(
    470   int *pRc,              /* Success code */
    471   sqlite3 *db,           /* Database in which to run SQL */
    472   const char *zFormat,   /* Format string for SQL */
    473   ...                    /* Arguments to the format string */
    474 ){
    475   va_list ap;
    476   char *zSql;
    477   if( *pRc ) return;
    478   va_start(ap, zFormat);
    479   zSql = sqlite3_vmprintf(zFormat, ap);
    480   va_end(ap);
    481   if( zSql==0 ){
    482     *pRc = SQLITE_NOMEM;
    483   }else{
    484     *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
    485     sqlite3_free(zSql);
    486   }
    487 }
    488 
    489 /*
    490 ** The xDestroy() virtual table method.
    491 */
    492 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
    493   int rc = SQLITE_OK;              /* Return code */
    494   Fts3Table *p = (Fts3Table *)pVtab;
    495   sqlite3 *db = p->db;
    496 
    497   /* Drop the shadow tables */
    498   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName);
    499   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName);
    500   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName);
    501   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName);
    502   fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName);
    503 
    504   /* If everything has worked, invoke fts3DisconnectMethod() to free the
    505   ** memory associated with the Fts3Table structure and return SQLITE_OK.
    506   ** Otherwise, return an SQLite error code.
    507   */
    508   return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
    509 }
    510 
    511 
    512 /*
    513 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
    514 ** passed as the first argument. This is done as part of the xConnect()
    515 ** and xCreate() methods.
    516 **
    517 ** If *pRc is non-zero when this function is called, it is a no-op.
    518 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
    519 ** before returning.
    520 */
    521 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
    522   if( *pRc==SQLITE_OK ){
    523     int i;                        /* Iterator variable */
    524     int rc;                       /* Return code */
    525     char *zSql;                   /* SQL statement passed to declare_vtab() */
    526     char *zCols;                  /* List of user defined columns */
    527 
    528     /* Create a list of user columns for the virtual table */
    529     zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
    530     for(i=1; zCols && i<p->nColumn; i++){
    531       zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
    532     }
    533 
    534     /* Create the whole "CREATE TABLE" statement to pass to SQLite */
    535     zSql = sqlite3_mprintf(
    536         "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName
    537     );
    538     if( !zCols || !zSql ){
    539       rc = SQLITE_NOMEM;
    540     }else{
    541       rc = sqlite3_declare_vtab(p->db, zSql);
    542     }
    543 
    544     sqlite3_free(zSql);
    545     sqlite3_free(zCols);
    546     *pRc = rc;
    547   }
    548 }
    549 
    550 /*
    551 ** Create the backing store tables (%_content, %_segments and %_segdir)
    552 ** required by the FTS3 table passed as the only argument. This is done
    553 ** as part of the vtab xCreate() method.
    554 **
    555 ** If the p->bHasDocsize boolean is true (indicating that this is an
    556 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
    557 ** %_stat tables required by FTS4.
    558 */
    559 static int fts3CreateTables(Fts3Table *p){
    560   int rc = SQLITE_OK;             /* Return code */
    561   int i;                          /* Iterator variable */
    562   char *zContentCols;             /* Columns of %_content table */
    563   sqlite3 *db = p->db;            /* The database connection */
    564 
    565   /* Create a list of user columns for the content table */
    566   zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
    567   for(i=0; zContentCols && i<p->nColumn; i++){
    568     char *z = p->azColumn[i];
    569     zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
    570   }
    571   if( zContentCols==0 ) rc = SQLITE_NOMEM;
    572 
    573   /* Create the content table */
    574   fts3DbExec(&rc, db,
    575      "CREATE TABLE %Q.'%q_content'(%s)",
    576      p->zDb, p->zName, zContentCols
    577   );
    578   sqlite3_free(zContentCols);
    579   /* Create other tables */
    580   fts3DbExec(&rc, db,
    581       "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
    582       p->zDb, p->zName
    583   );
    584   fts3DbExec(&rc, db,
    585       "CREATE TABLE %Q.'%q_segdir'("
    586         "level INTEGER,"
    587         "idx INTEGER,"
    588         "start_block INTEGER,"
    589         "leaves_end_block INTEGER,"
    590         "end_block INTEGER,"
    591         "root BLOB,"
    592         "PRIMARY KEY(level, idx)"
    593       ");",
    594       p->zDb, p->zName
    595   );
    596   if( p->bHasDocsize ){
    597     fts3DbExec(&rc, db,
    598         "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
    599         p->zDb, p->zName
    600     );
    601   }
    602   if( p->bHasStat ){
    603     fts3DbExec(&rc, db,
    604         "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);",
    605         p->zDb, p->zName
    606     );
    607   }
    608   return rc;
    609 }
    610 
    611 /*
    612 ** Store the current database page-size in bytes in p->nPgsz.
    613 **
    614 ** If *pRc is non-zero when this function is called, it is a no-op.
    615 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
    616 ** before returning.
    617 */
    618 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
    619   if( *pRc==SQLITE_OK ){
    620     int rc;                       /* Return code */
    621     char *zSql;                   /* SQL text "PRAGMA %Q.page_size" */
    622     sqlite3_stmt *pStmt;          /* Compiled "PRAGMA %Q.page_size" statement */
    623 
    624     zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
    625     if( !zSql ){
    626       rc = SQLITE_NOMEM;
    627     }else{
    628       rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
    629       if( rc==SQLITE_OK ){
    630         sqlite3_step(pStmt);
    631         p->nPgsz = sqlite3_column_int(pStmt, 0);
    632         rc = sqlite3_finalize(pStmt);
    633       }else if( rc==SQLITE_AUTH ){
    634         p->nPgsz = 1024;
    635         rc = SQLITE_OK;
    636       }
    637     }
    638     assert( p->nPgsz>0 || rc!=SQLITE_OK );
    639     sqlite3_free(zSql);
    640     *pRc = rc;
    641   }
    642 }
    643 
    644 /*
    645 ** "Special" FTS4 arguments are column specifications of the following form:
    646 **
    647 **   <key> = <value>
    648 **
    649 ** There may not be whitespace surrounding the "=" character. The <value>
    650 ** term may be quoted, but the <key> may not.
    651 */
    652 static int fts3IsSpecialColumn(
    653   const char *z,
    654   int *pnKey,
    655   char **pzValue
    656 ){
    657   char *zValue;
    658   const char *zCsr = z;
    659 
    660   while( *zCsr!='=' ){
    661     if( *zCsr=='\0' ) return 0;
    662     zCsr++;
    663   }
    664 
    665   *pnKey = (int)(zCsr-z);
    666   zValue = sqlite3_mprintf("%s", &zCsr[1]);
    667   if( zValue ){
    668     sqlite3Fts3Dequote(zValue);
    669   }
    670   *pzValue = zValue;
    671   return 1;
    672 }
    673 
    674 /*
    675 ** Append the output of a printf() style formatting to an existing string.
    676 */
    677 static void fts3Appendf(
    678   int *pRc,                       /* IN/OUT: Error code */
    679   char **pz,                      /* IN/OUT: Pointer to string buffer */
    680   const char *zFormat,            /* Printf format string to append */
    681   ...                             /* Arguments for printf format string */
    682 ){
    683   if( *pRc==SQLITE_OK ){
    684     va_list ap;
    685     char *z;
    686     va_start(ap, zFormat);
    687     z = sqlite3_vmprintf(zFormat, ap);
    688     if( z && *pz ){
    689       char *z2 = sqlite3_mprintf("%s%s", *pz, z);
    690       sqlite3_free(z);
    691       z = z2;
    692     }
    693     if( z==0 ) *pRc = SQLITE_NOMEM;
    694     sqlite3_free(*pz);
    695     *pz = z;
    696   }
    697 }
    698 
    699 /*
    700 ** Return a copy of input string zInput enclosed in double-quotes (") and
    701 ** with all double quote characters escaped. For example:
    702 **
    703 **     fts3QuoteId("un \"zip\"")   ->    "un \"\"zip\"\""
    704 **
    705 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
    706 ** is the callers responsibility to call sqlite3_free() to release this
    707 ** memory.
    708 */
    709 static char *fts3QuoteId(char const *zInput){
    710   int nRet;
    711   char *zRet;
    712   nRet = 2 + strlen(zInput)*2 + 1;
    713   zRet = sqlite3_malloc(nRet);
    714   if( zRet ){
    715     int i;
    716     char *z = zRet;
    717     *(z++) = '"';
    718     for(i=0; zInput[i]; i++){
    719       if( zInput[i]=='"' ) *(z++) = '"';
    720       *(z++) = zInput[i];
    721     }
    722     *(z++) = '"';
    723     *(z++) = '\0';
    724   }
    725   return zRet;
    726 }
    727 
    728 /*
    729 ** Return a list of comma separated SQL expressions that could be used
    730 ** in a SELECT statement such as the following:
    731 **
    732 **     SELECT <list of expressions> FROM %_content AS x ...
    733 **
    734 ** to return the docid, followed by each column of text data in order
    735 ** from left to write. If parameter zFunc is not NULL, then instead of
    736 ** being returned directly each column of text data is passed to an SQL
    737 ** function named zFunc first. For example, if zFunc is "unzip" and the
    738 ** table has the three user-defined columns "a", "b", and "c", the following
    739 ** string is returned:
    740 **
    741 **     "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')"
    742 **
    743 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
    744 ** is the responsibility of the caller to eventually free it.
    745 **
    746 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
    747 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
    748 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
    749 ** no error occurs, *pRc is left unmodified.
    750 */
    751 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
    752   char *zRet = 0;
    753   char *zFree = 0;
    754   char *zFunction;
    755   int i;
    756 
    757   if( !zFunc ){
    758     zFunction = "";
    759   }else{
    760     zFree = zFunction = fts3QuoteId(zFunc);
    761   }
    762   fts3Appendf(pRc, &zRet, "docid");
    763   for(i=0; i<p->nColumn; i++){
    764     fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
    765   }
    766   sqlite3_free(zFree);
    767   return zRet;
    768 }
    769 
    770 /*
    771 ** Return a list of N comma separated question marks, where N is the number
    772 ** of columns in the %_content table (one for the docid plus one for each
    773 ** user-defined text column).
    774 **
    775 ** If argument zFunc is not NULL, then all but the first question mark
    776 ** is preceded by zFunc and an open bracket, and followed by a closed
    777 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
    778 ** user-defined text columns, the following string is returned:
    779 **
    780 **     "?, zip(?), zip(?), zip(?)"
    781 **
    782 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
    783 ** is the responsibility of the caller to eventually free it.
    784 **
    785 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
    786 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
    787 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
    788 ** no error occurs, *pRc is left unmodified.
    789 */
    790 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
    791   char *zRet = 0;
    792   char *zFree = 0;
    793   char *zFunction;
    794   int i;
    795 
    796   if( !zFunc ){
    797     zFunction = "";
    798   }else{
    799     zFree = zFunction = fts3QuoteId(zFunc);
    800   }
    801   fts3Appendf(pRc, &zRet, "?");
    802   for(i=0; i<p->nColumn; i++){
    803     fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
    804   }
    805   sqlite3_free(zFree);
    806   return zRet;
    807 }
    808 
    809 /*
    810 ** This function is the implementation of both the xConnect and xCreate
    811 ** methods of the FTS3 virtual table.
    812 **
    813 ** The argv[] array contains the following:
    814 **
    815 **   argv[0]   -> module name  ("fts3" or "fts4")
    816 **   argv[1]   -> database name
    817 **   argv[2]   -> table name
    818 **   argv[...] -> "column name" and other module argument fields.
    819 */
    820 static int fts3InitVtab(
    821   int isCreate,                   /* True for xCreate, false for xConnect */
    822   sqlite3 *db,                    /* The SQLite database connection */
    823   void *pAux,                     /* Hash table containing tokenizers */
    824   int argc,                       /* Number of elements in argv array */
    825   const char * const *argv,       /* xCreate/xConnect argument array */
    826   sqlite3_vtab **ppVTab,          /* Write the resulting vtab structure here */
    827   char **pzErr                    /* Write any error message here */
    828 ){
    829   Fts3Hash *pHash = (Fts3Hash *)pAux;
    830   Fts3Table *p = 0;               /* Pointer to allocated vtab */
    831   int rc = SQLITE_OK;             /* Return code */
    832   int i;                          /* Iterator variable */
    833   int nByte;                      /* Size of allocation used for *p */
    834   int iCol;                       /* Column index */
    835   int nString = 0;                /* Bytes required to hold all column names */
    836   int nCol = 0;                   /* Number of columns in the FTS table */
    837   char *zCsr;                     /* Space for holding column names */
    838   int nDb;                        /* Bytes required to hold database name */
    839   int nName;                      /* Bytes required to hold table name */
    840   int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
    841   int bNoDocsize = 0;             /* True to omit %_docsize table */
    842   const char **aCol;              /* Array of column names */
    843   sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */
    844 
    845   char *zCompress = 0;
    846   char *zUncompress = 0;
    847 
    848   assert( strlen(argv[0])==4 );
    849   assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
    850        || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
    851   );
    852 
    853   nDb = (int)strlen(argv[1]) + 1;
    854   nName = (int)strlen(argv[2]) + 1;
    855 
    856   aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
    857   if( !aCol ) return SQLITE_NOMEM;
    858   memset((void *)aCol, 0, sizeof(const char *) * (argc-2));
    859 
    860   /* Loop through all of the arguments passed by the user to the FTS3/4
    861   ** module (i.e. all the column names and special arguments). This loop
    862   ** does the following:
    863   **
    864   **   + Figures out the number of columns the FTSX table will have, and
    865   **     the number of bytes of space that must be allocated to store copies
    866   **     of the column names.
    867   **
    868   **   + If there is a tokenizer specification included in the arguments,
    869   **     initializes the tokenizer pTokenizer.
    870   */
    871   for(i=3; rc==SQLITE_OK && i<argc; i++){
    872     char const *z = argv[i];
    873     int nKey;
    874     char *zVal;
    875 
    876     /* Check if this is a tokenizer specification */
    877     if( !pTokenizer
    878      && strlen(z)>8
    879      && 0==sqlite3_strnicmp(z, "tokenize", 8)
    880      && 0==sqlite3Fts3IsIdChar(z[8])
    881     ){
    882       rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
    883     }
    884 
    885     /* Check if it is an FTS4 special argument. */
    886     else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
    887       if( !zVal ){
    888         rc = SQLITE_NOMEM;
    889         goto fts3_init_out;
    890       }
    891       if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){
    892         if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){
    893           bNoDocsize = 1;
    894         }else{
    895           *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
    896           rc = SQLITE_ERROR;
    897         }
    898       }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){
    899         zCompress = zVal;
    900         zVal = 0;
    901       }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){
    902         zUncompress = zVal;
    903         zVal = 0;
    904       }else{
    905         *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
    906         rc = SQLITE_ERROR;
    907       }
    908       sqlite3_free(zVal);
    909     }
    910 
    911     /* Otherwise, the argument is a column name. */
    912     else {
    913       nString += (int)(strlen(z) + 1);
    914       aCol[nCol++] = z;
    915     }
    916   }
    917   if( rc!=SQLITE_OK ) goto fts3_init_out;
    918 
    919   if( nCol==0 ){
    920     assert( nString==0 );
    921     aCol[0] = "content";
    922     nString = 8;
    923     nCol = 1;
    924   }
    925 
    926   if( pTokenizer==0 ){
    927     rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
    928     if( rc!=SQLITE_OK ) goto fts3_init_out;
    929   }
    930   assert( pTokenizer );
    931 
    932 
    933   /* Allocate and populate the Fts3Table structure. */
    934   nByte = sizeof(Fts3Table) +              /* Fts3Table */
    935           nCol * sizeof(char *) +              /* azColumn */
    936           nName +                              /* zName */
    937           nDb +                                /* zDb */
    938           nString;                             /* Space for azColumn strings */
    939   p = (Fts3Table*)sqlite3_malloc(nByte);
    940   if( p==0 ){
    941     rc = SQLITE_NOMEM;
    942     goto fts3_init_out;
    943   }
    944   memset(p, 0, nByte);
    945   p->db = db;
    946   p->nColumn = nCol;
    947   p->nPendingData = 0;
    948   p->azColumn = (char **)&p[1];
    949   p->pTokenizer = pTokenizer;
    950   p->nNodeSize = 1000;
    951   p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
    952   p->bHasDocsize = (isFts4 && bNoDocsize==0);
    953   p->bHasStat = isFts4;
    954   fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);
    955 
    956   /* Fill in the zName and zDb fields of the vtab structure. */
    957   zCsr = (char *)&p->azColumn[nCol];
    958   p->zName = zCsr;
    959   memcpy(zCsr, argv[2], nName);
    960   zCsr += nName;
    961   p->zDb = zCsr;
    962   memcpy(zCsr, argv[1], nDb);
    963   zCsr += nDb;
    964 
    965   /* Fill in the azColumn array */
    966   for(iCol=0; iCol<nCol; iCol++){
    967     char *z;
    968     int n;
    969     z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
    970     memcpy(zCsr, z, n);
    971     zCsr[n] = '\0';
    972     sqlite3Fts3Dequote(zCsr);
    973     p->azColumn[iCol] = zCsr;
    974     zCsr += n+1;
    975     assert( zCsr <= &((char *)p)[nByte] );
    976   }
    977 
    978   if( (zCompress==0)!=(zUncompress==0) ){
    979     char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
    980     rc = SQLITE_ERROR;
    981     *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
    982   }
    983   p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
    984   p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
    985   if( rc!=SQLITE_OK ) goto fts3_init_out;
    986 
    987   /* If this is an xCreate call, create the underlying tables in the
    988   ** database. TODO: For xConnect(), it could verify that said tables exist.
    989   */
    990   if( isCreate ){
    991     rc = fts3CreateTables(p);
    992   }
    993 
    994   /* Figure out the page-size for the database. This is required in order to
    995   ** estimate the cost of loading large doclists from the database (see
    996   ** function sqlite3Fts3SegReaderCost() for details).
    997   */
    998   fts3DatabasePageSize(&rc, p);
    999 
   1000   /* Declare the table schema to SQLite. */
   1001   fts3DeclareVtab(&rc, p);
   1002 
   1003 fts3_init_out:
   1004   sqlite3_free(zCompress);
   1005   sqlite3_free(zUncompress);
   1006   sqlite3_free((void *)aCol);
   1007   if( rc!=SQLITE_OK ){
   1008     if( p ){
   1009       fts3DisconnectMethod((sqlite3_vtab *)p);
   1010     }else if( pTokenizer ){
   1011       pTokenizer->pModule->xDestroy(pTokenizer);
   1012     }
   1013   }else{
   1014     *ppVTab = &p->base;
   1015   }
   1016   return rc;
   1017 }
   1018 
   1019 /*
   1020 ** The xConnect() and xCreate() methods for the virtual table. All the
   1021 ** work is done in function fts3InitVtab().
   1022 */
   1023 static int fts3ConnectMethod(
   1024   sqlite3 *db,                    /* Database connection */
   1025   void *pAux,                     /* Pointer to tokenizer hash table */
   1026   int argc,                       /* Number of elements in argv array */
   1027   const char * const *argv,       /* xCreate/xConnect argument array */
   1028   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
   1029   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
   1030 ){
   1031   return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
   1032 }
   1033 static int fts3CreateMethod(
   1034   sqlite3 *db,                    /* Database connection */
   1035   void *pAux,                     /* Pointer to tokenizer hash table */
   1036   int argc,                       /* Number of elements in argv array */
   1037   const char * const *argv,       /* xCreate/xConnect argument array */
   1038   sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
   1039   char **pzErr                    /* OUT: sqlite3_malloc'd error message */
   1040 ){
   1041   return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
   1042 }
   1043 
   1044 /*
   1045 ** Implementation of the xBestIndex method for FTS3 tables. There
   1046 ** are three possible strategies, in order of preference:
   1047 **
   1048 **   1. Direct lookup by rowid or docid.
   1049 **   2. Full-text search using a MATCH operator on a non-docid column.
   1050 **   3. Linear scan of %_content table.
   1051 */
   1052 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
   1053   Fts3Table *p = (Fts3Table *)pVTab;
   1054   int i;                          /* Iterator variable */
   1055   int iCons = -1;                 /* Index of constraint to use */
   1056 
   1057   /* By default use a full table scan. This is an expensive option,
   1058   ** so search through the constraints to see if a more efficient
   1059   ** strategy is possible.
   1060   */
   1061   pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
   1062   pInfo->estimatedCost = 500000;
   1063   for(i=0; i<pInfo->nConstraint; i++){
   1064     struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
   1065     if( pCons->usable==0 ) continue;
   1066 
   1067     /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
   1068     if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
   1069      && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
   1070     ){
   1071       pInfo->idxNum = FTS3_DOCID_SEARCH;
   1072       pInfo->estimatedCost = 1.0;
   1073       iCons = i;
   1074     }
   1075 
   1076     /* A MATCH constraint. Use a full-text search.
   1077     **
   1078     ** If there is more than one MATCH constraint available, use the first
   1079     ** one encountered. If there is both a MATCH constraint and a direct
   1080     ** rowid/docid lookup, prefer the MATCH strategy. This is done even
   1081     ** though the rowid/docid lookup is faster than a MATCH query, selecting
   1082     ** it would lead to an "unable to use function MATCH in the requested
   1083     ** context" error.
   1084     */
   1085     if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
   1086      && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
   1087     ){
   1088       pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
   1089       pInfo->estimatedCost = 2.0;
   1090       iCons = i;
   1091       break;
   1092     }
   1093   }
   1094 
   1095   if( iCons>=0 ){
   1096     pInfo->aConstraintUsage[iCons].argvIndex = 1;
   1097     pInfo->aConstraintUsage[iCons].omit = 1;
   1098   }
   1099   return SQLITE_OK;
   1100 }
   1101 
   1102 /*
   1103 ** Implementation of xOpen method.
   1104 */
   1105 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
   1106   sqlite3_vtab_cursor *pCsr;               /* Allocated cursor */
   1107 
   1108   UNUSED_PARAMETER(pVTab);
   1109 
   1110   /* Allocate a buffer large enough for an Fts3Cursor structure. If the
   1111   ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
   1112   ** if the allocation fails, return SQLITE_NOMEM.
   1113   */
   1114   *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
   1115   if( !pCsr ){
   1116     return SQLITE_NOMEM;
   1117   }
   1118   memset(pCsr, 0, sizeof(Fts3Cursor));
   1119   return SQLITE_OK;
   1120 }
   1121 
   1122 /*
   1123 ** Close the cursor.  For additional information see the documentation
   1124 ** on the xClose method of the virtual table interface.
   1125 */
   1126 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
   1127   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
   1128   assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
   1129   sqlite3_finalize(pCsr->pStmt);
   1130   sqlite3Fts3ExprFree(pCsr->pExpr);
   1131   sqlite3Fts3FreeDeferredTokens(pCsr);
   1132   sqlite3_free(pCsr->aDoclist);
   1133   sqlite3_free(pCsr->aMatchinfo);
   1134   sqlite3_free(pCsr);
   1135   return SQLITE_OK;
   1136 }
   1137 
   1138 /*
   1139 ** Position the pCsr->pStmt statement so that it is on the row
   1140 ** of the %_content table that contains the last match.  Return
   1141 ** SQLITE_OK on success.
   1142 */
   1143 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
   1144   if( pCsr->isRequireSeek ){
   1145     pCsr->isRequireSeek = 0;
   1146     sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
   1147     if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
   1148       return SQLITE_OK;
   1149     }else{
   1150       int rc = sqlite3_reset(pCsr->pStmt);
   1151       if( rc==SQLITE_OK ){
   1152         /* If no row was found and no error has occured, then the %_content
   1153         ** table is missing a row that is present in the full-text index.
   1154         ** The data structures are corrupt.
   1155         */
   1156         rc = SQLITE_CORRUPT;
   1157       }
   1158       pCsr->isEof = 1;
   1159       if( pContext ){
   1160         sqlite3_result_error_code(pContext, rc);
   1161       }
   1162       return rc;
   1163     }
   1164   }else{
   1165     return SQLITE_OK;
   1166   }
   1167 }
   1168 
   1169 /*
   1170 ** This function is used to process a single interior node when searching
   1171 ** a b-tree for a term or term prefix. The node data is passed to this
   1172 ** function via the zNode/nNode parameters. The term to search for is
   1173 ** passed in zTerm/nTerm.
   1174 **
   1175 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
   1176 ** of the child node that heads the sub-tree that may contain the term.
   1177 **
   1178 ** If piLast is not NULL, then *piLast is set to the right-most child node
   1179 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
   1180 ** a prefix.
   1181 **
   1182 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
   1183 */
   1184 static int fts3ScanInteriorNode(
   1185   const char *zTerm,              /* Term to select leaves for */
   1186   int nTerm,                      /* Size of term zTerm in bytes */
   1187   const char *zNode,              /* Buffer containing segment interior node */
   1188   int nNode,                      /* Size of buffer at zNode */
   1189   sqlite3_int64 *piFirst,         /* OUT: Selected child node */
   1190   sqlite3_int64 *piLast           /* OUT: Selected child node */
   1191 ){
   1192   int rc = SQLITE_OK;             /* Return code */
   1193   const char *zCsr = zNode;       /* Cursor to iterate through node */
   1194   const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
   1195   char *zBuffer = 0;              /* Buffer to load terms into */
   1196   int nAlloc = 0;                 /* Size of allocated buffer */
   1197   int isFirstTerm = 1;            /* True when processing first term on page */
   1198   sqlite3_int64 iChild;           /* Block id of child node to descend to */
   1199 
   1200   /* Skip over the 'height' varint that occurs at the start of every
   1201   ** interior node. Then load the blockid of the left-child of the b-tree
   1202   ** node into variable iChild.
   1203   **
   1204   ** Even if the data structure on disk is corrupted, this (reading two
   1205   ** varints from the buffer) does not risk an overread. If zNode is a
   1206   ** root node, then the buffer comes from a SELECT statement. SQLite does
   1207   ** not make this guarantee explicitly, but in practice there are always
   1208   ** either more than 20 bytes of allocated space following the nNode bytes of
   1209   ** contents, or two zero bytes. Or, if the node is read from the %_segments
   1210   ** table, then there are always 20 bytes of zeroed padding following the
   1211   ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
   1212   */
   1213   zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
   1214   zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
   1215   if( zCsr>zEnd ){
   1216     return SQLITE_CORRUPT;
   1217   }
   1218 
   1219   while( zCsr<zEnd && (piFirst || piLast) ){
   1220     int cmp;                      /* memcmp() result */
   1221     int nSuffix;                  /* Size of term suffix */
   1222     int nPrefix = 0;              /* Size of term prefix */
   1223     int nBuffer;                  /* Total term size */
   1224 
   1225     /* Load the next term on the node into zBuffer. Use realloc() to expand
   1226     ** the size of zBuffer if required.  */
   1227     if( !isFirstTerm ){
   1228       zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
   1229     }
   1230     isFirstTerm = 0;
   1231     zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
   1232 
   1233     /* NOTE(shess): Previous code checked for negative nPrefix and
   1234     ** nSuffix and suffix overrunning zEnd.  Additionally corrupt if
   1235     ** the prefix is longer than the previous term, or if the suffix
   1236     ** causes overflow.
   1237     */
   1238     if( nPrefix<0 || nSuffix<0 /* || nPrefix>nBuffer */
   1239      || &zCsr[nSuffix]<zCsr || &zCsr[nSuffix]>zEnd ){
   1240       rc = SQLITE_CORRUPT;
   1241       goto finish_scan;
   1242     }
   1243     if( nPrefix+nSuffix>nAlloc ){
   1244       char *zNew;
   1245       nAlloc = (nPrefix+nSuffix) * 2;
   1246       zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
   1247       if( !zNew ){
   1248         rc = SQLITE_NOMEM;
   1249         goto finish_scan;
   1250       }
   1251       zBuffer = zNew;
   1252     }
   1253     memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
   1254     nBuffer = nPrefix + nSuffix;
   1255     zCsr += nSuffix;
   1256 
   1257     /* Compare the term we are searching for with the term just loaded from
   1258     ** the interior node. If the specified term is greater than or equal
   1259     ** to the term from the interior node, then all terms on the sub-tree
   1260     ** headed by node iChild are smaller than zTerm. No need to search
   1261     ** iChild.
   1262     **
   1263     ** If the interior node term is larger than the specified term, then
   1264     ** the tree headed by iChild may contain the specified term.
   1265     */
   1266     cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
   1267     if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
   1268       *piFirst = iChild;
   1269       piFirst = 0;
   1270     }
   1271 
   1272     if( piLast && cmp<0 ){
   1273       *piLast = iChild;
   1274       piLast = 0;
   1275     }
   1276 
   1277     iChild++;
   1278   };
   1279 
   1280   if( piFirst ) *piFirst = iChild;
   1281   if( piLast ) *piLast = iChild;
   1282 
   1283  finish_scan:
   1284   sqlite3_free(zBuffer);
   1285   return rc;
   1286 }
   1287 
   1288 
   1289 /*
   1290 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
   1291 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
   1292 ** contains a term. This function searches the sub-tree headed by the zNode
   1293 ** node for the range of leaf nodes that may contain the specified term
   1294 ** or terms for which the specified term is a prefix.
   1295 **
   1296 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
   1297 ** left-most leaf node in the tree that may contain the specified term.
   1298 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
   1299 ** right-most leaf node that may contain a term for which the specified
   1300 ** term is a prefix.
   1301 **
   1302 ** It is possible that the range of returned leaf nodes does not contain
   1303 ** the specified term or any terms for which it is a prefix. However, if the
   1304 ** segment does contain any such terms, they are stored within the identified
   1305 ** range. Because this function only inspects interior segment nodes (and
   1306 ** never loads leaf nodes into memory), it is not possible to be sure.
   1307 **
   1308 ** If an error occurs, an error code other than SQLITE_OK is returned.
   1309 */
   1310 static int fts3SelectLeaf(
   1311   Fts3Table *p,                   /* Virtual table handle */
   1312   const char *zTerm,              /* Term to select leaves for */
   1313   int nTerm,                      /* Size of term zTerm in bytes */
   1314   const char *zNode,              /* Buffer containing segment interior node */
   1315   int nNode,                      /* Size of buffer at zNode */
   1316   sqlite3_int64 *piLeaf,          /* Selected leaf node */
   1317   sqlite3_int64 *piLeaf2          /* Selected leaf node */
   1318 ){
   1319   int rc;                         /* Return code */
   1320   int iHeight;                    /* Height of this node in tree */
   1321 
   1322   assert( piLeaf || piLeaf2 );
   1323 
   1324   sqlite3Fts3GetVarint32(zNode, &iHeight);
   1325   rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
   1326   assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
   1327 
   1328   if( rc==SQLITE_OK && iHeight>1 ){
   1329     char *zBlob = 0;              /* Blob read from %_segments table */
   1330     int nBlob;                    /* Size of zBlob in bytes */
   1331 
   1332     if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
   1333       rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
   1334       if( rc==SQLITE_OK ){
   1335         rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
   1336       }
   1337       sqlite3_free(zBlob);
   1338       piLeaf = 0;
   1339       zBlob = 0;
   1340     }
   1341 
   1342     if( rc==SQLITE_OK ){
   1343       rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
   1344     }
   1345     if( rc==SQLITE_OK ){
   1346       rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
   1347     }
   1348     sqlite3_free(zBlob);
   1349   }
   1350 
   1351   return rc;
   1352 }
   1353 
   1354 /*
   1355 ** This function is used to create delta-encoded serialized lists of FTS3
   1356 ** varints. Each call to this function appends a single varint to a list.
   1357 */
   1358 static void fts3PutDeltaVarint(
   1359   char **pp,                      /* IN/OUT: Output pointer */
   1360   sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
   1361   sqlite3_int64 iVal              /* Write this value to the list */
   1362 ){
   1363   assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
   1364   *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
   1365   *piPrev = iVal;
   1366 }
   1367 
   1368 /*
   1369 ** When this function is called, *ppPoslist is assumed to point to the
   1370 ** start of a position-list. After it returns, *ppPoslist points to the
   1371 ** first byte after the position-list.
   1372 **
   1373 ** A position list is list of positions (delta encoded) and columns for
   1374 ** a single document record of a doclist.  So, in other words, this
   1375 ** routine advances *ppPoslist so that it points to the next docid in
   1376 ** the doclist, or to the first byte past the end of the doclist.
   1377 **
   1378 ** If pp is not NULL, then the contents of the position list are copied
   1379 ** to *pp. *pp is set to point to the first byte past the last byte copied
   1380 ** before this function returns.
   1381 */
   1382 static void fts3PoslistCopy(char **pp, char **ppPoslist){
   1383   char *pEnd = *ppPoslist;
   1384   char c = 0;
   1385 
   1386   /* The end of a position list is marked by a zero encoded as an FTS3
   1387   ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
   1388   ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
   1389   ** of some other, multi-byte, value.
   1390   **
   1391   ** The following while-loop moves pEnd to point to the first byte that is not
   1392   ** immediately preceded by a byte with the 0x80 bit set. Then increments
   1393   ** pEnd once more so that it points to the byte immediately following the
   1394   ** last byte in the position-list.
   1395   */
   1396   while( *pEnd | c ){
   1397     c = *pEnd++ & 0x80;
   1398     testcase( c!=0 && (*pEnd)==0 );
   1399   }
   1400   pEnd++;  /* Advance past the POS_END terminator byte */
   1401 
   1402   if( pp ){
   1403     int n = (int)(pEnd - *ppPoslist);
   1404     char *p = *pp;
   1405     memcpy(p, *ppPoslist, n);
   1406     p += n;
   1407     *pp = p;
   1408   }
   1409   *ppPoslist = pEnd;
   1410 }
   1411 
   1412 /*
   1413 ** When this function is called, *ppPoslist is assumed to point to the
   1414 ** start of a column-list. After it returns, *ppPoslist points to the
   1415 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
   1416 **
   1417 ** A column-list is list of delta-encoded positions for a single column
   1418 ** within a single document within a doclist.
   1419 **
   1420 ** The column-list is terminated either by a POS_COLUMN varint (1) or
   1421 ** a POS_END varint (0).  This routine leaves *ppPoslist pointing to
   1422 ** the POS_COLUMN or POS_END that terminates the column-list.
   1423 **
   1424 ** If pp is not NULL, then the contents of the column-list are copied
   1425 ** to *pp. *pp is set to point to the first byte past the last byte copied
   1426 ** before this function returns.  The POS_COLUMN or POS_END terminator
   1427 ** is not copied into *pp.
   1428 */
   1429 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
   1430   char *pEnd = *ppPoslist;
   1431   char c = 0;
   1432 
   1433   /* A column-list is terminated by either a 0x01 or 0x00 byte that is
   1434   ** not part of a multi-byte varint.
   1435   */
   1436   while( 0xFE & (*pEnd | c) ){
   1437     c = *pEnd++ & 0x80;
   1438     testcase( c!=0 && ((*pEnd)&0xfe)==0 );
   1439   }
   1440   if( pp ){
   1441     int n = (int)(pEnd - *ppPoslist);
   1442     char *p = *pp;
   1443     memcpy(p, *ppPoslist, n);
   1444     p += n;
   1445     *pp = p;
   1446   }
   1447   *ppPoslist = pEnd;
   1448 }
   1449 
   1450 /*
   1451 ** Value used to signify the end of an position-list. This is safe because
   1452 ** it is not possible to have a document with 2^31 terms.
   1453 */
   1454 #define POSITION_LIST_END 0x7fffffff
   1455 
   1456 /*
   1457 ** This function is used to help parse position-lists. When this function is
   1458 ** called, *pp may point to the start of the next varint in the position-list
   1459 ** being parsed, or it may point to 1 byte past the end of the position-list
   1460 ** (in which case **pp will be a terminator bytes POS_END (0) or
   1461 ** (1)).
   1462 **
   1463 ** If *pp points past the end of the current position-list, set *pi to
   1464 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
   1465 ** increment the current value of *pi by the value read, and set *pp to
   1466 ** point to the next value before returning.
   1467 **
   1468 ** Before calling this routine *pi must be initialized to the value of
   1469 ** the previous position, or zero if we are reading the first position
   1470 ** in the position-list.  Because positions are delta-encoded, the value
   1471 ** of the previous position is needed in order to compute the value of
   1472 ** the next position.
   1473 */
   1474 static void fts3ReadNextPos(
   1475   char **pp,                    /* IN/OUT: Pointer into position-list buffer */
   1476   sqlite3_int64 *pi             /* IN/OUT: Value read from position-list */
   1477 ){
   1478   if( (**pp)&0xFE ){
   1479     fts3GetDeltaVarint(pp, pi);
   1480     *pi -= 2;
   1481   }else{
   1482     *pi = POSITION_LIST_END;
   1483   }
   1484 }
   1485 
   1486 /*
   1487 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
   1488 ** the value of iCol encoded as a varint to *pp.   This will start a new
   1489 ** column list.
   1490 **
   1491 ** Set *pp to point to the byte just after the last byte written before
   1492 ** returning (do not modify it if iCol==0). Return the total number of bytes
   1493 ** written (0 if iCol==0).
   1494 */
   1495 static int fts3PutColNumber(char **pp, int iCol){
   1496   int n = 0;                      /* Number of bytes written */
   1497   if( iCol ){
   1498     char *p = *pp;                /* Output pointer */
   1499     n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
   1500     *p = 0x01;
   1501     *pp = &p[n];
   1502   }
   1503   return n;
   1504 }
   1505 
   1506 /*
   1507 ** Compute the union of two position lists.  The output written
   1508 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
   1509 ** order and with any duplicates removed.  All pointers are
   1510 ** updated appropriately.   The caller is responsible for insuring
   1511 ** that there is enough space in *pp to hold the complete output.
   1512 */
   1513 static void fts3PoslistMerge(
   1514   char **pp,                      /* Output buffer */
   1515   char **pp1,                     /* Left input list */
   1516   char **pp2                      /* Right input list */
   1517 ){
   1518   char *p = *pp;
   1519   char *p1 = *pp1;
   1520   char *p2 = *pp2;
   1521 
   1522   while( *p1 || *p2 ){
   1523     int iCol1;         /* The current column index in pp1 */
   1524     int iCol2;         /* The current column index in pp2 */
   1525 
   1526     if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1);
   1527     else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
   1528     else iCol1 = 0;
   1529 
   1530     if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2);
   1531     else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
   1532     else iCol2 = 0;
   1533 
   1534     if( iCol1==iCol2 ){
   1535       sqlite3_int64 i1 = 0;       /* Last position from pp1 */
   1536       sqlite3_int64 i2 = 0;       /* Last position from pp2 */
   1537       sqlite3_int64 iPrev = 0;
   1538       int n = fts3PutColNumber(&p, iCol1);
   1539       p1 += n;
   1540       p2 += n;
   1541 
   1542       /* At this point, both p1 and p2 point to the start of column-lists
   1543       ** for the same column (the column with index iCol1 and iCol2).
   1544       ** A column-list is a list of non-negative delta-encoded varints, each
   1545       ** incremented by 2 before being stored. Each list is terminated by a
   1546       ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
   1547       ** and writes the results to buffer p. p is left pointing to the byte
   1548       ** after the list written. No terminator (POS_END or POS_COLUMN) is
   1549       ** written to the output.
   1550       */
   1551       fts3GetDeltaVarint(&p1, &i1);
   1552       fts3GetDeltaVarint(&p2, &i2);
   1553       do {
   1554         fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
   1555         iPrev -= 2;
   1556         if( i1==i2 ){
   1557           fts3ReadNextPos(&p1, &i1);
   1558           fts3ReadNextPos(&p2, &i2);
   1559         }else if( i1<i2 ){
   1560           fts3ReadNextPos(&p1, &i1);
   1561         }else{
   1562           fts3ReadNextPos(&p2, &i2);
   1563         }
   1564       }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
   1565     }else if( iCol1<iCol2 ){
   1566       p1 += fts3PutColNumber(&p, iCol1);
   1567       fts3ColumnlistCopy(&p, &p1);
   1568     }else{
   1569       p2 += fts3PutColNumber(&p, iCol2);
   1570       fts3ColumnlistCopy(&p, &p2);
   1571     }
   1572   }
   1573 
   1574   *p++ = POS_END;
   1575   *pp = p;
   1576   *pp1 = p1 + 1;
   1577   *pp2 = p2 + 1;
   1578 }
   1579 
   1580 /*
   1581 ** nToken==1 searches for adjacent positions.
   1582 **
   1583 ** This function is used to merge two position lists into one. When it is
   1584 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
   1585 ** the part of a doclist that follows each document id. For example, if a row
   1586 ** contains:
   1587 **
   1588 **     'a b c'|'x y z'|'a b b a'
   1589 **
   1590 ** Then the position list for this row for token 'b' would consist of:
   1591 **
   1592 **     0x02 0x01 0x02 0x03 0x03 0x00
   1593 **
   1594 ** When this function returns, both *pp1 and *pp2 are left pointing to the
   1595 ** byte following the 0x00 terminator of their respective position lists.
   1596 **
   1597 ** If isSaveLeft is 0, an entry is added to the output position list for
   1598 ** each position in *pp2 for which there exists one or more positions in
   1599 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
   1600 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
   1601 ** slots before it.
   1602 */
   1603 static int fts3PoslistPhraseMerge(
   1604   char **pp,                      /* IN/OUT: Preallocated output buffer */
   1605   int nToken,                     /* Maximum difference in token positions */
   1606   int isSaveLeft,                 /* Save the left position */
   1607   int isExact,                    /* If *pp1 is exactly nTokens before *pp2 */
   1608   char **pp1,                     /* IN/OUT: Left input list */
   1609   char **pp2                      /* IN/OUT: Right input list */
   1610 ){
   1611   char *p = (pp ? *pp : 0);
   1612   char *p1 = *pp1;
   1613   char *p2 = *pp2;
   1614   int iCol1 = 0;
   1615   int iCol2 = 0;
   1616 
   1617   /* Never set both isSaveLeft and isExact for the same invocation. */
   1618   assert( isSaveLeft==0 || isExact==0 );
   1619 
   1620   assert( *p1!=0 && *p2!=0 );
   1621   if( *p1==POS_COLUMN ){
   1622     p1++;
   1623     p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
   1624   }
   1625   if( *p2==POS_COLUMN ){
   1626     p2++;
   1627     p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
   1628   }
   1629 
   1630   while( 1 ){
   1631     if( iCol1==iCol2 ){
   1632       char *pSave = p;
   1633       sqlite3_int64 iPrev = 0;
   1634       sqlite3_int64 iPos1 = 0;
   1635       sqlite3_int64 iPos2 = 0;
   1636 
   1637       if( pp && iCol1 ){
   1638         *p++ = POS_COLUMN;
   1639         p += sqlite3Fts3PutVarint(p, iCol1);
   1640       }
   1641 
   1642       assert( *p1!=POS_END && *p1!=POS_COLUMN );
   1643       assert( *p2!=POS_END && *p2!=POS_COLUMN );
   1644       fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
   1645       fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
   1646 
   1647       while( 1 ){
   1648         if( iPos2==iPos1+nToken
   1649          || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
   1650         ){
   1651           sqlite3_int64 iSave;
   1652           if( !pp ){
   1653             fts3PoslistCopy(0, &p2);
   1654             fts3PoslistCopy(0, &p1);
   1655             *pp1 = p1;
   1656             *pp2 = p2;
   1657             return 1;
   1658           }
   1659           iSave = isSaveLeft ? iPos1 : iPos2;
   1660           fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
   1661           pSave = 0;
   1662         }
   1663         if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
   1664           if( (*p2&0xFE)==0 ) break;
   1665           fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
   1666         }else{
   1667           if( (*p1&0xFE)==0 ) break;
   1668           fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
   1669         }
   1670       }
   1671 
   1672       if( pSave ){
   1673         assert( pp && p );
   1674         p = pSave;
   1675       }
   1676 
   1677       fts3ColumnlistCopy(0, &p1);
   1678       fts3ColumnlistCopy(0, &p2);
   1679       assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
   1680       if( 0==*p1 || 0==*p2 ) break;
   1681 
   1682       p1++;
   1683       p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
   1684       p2++;
   1685       p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
   1686     }
   1687 
   1688     /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
   1689     ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
   1690     ** end of the position list, or the 0x01 that precedes the next
   1691     ** column-number in the position list.
   1692     */
   1693     else if( iCol1<iCol2 ){
   1694       fts3ColumnlistCopy(0, &p1);
   1695       if( 0==*p1 ) break;
   1696       p1++;
   1697       p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
   1698     }else{
   1699       fts3ColumnlistCopy(0, &p2);
   1700       if( 0==*p2 ) break;
   1701       p2++;
   1702       p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
   1703     }
   1704   }
   1705 
   1706   fts3PoslistCopy(0, &p2);
   1707   fts3PoslistCopy(0, &p1);
   1708   *pp1 = p1;
   1709   *pp2 = p2;
   1710   if( !pp || *pp==p ){
   1711     return 0;
   1712   }
   1713   *p++ = 0x00;
   1714   *pp = p;
   1715   return 1;
   1716 }
   1717 
   1718 /*
   1719 ** Merge two position-lists as required by the NEAR operator.
   1720 */
   1721 static int fts3PoslistNearMerge(
   1722   char **pp,                      /* Output buffer */
   1723   char *aTmp,                     /* Temporary buffer space */
   1724   int nRight,                     /* Maximum difference in token positions */
   1725   int nLeft,                      /* Maximum difference in token positions */
   1726   char **pp1,                     /* IN/OUT: Left input list */
   1727   char **pp2                      /* IN/OUT: Right input list */
   1728 ){
   1729   char *p1 = *pp1;
   1730   char *p2 = *pp2;
   1731 
   1732   if( !pp ){
   1733     if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1;
   1734     *pp1 = p1;
   1735     *pp2 = p2;
   1736     return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1);
   1737   }else{
   1738     char *pTmp1 = aTmp;
   1739     char *pTmp2;
   1740     char *aTmp2;
   1741     int res = 1;
   1742 
   1743     fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
   1744     aTmp2 = pTmp2 = pTmp1;
   1745     *pp1 = p1;
   1746     *pp2 = p2;
   1747     fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
   1748     if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
   1749       fts3PoslistMerge(pp, &aTmp, &aTmp2);
   1750     }else if( pTmp1!=aTmp ){
   1751       fts3PoslistCopy(pp, &aTmp);
   1752     }else if( pTmp2!=aTmp2 ){
   1753       fts3PoslistCopy(pp, &aTmp2);
   1754     }else{
   1755       res = 0;
   1756     }
   1757 
   1758     return res;
   1759   }
   1760 }
   1761 
   1762 /*
   1763 ** Values that may be used as the first parameter to fts3DoclistMerge().
   1764 */
   1765 #define MERGE_NOT        2        /* D + D -> D */
   1766 #define MERGE_AND        3        /* D + D -> D */
   1767 #define MERGE_OR         4        /* D + D -> D */
   1768 #define MERGE_POS_OR     5        /* P + P -> P */
   1769 #define MERGE_PHRASE     6        /* P + P -> D */
   1770 #define MERGE_POS_PHRASE 7        /* P + P -> P */
   1771 #define MERGE_NEAR       8        /* P + P -> D */
   1772 #define MERGE_POS_NEAR   9        /* P + P -> P */
   1773 
   1774 /*
   1775 ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
   1776 ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
   1777 ** which is guaranteed to be large enough to hold the results. The number
   1778 ** of bytes written to aBuffer is stored in *pnBuffer before returning.
   1779 **
   1780 ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
   1781 ** occurs while allocating a temporary buffer as part of the merge operation,
   1782 ** SQLITE_NOMEM is returned.
   1783 */
   1784 static int fts3DoclistMerge(
   1785   int mergetype,                  /* One of the MERGE_XXX constants */
   1786   int nParam1,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
   1787   int nParam2,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
   1788   char *aBuffer,                  /* Pre-allocated output buffer */
   1789   int *pnBuffer,                  /* OUT: Bytes written to aBuffer */
   1790   char *a1,                       /* Buffer containing first doclist */
   1791   int n1,                         /* Size of buffer a1 */
   1792   char *a2,                       /* Buffer containing second doclist */
   1793   int n2,                         /* Size of buffer a2 */
   1794   int *pnDoc                      /* OUT: Number of docids in output */
   1795 ){
   1796   sqlite3_int64 i1 = 0;
   1797   sqlite3_int64 i2 = 0;
   1798   sqlite3_int64 iPrev = 0;
   1799 
   1800   char *p = aBuffer;
   1801   char *p1 = a1;
   1802   char *p2 = a2;
   1803   char *pEnd1 = &a1[n1];
   1804   char *pEnd2 = &a2[n2];
   1805   int nDoc = 0;
   1806 
   1807   assert( mergetype==MERGE_OR     || mergetype==MERGE_POS_OR
   1808        || mergetype==MERGE_AND    || mergetype==MERGE_NOT
   1809        || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
   1810        || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
   1811   );
   1812 
   1813   if( !aBuffer ){
   1814     *pnBuffer = 0;
   1815     return SQLITE_NOMEM;
   1816   }
   1817 
   1818   /* Read the first docid from each doclist */
   1819   fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1820   fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1821 
   1822   switch( mergetype ){
   1823     case MERGE_OR:
   1824     case MERGE_POS_OR:
   1825       while( p1 || p2 ){
   1826         if( p2 && p1 && i1==i2 ){
   1827           fts3PutDeltaVarint(&p, &iPrev, i1);
   1828           if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2);
   1829           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1830           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1831         }else if( !p2 || (p1 && i1<i2) ){
   1832           fts3PutDeltaVarint(&p, &iPrev, i1);
   1833           if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1);
   1834           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1835         }else{
   1836           fts3PutDeltaVarint(&p, &iPrev, i2);
   1837           if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2);
   1838           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1839         }
   1840       }
   1841       break;
   1842 
   1843     case MERGE_AND:
   1844       while( p1 && p2 ){
   1845         if( i1==i2 ){
   1846           fts3PutDeltaVarint(&p, &iPrev, i1);
   1847           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1848           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1849           nDoc++;
   1850         }else if( i1<i2 ){
   1851           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1852         }else{
   1853           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1854         }
   1855       }
   1856       break;
   1857 
   1858     case MERGE_NOT:
   1859       while( p1 ){
   1860         if( p2 && i1==i2 ){
   1861           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1862           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1863         }else if( !p2 || i1<i2 ){
   1864           fts3PutDeltaVarint(&p, &iPrev, i1);
   1865           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1866         }else{
   1867           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1868         }
   1869       }
   1870       break;
   1871 
   1872     case MERGE_POS_PHRASE:
   1873     case MERGE_PHRASE: {
   1874       char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p);
   1875       while( p1 && p2 ){
   1876         if( i1==i2 ){
   1877           char *pSave = p;
   1878           sqlite3_int64 iPrevSave = iPrev;
   1879           fts3PutDeltaVarint(&p, &iPrev, i1);
   1880           if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
   1881             p = pSave;
   1882             iPrev = iPrevSave;
   1883           }else{
   1884             nDoc++;
   1885           }
   1886           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1887           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1888         }else if( i1<i2 ){
   1889           fts3PoslistCopy(0, &p1);
   1890           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1891         }else{
   1892           fts3PoslistCopy(0, &p2);
   1893           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1894         }
   1895       }
   1896       break;
   1897     }
   1898 
   1899     default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
   1900       char *aTmp = 0;
   1901       char **ppPos = 0;
   1902 
   1903       if( mergetype==MERGE_POS_NEAR ){
   1904         ppPos = &p;
   1905         aTmp = sqlite3_malloc(2*(n1+n2+1));
   1906         if( !aTmp ){
   1907           return SQLITE_NOMEM;
   1908         }
   1909       }
   1910 
   1911       while( p1 && p2 ){
   1912         if( i1==i2 ){
   1913           char *pSave = p;
   1914           sqlite3_int64 iPrevSave = iPrev;
   1915           fts3PutDeltaVarint(&p, &iPrev, i1);
   1916 
   1917           if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){
   1918             iPrev = iPrevSave;
   1919             p = pSave;
   1920           }
   1921 
   1922           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1923           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1924         }else if( i1<i2 ){
   1925           fts3PoslistCopy(0, &p1);
   1926           fts3GetDeltaVarint2(&p1, pEnd1, &i1);
   1927         }else{
   1928           fts3PoslistCopy(0, &p2);
   1929           fts3GetDeltaVarint2(&p2, pEnd2, &i2);
   1930         }
   1931       }
   1932       sqlite3_free(aTmp);
   1933       break;
   1934     }
   1935   }
   1936 
   1937   if( pnDoc ) *pnDoc = nDoc;
   1938   *pnBuffer = (int)(p-aBuffer);
   1939   return SQLITE_OK;
   1940 }
   1941 
   1942 /*
   1943 ** A pointer to an instance of this structure is used as the context
   1944 ** argument to sqlite3Fts3SegReaderIterate()
   1945 */
   1946 typedef struct TermSelect TermSelect;
   1947 struct TermSelect {
   1948   int isReqPos;
   1949   char *aaOutput[16];             /* Malloc'd output buffer */
   1950   int anOutput[16];               /* Size of output in bytes */
   1951 };
   1952 
   1953 /*
   1954 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
   1955 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
   1956 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
   1957 **
   1958 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
   1959 ** the responsibility of the caller to free any doclists left in the
   1960 ** TermSelect.aaOutput[] array.
   1961 */
   1962 static int fts3TermSelectMerge(TermSelect *pTS){
   1963   int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
   1964   char *aOut = 0;
   1965   int nOut = 0;
   1966   int i;
   1967 
   1968   /* Loop through the doclists in the aaOutput[] array. Merge them all
   1969   ** into a single doclist.
   1970   */
   1971   for(i=0; i<SizeofArray(pTS->aaOutput); i++){
   1972     if( pTS->aaOutput[i] ){
   1973       if( !aOut ){
   1974         aOut = pTS->aaOutput[i];
   1975         nOut = pTS->anOutput[i];
   1976         pTS->aaOutput[i] = 0;
   1977       }else{
   1978         int nNew = nOut + pTS->anOutput[i];
   1979         char *aNew = sqlite3_malloc(nNew);
   1980         if( !aNew ){
   1981           sqlite3_free(aOut);
   1982           return SQLITE_NOMEM;
   1983         }
   1984         fts3DoclistMerge(mergetype, 0, 0,
   1985             aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
   1986         );
   1987         sqlite3_free(pTS->aaOutput[i]);
   1988         sqlite3_free(aOut);
   1989         pTS->aaOutput[i] = 0;
   1990         aOut = aNew;
   1991         nOut = nNew;
   1992       }
   1993     }
   1994   }
   1995 
   1996   pTS->aaOutput[0] = aOut;
   1997   pTS->anOutput[0] = nOut;
   1998   return SQLITE_OK;
   1999 }
   2000 
   2001 /*
   2002 ** This function is used as the sqlite3Fts3SegReaderIterate() callback when
   2003 ** querying the full-text index for a doclist associated with a term or
   2004 ** term-prefix.
   2005 */
   2006 static int fts3TermSelectCb(
   2007   Fts3Table *p,                   /* Virtual table object */
   2008   void *pContext,                 /* Pointer to TermSelect structure */
   2009   char *zTerm,
   2010   int nTerm,
   2011   char *aDoclist,
   2012   int nDoclist
   2013 ){
   2014   TermSelect *pTS = (TermSelect *)pContext;
   2015 
   2016   UNUSED_PARAMETER(p);
   2017   UNUSED_PARAMETER(zTerm);
   2018   UNUSED_PARAMETER(nTerm);
   2019 
   2020   if( pTS->aaOutput[0]==0 ){
   2021     /* If this is the first term selected, copy the doclist to the output
   2022     ** buffer using memcpy(). TODO: Add a way to transfer control of the
   2023     ** aDoclist buffer from the caller so as to avoid the memcpy().
   2024     */
   2025     pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
   2026     pTS->anOutput[0] = nDoclist;
   2027     if( pTS->aaOutput[0] ){
   2028       memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
   2029     }else{
   2030       return SQLITE_NOMEM;
   2031     }
   2032   }else{
   2033     int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
   2034     char *aMerge = aDoclist;
   2035     int nMerge = nDoclist;
   2036     int iOut;
   2037 
   2038     for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
   2039       char *aNew;
   2040       int nNew;
   2041       if( pTS->aaOutput[iOut]==0 ){
   2042         assert( iOut>0 );
   2043         pTS->aaOutput[iOut] = aMerge;
   2044         pTS->anOutput[iOut] = nMerge;
   2045         break;
   2046       }
   2047 
   2048       nNew = nMerge + pTS->anOutput[iOut];
   2049       aNew = sqlite3_malloc(nNew);
   2050       if( !aNew ){
   2051         if( aMerge!=aDoclist ){
   2052           sqlite3_free(aMerge);
   2053         }
   2054         return SQLITE_NOMEM;
   2055       }
   2056       fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew,
   2057           pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
   2058       );
   2059 
   2060       if( iOut>0 ) sqlite3_free(aMerge);
   2061       sqlite3_free(pTS->aaOutput[iOut]);
   2062       pTS->aaOutput[iOut] = 0;
   2063 
   2064       aMerge = aNew;
   2065       nMerge = nNew;
   2066       if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
   2067         pTS->aaOutput[iOut] = aMerge;
   2068         pTS->anOutput[iOut] = nMerge;
   2069       }
   2070     }
   2071   }
   2072   return SQLITE_OK;
   2073 }
   2074 
   2075 static int fts3DeferredTermSelect(
   2076   Fts3DeferredToken *pToken,      /* Phrase token */
   2077   int isTermPos,                  /* True to include positions */
   2078   int *pnOut,                     /* OUT: Size of list */
   2079   char **ppOut                    /* OUT: Body of list */
   2080 ){
   2081   char *aSource;
   2082   int nSource;
   2083 
   2084   aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource);
   2085   if( !aSource ){
   2086     *pnOut = 0;
   2087     *ppOut = 0;
   2088   }else if( isTermPos ){
   2089     *ppOut = sqlite3_malloc(nSource);
   2090     if( !*ppOut ) return SQLITE_NOMEM;
   2091     memcpy(*ppOut, aSource, nSource);
   2092     *pnOut = nSource;
   2093   }else{
   2094     sqlite3_int64 docid;
   2095     *pnOut = sqlite3Fts3GetVarint(aSource, &docid);
   2096     *ppOut = sqlite3_malloc(*pnOut);
   2097     if( !*ppOut ) return SQLITE_NOMEM;
   2098     sqlite3Fts3PutVarint(*ppOut, docid);
   2099   }
   2100 
   2101   return SQLITE_OK;
   2102 }
   2103 
   2104 int sqlite3Fts3SegReaderCursor(
   2105   Fts3Table *p,                   /* FTS3 table handle */
   2106   int iLevel,                     /* Level of segments to scan */
   2107   const char *zTerm,              /* Term to query for */
   2108   int nTerm,                      /* Size of zTerm in bytes */
   2109   int isPrefix,                   /* True for a prefix search */
   2110   int isScan,                     /* True to scan from zTerm to EOF */
   2111   Fts3SegReaderCursor *pCsr       /* Cursor object to populate */
   2112 ){
   2113   int rc = SQLITE_OK;
   2114   int rc2;
   2115   int iAge = 0;
   2116   sqlite3_stmt *pStmt = 0;
   2117   Fts3SegReader *pPending = 0;
   2118 
   2119   assert( iLevel==FTS3_SEGCURSOR_ALL
   2120       ||  iLevel==FTS3_SEGCURSOR_PENDING
   2121       ||  iLevel>=0
   2122   );
   2123   assert( FTS3_SEGCURSOR_PENDING<0 );
   2124   assert( FTS3_SEGCURSOR_ALL<0 );
   2125   assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) );
   2126   assert( isPrefix==0 || isScan==0 );
   2127 
   2128 
   2129   memset(pCsr, 0, sizeof(Fts3SegReaderCursor));
   2130 
   2131   /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
   2132   assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 );
   2133   if( iLevel<0 && isScan==0 ){
   2134     rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending);
   2135     if( rc==SQLITE_OK && pPending ){
   2136       int nByte = (sizeof(Fts3SegReader *) * 16);
   2137       pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
   2138       if( pCsr->apSegment==0 ){
   2139         rc = SQLITE_NOMEM;
   2140       }else{
   2141         pCsr->apSegment[0] = pPending;
   2142         pCsr->nSegment = 1;
   2143         pPending = 0;
   2144       }
   2145     }
   2146   }
   2147 
   2148   if( iLevel!=FTS3_SEGCURSOR_PENDING ){
   2149     if( rc==SQLITE_OK ){
   2150       rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt);
   2151     }
   2152     while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
   2153 
   2154       /* Read the values returned by the SELECT into local variables. */
   2155       sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
   2156       sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
   2157       sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
   2158       int nRoot = sqlite3_column_bytes(pStmt, 4);
   2159       char const *zRoot = sqlite3_column_blob(pStmt, 4);
   2160 
   2161       /* If nSegment is a multiple of 16 the array needs to be extended. */
   2162       if( (pCsr->nSegment%16)==0 ){
   2163         Fts3SegReader **apNew;
   2164         int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
   2165         apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
   2166         if( !apNew ){
   2167           rc = SQLITE_NOMEM;
   2168           goto finished;
   2169         }
   2170         pCsr->apSegment = apNew;
   2171       }
   2172 
   2173       /* If zTerm is not NULL, and this segment is not stored entirely on its
   2174       ** root node, the range of leaves scanned can be reduced. Do this. */
   2175       if( iStartBlock && zTerm ){
   2176         sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
   2177         rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
   2178         if( rc!=SQLITE_OK ) goto finished;
   2179         if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
   2180       }
   2181 
   2182       rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock,
   2183           iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment]
   2184       );
   2185       if( rc!=SQLITE_OK ) goto finished;
   2186       pCsr->nSegment++;
   2187       iAge++;
   2188     }
   2189   }
   2190 
   2191  finished:
   2192   rc2 = sqlite3_reset(pStmt);
   2193   if( rc==SQLITE_DONE ) rc = rc2;
   2194   sqlite3Fts3SegReaderFree(pPending);
   2195 
   2196   return rc;
   2197 }
   2198 
   2199 
   2200 static int fts3TermSegReaderCursor(
   2201   Fts3Cursor *pCsr,               /* Virtual table cursor handle */
   2202   const char *zTerm,              /* Term to query for */
   2203   int nTerm,                      /* Size of zTerm in bytes */
   2204   int isPrefix,                   /* True for a prefix search */
   2205   Fts3SegReaderCursor **ppSegcsr  /* OUT: Allocated seg-reader cursor */
   2206 ){
   2207   Fts3SegReaderCursor *pSegcsr;   /* Object to allocate and return */
   2208   int rc = SQLITE_NOMEM;          /* Return code */
   2209 
   2210   pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor));
   2211   if( pSegcsr ){
   2212     Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
   2213     int i;
   2214     int nCost = 0;
   2215     rc = sqlite3Fts3SegReaderCursor(
   2216         p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr);
   2217 
   2218     for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){
   2219       rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost);
   2220     }
   2221     pSegcsr->nCost = nCost;
   2222   }
   2223 
   2224   *ppSegcsr = pSegcsr;
   2225   return rc;
   2226 }
   2227 
   2228 static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){
   2229   sqlite3Fts3SegReaderFinish(pSegcsr);
   2230   sqlite3_free(pSegcsr);
   2231 }
   2232 
   2233 /*
   2234 ** This function retreives the doclist for the specified term (or term
   2235 ** prefix) from the database.
   2236 **
   2237 ** The returned doclist may be in one of two formats, depending on the
   2238 ** value of parameter isReqPos. If isReqPos is zero, then the doclist is
   2239 ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
   2240 ** is non-zero, then the returned list is in the same format as is stored
   2241 ** in the database without the found length specifier at the start of on-disk
   2242 ** doclists.
   2243 */
   2244 static int fts3TermSelect(
   2245   Fts3Table *p,                   /* Virtual table handle */
   2246   Fts3PhraseToken *pTok,          /* Token to query for */
   2247   int iColumn,                    /* Column to query (or -ve for all columns) */
   2248   int isReqPos,                   /* True to include position lists in output */
   2249   int *pnOut,                     /* OUT: Size of buffer at *ppOut */
   2250   char **ppOut                    /* OUT: Malloced result buffer */
   2251 ){
   2252   int rc;                         /* Return code */
   2253   Fts3SegReaderCursor *pSegcsr;   /* Seg-reader cursor for this term */
   2254   TermSelect tsc;                 /* Context object for fts3TermSelectCb() */
   2255   Fts3SegFilter filter;           /* Segment term filter configuration */
   2256 
   2257   pSegcsr = pTok->pSegcsr;
   2258   memset(&tsc, 0, sizeof(TermSelect));
   2259   tsc.isReqPos = isReqPos;
   2260 
   2261   filter.flags = FTS3_SEGMENT_IGNORE_EMPTY
   2262         | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
   2263         | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0)
   2264         | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
   2265   filter.iCol = iColumn;
   2266   filter.zTerm = pTok->z;
   2267   filter.nTerm = pTok->n;
   2268 
   2269   rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
   2270   while( SQLITE_OK==rc
   2271       && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
   2272   ){
   2273     rc = fts3TermSelectCb(p, (void *)&tsc,
   2274         pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
   2275     );
   2276   }
   2277 
   2278   if( rc==SQLITE_OK ){
   2279     rc = fts3TermSelectMerge(&tsc);
   2280   }
   2281   if( rc==SQLITE_OK ){
   2282     *ppOut = tsc.aaOutput[0];
   2283     *pnOut = tsc.anOutput[0];
   2284   }else{
   2285     int i;
   2286     for(i=0; i<SizeofArray(tsc.aaOutput); i++){
   2287       sqlite3_free(tsc.aaOutput[i]);
   2288     }
   2289   }
   2290 
   2291   fts3SegReaderCursorFree(pSegcsr);
   2292   pTok->pSegcsr = 0;
   2293   return rc;
   2294 }
   2295 
   2296 /*
   2297 ** This function counts the total number of docids in the doclist stored
   2298 ** in buffer aList[], size nList bytes.
   2299 **
   2300 ** If the isPoslist argument is true, then it is assumed that the doclist
   2301 ** contains a position-list following each docid. Otherwise, it is assumed
   2302 ** that the doclist is simply a list of docids stored as delta encoded
   2303 ** varints.
   2304 */
   2305 static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
   2306   int nDoc = 0;                   /* Return value */
   2307   if( aList ){
   2308     char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
   2309     char *p = aList;              /* Cursor */
   2310     if( !isPoslist ){
   2311       /* The number of docids in the list is the same as the number of
   2312       ** varints. In FTS3 a varint consists of a single byte with the 0x80
   2313       ** bit cleared and zero or more bytes with the 0x80 bit set. So to
   2314       ** count the varints in the buffer, just count the number of bytes
   2315       ** with the 0x80 bit clear.  */
   2316       while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
   2317     }else{
   2318       while( p<aEnd ){
   2319         nDoc++;
   2320         while( (*p++)&0x80 );     /* Skip docid varint */
   2321         fts3PoslistCopy(0, &p);   /* Skip over position list */
   2322       }
   2323     }
   2324   }
   2325 
   2326   return nDoc;
   2327 }
   2328 
   2329 /*
   2330 ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
   2331 */
   2332 static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){
   2333   int rc = SQLITE_OK;
   2334   if( pExpr ){
   2335     rc = fts3DeferExpression(pCsr, pExpr->pLeft);
   2336     if( rc==SQLITE_OK ){
   2337       rc = fts3DeferExpression(pCsr, pExpr->pRight);
   2338     }
   2339     if( pExpr->eType==FTSQUERY_PHRASE ){
   2340       int iCol = pExpr->pPhrase->iColumn;
   2341       int i;
   2342       for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){
   2343         Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
   2344         if( pToken->pDeferred==0 ){
   2345           rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol);
   2346         }
   2347       }
   2348     }
   2349   }
   2350   return rc;
   2351 }
   2352 
   2353 /*
   2354 ** This function removes the position information from a doclist. When
   2355 ** called, buffer aList (size *pnList bytes) contains a doclist that includes
   2356 ** position information. This function removes the position information so
   2357 ** that aList contains only docids, and adjusts *pnList to reflect the new
   2358 ** (possibly reduced) size of the doclist.
   2359 */
   2360 static void fts3DoclistStripPositions(
   2361   char *aList,                    /* IN/OUT: Buffer containing doclist */
   2362   int *pnList                     /* IN/OUT: Size of doclist in bytes */
   2363 ){
   2364   if( aList ){
   2365     char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
   2366     char *p = aList;              /* Input cursor */
   2367     char *pOut = aList;           /* Output cursor */
   2368 
   2369     while( p<aEnd ){
   2370       sqlite3_int64 delta;
   2371       p += sqlite3Fts3GetVarint(p, &delta);
   2372       fts3PoslistCopy(0, &p);
   2373       pOut += sqlite3Fts3PutVarint(pOut, delta);
   2374     }
   2375 
   2376     *pnList = (int)(pOut - aList);
   2377   }
   2378 }
   2379 
   2380 /*
   2381 ** Return a DocList corresponding to the phrase *pPhrase.
   2382 **
   2383 ** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
   2384 ** then no tokens in the phrase were looked up in the full-text index. This
   2385 ** is only possible when this function is called from within xFilter(). The
   2386 ** caller should assume that all documents match the phrase. The actual
   2387 ** filtering will take place in xNext().
   2388 */
   2389 static int fts3PhraseSelect(
   2390   Fts3Cursor *pCsr,               /* Virtual table cursor handle */
   2391   Fts3Phrase *pPhrase,            /* Phrase to return a doclist for */
   2392   int isReqPos,                   /* True if output should contain positions */
   2393   char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
   2394   int *pnOut                      /* OUT: Size of buffer at *paOut */
   2395 ){
   2396   char *pOut = 0;
   2397   int nOut = 0;
   2398   int rc = SQLITE_OK;
   2399   int ii;
   2400   int iCol = pPhrase->iColumn;
   2401   int isTermPos = (pPhrase->nToken>1 || isReqPos);
   2402   Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
   2403   int isFirst = 1;
   2404 
   2405   int iPrevTok = 0;
   2406   int nDoc = 0;
   2407 
   2408   /* If this is an xFilter() evaluation, create a segment-reader for each
   2409   ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
   2410   ** evaluation, only create segment-readers if there are no Fts3DeferredToken
   2411   ** objects attached to the phrase-tokens.
   2412   */
   2413   for(ii=0; ii<pPhrase->nToken; ii++){
   2414     Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
   2415     if( pTok->pSegcsr==0 ){
   2416       if( (pCsr->eEvalmode==FTS3_EVAL_FILTER)
   2417        || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0)
   2418        || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext)
   2419       ){
   2420         rc = fts3TermSegReaderCursor(
   2421             pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
   2422         );
   2423         if( rc!=SQLITE_OK ) return rc;
   2424       }
   2425     }
   2426   }
   2427 
   2428   for(ii=0; ii<pPhrase->nToken; ii++){
   2429     Fts3PhraseToken *pTok;        /* Token to find doclist for */
   2430     int iTok = 0;                 /* The token being queried this iteration */
   2431     char *pList = 0;              /* Pointer to token doclist */
   2432     int nList = 0;                /* Size of buffer at pList */
   2433 
   2434     /* Select a token to process. If this is an xFilter() call, then tokens
   2435     ** are processed in order from least to most costly. Otherwise, tokens
   2436     ** are processed in the order in which they occur in the phrase.
   2437     */
   2438     if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){
   2439       assert( isReqPos );
   2440       iTok = ii;
   2441       pTok = &pPhrase->aToken[iTok];
   2442       if( pTok->bFulltext==0 ) continue;
   2443     }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){
   2444       iTok = ii;
   2445       pTok = &pPhrase->aToken[iTok];
   2446     }else{
   2447       int nMinCost = 0x7FFFFFFF;
   2448       int jj;
   2449 
   2450       /* Find the remaining token with the lowest cost. */
   2451       for(jj=0; jj<pPhrase->nToken; jj++){
   2452         Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr;
   2453         if( pSegcsr && pSegcsr->nCost<nMinCost ){
   2454           iTok = jj;
   2455           nMinCost = pSegcsr->nCost;
   2456         }
   2457       }
   2458       pTok = &pPhrase->aToken[iTok];
   2459 
   2460       /* This branch is taken if it is determined that loading the doclist
   2461       ** for the next token would require more IO than loading all documents
   2462       ** currently identified by doclist pOut/nOut. No further doclists will
   2463       ** be loaded from the full-text index for this phrase.
   2464       */
   2465       if( nMinCost>nDoc && ii>0 ){
   2466         rc = fts3DeferExpression(pCsr, pCsr->pExpr);
   2467         break;
   2468       }
   2469     }
   2470 
   2471     if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){
   2472       rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList);
   2473     }else{
   2474       if( pTok->pSegcsr ){
   2475         rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList);
   2476       }
   2477       pTok->bFulltext = 1;
   2478     }
   2479     assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 );
   2480     if( rc!=SQLITE_OK ) break;
   2481 
   2482     if( isFirst ){
   2483       pOut = pList;
   2484       nOut = nList;
   2485       if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){
   2486         nDoc = fts3DoclistCountDocids(1, pOut, nOut);
   2487       }
   2488       isFirst = 0;
   2489       iPrevTok = iTok;
   2490     }else{
   2491       /* Merge the new term list and the current output. */
   2492       char *aLeft, *aRight;
   2493       int nLeft, nRight;
   2494       int nDist;
   2495       int mt;
   2496 
   2497       /* If this is the final token of the phrase, and positions were not
   2498       ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
   2499       ** This drops the position information from the output list.
   2500       */
   2501       mt = MERGE_POS_PHRASE;
   2502       if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE;
   2503 
   2504       assert( iPrevTok!=iTok );
   2505       if( iPrevTok<iTok ){
   2506         aLeft = pOut;
   2507         nLeft = nOut;
   2508         aRight = pList;
   2509         nRight = nList;
   2510         nDist = iTok-iPrevTok;
   2511         iPrevTok = iTok;
   2512       }else{
   2513         aRight = pOut;
   2514         nRight = nOut;
   2515         aLeft = pList;
   2516         nLeft = nList;
   2517         nDist = iPrevTok-iTok;
   2518       }
   2519       pOut = aRight;
   2520       fts3DoclistMerge(
   2521           mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
   2522       );
   2523       sqlite3_free(aLeft);
   2524     }
   2525     assert( nOut==0 || pOut!=0 );
   2526   }
   2527 
   2528   if( rc==SQLITE_OK ){
   2529     if( ii!=pPhrase->nToken ){
   2530       assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 );
   2531       fts3DoclistStripPositions(pOut, &nOut);
   2532     }
   2533     *paOut = pOut;
   2534     *pnOut = nOut;
   2535   }else{
   2536     sqlite3_free(pOut);
   2537   }
   2538   return rc;
   2539 }
   2540 
   2541 /*
   2542 ** This function merges two doclists according to the requirements of a
   2543 ** NEAR operator.
   2544 **
   2545 ** Both input doclists must include position information. The output doclist
   2546 ** includes position information if the first argument to this function
   2547 ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
   2548 */
   2549 static int fts3NearMerge(
   2550   int mergetype,                  /* MERGE_POS_NEAR or MERGE_NEAR */
   2551   int nNear,                      /* Parameter to NEAR operator */
   2552   int nTokenLeft,                 /* Number of tokens in LHS phrase arg */
   2553   char *aLeft,                    /* Doclist for LHS (incl. positions) */
   2554   int nLeft,                      /* Size of LHS doclist in bytes */
   2555   int nTokenRight,                /* As nTokenLeft */
   2556   char *aRight,                   /* As aLeft */
   2557   int nRight,                     /* As nRight */
   2558   char **paOut,                   /* OUT: Results of merge (malloced) */
   2559   int *pnOut                      /* OUT: Sized of output buffer */
   2560 ){
   2561   char *aOut;                     /* Buffer to write output doclist to */
   2562   int rc;                         /* Return code */
   2563 
   2564   assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );
   2565 
   2566   aOut = sqlite3_malloc(nLeft+nRight+1);
   2567   if( aOut==0 ){
   2568     rc = SQLITE_NOMEM;
   2569   }else{
   2570     rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft,
   2571       aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
   2572     );
   2573     if( rc!=SQLITE_OK ){
   2574       sqlite3_free(aOut);
   2575       aOut = 0;
   2576     }
   2577   }
   2578 
   2579   *paOut = aOut;
   2580   return rc;
   2581 }
   2582 
   2583 /*
   2584 ** This function is used as part of the processing for the snippet() and
   2585 ** offsets() functions.
   2586 **
   2587 ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
   2588 ** have their respective doclists (including position information) loaded
   2589 ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
   2590 ** each doclist that are not within nNear tokens of a corresponding entry
   2591 ** in the other doclist.
   2592 */
   2593 int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
   2594   int rc;                         /* Return code */
   2595 
   2596   assert( pLeft->eType==FTSQUERY_PHRASE );
   2597   assert( pRight->eType==FTSQUERY_PHRASE );
   2598   assert( pLeft->isLoaded && pRight->isLoaded );
   2599 
   2600   if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
   2601     sqlite3_free(pLeft->aDoclist);
   2602     sqlite3_free(pRight->aDoclist);
   2603     pRight->aDoclist = 0;
   2604     pLeft->aDoclist = 0;
   2605     rc = SQLITE_OK;
   2606   }else{
   2607     char *aOut;                   /* Buffer in which to assemble new doclist */
   2608     int nOut;                     /* Size of buffer aOut in bytes */
   2609 
   2610     rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
   2611         pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
   2612         pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
   2613         &aOut, &nOut
   2614     );
   2615     if( rc!=SQLITE_OK ) return rc;
   2616     sqlite3_free(pRight->aDoclist);
   2617     pRight->aDoclist = aOut;
   2618     pRight->nDoclist = nOut;
   2619 
   2620     rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
   2621         pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
   2622         pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
   2623         &aOut, &nOut
   2624     );
   2625     sqlite3_free(pLeft->aDoclist);
   2626     pLeft->aDoclist = aOut;
   2627     pLeft->nDoclist = nOut;
   2628   }
   2629   return rc;
   2630 }
   2631 
   2632 
   2633 /*
   2634 ** Allocate an Fts3SegReaderArray for each token in the expression pExpr.
   2635 ** The allocated objects are stored in the Fts3PhraseToken.pArray member
   2636 ** variables of each token structure.
   2637 */
   2638 static int fts3ExprAllocateSegReaders(
   2639   Fts3Cursor *pCsr,               /* FTS3 table */
   2640   Fts3Expr *pExpr,                /* Expression to create seg-readers for */
   2641   int *pnExpr                     /* OUT: Number of AND'd expressions */
   2642 ){
   2643   int rc = SQLITE_OK;             /* Return code */
   2644 
   2645   assert( pCsr->eEvalmode==FTS3_EVAL_FILTER );
   2646   if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
   2647     (*pnExpr)++;
   2648     pnExpr = 0;
   2649   }
   2650 
   2651   if( pExpr->eType==FTSQUERY_PHRASE ){
   2652     Fts3Phrase *pPhrase = pExpr->pPhrase;
   2653     int ii;
   2654 
   2655     for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
   2656       Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
   2657       if( pTok->pSegcsr==0 ){
   2658         rc = fts3TermSegReaderCursor(
   2659             pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
   2660         );
   2661       }
   2662     }
   2663   }else{
   2664     rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
   2665     if( rc==SQLITE_OK ){
   2666       rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
   2667     }
   2668   }
   2669   return rc;
   2670 }
   2671 
   2672 /*
   2673 ** Free the Fts3SegReaderArray objects associated with each token in the
   2674 ** expression pExpr. In other words, this function frees the resources
   2675 ** allocated by fts3ExprAllocateSegReaders().
   2676 */
   2677 static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
   2678   if( pExpr ){
   2679     Fts3Phrase *pPhrase = pExpr->pPhrase;
   2680     if( pPhrase ){
   2681       int kk;
   2682       for(kk=0; kk<pPhrase->nToken; kk++){
   2683         fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr);
   2684         pPhrase->aToken[kk].pSegcsr = 0;
   2685       }
   2686     }
   2687     fts3ExprFreeSegReaders(pExpr->pLeft);
   2688     fts3ExprFreeSegReaders(pExpr->pRight);
   2689   }
   2690 }
   2691 
   2692 /*
   2693 ** Return the sum of the costs of all tokens in the expression pExpr. This
   2694 ** function must be called after Fts3SegReaderArrays have been allocated
   2695 ** for all tokens using fts3ExprAllocateSegReaders().
   2696 */
   2697 static int fts3ExprCost(Fts3Expr *pExpr){
   2698   int nCost;                      /* Return value */
   2699   if( pExpr->eType==FTSQUERY_PHRASE ){
   2700     Fts3Phrase *pPhrase = pExpr->pPhrase;
   2701     int ii;
   2702     nCost = 0;
   2703     for(ii=0; ii<pPhrase->nToken; ii++){
   2704       Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr;
   2705       if( pSegcsr ) nCost += pSegcsr->nCost;
   2706     }
   2707   }else{
   2708     nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
   2709   }
   2710   return nCost;
   2711 }
   2712 
   2713 /*
   2714 ** The following is a helper function (and type) for fts3EvalExpr(). It
   2715 ** must be called after Fts3SegReaders have been allocated for every token
   2716 ** in the expression. See the context it is called from in fts3EvalExpr()
   2717 ** for further explanation.
   2718 */
   2719 typedef struct ExprAndCost ExprAndCost;
   2720 struct ExprAndCost {
   2721   Fts3Expr *pExpr;
   2722   int nCost;
   2723 };
   2724 static void fts3ExprAssignCosts(
   2725   Fts3Expr *pExpr,                /* Expression to create seg-readers for */
   2726   ExprAndCost **ppExprCost        /* OUT: Write to *ppExprCost */
   2727 ){
   2728   if( pExpr->eType==FTSQUERY_AND ){
   2729     fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
   2730     fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
   2731   }else{
   2732     (*ppExprCost)->pExpr = pExpr;
   2733     (*ppExprCost)->nCost = fts3ExprCost(pExpr);
   2734     (*ppExprCost)++;
   2735   }
   2736 }
   2737 
   2738 /*
   2739 ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
   2740 ** the resulting doclist in *paOut and *pnOut. This routine mallocs for
   2741 ** the space needed to store the output. The caller is responsible for
   2742 ** freeing the space when it has finished.
   2743 **
   2744 ** This function is called in two distinct contexts:
   2745 **
   2746 **   * From within the virtual table xFilter() method. In this case, the
   2747 **     output doclist contains entries for all rows in the table, based on
   2748 **     data read from the full-text index.
   2749 **
   2750 **     In this case, if the query expression contains one or more tokens that
   2751 **     are very common, then the returned doclist may contain a superset of
   2752 **     the documents that actually match the expression.
   2753 **
   2754 **   * From within the virtual table xNext() method. This call is only made
   2755 **     if the call from within xFilter() found that there were very common
   2756 **     tokens in the query expression and did return a superset of the
   2757 **     matching documents. In this case the returned doclist contains only
   2758 **     entries that correspond to the current row of the table. Instead of
   2759 **     reading the data for each token from the full-text index, the data is
   2760 **     already available in-memory in the Fts3PhraseToken.pDeferred structures.
   2761 **     See fts3EvalDeferred() for how it gets there.
   2762 **
   2763 ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
   2764 ** required) Fts3Cursor.doDeferred==1.
   2765 **
   2766 ** If the SQLite invokes the snippet(), offsets() or matchinfo() function
   2767 ** as part of a SELECT on an FTS3 table, this function is called on each
   2768 ** individual phrase expression in the query. If there were very common tokens
   2769 ** found in the xFilter() call, then this function is called once for phrase
   2770 ** for each row visited, and the returned doclist contains entries for the
   2771 ** current row only. Otherwise, if there were no very common tokens, then this
   2772 ** function is called once only for each phrase in the query and the returned
   2773 ** doclist contains entries for all rows of the table.
   2774 **
   2775 ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
   2776 ** result of a snippet(), offsets() or matchinfo() invocation.
   2777 */
   2778 static int fts3EvalExpr(
   2779   Fts3Cursor *p,                  /* Virtual table cursor handle */
   2780   Fts3Expr *pExpr,                /* Parsed fts3 expression */
   2781   char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
   2782   int *pnOut,                     /* OUT: Size of buffer at *paOut */
   2783   int isReqPos                    /* Require positions in output buffer */
   2784 ){
   2785   int rc = SQLITE_OK;             /* Return code */
   2786 
   2787   /* Zero the output parameters. */
   2788   *paOut = 0;
   2789   *pnOut = 0;
   2790 
   2791   if( pExpr ){
   2792     assert( pExpr->eType==FTSQUERY_NEAR   || pExpr->eType==FTSQUERY_OR
   2793          || pExpr->eType==FTSQUERY_AND    || pExpr->eType==FTSQUERY_NOT
   2794          || pExpr->eType==FTSQUERY_PHRASE
   2795     );
   2796     assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 );
   2797 
   2798     if( pExpr->eType==FTSQUERY_PHRASE ){
   2799       rc = fts3PhraseSelect(p, pExpr->pPhrase,
   2800           isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR),
   2801           paOut, pnOut
   2802       );
   2803       fts3ExprFreeSegReaders(pExpr);
   2804     }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){
   2805       ExprAndCost *aExpr = 0;     /* Array of AND'd expressions and costs */
   2806       int nExpr = 0;              /* Size of aExpr[] */
   2807       char *aRet = 0;             /* Doclist to return to caller */
   2808       int nRet = 0;               /* Length of aRet[] in bytes */
   2809       int nDoc = 0x7FFFFFFF;
   2810 
   2811       assert( !isReqPos );
   2812 
   2813       rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr);
   2814       if( rc==SQLITE_OK ){
   2815         assert( nExpr>1 );
   2816         aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr);
   2817         if( !aExpr ) rc = SQLITE_NOMEM;
   2818       }
   2819       if( rc==SQLITE_OK ){
   2820         int ii;                   /* Used to iterate through expressions */
   2821 
   2822         fts3ExprAssignCosts(pExpr, &aExpr);
   2823         aExpr -= nExpr;
   2824         for(ii=0; ii<nExpr; ii++){
   2825           char *aNew;
   2826           int nNew;
   2827           int jj;
   2828           ExprAndCost *pBest = 0;
   2829 
   2830           for(jj=0; jj<nExpr; jj++){
   2831             ExprAndCost *pCand = &aExpr[jj];
   2832             if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){
   2833               pBest = pCand;
   2834             }
   2835           }
   2836 
   2837           if( pBest->nCost>nDoc ){
   2838             rc = fts3DeferExpression(p, p->pExpr);
   2839             break;
   2840           }else{
   2841             rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
   2842             if( rc!=SQLITE_OK ) break;
   2843             pBest->pExpr = 0;
   2844             if( ii==0 ){
   2845               aRet = aNew;
   2846               nRet = nNew;
   2847               nDoc = fts3DoclistCountDocids(0, aRet, nRet);
   2848             }else{
   2849               fts3DoclistMerge(
   2850                   MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
   2851               );
   2852               sqlite3_free(aNew);
   2853             }
   2854           }
   2855         }
   2856       }
   2857 
   2858       if( rc==SQLITE_OK ){
   2859         *paOut = aRet;
   2860         *pnOut = nRet;
   2861       }else{
   2862         assert( *paOut==0 );
   2863         sqlite3_free(aRet);
   2864       }
   2865       sqlite3_free(aExpr);
   2866       fts3ExprFreeSegReaders(pExpr);
   2867 
   2868     }else{
   2869       char *aLeft;
   2870       char *aRight;
   2871       int nLeft;
   2872       int nRight;
   2873 
   2874       assert( pExpr->eType==FTSQUERY_NEAR
   2875            || pExpr->eType==FTSQUERY_OR
   2876            || pExpr->eType==FTSQUERY_NOT
   2877            || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT)
   2878       );
   2879 
   2880       if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos))
   2881        && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos))
   2882       ){
   2883         switch( pExpr->eType ){
   2884           case FTSQUERY_NEAR: {
   2885             Fts3Expr *pLeft;
   2886             Fts3Expr *pRight;
   2887             int mergetype = MERGE_NEAR;
   2888             if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
   2889               mergetype = MERGE_POS_NEAR;
   2890             }
   2891             pLeft = pExpr->pLeft;
   2892             while( pLeft->eType==FTSQUERY_NEAR ){
   2893               pLeft=pLeft->pRight;
   2894             }
   2895             pRight = pExpr->pRight;
   2896             assert( pRight->eType==FTSQUERY_PHRASE );
   2897             assert( pLeft->eType==FTSQUERY_PHRASE );
   2898 
   2899             rc = fts3NearMerge(mergetype, pExpr->nNear,
   2900                 pLeft->pPhrase->nToken, aLeft, nLeft,
   2901                 pRight->pPhrase->nToken, aRight, nRight,
   2902                 paOut, pnOut
   2903             );
   2904             sqlite3_free(aLeft);
   2905             break;
   2906           }
   2907 
   2908           case FTSQUERY_OR: {
   2909             /* Allocate a buffer for the output. The maximum size is the
   2910             ** sum of the sizes of the two input buffers. The +1 term is
   2911             ** so that a buffer of zero bytes is never allocated - this can
   2912             ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
   2913             */
   2914             char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
   2915             rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
   2916                 aLeft, nLeft, aRight, nRight, 0
   2917             );
   2918             *paOut = aBuffer;
   2919             sqlite3_free(aLeft);
   2920             break;
   2921           }
   2922 
   2923           default: {
   2924             assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
   2925             fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
   2926                 aLeft, nLeft, aRight, nRight, 0
   2927             );
   2928             *paOut = aLeft;
   2929             break;
   2930           }
   2931         }
   2932       }
   2933       sqlite3_free(aRight);
   2934     }
   2935   }
   2936 
   2937   assert( rc==SQLITE_OK || *paOut==0 );
   2938   return rc;
   2939 }
   2940 
   2941 /*
   2942 ** This function is called from within xNext() for each row visited by
   2943 ** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
   2944 ** was able to determine the exact set of matching rows, this function sets
   2945 ** *pbRes to true and returns SQLITE_IO immediately.
   2946 **
   2947 ** Otherwise, if evaluating the query expression within xFilter() returned a
   2948 ** superset of the matching documents instead of an exact set (this happens
   2949 ** when the query includes very common tokens and it is deemed too expensive to
   2950 ** load their doclists from disk), this function tests if the current row
   2951 ** really does match the FTS3 query.
   2952 **
   2953 ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
   2954 ** is returned and *pbRes is set to true if the current row matches the
   2955 ** FTS3 query (and should be included in the results returned to SQLite), or
   2956 ** false otherwise.
   2957 */
   2958 static int fts3EvalDeferred(
   2959   Fts3Cursor *pCsr,               /* FTS3 cursor pointing at row to test */
   2960   int *pbRes                      /* OUT: Set to true if row is a match */
   2961 ){
   2962   int rc = SQLITE_OK;
   2963   if( pCsr->pDeferred==0 ){
   2964     *pbRes = 1;
   2965   }else{
   2966     rc = fts3CursorSeek(0, pCsr);
   2967     if( rc==SQLITE_OK ){
   2968       sqlite3Fts3FreeDeferredDoclists(pCsr);
   2969       rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
   2970     }
   2971     if( rc==SQLITE_OK ){
   2972       char *a = 0;
   2973       int n = 0;
   2974       rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0);
   2975       assert( n>=0 );
   2976       *pbRes = (n>0);
   2977       sqlite3_free(a);
   2978     }
   2979   }
   2980   return rc;
   2981 }
   2982 
   2983 /*
   2984 ** Advance the cursor to the next row in the %_content table that
   2985 ** matches the search criteria.  For a MATCH search, this will be
   2986 ** the next row that matches. For a full-table scan, this will be
   2987 ** simply the next row in the %_content table.  For a docid lookup,
   2988 ** this routine simply sets the EOF flag.
   2989 **
   2990 ** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
   2991 ** even if we reach end-of-file.  The fts3EofMethod() will be called
   2992 ** subsequently to determine whether or not an EOF was hit.
   2993 */
   2994 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
   2995   int res;
   2996   int rc = SQLITE_OK;             /* Return code */
   2997   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
   2998 
   2999   pCsr->eEvalmode = FTS3_EVAL_NEXT;
   3000   do {
   3001     if( pCsr->aDoclist==0 ){
   3002       if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
   3003         pCsr->isEof = 1;
   3004         rc = sqlite3_reset(pCsr->pStmt);
   3005         break;
   3006       }
   3007       pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
   3008     }else{
   3009       if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
   3010         pCsr->isEof = 1;
   3011         break;
   3012       }
   3013       sqlite3_reset(pCsr->pStmt);
   3014       fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
   3015       pCsr->isRequireSeek = 1;
   3016       pCsr->isMatchinfoNeeded = 1;
   3017     }
   3018   }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );
   3019 
   3020   return rc;
   3021 }
   3022 
   3023 /*
   3024 ** This is the xFilter interface for the virtual table.  See
   3025 ** the virtual table xFilter method documentation for additional
   3026 ** information.
   3027 **
   3028 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
   3029 ** the %_content table.
   3030 **
   3031 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
   3032 ** in the %_content table.
   3033 **
   3034 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index.  The
   3035 ** column on the left-hand side of the MATCH operator is column
   3036 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed.  argv[0] is the right-hand
   3037 ** side of the MATCH operator.
   3038 */
   3039 static int fts3FilterMethod(
   3040   sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
   3041   int idxNum,                     /* Strategy index */
   3042   const char *idxStr,             /* Unused */
   3043   int nVal,                       /* Number of elements in apVal */
   3044   sqlite3_value **apVal           /* Arguments for the indexing scheme */
   3045 ){
   3046   const char *azSql[] = {
   3047     "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
   3048     "SELECT %s FROM %Q.'%q_content' AS x ",                /* full-scan */
   3049   };
   3050   int rc;                         /* Return code */
   3051   char *zSql;                     /* SQL statement used to access %_content */
   3052   Fts3Table *p = (Fts3Table *)pCursor->pVtab;
   3053   Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
   3054 
   3055   UNUSED_PARAMETER(idxStr);
   3056   UNUSED_PARAMETER(nVal);
   3057 
   3058   assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
   3059   assert( nVal==0 || nVal==1 );
   3060   assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
   3061   assert( p->pSegments==0 );
   3062 
   3063   /* In case the cursor has been used before, clear it now. */
   3064   sqlite3_finalize(pCsr->pStmt);
   3065   sqlite3_free(pCsr->aDoclist);
   3066   sqlite3Fts3ExprFree(pCsr->pExpr);
   3067   memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
   3068 
   3069   if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
   3070     int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
   3071     const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);
   3072 
   3073     if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
   3074       return SQLITE_NOMEM;
   3075     }
   3076 
   3077     rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn,
   3078         iCol, zQuery, -1, &pCsr->pExpr
   3079     );
   3080     if( rc!=SQLITE_OK ){
   3081       if( rc==SQLITE_ERROR ){
   3082         p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]",
   3083                                           zQuery);
   3084       }
   3085       return rc;
   3086     }
   3087 
   3088     rc = sqlite3Fts3ReadLock(p);
   3089     if( rc!=SQLITE_OK ) return rc;
   3090 
   3091     rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
   3092     sqlite3Fts3SegmentsClose(p);
   3093     if( rc!=SQLITE_OK ) return rc;
   3094     pCsr->pNextId = pCsr->aDoclist;
   3095     pCsr->iPrevId = 0;
   3096   }
   3097 
   3098   /* Compile a SELECT statement for this cursor. For a full-table-scan, the
   3099   ** statement loops through all rows of the %_content table. For a
   3100   ** full-text query or docid lookup, the statement retrieves a single
   3101   ** row by docid.
   3102   */
   3103   zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];
   3104   zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName);
   3105   if( !zSql ){
   3106     rc = SQLITE_NOMEM;
   3107   }else{
   3108     rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
   3109     sqlite3_free(zSql);
   3110   }
   3111   if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){
   3112     rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
   3113   }
   3114   pCsr->eSearch = (i16)idxNum;
   3115 
   3116   if( rc!=SQLITE_OK ) return rc;
   3117   return fts3NextMethod(pCursor);
   3118 }
   3119 
   3120 /*
   3121 ** This is the xEof method of the virtual table. SQLite calls this
   3122 ** routine to find out if it has reached the end of a result set.
   3123 */
   3124 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
   3125   return ((Fts3Cursor *)pCursor)->isEof;
   3126 }
   3127 
   3128 /*
   3129 ** This is the xRowid method. The SQLite core calls this routine to
   3130 ** retrieve the rowid for the current row of the result set. fts3
   3131 ** exposes %_content.docid as the rowid for the virtual table. The
   3132 ** rowid should be written to *pRowid.
   3133 */
   3134 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
   3135   Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
   3136   if( pCsr->aDoclist ){
   3137     *pRowid = pCsr->iPrevId;
   3138   }else{
   3139     /* This branch runs if the query is implemented using a full-table scan
   3140     ** (not using the full-text index). In this case grab the rowid from the
   3141     ** SELECT statement.
   3142     */
   3143     assert( pCsr->isRequireSeek==0 );
   3144     *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
   3145   }
   3146   return SQLITE_OK;
   3147 }
   3148 
   3149 /*
   3150 ** This is the xColumn method, called by SQLite to request a value from
   3151 ** the row that the supplied cursor currently points to.
   3152 */
   3153 static int fts3ColumnMethod(
   3154   sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
   3155   sqlite3_context *pContext,      /* Context for sqlite3_result_xxx() calls */
   3156   int iCol                        /* Index of column to read value from */
   3157 ){
   3158   int rc;                         /* Return Code */
   3159   Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
   3160   Fts3Table *p = (Fts3Table *)pCursor->pVtab;
   3161 
   3162   /* The column value supplied by SQLite must be in range. */
   3163   assert( iCol>=0 && iCol<=p->nColumn+1 );
   3164 
   3165   if( iCol==p->nColumn+1 ){
   3166     /* This call is a request for the "docid" column. Since "docid" is an
   3167     ** alias for "rowid", use the xRowid() method to obtain the value.
   3168     */
   3169     sqlite3_int64 iRowid;
   3170     rc = fts3RowidMethod(pCursor, &iRowid);
   3171     sqlite3_result_int64(pContext, iRowid);
   3172   }else if( iCol==p->nColumn ){
   3173     /* The extra column whose name is the same as the table.
   3174     ** Return a blob which is a pointer to the cursor.
   3175     */
   3176     sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
   3177     rc = SQLITE_OK;
   3178   }else{
   3179     rc = fts3CursorSeek(0, pCsr);
   3180     if( rc==SQLITE_OK ){
   3181       sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
   3182     }
   3183   }
   3184   return rc;
   3185 }
   3186 
   3187 /*
   3188 ** This function is the implementation of the xUpdate callback used by
   3189 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
   3190 ** inserted, updated or deleted.
   3191 */
   3192 static int fts3UpdateMethod(
   3193   sqlite3_vtab *pVtab,            /* Virtual table handle */
   3194   int nArg,                       /* Size of argument array */
   3195   sqlite3_value **apVal,          /* Array of arguments */
   3196   sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
   3197 ){
   3198   return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
   3199 }
   3200 
   3201 /*
   3202 ** Implementation of xSync() method. Flush the contents of the pending-terms
   3203 ** hash-table to the database.
   3204 */
   3205 static int fts3SyncMethod(sqlite3_vtab *pVtab){
   3206   int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
   3207   sqlite3Fts3SegmentsClose((Fts3Table *)pVtab);
   3208   return rc;
   3209 }
   3210 
   3211 /*
   3212 ** Implementation of xBegin() method. This is a no-op.
   3213 */
   3214 static int fts3BeginMethod(sqlite3_vtab *pVtab){
   3215   UNUSED_PARAMETER(pVtab);
   3216   assert( ((Fts3Table *)pVtab)->nPendingData==0 );
   3217   return SQLITE_OK;
   3218 }
   3219 
   3220 /*
   3221 ** Implementation of xCommit() method. This is a no-op. The contents of
   3222 ** the pending-terms hash-table have already been flushed into the database
   3223 ** by fts3SyncMethod().
   3224 */
   3225 static int fts3CommitMethod(sqlite3_vtab *pVtab){
   3226   UNUSED_PARAMETER(pVtab);
   3227   assert( ((Fts3Table *)pVtab)->nPendingData==0 );
   3228   return SQLITE_OK;
   3229 }
   3230 
   3231 /*
   3232 ** Implementation of xRollback(). Discard the contents of the pending-terms
   3233 ** hash-table. Any changes made to the database are reverted by SQLite.
   3234 */
   3235 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
   3236   sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab);
   3237   return SQLITE_OK;
   3238 }
   3239 
   3240 /*
   3241 ** Load the doclist associated with expression pExpr to pExpr->aDoclist.
   3242 ** The loaded doclist contains positions as well as the document ids.
   3243 ** This is used by the matchinfo(), snippet() and offsets() auxillary
   3244 ** functions.
   3245 */
   3246 int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){
   3247   int rc;
   3248   assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
   3249   assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
   3250   rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1);
   3251   return rc;
   3252 }
   3253 
   3254 int sqlite3Fts3ExprLoadFtDoclist(
   3255   Fts3Cursor *pCsr,
   3256   Fts3Expr *pExpr,
   3257   char **paDoclist,
   3258   int *pnDoclist
   3259 ){
   3260   int rc;
   3261   assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
   3262   assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
   3263   pCsr->eEvalmode = FTS3_EVAL_MATCHINFO;
   3264   rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1);
   3265   pCsr->eEvalmode = FTS3_EVAL_NEXT;
   3266   return rc;
   3267 }
   3268 
   3269 /*
   3270 ** After ExprLoadDoclist() (see above) has been called, this function is
   3271 ** used to iterate/search through the position lists that make up the doclist
   3272 ** stored in pExpr->aDoclist.
   3273 */
   3274 char *sqlite3Fts3FindPositions(
   3275   Fts3Expr *pExpr,                /* Access this expressions doclist */
   3276   sqlite3_int64 iDocid,           /* Docid associated with requested pos-list */
   3277   int iCol                        /* Column of requested pos-list */
   3278 ){
   3279   assert( pExpr->isLoaded );
   3280   if( pExpr->aDoclist ){
   3281     char *pEnd = &pExpr->aDoclist[pExpr->nDoclist];
   3282     char *pCsr;
   3283 
   3284     if( pExpr->pCurrent==0 ){
   3285       pExpr->pCurrent = pExpr->aDoclist;
   3286       pExpr->iCurrent = 0;
   3287       pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent);
   3288     }
   3289     pCsr = pExpr->pCurrent;
   3290     assert( pCsr );
   3291 
   3292     while( pCsr<pEnd ){
   3293       if( pExpr->iCurrent<iDocid ){
   3294         fts3PoslistCopy(0, &pCsr);
   3295         if( pCsr<pEnd ){
   3296           fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
   3297         }
   3298         pExpr->pCurrent = pCsr;
   3299       }else{
   3300         if( pExpr->iCurrent==iDocid ){
   3301           int iThis = 0;
   3302           if( iCol<0 ){
   3303             /* If iCol is negative, return a pointer to the start of the
   3304             ** position-list (instead of a pointer to the start of a list
   3305             ** of offsets associated with a specific column).
   3306             */
   3307             return pCsr;
   3308           }
   3309           while( iThis<iCol ){
   3310             fts3ColumnlistCopy(0, &pCsr);
   3311             if( *pCsr==0x00 ) return 0;
   3312             pCsr++;
   3313             pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis);
   3314           }
   3315           if( iCol==iThis && (*pCsr&0xFE) ) return pCsr;
   3316         }
   3317         return 0;
   3318       }
   3319     }
   3320   }
   3321 
   3322   return 0;
   3323 }
   3324 
   3325 /*
   3326 ** Helper function used by the implementation of the overloaded snippet(),
   3327 ** offsets() and optimize() SQL functions.
   3328 **
   3329 ** If the value passed as the third argument is a blob of size
   3330 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
   3331 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
   3332 ** message is written to context pContext and SQLITE_ERROR returned. The
   3333 ** string passed via zFunc is used as part of the error message.
   3334 */
   3335 static int fts3FunctionArg(
   3336   sqlite3_context *pContext,      /* SQL function call context */
   3337   const char *zFunc,              /* Function name */
   3338   sqlite3_value *pVal,            /* argv[0] passed to function */
   3339   Fts3Cursor **ppCsr              /* OUT: Store cursor handle here */
   3340 ){
   3341   Fts3Cursor *pRet;
   3342   if( sqlite3_value_type(pVal)!=SQLITE_BLOB
   3343    || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
   3344   ){
   3345     char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
   3346     sqlite3_result_error(pContext, zErr, -1);
   3347     sqlite3_free(zErr);
   3348     return SQLITE_ERROR;
   3349   }
   3350   memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
   3351   *ppCsr = pRet;
   3352   return SQLITE_OK;
   3353 }
   3354 
   3355 /*
   3356 ** Implementation of the snippet() function for FTS3
   3357 */
   3358 static void fts3SnippetFunc(
   3359   sqlite3_context *pContext,      /* SQLite function call context */
   3360   int nVal,                       /* Size of apVal[] array */
   3361   sqlite3_value **apVal           /* Array of arguments */
   3362 ){
   3363   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
   3364   const char *zStart = "<b>";
   3365   const char *zEnd = "</b>";
   3366   const char *zEllipsis = "<b>...</b>";
   3367   int iCol = -1;
   3368   int nToken = 15;                /* Default number of tokens in snippet */
   3369 
   3370   /* There must be at least one argument passed to this function (otherwise
   3371   ** the non-overloaded version would have been called instead of this one).
   3372   */
   3373   assert( nVal>=1 );
   3374 
   3375   if( nVal>6 ){
   3376     sqlite3_result_error(pContext,
   3377         "wrong number of arguments to function snippet()", -1);
   3378     return;
   3379   }
   3380   if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
   3381 
   3382   switch( nVal ){
   3383     case 6: nToken = sqlite3_value_int(apVal[5]);
   3384     case 5: iCol = sqlite3_value_int(apVal[4]);
   3385     case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
   3386     case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
   3387     case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
   3388   }
   3389   if( !zEllipsis || !zEnd || !zStart ){
   3390     sqlite3_result_error_nomem(pContext);
   3391   }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
   3392     sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
   3393   }
   3394 }
   3395 
   3396 /*
   3397 ** Implementation of the offsets() function for FTS3
   3398 */
   3399 static void fts3OffsetsFunc(
   3400   sqlite3_context *pContext,      /* SQLite function call context */
   3401   int nVal,                       /* Size of argument array */
   3402   sqlite3_value **apVal           /* Array of arguments */
   3403 ){
   3404   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
   3405 
   3406   UNUSED_PARAMETER(nVal);
   3407 
   3408   assert( nVal==1 );
   3409   if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
   3410   assert( pCsr );
   3411   if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
   3412     sqlite3Fts3Offsets(pContext, pCsr);
   3413   }
   3414 }
   3415 
   3416 /*
   3417 ** Implementation of the special optimize() function for FTS3. This
   3418 ** function merges all segments in the database to a single segment.
   3419 ** Example usage is:
   3420 **
   3421 **   SELECT optimize(t) FROM t LIMIT 1;
   3422 **
   3423 ** where 't' is the name of an FTS3 table.
   3424 */
   3425 static void fts3OptimizeFunc(
   3426   sqlite3_context *pContext,      /* SQLite function call context */
   3427   int nVal,                       /* Size of argument array */
   3428   sqlite3_value **apVal           /* Array of arguments */
   3429 ){
   3430   int rc;                         /* Return code */
   3431   Fts3Table *p;                   /* Virtual table handle */
   3432   Fts3Cursor *pCursor;            /* Cursor handle passed through apVal[0] */
   3433 
   3434   UNUSED_PARAMETER(nVal);
   3435 
   3436   assert( nVal==1 );
   3437   if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
   3438   p = (Fts3Table *)pCursor->base.pVtab;
   3439   assert( p );
   3440 
   3441   rc = sqlite3Fts3Optimize(p);
   3442 
   3443   switch( rc ){
   3444     case SQLITE_OK:
   3445       sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
   3446       break;
   3447     case SQLITE_DONE:
   3448       sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
   3449       break;
   3450     default:
   3451       sqlite3_result_error_code(pContext, rc);
   3452       break;
   3453   }
   3454 }
   3455 
   3456 /*
   3457 ** Implementation of the matchinfo() function for FTS3
   3458 */
   3459 static void fts3MatchinfoFunc(
   3460   sqlite3_context *pContext,      /* SQLite function call context */
   3461   int nVal,                       /* Size of argument array */
   3462   sqlite3_value **apVal           /* Array of arguments */
   3463 ){
   3464   Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */
   3465   assert( nVal==1 || nVal==2 );
   3466   if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
   3467     const char *zArg = 0;
   3468     if( nVal>1 ){
   3469       zArg = (const char *)sqlite3_value_text(apVal[1]);
   3470     }
   3471     sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
   3472   }
   3473 }
   3474 
   3475 /*
   3476 ** This routine implements the xFindFunction method for the FTS3
   3477 ** virtual table.
   3478 */
   3479 static int fts3FindFunctionMethod(
   3480   sqlite3_vtab *pVtab,            /* Virtual table handle */
   3481   int nArg,                       /* Number of SQL function arguments */
   3482   const char *zName,              /* Name of SQL function */
   3483   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
   3484   void **ppArg                    /* Unused */
   3485 ){
   3486   struct Overloaded {
   3487     const char *zName;
   3488     void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
   3489   } aOverload[] = {
   3490     { "snippet", fts3SnippetFunc },
   3491     { "offsets", fts3OffsetsFunc },
   3492     { "optimize", fts3OptimizeFunc },
   3493     { "matchinfo", fts3MatchinfoFunc },
   3494   };
   3495   int i;                          /* Iterator variable */
   3496 
   3497   UNUSED_PARAMETER(pVtab);
   3498   UNUSED_PARAMETER(nArg);
   3499   UNUSED_PARAMETER(ppArg);
   3500 
   3501   for(i=0; i<SizeofArray(aOverload); i++){
   3502     if( strcmp(zName, aOverload[i].zName)==0 ){
   3503       *pxFunc = aOverload[i].xFunc;
   3504       return 1;
   3505     }
   3506   }
   3507 
   3508   /* No function of the specified name was found. Return 0. */
   3509   return 0;
   3510 }
   3511 
   3512 /*
   3513 ** Implementation of FTS3 xRename method. Rename an fts3 table.
   3514 */
   3515 static int fts3RenameMethod(
   3516   sqlite3_vtab *pVtab,            /* Virtual table handle */
   3517   const char *zName               /* New name of table */
   3518 ){
   3519   Fts3Table *p = (Fts3Table *)pVtab;
   3520   sqlite3 *db = p->db;            /* Database connection */
   3521   int rc;                         /* Return Code */
   3522 
   3523   rc = sqlite3Fts3PendingTermsFlush(p);
   3524   if( rc!=SQLITE_OK ){
   3525     return rc;
   3526   }
   3527 
   3528   fts3DbExec(&rc, db,
   3529     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';",
   3530     p->zDb, p->zName, zName
   3531   );
   3532   if( p->bHasDocsize ){
   3533     fts3DbExec(&rc, db,
   3534       "ALTER TABLE %Q.'%q_docsize'  RENAME TO '%q_docsize';",
   3535       p->zDb, p->zName, zName
   3536     );
   3537   }
   3538   if( p->bHasStat ){
   3539     fts3DbExec(&rc, db,
   3540       "ALTER TABLE %Q.'%q_stat'  RENAME TO '%q_stat';",
   3541       p->zDb, p->zName, zName
   3542     );
   3543   }
   3544   fts3DbExec(&rc, db,
   3545     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
   3546     p->zDb, p->zName, zName
   3547   );
   3548   fts3DbExec(&rc, db,
   3549     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
   3550     p->zDb, p->zName, zName
   3551   );
   3552   return rc;
   3553 }
   3554 
   3555 static const sqlite3_module fts3Module = {
   3556   /* iVersion      */ 0,
   3557   /* xCreate       */ fts3CreateMethod,
   3558   /* xConnect      */ fts3ConnectMethod,
   3559   /* xBestIndex    */ fts3BestIndexMethod,
   3560   /* xDisconnect   */ fts3DisconnectMethod,
   3561   /* xDestroy      */ fts3DestroyMethod,
   3562   /* xOpen         */ fts3OpenMethod,
   3563   /* xClose        */ fts3CloseMethod,
   3564   /* xFilter       */ fts3FilterMethod,
   3565   /* xNext         */ fts3NextMethod,
   3566   /* xEof          */ fts3EofMethod,
   3567   /* xColumn       */ fts3ColumnMethod,
   3568   /* xRowid        */ fts3RowidMethod,
   3569   /* xUpdate       */ fts3UpdateMethod,
   3570   /* xBegin        */ fts3BeginMethod,
   3571   /* xSync         */ fts3SyncMethod,
   3572   /* xCommit       */ fts3CommitMethod,
   3573   /* xRollback     */ fts3RollbackMethod,
   3574   /* xFindFunction */ fts3FindFunctionMethod,
   3575   /* xRename */       fts3RenameMethod,
   3576 };
   3577 
   3578 /*
   3579 ** This function is registered as the module destructor (called when an
   3580 ** FTS3 enabled database connection is closed). It frees the memory
   3581 ** allocated for the tokenizer hash table.
   3582 */
   3583 static void hashDestroy(void *p){
   3584   Fts3Hash *pHash = (Fts3Hash *)p;
   3585   sqlite3Fts3HashClear(pHash);
   3586   sqlite3_free(pHash);
   3587 }
   3588 
   3589 /*
   3590 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
   3591 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
   3592 ** respectively. The following three forward declarations are for functions
   3593 ** declared in these files used to retrieve the respective implementations.
   3594 **
   3595 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
   3596 ** to by the argument to point to the "simple" tokenizer implementation.
   3597 ** And so on.
   3598 */
   3599 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
   3600 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
   3601 #ifdef SQLITE_ENABLE_ICU
   3602 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
   3603 #endif
   3604 
   3605 /*
   3606 ** Initialise the fts3 extension. If this extension is built as part
   3607 ** of the sqlite library, then this function is called directly by
   3608 ** SQLite. If fts3 is built as a dynamically loadable extension, this
   3609 ** function is called by the sqlite3_extension_init() entry point.
   3610 */
   3611 int sqlite3Fts3Init(sqlite3 *db){
   3612   int rc = SQLITE_OK;
   3613   Fts3Hash *pHash = 0;
   3614   const sqlite3_tokenizer_module *pSimple = 0;
   3615   const sqlite3_tokenizer_module *pPorter = 0;
   3616 
   3617 #ifdef SQLITE_ENABLE_ICU
   3618   const sqlite3_tokenizer_module *pIcu = 0;
   3619   sqlite3Fts3IcuTokenizerModule(&pIcu);
   3620 #endif
   3621 
   3622   rc = sqlite3Fts3InitAux(db);
   3623   if( rc!=SQLITE_OK ) return rc;
   3624 
   3625   sqlite3Fts3SimpleTokenizerModule(&pSimple);
   3626   sqlite3Fts3PorterTokenizerModule(&pPorter);
   3627 
   3628   /* Allocate and initialise the hash-table used to store tokenizers. */
   3629   pHash = sqlite3_malloc(sizeof(Fts3Hash));
   3630   if( !pHash ){
   3631     rc = SQLITE_NOMEM;
   3632   }else{
   3633     sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
   3634   }
   3635 
   3636   /* Load the built-in tokenizers into the hash table */
   3637   if( rc==SQLITE_OK ){
   3638     if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
   3639      || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
   3640 #ifdef SQLITE_ENABLE_ICU
   3641      || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
   3642 #endif
   3643     ){
   3644       rc = SQLITE_NOMEM;
   3645     }
   3646   }
   3647 
   3648 #ifdef SQLITE_TEST
   3649   if( rc==SQLITE_OK ){
   3650     rc = sqlite3Fts3ExprInitTestInterface(db);
   3651   }
   3652 #endif
   3653 
   3654   /* Create the virtual table wrapper around the hash-table and overload
   3655   ** the two scalar functions. If this is successful, register the
   3656   ** module with sqlite.
   3657   */
   3658   if( SQLITE_OK==rc
   3659 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
   3660       /* fts3_tokenizer() disabled for security reasons. */
   3661 #else
   3662    && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
   3663 #endif
   3664    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
   3665    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
   3666    && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
   3667    && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
   3668    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
   3669   ){
   3670     rc = sqlite3_create_module_v2(
   3671         db, "fts3", &fts3Module, (void *)pHash, hashDestroy
   3672     );
   3673 #if CHROMIUM_FTS3_CHANGES && !SQLITE_TEST
   3674     /* Disable fts4 pending review. */
   3675 #else
   3676     if( rc==SQLITE_OK ){
   3677       rc = sqlite3_create_module_v2(
   3678           db, "fts4", &fts3Module, (void *)pHash, 0
   3679       );
   3680     }
   3681 #endif
   3682     return rc;
   3683   }
   3684 
   3685   /* An error has occurred. Delete the hash table and return the error code. */
   3686   assert( rc!=SQLITE_OK );
   3687   if( pHash ){
   3688     sqlite3Fts3HashClear(pHash);
   3689     sqlite3_free(pHash);
   3690   }
   3691   return rc;
   3692 }
   3693 
   3694 #if !SQLITE_CORE
   3695 int sqlite3_extension_init(
   3696   sqlite3 *db,
   3697   char **pzErrMsg,
   3698   const sqlite3_api_routines *pApi
   3699 ){
   3700   SQLITE_EXTENSION_INIT2(pApi)
   3701   return sqlite3Fts3Init(db);
   3702 }
   3703 #endif
   3704 
   3705 #endif
   3706