1 /* 2 ** 2012 Jan 11 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 */ 11 /* TODO(shess): THIS MODULE IS STILL EXPERIMENTAL. DO NOT USE IT. */ 12 /* Implements a virtual table "recover" which can be used to recover 13 * data from a corrupt table. The table is walked manually, with 14 * corrupt items skipped. Additionally, any errors while reading will 15 * be skipped. 16 * 17 * Given a table with this definition: 18 * 19 * CREATE TABLE Stuff ( 20 * name TEXT PRIMARY KEY, 21 * value TEXT NOT NULL 22 * ); 23 * 24 * to recover the data from teh table, you could do something like: 25 * 26 * -- Attach another database, the original is not trustworthy. 27 * ATTACH DATABASE '/tmp/db.db' AS rdb; 28 * -- Create a new version of the table. 29 * CREATE TABLE rdb.Stuff ( 30 * name TEXT PRIMARY KEY, 31 * value TEXT NOT NULL 32 * ); 33 * -- This will read the original table's data. 34 * CREATE VIRTUAL TABLE temp.recover_Stuff using recover( 35 * main.Stuff, 36 * name TEXT STRICT NOT NULL, -- only real TEXT data allowed 37 * value TEXT STRICT NOT NULL 38 * ); 39 * -- Corruption means the UNIQUE constraint may no longer hold for 40 * -- Stuff, so either OR REPLACE or OR IGNORE must be used. 41 * INSERT OR REPLACE INTO rdb.Stuff (rowid, name, value ) 42 * SELECT rowid, name, value FROM temp.recover_Stuff; 43 * DROP TABLE temp.recover_Stuff; 44 * DETACH DATABASE rdb; 45 * -- Move db.db to replace original db in filesystem. 46 * 47 * 48 * Usage 49 * 50 * Given the goal of dealing with corruption, it would not be safe to 51 * create a recovery table in the database being recovered. So 52 * recovery tables must be created in the temp database. They are not 53 * appropriate to persist, in any case. [As a bonus, sqlite_master 54 * tables can be recovered. Perhaps more cute than useful, though.] 55 * 56 * The parameters are a specifier for the table to read, and a column 57 * definition for each bit of data stored in that table. The named 58 * table must be convertable to a root page number by reading the 59 * sqlite_master table. Bare table names are assumed to be in 60 * database 0 ("main"), other databases can be specified in db.table 61 * fashion. 62 * 63 * Column definitions are similar to BUT NOT THE SAME AS those 64 * provided to CREATE statements: 65 * column-def: column-name [type-name [STRICT] [NOT NULL]] 66 * type-name: (ANY|ROWID|INTEGER|FLOAT|NUMERIC|TEXT|BLOB) 67 * 68 * Only those exact type names are accepted, there is no type 69 * intuition. The only constraints accepted are STRICT (see below) 70 * and NOT NULL. Anything unexpected will cause the create to fail. 71 * 72 * ANY is a convenience to indicate that manifest typing is desired. 73 * It is equivalent to not specifying a type at all. The results for 74 * such columns will have the type of the data's storage. The exposed 75 * schema will contain no type for that column. 76 * 77 * ROWID is used for columns representing aliases to the rowid 78 * (INTEGER PRIMARY KEY, with or without AUTOINCREMENT), to make the 79 * concept explicit. Such columns are actually stored as NULL, so 80 * they cannot be simply ignored. The exposed schema will be INTEGER 81 * for that column. 82 * 83 * NOT NULL causes rows with a NULL in that column to be skipped. It 84 * also adds NOT NULL to the column in the exposed schema. If the 85 * table has ever had columns added using ALTER TABLE, then those 86 * columns implicitly contain NULL for rows which have not been 87 * updated. [Workaround using COALESCE() in your SELECT statement.] 88 * 89 * The created table is read-only, with no indices. Any SELECT will 90 * be a full-table scan, returning each valid row read from the 91 * storage of the backing table. The rowid will be the rowid of the 92 * row from the backing table. "Valid" means: 93 * - The cell metadata for the row is well-formed. Mainly this means that 94 * the cell header info describes a payload of the size indicated by 95 * the cell's payload size. 96 * - The cell does not run off the page. 97 * - The cell does not overlap any other cell on the page. 98 * - The cell contains doesn't contain too many columns. 99 * - The types of the serialized data match the indicated types (see below). 100 * 101 * 102 * Type affinity versus type storage. 103 * 104 * http://www.sqlite.org/datatype3.html describes SQLite's type 105 * affinity system. The system provides for automated coercion of 106 * types in certain cases, transparently enough that many developers 107 * do not realize that it is happening. Importantly, it implies that 108 * the raw data stored in the database may not have the obvious type. 109 * 110 * Differences between the stored data types and the expected data 111 * types may be a signal of corruption. This module makes some 112 * allowances for automatic coercion. It is important to be concious 113 * of the difference between the schema exposed by the module, and the 114 * data types read from storage. The following table describes how 115 * the module interprets things: 116 * 117 * type schema data STRICT 118 * ---- ------ ---- ------ 119 * ANY <none> any any 120 * ROWID INTEGER n/a n/a 121 * INTEGER INTEGER integer integer 122 * FLOAT FLOAT integer or float float 123 * NUMERIC NUMERIC integer, float, or text integer or float 124 * TEXT TEXT text or blob text 125 * BLOB BLOB blob blob 126 * 127 * type is the type provided to the recover module, schema is the 128 * schema exposed by the module, data is the acceptable types of data 129 * decoded from storage, and STRICT is a modification of that. 130 * 131 * A very loose recovery system might use ANY for all columns, then 132 * use the appropriate sqlite3_column_*() calls to coerce to expected 133 * types. This doesn't provide much protection if a page from a 134 * different table with the same column count is linked into an 135 * inappropriate btree. 136 * 137 * A very tight recovery system might use STRICT to enforce typing on 138 * all columns, preferring to skip rows which are valid at the storage 139 * level but don't contain the right types. Note that FLOAT STRICT is 140 * almost certainly not appropriate, since integral values are 141 * transparently stored as integers, when that is more efficient. 142 * 143 * Another option is to use ANY for all columns and inspect each 144 * result manually (using sqlite3_column_*). This should only be 145 * necessary in cases where developers have used manifest typing (test 146 * to make sure before you decide that you aren't using manifest 147 * typing!). 148 * 149 * 150 * Caveats 151 * 152 * Leaf pages not referenced by interior nodes will not be found. 153 * 154 * Leaf pages referenced from interior nodes of other tables will not 155 * be resolved. 156 * 157 * Rows referencing invalid overflow pages will be skipped. 158 * 159 * SQlite rows have a header which describes how to interpret the rest 160 * of the payload. The header can be valid in cases where the rest of 161 * the record is actually corrupt (in the sense that the data is not 162 * the intended data). This can especially happen WRT overflow pages, 163 * as lack of atomic updates between pages is the primary form of 164 * corruption I have seen in the wild. 165 */ 166 /* The implementation is via a series of cursors. The cursor 167 * implementations follow the pattern: 168 * 169 * // Creates the cursor using various initialization info. 170 * int cursorCreate(...); 171 * 172 * // Returns 1 if there is no more data, 0 otherwise. 173 * int cursorEOF(Cursor *pCursor); 174 * 175 * // Various accessors can be used if not at EOF. 176 * 177 * // Move to the next item. 178 * int cursorNext(Cursor *pCursor); 179 * 180 * // Destroy the memory associated with the cursor. 181 * void cursorDestroy(Cursor *pCursor); 182 * 183 * References in the following are to sections at 184 * http://www.sqlite.org/fileformat2.html . 185 * 186 * RecoverLeafCursor iterates the records in a leaf table node 187 * described in section 1.5 "B-tree Pages". When the node is 188 * exhausted, an interior cursor is used to get the next leaf node, 189 * and iteration continues there. 190 * 191 * RecoverInteriorCursor iterates the child pages in an interior table 192 * node described in section 1.5 "B-tree Pages". When the node is 193 * exhausted, a parent interior cursor is used to get the next 194 * interior node at the same level, and iteration continues there. 195 * 196 * Together these record the path from the leaf level to the root of 197 * the tree. Iteration happens from the leaves rather than the root 198 * both for efficiency and putting the special case at the front of 199 * the list is easier to implement. 200 * 201 * RecoverCursor uses a RecoverLeafCursor to iterate the rows of a 202 * table, returning results via the SQLite virtual table interface. 203 */ 204 /* TODO(shess): It might be useful to allow DEFAULT in types to 205 * specify what to do for NULL when an ALTER TABLE case comes up. 206 * Unfortunately, simply adding it to the exposed schema and using 207 * sqlite3_result_null() does not cause the default to be generate. 208 * Handling it ourselves seems hard, unfortunately. 209 */ 210 211 #include <assert.h> 212 #include <ctype.h> 213 #include <stdio.h> 214 #include <string.h> 215 216 /* Internal SQLite things that are used: 217 * u32, u64, i64 types. 218 * Btree, Pager, and DbPage structs. 219 * DbPage.pData, .pPager, and .pgno 220 * sqlite3 struct. 221 * sqlite3BtreePager() and sqlite3BtreeGetPageSize() 222 * sqlite3PagerAcquire() and sqlite3PagerUnref() 223 * getVarint(). 224 */ 225 #include "sqliteInt.h" 226 227 /* For debugging. */ 228 #if 0 229 #define FNENTRY() fprintf(stderr, "In %s\n", __FUNCTION__) 230 #else 231 #define FNENTRY() 232 #endif 233 234 /* Generic constants and helper functions. */ 235 236 static const unsigned char kTableLeafPage = 0x0D; 237 static const unsigned char kTableInteriorPage = 0x05; 238 239 /* From section 1.5. */ 240 static const unsigned kiPageTypeOffset = 0; 241 static const unsigned kiPageFreeBlockOffset = 1; 242 static const unsigned kiPageCellCountOffset = 3; 243 static const unsigned kiPageCellContentOffset = 5; 244 static const unsigned kiPageFragmentedBytesOffset = 7; 245 static const unsigned knPageLeafHeaderBytes = 8; 246 /* Interior pages contain an additional field. */ 247 static const unsigned kiPageRightChildOffset = 8; 248 static const unsigned kiPageInteriorHeaderBytes = 12; 249 250 /* Accepted types are specified by a mask. */ 251 #define MASK_ROWID (1<<0) 252 #define MASK_INTEGER (1<<1) 253 #define MASK_FLOAT (1<<2) 254 #define MASK_TEXT (1<<3) 255 #define MASK_BLOB (1<<4) 256 #define MASK_NULL (1<<5) 257 258 /* Helpers to decode fixed-size fields. */ 259 static u32 decodeUnsigned16(const unsigned char *pData){ 260 return (pData[0]<<8) + pData[1]; 261 } 262 static u32 decodeUnsigned32(const unsigned char *pData){ 263 return (decodeUnsigned16(pData)<<16) + decodeUnsigned16(pData+2); 264 } 265 static i64 decodeSigned(const unsigned char *pData, unsigned nBytes){ 266 i64 r = (char)(*pData); 267 while( --nBytes ){ 268 r <<= 8; 269 r += *(++pData); 270 } 271 return r; 272 } 273 /* Derived from vdbeaux.c, sqlite3VdbeSerialGet(), case 7. */ 274 /* TODO(shess): Determine if swapMixedEndianFloat() applies. */ 275 static double decodeFloat64(const unsigned char *pData){ 276 #if !defined(NDEBUG) 277 static const u64 t1 = ((u64)0x3ff00000)<<32; 278 static const double r1 = 1.0; 279 u64 t2 = t1; 280 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 281 #endif 282 i64 x = decodeSigned(pData, 8); 283 double d; 284 memcpy(&d, &x, sizeof(x)); 285 return d; 286 } 287 288 /* Return true if a varint can safely be read from pData/nData. */ 289 /* TODO(shess): DbPage points into the middle of a buffer which 290 * contains the page data before DbPage. So code should always be 291 * able to read a small number of varints safely. Consider whether to 292 * trust that or not. 293 */ 294 static int checkVarint(const unsigned char *pData, unsigned nData){ 295 unsigned i; 296 297 /* In the worst case the decoder takes all 8 bits of the 9th byte. */ 298 if( nData>=9 ){ 299 return 1; 300 } 301 302 /* Look for a high-bit-clear byte in what's left. */ 303 for( i=0; i<nData; ++i ){ 304 if( !(pData[i]&0x80) ){ 305 return 1; 306 } 307 } 308 309 /* Cannot decode in the space given. */ 310 return 0; 311 } 312 313 /* Return 1 if n varints can be read from pData/nData. */ 314 static int checkVarints(const unsigned char *pData, unsigned nData, 315 unsigned n){ 316 unsigned nCur = 0; /* Byte offset within current varint. */ 317 unsigned nFound = 0; /* Number of varints found. */ 318 unsigned i; 319 320 /* In the worst case the decoder takes all 8 bits of the 9th byte. */ 321 if( nData>=9*n ){ 322 return 1; 323 } 324 325 for( i=0; nFound<n && i<nData; ++i ){ 326 nCur++; 327 if( nCur==9 || !(pData[i]&0x80) ){ 328 nFound++; 329 nCur = 0; 330 } 331 } 332 333 return nFound==n; 334 } 335 336 /* ctype and str[n]casecmp() can be affected by locale (eg, tr_TR). 337 * These versions consider only the ASCII space. 338 */ 339 /* TODO(shess): It may be reasonable to just remove the need for these 340 * entirely. The module could require "TEXT STRICT NOT NULL", not 341 * "Text Strict Not Null" or whatever the developer felt like typing 342 * that day. Handling corrupt data is a PERFECT place to be pedantic. 343 */ 344 static int ascii_isspace(char c){ 345 /* From fts3_expr.c */ 346 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; 347 } 348 static int ascii_isalnum(int x){ 349 /* From fts3_tokenizer1.c */ 350 return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z'); 351 } 352 static int ascii_tolower(int x){ 353 /* From fts3_tokenizer1.c */ 354 return (x>='A' && x<='Z') ? x-'A'+'a' : x; 355 } 356 /* TODO(shess): Consider sqlite3_strnicmp() */ 357 static int ascii_strncasecmp(const char *s1, const char *s2, size_t n){ 358 const unsigned char *us1 = (const unsigned char *)s1; 359 const unsigned char *us2 = (const unsigned char *)s2; 360 while( *us1 && *us2 && n && ascii_tolower(*us1)==ascii_tolower(*us2) ){ 361 us1++, us2++, n--; 362 } 363 return n ? ascii_tolower(*us1)-ascii_tolower(*us2) : 0; 364 } 365 static int ascii_strcasecmp(const char *s1, const char *s2){ 366 /* If s2 is equal through strlen(s1), will exit while() due to s1's 367 * trailing NUL, and return NUL-s2[strlen(s1)]. 368 */ 369 return ascii_strncasecmp(s1, s2, strlen(s1)+1); 370 } 371 372 /* For some reason I kept making mistakes with offset calculations. */ 373 static const unsigned char *PageData(DbPage *pPage, unsigned iOffset){ 374 assert( iOffset<=pPage->nPageSize ); 375 return (unsigned char *)pPage->pData + iOffset; 376 } 377 378 /* The first page in the file contains a file header in the first 100 379 * bytes. The page's header information comes after that. Note that 380 * the offsets in the page's header information are relative to the 381 * beginning of the page, NOT the end of the page header. 382 */ 383 static const unsigned char *PageHeader(DbPage *pPage){ 384 if( pPage->pgno==1 ){ 385 const unsigned nDatabaseHeader = 100; 386 return PageData(pPage, nDatabaseHeader); 387 }else{ 388 return PageData(pPage, 0); 389 } 390 } 391 392 /* Helper to fetch the pager and page size for the named database. */ 393 static int GetPager(sqlite3 *db, const char *zName, 394 Pager **pPager, unsigned *pnPageSize){ 395 Btree *pBt = NULL; 396 int i; 397 for( i=0; i<db->nDb; ++i ){ 398 if( ascii_strcasecmp(db->aDb[i].zName, zName)==0 ){ 399 pBt = db->aDb[i].pBt; 400 break; 401 } 402 } 403 if( !pBt ){ 404 return SQLITE_ERROR; 405 } 406 407 *pPager = sqlite3BtreePager(pBt); 408 *pnPageSize = sqlite3BtreeGetPageSize(pBt) - sqlite3BtreeGetReserve(pBt); 409 return SQLITE_OK; 410 } 411 412 /* iSerialType is a type read from a record header. See "2.1 Record Format". 413 */ 414 415 /* Storage size of iSerialType in bytes. My interpretation of SQLite 416 * documentation is that text and blob fields can have 32-bit length. 417 * Values past 2^31-12 will need more than 32 bits to encode, which is 418 * why iSerialType is u64. 419 */ 420 static u32 SerialTypeLength(u64 iSerialType){ 421 switch( iSerialType ){ 422 case 0 : return 0; /* NULL */ 423 case 1 : return 1; /* Various integers. */ 424 case 2 : return 2; 425 case 3 : return 3; 426 case 4 : return 4; 427 case 5 : return 6; 428 case 6 : return 8; 429 case 7 : return 8; /* 64-bit float. */ 430 case 8 : return 0; /* Constant 0. */ 431 case 9 : return 0; /* Constant 1. */ 432 case 10 : case 11 : assert( !"RESERVED TYPE"); return 0; 433 } 434 return (u32)((iSerialType>>1) - 6); 435 } 436 437 /* True if iSerialType refers to a blob. */ 438 static int SerialTypeIsBlob(u64 iSerialType){ 439 assert( iSerialType>=12 ); 440 return (iSerialType%2)==0; 441 } 442 443 /* Returns true if the serialized type represented by iSerialType is 444 * compatible with the given type mask. 445 */ 446 static int SerialTypeIsCompatible(u64 iSerialType, unsigned char mask){ 447 switch( iSerialType ){ 448 case 0 : return (mask&MASK_NULL)!=0; 449 case 1 : return (mask&MASK_INTEGER)!=0; 450 case 2 : return (mask&MASK_INTEGER)!=0; 451 case 3 : return (mask&MASK_INTEGER)!=0; 452 case 4 : return (mask&MASK_INTEGER)!=0; 453 case 5 : return (mask&MASK_INTEGER)!=0; 454 case 6 : return (mask&MASK_INTEGER)!=0; 455 case 7 : return (mask&MASK_FLOAT)!=0; 456 case 8 : return (mask&MASK_INTEGER)!=0; 457 case 9 : return (mask&MASK_INTEGER)!=0; 458 case 10 : assert( !"RESERVED TYPE"); return 0; 459 case 11 : assert( !"RESERVED TYPE"); return 0; 460 } 461 return (mask&(SerialTypeIsBlob(iSerialType) ? MASK_BLOB : MASK_TEXT)); 462 } 463 464 /* Versions of strdup() with return values appropriate for 465 * sqlite3_free(). malloc.c has sqlite3DbStrDup()/NDup(), but those 466 * need sqlite3DbFree(), which seems intrusive. 467 */ 468 static char *sqlite3_strndup(const char *z, unsigned n){ 469 char *zNew; 470 471 if( z==NULL ){ 472 return NULL; 473 } 474 475 zNew = sqlite3_malloc(n+1); 476 if( zNew!=NULL ){ 477 memcpy(zNew, z, n); 478 zNew[n] = '\0'; 479 } 480 return zNew; 481 } 482 static char *sqlite3_strdup(const char *z){ 483 if( z==NULL ){ 484 return NULL; 485 } 486 return sqlite3_strndup(z, strlen(z)); 487 } 488 489 /* Fetch the page number of zTable in zDb from sqlite_master in zDb, 490 * and put it in *piRootPage. 491 */ 492 static int getRootPage(sqlite3 *db, const char *zDb, const char *zTable, 493 u32 *piRootPage){ 494 char *zSql; /* SQL selecting root page of named element. */ 495 sqlite3_stmt *pStmt; 496 int rc; 497 498 if( strcmp(zTable, "sqlite_master")==0 ){ 499 *piRootPage = 1; 500 return SQLITE_OK; 501 } 502 503 zSql = sqlite3_mprintf("SELECT rootpage FROM %s.sqlite_master " 504 "WHERE type = 'table' AND tbl_name = %Q", 505 zDb, zTable); 506 if( !zSql ){ 507 return SQLITE_NOMEM; 508 } 509 510 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 511 sqlite3_free(zSql); 512 if( rc!=SQLITE_OK ){ 513 return rc; 514 } 515 516 /* Require a result. */ 517 rc = sqlite3_step(pStmt); 518 if( rc==SQLITE_DONE ){ 519 rc = SQLITE_CORRUPT; 520 }else if( rc==SQLITE_ROW ){ 521 *piRootPage = sqlite3_column_int(pStmt, 0); 522 523 /* Require only one result. */ 524 rc = sqlite3_step(pStmt); 525 if( rc==SQLITE_DONE ){ 526 rc = SQLITE_OK; 527 }else if( rc==SQLITE_ROW ){ 528 rc = SQLITE_CORRUPT; 529 } 530 } 531 sqlite3_finalize(pStmt); 532 return rc; 533 } 534 535 static int getEncoding(sqlite3 *db, const char *zDb, int* piEncoding){ 536 sqlite3_stmt *pStmt; 537 int rc; 538 char *zSql = sqlite3_mprintf("PRAGMA %s.encoding", zDb); 539 if( !zSql ){ 540 return SQLITE_NOMEM; 541 } 542 543 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); 544 sqlite3_free(zSql); 545 if( rc!=SQLITE_OK ){ 546 return rc; 547 } 548 549 /* Require a result. */ 550 rc = sqlite3_step(pStmt); 551 if( rc==SQLITE_DONE ){ 552 /* This case should not be possible. */ 553 rc = SQLITE_CORRUPT; 554 }else if( rc==SQLITE_ROW ){ 555 if( sqlite3_column_type(pStmt, 0)==SQLITE_TEXT ){ 556 const char* z = (const char *)sqlite3_column_text(pStmt, 0); 557 /* These strings match the literals in pragma.c. */ 558 if( !strcmp(z, "UTF-16le") ){ 559 *piEncoding = SQLITE_UTF16LE; 560 }else if( !strcmp(z, "UTF-16be") ){ 561 *piEncoding = SQLITE_UTF16BE; 562 }else if( !strcmp(z, "UTF-8") ){ 563 *piEncoding = SQLITE_UTF8; 564 }else{ 565 /* This case should not be possible. */ 566 *piEncoding = SQLITE_UTF8; 567 } 568 }else{ 569 /* This case should not be possible. */ 570 *piEncoding = SQLITE_UTF8; 571 } 572 573 /* Require only one result. */ 574 rc = sqlite3_step(pStmt); 575 if( rc==SQLITE_DONE ){ 576 rc = SQLITE_OK; 577 }else if( rc==SQLITE_ROW ){ 578 /* This case should not be possible. */ 579 rc = SQLITE_CORRUPT; 580 } 581 } 582 sqlite3_finalize(pStmt); 583 return rc; 584 } 585 586 /* Cursor for iterating interior nodes. Interior page cells contain a 587 * child page number and a rowid. The child page contains items left 588 * of the rowid (less than). The rightmost page of the subtree is 589 * stored in the page header. 590 * 591 * interiorCursorDestroy - release all resources associated with the 592 * cursor and any parent cursors. 593 * interiorCursorCreate - create a cursor with the given parent and page. 594 * interiorCursorEOF - returns true if neither the cursor nor the 595 * parent cursors can return any more data. 596 * interiorCursorNextPage - fetch the next child page from the cursor. 597 * 598 * Logically, interiorCursorNextPage() returns the next child page 599 * number from the page the cursor is currently reading, calling the 600 * parent cursor as necessary to get new pages to read, until done. 601 * SQLITE_ROW if a page is returned, SQLITE_DONE if out of pages, 602 * error otherwise. Unfortunately, if the table is corrupted 603 * unexpected pages can be returned. If any unexpected page is found, 604 * leaf or otherwise, it is returned to the caller for processing, 605 * with the interior cursor left empty. The next call to 606 * interiorCursorNextPage() will recurse to the parent cursor until an 607 * interior page to iterate is returned. 608 * 609 * Note that while interiorCursorNextPage() will refuse to follow 610 * loops, it does not keep track of pages returned for purposes of 611 * preventing duplication. 612 * 613 * Note that interiorCursorEOF() could return false (not at EOF), and 614 * interiorCursorNextPage() could still return SQLITE_DONE. This 615 * could happen if there are more cells to iterate in an interior 616 * page, but those cells refer to invalid pages. 617 */ 618 typedef struct RecoverInteriorCursor RecoverInteriorCursor; 619 struct RecoverInteriorCursor { 620 RecoverInteriorCursor *pParent; /* Parent node to this node. */ 621 DbPage *pPage; /* Reference to leaf page. */ 622 unsigned nPageSize; /* Size of page. */ 623 unsigned nChildren; /* Number of children on the page. */ 624 unsigned iChild; /* Index of next child to return. */ 625 }; 626 627 static void interiorCursorDestroy(RecoverInteriorCursor *pCursor){ 628 /* Destroy all the cursors to the root. */ 629 while( pCursor ){ 630 RecoverInteriorCursor *p = pCursor; 631 pCursor = pCursor->pParent; 632 633 if( p->pPage ){ 634 sqlite3PagerUnref(p->pPage); 635 p->pPage = NULL; 636 } 637 638 memset(p, 0xA5, sizeof(*p)); 639 sqlite3_free(p); 640 } 641 } 642 643 /* Internal helper. Reset storage in preparation for iterating pPage. */ 644 static void interiorCursorSetPage(RecoverInteriorCursor *pCursor, 645 DbPage *pPage){ 646 const unsigned knMinCellLength = 2 + 4 + 1; 647 unsigned nMaxChildren; 648 assert( PageHeader(pPage)[kiPageTypeOffset]==kTableInteriorPage ); 649 650 if( pCursor->pPage ){ 651 sqlite3PagerUnref(pCursor->pPage); 652 pCursor->pPage = NULL; 653 } 654 pCursor->pPage = pPage; 655 pCursor->iChild = 0; 656 657 /* A child for each cell, plus one in the header. */ 658 pCursor->nChildren = decodeUnsigned16(PageHeader(pPage) + 659 kiPageCellCountOffset) + 1; 660 661 /* Each child requires a 16-bit offset from an array after the header, 662 * and each child contains a 32-bit page number and at least a varint 663 * (min size of one byte). The final child page is in the header. So 664 * the maximum value for nChildren is: 665 * (nPageSize - kiPageInteriorHeaderBytes) / 666 * (sizeof(uint16) + sizeof(uint32) + 1) + 1 667 */ 668 /* TODO(shess): This count is very unlikely to be corrupted in 669 * isolation, so seeing this could signal to skip the page. OTOH, I 670 * can't offhand think of how to get here unless this or the page-type 671 * byte is corrupted. Could be an overflow page, but it would require 672 * a very large database. 673 */ 674 nMaxChildren = 675 (pCursor->nPageSize - kiPageInteriorHeaderBytes) / knMinCellLength + 1; 676 if (pCursor->nChildren > nMaxChildren) { 677 pCursor->nChildren = nMaxChildren; 678 } 679 } 680 681 static int interiorCursorCreate(RecoverInteriorCursor *pParent, 682 DbPage *pPage, int nPageSize, 683 RecoverInteriorCursor **ppCursor){ 684 RecoverInteriorCursor *pCursor = 685 sqlite3_malloc(sizeof(RecoverInteriorCursor)); 686 if( !pCursor ){ 687 return SQLITE_NOMEM; 688 } 689 690 memset(pCursor, 0, sizeof(*pCursor)); 691 pCursor->pParent = pParent; 692 pCursor->nPageSize = nPageSize; 693 interiorCursorSetPage(pCursor, pPage); 694 *ppCursor = pCursor; 695 return SQLITE_OK; 696 } 697 698 /* Internal helper. Return the child page number at iChild. */ 699 static unsigned interiorCursorChildPage(RecoverInteriorCursor *pCursor){ 700 const unsigned char *pPageHeader; /* Header of the current page. */ 701 const unsigned char *pCellOffsets; /* Offset to page's cell offsets. */ 702 unsigned iCellOffset; /* Offset of target cell. */ 703 704 assert( pCursor->iChild<pCursor->nChildren ); 705 706 /* Rightmost child is in the header. */ 707 pPageHeader = PageHeader(pCursor->pPage); 708 if( pCursor->iChild==pCursor->nChildren-1 ){ 709 return decodeUnsigned32(pPageHeader + kiPageRightChildOffset); 710 } 711 712 /* Each cell is a 4-byte integer page number and a varint rowid 713 * which is greater than the rowid of items in that sub-tree (this 714 * module ignores ordering). The offset is from the beginning of the 715 * page, not from the page header. 716 */ 717 pCellOffsets = pPageHeader + kiPageInteriorHeaderBytes; 718 iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iChild*2); 719 if( iCellOffset<=pCursor->nPageSize-4 ){ 720 return decodeUnsigned32(PageData(pCursor->pPage, iCellOffset)); 721 } 722 723 /* TODO(shess): Check for cell overlaps? Cells require 4 bytes plus 724 * a varint. Check could be identical to leaf check (or even a 725 * shared helper testing for "Cells starting in this range"?). 726 */ 727 728 /* If the offset is broken, return an invalid page number. */ 729 return 0; 730 } 731 732 static int interiorCursorEOF(RecoverInteriorCursor *pCursor){ 733 /* Find a parent with remaining children. EOF if none found. */ 734 while( pCursor && pCursor->iChild>=pCursor->nChildren ){ 735 pCursor = pCursor->pParent; 736 } 737 return pCursor==NULL; 738 } 739 740 /* Internal helper. Used to detect if iPage would cause a loop. */ 741 static int interiorCursorPageInUse(RecoverInteriorCursor *pCursor, 742 unsigned iPage){ 743 /* Find any parent using the indicated page. */ 744 while( pCursor && pCursor->pPage->pgno!=iPage ){ 745 pCursor = pCursor->pParent; 746 } 747 return pCursor!=NULL; 748 } 749 750 /* Get the next page from the interior cursor at *ppCursor. Returns 751 * SQLITE_ROW with the page in *ppPage, or SQLITE_DONE if out of 752 * pages, or the error SQLite returned. 753 * 754 * If the tree is uneven, then when the cursor attempts to get a new 755 * interior page from the parent cursor, it may get a non-interior 756 * page. In that case, the new page is returned, and *ppCursor is 757 * updated to point to the parent cursor (this cursor is freed). 758 */ 759 /* TODO(shess): I've tried to avoid recursion in most of this code, 760 * but this case is more challenging because the recursive call is in 761 * the middle of operation. One option for converting it without 762 * adding memory management would be to retain the head pointer and 763 * use a helper to "back up" as needed. Another option would be to 764 * reverse the list during traversal. 765 */ 766 static int interiorCursorNextPage(RecoverInteriorCursor **ppCursor, 767 DbPage **ppPage){ 768 RecoverInteriorCursor *pCursor = *ppCursor; 769 while( 1 ){ 770 int rc; 771 const unsigned char *pPageHeader; /* Header of found page. */ 772 773 /* Find a valid child page which isn't on the stack. */ 774 while( pCursor->iChild<pCursor->nChildren ){ 775 const unsigned iPage = interiorCursorChildPage(pCursor); 776 pCursor->iChild++; 777 if( interiorCursorPageInUse(pCursor, iPage) ){ 778 fprintf(stderr, "Loop detected at %d\n", iPage); 779 }else{ 780 int rc = sqlite3PagerAcquire(pCursor->pPage->pPager, iPage, ppPage, 0); 781 if( rc==SQLITE_OK ){ 782 return SQLITE_ROW; 783 } 784 } 785 } 786 787 /* This page has no more children. Get next page from parent. */ 788 if( !pCursor->pParent ){ 789 return SQLITE_DONE; 790 } 791 rc = interiorCursorNextPage(&pCursor->pParent, ppPage); 792 if( rc!=SQLITE_ROW ){ 793 return rc; 794 } 795 796 /* If a non-interior page is received, that either means that the 797 * tree is uneven, or that a child was re-used (say as an overflow 798 * page). Remove this cursor and let the caller handle the page. 799 */ 800 pPageHeader = PageHeader(*ppPage); 801 if( pPageHeader[kiPageTypeOffset]!=kTableInteriorPage ){ 802 *ppCursor = pCursor->pParent; 803 pCursor->pParent = NULL; 804 interiorCursorDestroy(pCursor); 805 return SQLITE_ROW; 806 } 807 808 /* Iterate the new page. */ 809 interiorCursorSetPage(pCursor, *ppPage); 810 *ppPage = NULL; 811 } 812 813 assert(NULL); /* NOTREACHED() */ 814 return SQLITE_CORRUPT; 815 } 816 817 /* Large rows are spilled to overflow pages. The row's main page 818 * stores the overflow page number after the local payload, with a 819 * linked list forward from there as necessary. overflowMaybeCreate() 820 * and overflowGetSegment() provide an abstraction for accessing such 821 * data while centralizing the code. 822 * 823 * overflowDestroy - releases all resources associated with the structure. 824 * overflowMaybeCreate - create the overflow structure if it is needed 825 * to represent the given record. See function comment. 826 * overflowGetSegment - fetch a segment from the record, accounting 827 * for overflow pages. Segments which are not 828 * entirely contained with a page are constructed 829 * into a buffer which is returned. See function comment. 830 */ 831 typedef struct RecoverOverflow RecoverOverflow; 832 struct RecoverOverflow { 833 RecoverOverflow *pNextOverflow; 834 DbPage *pPage; 835 unsigned nPageSize; 836 }; 837 838 static void overflowDestroy(RecoverOverflow *pOverflow){ 839 while( pOverflow ){ 840 RecoverOverflow *p = pOverflow; 841 pOverflow = p->pNextOverflow; 842 843 if( p->pPage ){ 844 sqlite3PagerUnref(p->pPage); 845 p->pPage = NULL; 846 } 847 848 memset(p, 0xA5, sizeof(*p)); 849 sqlite3_free(p); 850 } 851 } 852 853 /* Internal helper. Used to detect if iPage would cause a loop. */ 854 static int overflowPageInUse(RecoverOverflow *pOverflow, unsigned iPage){ 855 while( pOverflow && pOverflow->pPage->pgno!=iPage ){ 856 pOverflow = pOverflow->pNextOverflow; 857 } 858 return pOverflow!=NULL; 859 } 860 861 /* Setup to access an nRecordBytes record beginning at iRecordOffset 862 * in pPage. If nRecordBytes can be satisfied entirely from pPage, 863 * then no overflow pages are needed an *pnLocalRecordBytes is set to 864 * nRecordBytes. Otherwise, *ppOverflow is set to the head of a list 865 * of overflow pages, and *pnLocalRecordBytes is set to the number of 866 * bytes local to pPage. 867 * 868 * overflowGetSegment() will do the right thing regardless of whether 869 * those values are set to be in-page or not. 870 */ 871 static int overflowMaybeCreate(DbPage *pPage, unsigned nPageSize, 872 unsigned iRecordOffset, unsigned nRecordBytes, 873 unsigned *pnLocalRecordBytes, 874 RecoverOverflow **ppOverflow){ 875 unsigned nLocalRecordBytes; /* Record bytes in the leaf page. */ 876 unsigned iNextPage; /* Next page number for record data. */ 877 unsigned nBytes; /* Maximum record bytes as of current page. */ 878 int rc; 879 RecoverOverflow *pFirstOverflow; /* First in linked list of pages. */ 880 RecoverOverflow *pLastOverflow; /* End of linked list. */ 881 882 /* Calculations from the "Table B-Tree Leaf Cell" part of section 883 * 1.5 of http://www.sqlite.org/fileformat2.html . maxLocal and 884 * minLocal to match naming in btree.c. 885 */ 886 const unsigned maxLocal = nPageSize - 35; 887 const unsigned minLocal = ((nPageSize-12)*32/255)-23; /* m */ 888 889 /* Always fit anything smaller than maxLocal. */ 890 if( nRecordBytes<=maxLocal ){ 891 *pnLocalRecordBytes = nRecordBytes; 892 *ppOverflow = NULL; 893 return SQLITE_OK; 894 } 895 896 /* Calculate the remainder after accounting for minLocal on the leaf 897 * page and what packs evenly into overflow pages. If the remainder 898 * does not fit into maxLocal, then a partially-full overflow page 899 * will be required in any case, so store as little as possible locally. 900 */ 901 nLocalRecordBytes = minLocal+((nRecordBytes-minLocal)%(nPageSize-4)); 902 if( maxLocal<nLocalRecordBytes ){ 903 nLocalRecordBytes = minLocal; 904 } 905 906 /* Don't read off the end of the page. */ 907 if( iRecordOffset+nLocalRecordBytes+4>nPageSize ){ 908 return SQLITE_CORRUPT; 909 } 910 911 /* First overflow page number is after the local bytes. */ 912 iNextPage = 913 decodeUnsigned32(PageData(pPage, iRecordOffset + nLocalRecordBytes)); 914 nBytes = nLocalRecordBytes; 915 916 /* While there are more pages to read, and more bytes are needed, 917 * get another page. 918 */ 919 pFirstOverflow = pLastOverflow = NULL; 920 rc = SQLITE_OK; 921 while( iNextPage && nBytes<nRecordBytes ){ 922 RecoverOverflow *pOverflow; /* New overflow page for the list. */ 923 924 rc = sqlite3PagerAcquire(pPage->pPager, iNextPage, &pPage, 0); 925 if( rc!=SQLITE_OK ){ 926 break; 927 } 928 929 pOverflow = sqlite3_malloc(sizeof(RecoverOverflow)); 930 if( !pOverflow ){ 931 sqlite3PagerUnref(pPage); 932 rc = SQLITE_NOMEM; 933 break; 934 } 935 memset(pOverflow, 0, sizeof(*pOverflow)); 936 pOverflow->pPage = pPage; 937 pOverflow->nPageSize = nPageSize; 938 939 if( !pFirstOverflow ){ 940 pFirstOverflow = pOverflow; 941 }else{ 942 pLastOverflow->pNextOverflow = pOverflow; 943 } 944 pLastOverflow = pOverflow; 945 946 iNextPage = decodeUnsigned32(pPage->pData); 947 nBytes += nPageSize-4; 948 949 /* Avoid loops. */ 950 if( overflowPageInUse(pFirstOverflow, iNextPage) ){ 951 fprintf(stderr, "Overflow loop detected at %d\n", iNextPage); 952 rc = SQLITE_CORRUPT; 953 break; 954 } 955 } 956 957 /* If there were not enough pages, or too many, things are corrupt. 958 * Not having enough pages is an obvious problem, all the data 959 * cannot be read. Too many pages means that the contents of the 960 * row between the main page and the overflow page(s) is 961 * inconsistent (most likely one or more of the overflow pages does 962 * not really belong to this row). 963 */ 964 if( rc==SQLITE_OK && (nBytes<nRecordBytes || iNextPage) ){ 965 rc = SQLITE_CORRUPT; 966 } 967 968 if( rc==SQLITE_OK ){ 969 *ppOverflow = pFirstOverflow; 970 *pnLocalRecordBytes = nLocalRecordBytes; 971 }else if( pFirstOverflow ){ 972 overflowDestroy(pFirstOverflow); 973 } 974 return rc; 975 } 976 977 /* Use in concert with overflowMaybeCreate() to efficiently read parts 978 * of a potentially-overflowing record. pPage and iRecordOffset are 979 * the values passed into overflowMaybeCreate(), nLocalRecordBytes and 980 * pOverflow are the values returned by that call. 981 * 982 * On SQLITE_OK, *ppBase points to nRequestBytes of data at 983 * iRequestOffset within the record. If the data exists contiguously 984 * in a page, a direct pointer is returned, otherwise a buffer from 985 * sqlite3_malloc() is returned with the data. *pbFree is set true if 986 * sqlite3_free() should be called on *ppBase. 987 */ 988 /* Operation of this function is subtle. At any time, pPage is the 989 * current page, with iRecordOffset and nLocalRecordBytes being record 990 * data within pPage, and pOverflow being the overflow page after 991 * pPage. This allows the code to handle both the initial leaf page 992 * and overflow pages consistently by adjusting the values 993 * appropriately. 994 */ 995 static int overflowGetSegment(DbPage *pPage, unsigned iRecordOffset, 996 unsigned nLocalRecordBytes, 997 RecoverOverflow *pOverflow, 998 unsigned iRequestOffset, unsigned nRequestBytes, 999 unsigned char **ppBase, int *pbFree){ 1000 unsigned nBase; /* Amount of data currently collected. */ 1001 unsigned char *pBase; /* Buffer to collect record data into. */ 1002 1003 /* Skip to the page containing the start of the data. */ 1004 while( iRequestOffset>=nLocalRecordBytes && pOverflow ){ 1005 /* Factor out current page's contribution. */ 1006 iRequestOffset -= nLocalRecordBytes; 1007 1008 /* Move forward to the next page in the list. */ 1009 pPage = pOverflow->pPage; 1010 iRecordOffset = 4; 1011 nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset; 1012 pOverflow = pOverflow->pNextOverflow; 1013 } 1014 1015 /* If the requested data is entirely within this page, return a 1016 * pointer into the page. 1017 */ 1018 if( iRequestOffset+nRequestBytes<=nLocalRecordBytes ){ 1019 /* TODO(shess): "assignment discards qualifiers from pointer target type" 1020 * Having ppBase be const makes sense, but sqlite3_free() takes non-const. 1021 */ 1022 *ppBase = (unsigned char *)PageData(pPage, iRecordOffset + iRequestOffset); 1023 *pbFree = 0; 1024 return SQLITE_OK; 1025 } 1026 1027 /* The data range would require additional pages. */ 1028 if( !pOverflow ){ 1029 /* Should never happen, the range is outside the nRecordBytes 1030 * passed to overflowMaybeCreate(). 1031 */ 1032 assert(NULL); /* NOTREACHED */ 1033 return SQLITE_ERROR; 1034 } 1035 1036 /* Get a buffer to construct into. */ 1037 nBase = 0; 1038 pBase = sqlite3_malloc(nRequestBytes); 1039 if( !pBase ){ 1040 return SQLITE_NOMEM; 1041 } 1042 while( nBase<nRequestBytes ){ 1043 /* Copy over data present on this page. */ 1044 unsigned nCopyBytes = nRequestBytes - nBase; 1045 if( nLocalRecordBytes-iRequestOffset<nCopyBytes ){ 1046 nCopyBytes = nLocalRecordBytes - iRequestOffset; 1047 } 1048 memcpy(pBase + nBase, PageData(pPage, iRecordOffset + iRequestOffset), 1049 nCopyBytes); 1050 nBase += nCopyBytes; 1051 1052 if( pOverflow ){ 1053 /* Copy from start of record data in future pages. */ 1054 iRequestOffset = 0; 1055 1056 /* Move forward to the next page in the list. Should match 1057 * first while() loop. 1058 */ 1059 pPage = pOverflow->pPage; 1060 iRecordOffset = 4; 1061 nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset; 1062 pOverflow = pOverflow->pNextOverflow; 1063 }else if( nBase<nRequestBytes ){ 1064 /* Ran out of overflow pages with data left to deliver. Not 1065 * possible if the requested range fits within nRecordBytes 1066 * passed to overflowMaybeCreate() when creating pOverflow. 1067 */ 1068 assert(NULL); /* NOTREACHED */ 1069 sqlite3_free(pBase); 1070 return SQLITE_ERROR; 1071 } 1072 } 1073 assert( nBase==nRequestBytes ); 1074 *ppBase = pBase; 1075 *pbFree = 1; 1076 return SQLITE_OK; 1077 } 1078 1079 /* Primary structure for iterating the contents of a table. 1080 * 1081 * leafCursorDestroy - release all resources associated with the cursor. 1082 * leafCursorCreate - create a cursor to iterate items from tree at 1083 * the provided root page. 1084 * leafCursorNextValidCell - get the cursor ready to access data from 1085 * the next valid cell in the table. 1086 * leafCursorCellRowid - get the current cell's rowid. 1087 * leafCursorCellColumns - get current cell's column count. 1088 * leafCursorCellColInfo - get type and data for a column in current cell. 1089 * 1090 * leafCursorNextValidCell skips cells which fail simple integrity 1091 * checks, such as overlapping other cells, or being located at 1092 * impossible offsets, or where header data doesn't correctly describe 1093 * payload data. Returns SQLITE_ROW if a valid cell is found, 1094 * SQLITE_DONE if all pages in the tree were exhausted. 1095 * 1096 * leafCursorCellColInfo() accounts for overflow pages in the style of 1097 * overflowGetSegment(). 1098 */ 1099 typedef struct RecoverLeafCursor RecoverLeafCursor; 1100 struct RecoverLeafCursor { 1101 RecoverInteriorCursor *pParent; /* Parent node to this node. */ 1102 DbPage *pPage; /* Reference to leaf page. */ 1103 unsigned nPageSize; /* Size of pPage. */ 1104 unsigned nCells; /* Number of cells in pPage. */ 1105 unsigned iCell; /* Current cell. */ 1106 1107 /* Info parsed from data in iCell. */ 1108 i64 iRowid; /* rowid parsed. */ 1109 unsigned nRecordCols; /* how many items in the record. */ 1110 u64 iRecordOffset; /* offset to record data. */ 1111 /* TODO(shess): nRecordBytes and nRecordHeaderBytes are used in 1112 * leafCursorCellColInfo() to prevent buffer overruns. 1113 * leafCursorCellDecode() already verified that the cell is valid, so 1114 * those checks should be redundant. 1115 */ 1116 u64 nRecordBytes; /* Size of record data. */ 1117 unsigned nLocalRecordBytes; /* Amount of record data in-page. */ 1118 unsigned nRecordHeaderBytes; /* Size of record header data. */ 1119 unsigned char *pRecordHeader; /* Pointer to record header data. */ 1120 int bFreeRecordHeader; /* True if record header requires free. */ 1121 RecoverOverflow *pOverflow; /* Cell overflow info, if needed. */ 1122 }; 1123 1124 /* Internal helper shared between next-page and create-cursor. If 1125 * pPage is a leaf page, it will be stored in the cursor and state 1126 * initialized for reading cells. 1127 * 1128 * If pPage is an interior page, a new parent cursor is created and 1129 * injected on the stack. This is necessary to handle trees with 1130 * uneven depth, but also is used during initial setup. 1131 * 1132 * If pPage is not a table page at all, it is discarded. 1133 * 1134 * If SQLITE_OK is returned, the caller no longer owns pPage, 1135 * otherwise the caller is responsible for discarding it. 1136 */ 1137 static int leafCursorLoadPage(RecoverLeafCursor *pCursor, DbPage *pPage){ 1138 const unsigned char *pPageHeader; /* Header of *pPage */ 1139 1140 /* Release the current page. */ 1141 if( pCursor->pPage ){ 1142 sqlite3PagerUnref(pCursor->pPage); 1143 pCursor->pPage = NULL; 1144 pCursor->iCell = pCursor->nCells = 0; 1145 } 1146 1147 /* If the page is an unexpected interior node, inject a new stack 1148 * layer and try again from there. 1149 */ 1150 pPageHeader = PageHeader(pPage); 1151 if( pPageHeader[kiPageTypeOffset]==kTableInteriorPage ){ 1152 RecoverInteriorCursor *pParent; 1153 int rc = interiorCursorCreate(pCursor->pParent, pPage, pCursor->nPageSize, 1154 &pParent); 1155 if( rc!=SQLITE_OK ){ 1156 return rc; 1157 } 1158 pCursor->pParent = pParent; 1159 return SQLITE_OK; 1160 } 1161 1162 /* Not a leaf page, skip it. */ 1163 if( pPageHeader[kiPageTypeOffset]!=kTableLeafPage ){ 1164 sqlite3PagerUnref(pPage); 1165 return SQLITE_OK; 1166 } 1167 1168 /* Take ownership of the page and start decoding. */ 1169 pCursor->pPage = pPage; 1170 pCursor->iCell = 0; 1171 pCursor->nCells = decodeUnsigned16(pPageHeader + kiPageCellCountOffset); 1172 return SQLITE_OK; 1173 } 1174 1175 /* Get the next leaf-level page in the tree. Returns SQLITE_ROW when 1176 * a leaf page is found, SQLITE_DONE when no more leaves exist, or any 1177 * error which occurred. 1178 */ 1179 static int leafCursorNextPage(RecoverLeafCursor *pCursor){ 1180 if( !pCursor->pParent ){ 1181 return SQLITE_DONE; 1182 } 1183 1184 /* Repeatedly load the parent's next child page until a leaf is found. */ 1185 do { 1186 DbPage *pNextPage; 1187 int rc = interiorCursorNextPage(&pCursor->pParent, &pNextPage); 1188 if( rc!=SQLITE_ROW ){ 1189 assert( rc==SQLITE_DONE ); 1190 return rc; 1191 } 1192 1193 rc = leafCursorLoadPage(pCursor, pNextPage); 1194 if( rc!=SQLITE_OK ){ 1195 sqlite3PagerUnref(pNextPage); 1196 return rc; 1197 } 1198 } while( !pCursor->pPage ); 1199 1200 return SQLITE_ROW; 1201 } 1202 1203 static void leafCursorDestroyCellData(RecoverLeafCursor *pCursor){ 1204 if( pCursor->bFreeRecordHeader ){ 1205 sqlite3_free(pCursor->pRecordHeader); 1206 } 1207 pCursor->bFreeRecordHeader = 0; 1208 pCursor->pRecordHeader = NULL; 1209 1210 if( pCursor->pOverflow ){ 1211 overflowDestroy(pCursor->pOverflow); 1212 pCursor->pOverflow = NULL; 1213 } 1214 } 1215 1216 static void leafCursorDestroy(RecoverLeafCursor *pCursor){ 1217 leafCursorDestroyCellData(pCursor); 1218 1219 if( pCursor->pParent ){ 1220 interiorCursorDestroy(pCursor->pParent); 1221 pCursor->pParent = NULL; 1222 } 1223 1224 if( pCursor->pPage ){ 1225 sqlite3PagerUnref(pCursor->pPage); 1226 pCursor->pPage = NULL; 1227 } 1228 1229 memset(pCursor, 0xA5, sizeof(*pCursor)); 1230 sqlite3_free(pCursor); 1231 } 1232 1233 /* Create a cursor to iterate the rows from the leaf pages of a table 1234 * rooted at iRootPage. 1235 */ 1236 /* TODO(shess): recoverOpen() calls this to setup the cursor, and I 1237 * think that recoverFilter() may make a hard assumption that the 1238 * cursor returned will turn up at least one valid cell. 1239 * 1240 * The cases I can think of which break this assumption are: 1241 * - pPage is a valid leaf page with no valid cells. 1242 * - pPage is a valid interior page with no valid leaves. 1243 * - pPage is a valid interior page who's leaves contain no valid cells. 1244 * - pPage is not a valid leaf or interior page. 1245 */ 1246 static int leafCursorCreate(Pager *pPager, unsigned nPageSize, 1247 u32 iRootPage, RecoverLeafCursor **ppCursor){ 1248 DbPage *pPage; /* Reference to page at iRootPage. */ 1249 RecoverLeafCursor *pCursor; /* Leaf cursor being constructed. */ 1250 int rc; 1251 1252 /* Start out with the root page. */ 1253 rc = sqlite3PagerAcquire(pPager, iRootPage, &pPage, 0); 1254 if( rc!=SQLITE_OK ){ 1255 return rc; 1256 } 1257 1258 pCursor = sqlite3_malloc(sizeof(RecoverLeafCursor)); 1259 if( !pCursor ){ 1260 sqlite3PagerUnref(pPage); 1261 return SQLITE_NOMEM; 1262 } 1263 memset(pCursor, 0, sizeof(*pCursor)); 1264 1265 pCursor->nPageSize = nPageSize; 1266 1267 rc = leafCursorLoadPage(pCursor, pPage); 1268 if( rc!=SQLITE_OK ){ 1269 sqlite3PagerUnref(pPage); 1270 leafCursorDestroy(pCursor); 1271 return rc; 1272 } 1273 1274 /* pPage wasn't a leaf page, find the next leaf page. */ 1275 if( !pCursor->pPage ){ 1276 rc = leafCursorNextPage(pCursor); 1277 if( rc!=SQLITE_DONE && rc!=SQLITE_ROW ){ 1278 leafCursorDestroy(pCursor); 1279 return rc; 1280 } 1281 } 1282 1283 *ppCursor = pCursor; 1284 return SQLITE_OK; 1285 } 1286 1287 /* Useful for setting breakpoints. */ 1288 static int ValidateError(){ 1289 return SQLITE_ERROR; 1290 } 1291 1292 /* Setup the cursor for reading the information from cell iCell. */ 1293 static int leafCursorCellDecode(RecoverLeafCursor *pCursor){ 1294 const unsigned char *pPageHeader; /* Header of current page. */ 1295 const unsigned char *pPageEnd; /* Byte after end of current page. */ 1296 const unsigned char *pCellOffsets; /* Pointer to page's cell offsets. */ 1297 unsigned iCellOffset; /* Offset of current cell (iCell). */ 1298 const unsigned char *pCell; /* Pointer to data at iCellOffset. */ 1299 unsigned nCellMaxBytes; /* Maximum local size of iCell. */ 1300 unsigned iEndOffset; /* End of iCell's in-page data. */ 1301 u64 nRecordBytes; /* Expected size of cell, w/overflow. */ 1302 u64 iRowid; /* iCell's rowid (in table). */ 1303 unsigned nRead; /* Amount of cell read. */ 1304 unsigned nRecordHeaderRead; /* Header data read. */ 1305 u64 nRecordHeaderBytes; /* Header size expected. */ 1306 unsigned nRecordCols; /* Columns read from header. */ 1307 u64 nRecordColBytes; /* Bytes in payload for those columns. */ 1308 unsigned i; 1309 int rc; 1310 1311 assert( pCursor->iCell<pCursor->nCells ); 1312 1313 leafCursorDestroyCellData(pCursor); 1314 1315 /* Find the offset to the row. */ 1316 pPageHeader = PageHeader(pCursor->pPage); 1317 pCellOffsets = pPageHeader + knPageLeafHeaderBytes; 1318 pPageEnd = PageData(pCursor->pPage, pCursor->nPageSize); 1319 if( pCellOffsets + pCursor->iCell*2 + 2 > pPageEnd ){ 1320 return ValidateError(); 1321 } 1322 iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iCell*2); 1323 if( iCellOffset>=pCursor->nPageSize ){ 1324 return ValidateError(); 1325 } 1326 1327 pCell = PageData(pCursor->pPage, iCellOffset); 1328 nCellMaxBytes = pCursor->nPageSize - iCellOffset; 1329 1330 /* B-tree leaf cells lead with varint record size, varint rowid and 1331 * varint header size. 1332 */ 1333 /* TODO(shess): The smallest page size is 512 bytes, which has an m 1334 * of 39. Three varints need at most 27 bytes to encode. I think. 1335 */ 1336 if( !checkVarints(pCell, nCellMaxBytes, 3) ){ 1337 return ValidateError(); 1338 } 1339 1340 nRead = getVarint(pCell, &nRecordBytes); 1341 assert( iCellOffset+nRead<=pCursor->nPageSize ); 1342 pCursor->nRecordBytes = nRecordBytes; 1343 1344 nRead += getVarint(pCell + nRead, &iRowid); 1345 assert( iCellOffset+nRead<=pCursor->nPageSize ); 1346 pCursor->iRowid = (i64)iRowid; 1347 1348 pCursor->iRecordOffset = iCellOffset + nRead; 1349 1350 /* Start overflow setup here because nLocalRecordBytes is needed to 1351 * check cell overlap. 1352 */ 1353 rc = overflowMaybeCreate(pCursor->pPage, pCursor->nPageSize, 1354 pCursor->iRecordOffset, pCursor->nRecordBytes, 1355 &pCursor->nLocalRecordBytes, 1356 &pCursor->pOverflow); 1357 if( rc!=SQLITE_OK ){ 1358 return ValidateError(); 1359 } 1360 1361 /* Check that no other cell starts within this cell. */ 1362 iEndOffset = pCursor->iRecordOffset + pCursor->nLocalRecordBytes; 1363 for( i=0; i<pCursor->nCells && pCellOffsets + i*2 + 2 <= pPageEnd; ++i ){ 1364 const unsigned iOtherOffset = decodeUnsigned16(pCellOffsets + i*2); 1365 if( iOtherOffset>iCellOffset && iOtherOffset<iEndOffset ){ 1366 return ValidateError(); 1367 } 1368 } 1369 1370 nRecordHeaderRead = getVarint(pCell + nRead, &nRecordHeaderBytes); 1371 assert( nRecordHeaderBytes<=nRecordBytes ); 1372 pCursor->nRecordHeaderBytes = nRecordHeaderBytes; 1373 1374 /* Large headers could overflow if pages are small. */ 1375 rc = overflowGetSegment(pCursor->pPage, 1376 pCursor->iRecordOffset, pCursor->nLocalRecordBytes, 1377 pCursor->pOverflow, 0, nRecordHeaderBytes, 1378 &pCursor->pRecordHeader, &pCursor->bFreeRecordHeader); 1379 if( rc!=SQLITE_OK ){ 1380 return ValidateError(); 1381 } 1382 1383 /* Tally up the column count and size of data. */ 1384 nRecordCols = 0; 1385 nRecordColBytes = 0; 1386 while( nRecordHeaderRead<nRecordHeaderBytes ){ 1387 u64 iSerialType; /* Type descriptor for current column. */ 1388 if( !checkVarint(pCursor->pRecordHeader + nRecordHeaderRead, 1389 nRecordHeaderBytes - nRecordHeaderRead) ){ 1390 return ValidateError(); 1391 } 1392 nRecordHeaderRead += getVarint(pCursor->pRecordHeader + nRecordHeaderRead, 1393 &iSerialType); 1394 if( iSerialType==10 || iSerialType==11 ){ 1395 return ValidateError(); 1396 } 1397 nRecordColBytes += SerialTypeLength(iSerialType); 1398 nRecordCols++; 1399 } 1400 pCursor->nRecordCols = nRecordCols; 1401 1402 /* Parsing the header used as many bytes as expected. */ 1403 if( nRecordHeaderRead!=nRecordHeaderBytes ){ 1404 return ValidateError(); 1405 } 1406 1407 /* Calculated record is size of expected record. */ 1408 if( nRecordHeaderBytes+nRecordColBytes!=nRecordBytes ){ 1409 return ValidateError(); 1410 } 1411 1412 return SQLITE_OK; 1413 } 1414 1415 static i64 leafCursorCellRowid(RecoverLeafCursor *pCursor){ 1416 return pCursor->iRowid; 1417 } 1418 1419 static unsigned leafCursorCellColumns(RecoverLeafCursor *pCursor){ 1420 return pCursor->nRecordCols; 1421 } 1422 1423 /* Get the column info for the cell. Pass NULL for ppBase to prevent 1424 * retrieving the data segment. If *pbFree is true, *ppBase must be 1425 * freed by the caller using sqlite3_free(). 1426 */ 1427 static int leafCursorCellColInfo(RecoverLeafCursor *pCursor, 1428 unsigned iCol, u64 *piColType, 1429 unsigned char **ppBase, int *pbFree){ 1430 const unsigned char *pRecordHeader; /* Current cell's header. */ 1431 u64 nRecordHeaderBytes; /* Bytes in pRecordHeader. */ 1432 unsigned nRead; /* Bytes read from header. */ 1433 u64 iColEndOffset; /* Offset to end of column in cell. */ 1434 unsigned nColsSkipped; /* Count columns as procesed. */ 1435 u64 iSerialType; /* Type descriptor for current column. */ 1436 1437 /* Implicit NULL for columns past the end. This case happens when 1438 * rows have not been updated since an ALTER TABLE added columns. 1439 * It is more convenient to address here than in callers. 1440 */ 1441 if( iCol>=pCursor->nRecordCols ){ 1442 *piColType = 0; 1443 if( ppBase ){ 1444 *ppBase = 0; 1445 *pbFree = 0; 1446 } 1447 return SQLITE_OK; 1448 } 1449 1450 /* Must be able to decode header size. */ 1451 pRecordHeader = pCursor->pRecordHeader; 1452 if( !checkVarint(pRecordHeader, pCursor->nRecordHeaderBytes) ){ 1453 return SQLITE_CORRUPT; 1454 } 1455 1456 /* Rather than caching the header size and how many bytes it took, 1457 * decode it every time. 1458 */ 1459 nRead = getVarint(pRecordHeader, &nRecordHeaderBytes); 1460 assert( nRecordHeaderBytes==pCursor->nRecordHeaderBytes ); 1461 1462 /* Scan forward to the indicated column. Scans to _after_ column 1463 * for later range checking. 1464 */ 1465 /* TODO(shess): This could get expensive for very wide tables. An 1466 * array of iSerialType could be built in leafCursorCellDecode(), but 1467 * the number of columns is dynamic per row, so it would add memory 1468 * management complexity. Enough info to efficiently forward 1469 * iterate could be kept, if all clients forward iterate 1470 * (recoverColumn() may not). 1471 */ 1472 iColEndOffset = 0; 1473 nColsSkipped = 0; 1474 while( nColsSkipped<=iCol && nRead<nRecordHeaderBytes ){ 1475 if( !checkVarint(pRecordHeader + nRead, nRecordHeaderBytes - nRead) ){ 1476 return SQLITE_CORRUPT; 1477 } 1478 nRead += getVarint(pRecordHeader + nRead, &iSerialType); 1479 iColEndOffset += SerialTypeLength(iSerialType); 1480 nColsSkipped++; 1481 } 1482 1483 /* Column's data extends past record's end. */ 1484 if( nRecordHeaderBytes+iColEndOffset>pCursor->nRecordBytes ){ 1485 return SQLITE_CORRUPT; 1486 } 1487 1488 *piColType = iSerialType; 1489 if( ppBase ){ 1490 const u32 nColBytes = SerialTypeLength(iSerialType); 1491 1492 /* Offset from start of record to beginning of column. */ 1493 const unsigned iColOffset = nRecordHeaderBytes+iColEndOffset-nColBytes; 1494 1495 return overflowGetSegment(pCursor->pPage, pCursor->iRecordOffset, 1496 pCursor->nLocalRecordBytes, pCursor->pOverflow, 1497 iColOffset, nColBytes, ppBase, pbFree); 1498 } 1499 return SQLITE_OK; 1500 } 1501 1502 static int leafCursorNextValidCell(RecoverLeafCursor *pCursor){ 1503 while( 1 ){ 1504 int rc; 1505 1506 /* Move to the next cell. */ 1507 pCursor->iCell++; 1508 1509 /* No more cells, get the next leaf. */ 1510 if( pCursor->iCell>=pCursor->nCells ){ 1511 rc = leafCursorNextPage(pCursor); 1512 if( rc!=SQLITE_ROW ){ 1513 return rc; 1514 } 1515 assert( pCursor->iCell==0 ); 1516 } 1517 1518 /* If the cell is valid, indicate that a row is available. */ 1519 rc = leafCursorCellDecode(pCursor); 1520 if( rc==SQLITE_OK ){ 1521 return SQLITE_ROW; 1522 } 1523 1524 /* Iterate until done or a valid row is found. */ 1525 /* TODO(shess): Remove debugging output. */ 1526 fprintf(stderr, "Skipping invalid cell\n"); 1527 } 1528 return SQLITE_ERROR; 1529 } 1530 1531 typedef struct Recover Recover; 1532 struct Recover { 1533 sqlite3_vtab base; 1534 sqlite3 *db; /* Host database connection */ 1535 char *zDb; /* Database containing target table */ 1536 char *zTable; /* Target table */ 1537 unsigned nCols; /* Number of columns in target table */ 1538 unsigned char *pTypes; /* Types of columns in target table */ 1539 }; 1540 1541 /* Internal helper for deleting the module. */ 1542 static void recoverRelease(Recover *pRecover){ 1543 sqlite3_free(pRecover->zDb); 1544 sqlite3_free(pRecover->zTable); 1545 sqlite3_free(pRecover->pTypes); 1546 memset(pRecover, 0xA5, sizeof(*pRecover)); 1547 sqlite3_free(pRecover); 1548 } 1549 1550 /* Helper function for initializing the module. Forward-declared so 1551 * recoverCreate() and recoverConnect() can see it. 1552 */ 1553 static int recoverInit( 1554 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char ** 1555 ); 1556 1557 static int recoverCreate( 1558 sqlite3 *db, 1559 void *pAux, 1560 int argc, const char *const*argv, 1561 sqlite3_vtab **ppVtab, 1562 char **pzErr 1563 ){ 1564 FNENTRY(); 1565 return recoverInit(db, pAux, argc, argv, ppVtab, pzErr); 1566 } 1567 1568 /* This should never be called. */ 1569 static int recoverConnect( 1570 sqlite3 *db, 1571 void *pAux, 1572 int argc, const char *const*argv, 1573 sqlite3_vtab **ppVtab, 1574 char **pzErr 1575 ){ 1576 FNENTRY(); 1577 return recoverInit(db, pAux, argc, argv, ppVtab, pzErr); 1578 } 1579 1580 /* No indices supported. */ 1581 static int recoverBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ 1582 FNENTRY(); 1583 return SQLITE_OK; 1584 } 1585 1586 /* Logically, this should never be called. */ 1587 static int recoverDisconnect(sqlite3_vtab *pVtab){ 1588 FNENTRY(); 1589 recoverRelease((Recover*)pVtab); 1590 return SQLITE_OK; 1591 } 1592 1593 static int recoverDestroy(sqlite3_vtab *pVtab){ 1594 FNENTRY(); 1595 recoverRelease((Recover*)pVtab); 1596 return SQLITE_OK; 1597 } 1598 1599 typedef struct RecoverCursor RecoverCursor; 1600 struct RecoverCursor { 1601 sqlite3_vtab_cursor base; 1602 RecoverLeafCursor *pLeafCursor; 1603 int iEncoding; 1604 int bEOF; 1605 }; 1606 1607 static int recoverOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ 1608 Recover *pRecover = (Recover*)pVTab; 1609 u32 iRootPage; /* Root page of the backing table. */ 1610 int iEncoding; /* UTF encoding for backing database. */ 1611 unsigned nPageSize; /* Size of pages in backing database. */ 1612 Pager *pPager; /* Backing database pager. */ 1613 RecoverLeafCursor *pLeafCursor; /* Cursor to read table's leaf pages. */ 1614 RecoverCursor *pCursor; /* Cursor to read rows from leaves. */ 1615 int rc; 1616 1617 FNENTRY(); 1618 1619 iRootPage = 0; 1620 rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, 1621 &iRootPage); 1622 if( rc!=SQLITE_OK ){ 1623 return rc; 1624 } 1625 1626 iEncoding = 0; 1627 rc = getEncoding(pRecover->db, pRecover->zDb, &iEncoding); 1628 if( rc!=SQLITE_OK ){ 1629 return rc; 1630 } 1631 1632 rc = GetPager(pRecover->db, pRecover->zDb, &pPager, &nPageSize); 1633 if( rc!=SQLITE_OK ){ 1634 return rc; 1635 } 1636 1637 rc = leafCursorCreate(pPager, nPageSize, iRootPage, &pLeafCursor); 1638 if( rc!=SQLITE_OK ){ 1639 return rc; 1640 } 1641 1642 pCursor = sqlite3_malloc(sizeof(RecoverCursor)); 1643 if( !pCursor ){ 1644 leafCursorDestroy(pLeafCursor); 1645 return SQLITE_NOMEM; 1646 } 1647 memset(pCursor, 0, sizeof(*pCursor)); 1648 pCursor->base.pVtab = pVTab; 1649 pCursor->pLeafCursor = pLeafCursor; 1650 pCursor->iEncoding = iEncoding; 1651 1652 /* If no leaf pages were found, empty result set. */ 1653 /* TODO(shess): leafCursorNextValidCell() would return SQLITE_ROW or 1654 * SQLITE_DONE to indicate whether there is further data to consider. 1655 */ 1656 pCursor->bEOF = (pLeafCursor->pPage==NULL); 1657 1658 *ppCursor = (sqlite3_vtab_cursor*)pCursor; 1659 return SQLITE_OK; 1660 } 1661 1662 static int recoverClose(sqlite3_vtab_cursor *cur){ 1663 RecoverCursor *pCursor = (RecoverCursor*)cur; 1664 FNENTRY(); 1665 if( pCursor->pLeafCursor ){ 1666 leafCursorDestroy(pCursor->pLeafCursor); 1667 pCursor->pLeafCursor = NULL; 1668 } 1669 memset(pCursor, 0xA5, sizeof(*pCursor)); 1670 sqlite3_free(cur); 1671 return SQLITE_OK; 1672 } 1673 1674 /* Helpful place to set a breakpoint. */ 1675 static int RecoverInvalidCell(){ 1676 return SQLITE_ERROR; 1677 } 1678 1679 /* Returns SQLITE_OK if the cell has an appropriate number of columns 1680 * with the appropriate types of data. 1681 */ 1682 static int recoverValidateLeafCell(Recover *pRecover, RecoverCursor *pCursor){ 1683 unsigned i; 1684 1685 /* If the row's storage has too many columns, skip it. */ 1686 if( leafCursorCellColumns(pCursor->pLeafCursor)>pRecover->nCols ){ 1687 return RecoverInvalidCell(); 1688 } 1689 1690 /* Skip rows with unexpected types. */ 1691 for( i=0; i<pRecover->nCols; ++i ){ 1692 u64 iType; /* Storage type of column i. */ 1693 int rc; 1694 1695 /* ROWID alias. */ 1696 if( (pRecover->pTypes[i]&MASK_ROWID) ){ 1697 continue; 1698 } 1699 1700 rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iType, NULL, NULL); 1701 assert( rc==SQLITE_OK ); 1702 if( rc!=SQLITE_OK || !SerialTypeIsCompatible(iType, pRecover->pTypes[i]) ){ 1703 return RecoverInvalidCell(); 1704 } 1705 } 1706 1707 return SQLITE_OK; 1708 } 1709 1710 static int recoverNext(sqlite3_vtab_cursor *pVtabCursor){ 1711 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; 1712 Recover *pRecover = (Recover*)pCursor->base.pVtab; 1713 int rc; 1714 1715 FNENTRY(); 1716 1717 /* Scan forward to the next cell with valid storage, then check that 1718 * the stored data matches the schema. 1719 */ 1720 while( (rc = leafCursorNextValidCell(pCursor->pLeafCursor))==SQLITE_ROW ){ 1721 if( recoverValidateLeafCell(pRecover, pCursor)==SQLITE_OK ){ 1722 return SQLITE_OK; 1723 } 1724 } 1725 1726 if( rc==SQLITE_DONE ){ 1727 pCursor->bEOF = 1; 1728 return SQLITE_OK; 1729 } 1730 1731 assert( rc!=SQLITE_OK ); 1732 return rc; 1733 } 1734 1735 static int recoverFilter( 1736 sqlite3_vtab_cursor *pVtabCursor, 1737 int idxNum, const char *idxStr, 1738 int argc, sqlite3_value **argv 1739 ){ 1740 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; 1741 Recover *pRecover = (Recover*)pCursor->base.pVtab; 1742 int rc; 1743 1744 FNENTRY(); 1745 1746 /* There were no valid leaf pages in the table. */ 1747 if( pCursor->bEOF ){ 1748 return SQLITE_OK; 1749 } 1750 1751 /* Load the first cell, and iterate forward if it's not valid. If no cells at 1752 * all are valid, recoverNext() sets bEOF and returns appropriately. 1753 */ 1754 rc = leafCursorCellDecode(pCursor->pLeafCursor); 1755 if( rc!=SQLITE_OK || recoverValidateLeafCell(pRecover, pCursor)!=SQLITE_OK ){ 1756 return recoverNext(pVtabCursor); 1757 } 1758 1759 return SQLITE_OK; 1760 } 1761 1762 static int recoverEof(sqlite3_vtab_cursor *pVtabCursor){ 1763 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; 1764 FNENTRY(); 1765 return pCursor->bEOF; 1766 } 1767 1768 static int recoverColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ 1769 RecoverCursor *pCursor = (RecoverCursor*)cur; 1770 Recover *pRecover = (Recover*)pCursor->base.pVtab; 1771 u64 iColType; /* Storage type of column i. */ 1772 unsigned char *pColData; /* Column i's data. */ 1773 int shouldFree; /* Non-zero if pColData should be freed. */ 1774 int rc; 1775 1776 FNENTRY(); 1777 1778 if( i>=pRecover->nCols ){ 1779 return SQLITE_ERROR; 1780 } 1781 1782 /* ROWID alias. */ 1783 if( (pRecover->pTypes[i]&MASK_ROWID) ){ 1784 sqlite3_result_int64(ctx, leafCursorCellRowid(pCursor->pLeafCursor)); 1785 return SQLITE_OK; 1786 } 1787 1788 pColData = NULL; 1789 shouldFree = 0; 1790 rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iColType, 1791 &pColData, &shouldFree); 1792 if( rc!=SQLITE_OK ){ 1793 return rc; 1794 } 1795 /* recoverValidateLeafCell() should guarantee that this will never 1796 * occur. 1797 */ 1798 if( !SerialTypeIsCompatible(iColType, pRecover->pTypes[i]) ){ 1799 if( shouldFree ){ 1800 sqlite3_free(pColData); 1801 } 1802 return SQLITE_ERROR; 1803 } 1804 1805 switch( iColType ){ 1806 case 0 : sqlite3_result_null(ctx); break; 1807 case 1 : sqlite3_result_int64(ctx, decodeSigned(pColData, 1)); break; 1808 case 2 : sqlite3_result_int64(ctx, decodeSigned(pColData, 2)); break; 1809 case 3 : sqlite3_result_int64(ctx, decodeSigned(pColData, 3)); break; 1810 case 4 : sqlite3_result_int64(ctx, decodeSigned(pColData, 4)); break; 1811 case 5 : sqlite3_result_int64(ctx, decodeSigned(pColData, 6)); break; 1812 case 6 : sqlite3_result_int64(ctx, decodeSigned(pColData, 8)); break; 1813 case 7 : sqlite3_result_double(ctx, decodeFloat64(pColData)); break; 1814 case 8 : sqlite3_result_int(ctx, 0); break; 1815 case 9 : sqlite3_result_int(ctx, 1); break; 1816 case 10 : assert( iColType!=10 ); break; 1817 case 11 : assert( iColType!=11 ); break; 1818 1819 default : { 1820 u32 l = SerialTypeLength(iColType); 1821 1822 /* If pColData was already allocated, arrange to pass ownership. */ 1823 sqlite3_destructor_type pFn = SQLITE_TRANSIENT; 1824 if( shouldFree ){ 1825 pFn = sqlite3_free; 1826 shouldFree = 0; 1827 } 1828 1829 if( SerialTypeIsBlob(iColType) ){ 1830 sqlite3_result_blob(ctx, pColData, l, pFn); 1831 }else{ 1832 if( pCursor->iEncoding==SQLITE_UTF16LE ){ 1833 sqlite3_result_text16le(ctx, (const void*)pColData, l, pFn); 1834 }else if( pCursor->iEncoding==SQLITE_UTF16BE ){ 1835 sqlite3_result_text16be(ctx, (const void*)pColData, l, pFn); 1836 }else{ 1837 sqlite3_result_text(ctx, (const char*)pColData, l, pFn); 1838 } 1839 } 1840 } break; 1841 } 1842 if( shouldFree ){ 1843 sqlite3_free(pColData); 1844 } 1845 return SQLITE_OK; 1846 } 1847 1848 static int recoverRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ 1849 RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor; 1850 FNENTRY(); 1851 *pRowid = leafCursorCellRowid(pCursor->pLeafCursor); 1852 return SQLITE_OK; 1853 } 1854 1855 static sqlite3_module recoverModule = { 1856 0, /* iVersion */ 1857 recoverCreate, /* xCreate - create a table */ 1858 recoverConnect, /* xConnect - connect to an existing table */ 1859 recoverBestIndex, /* xBestIndex - Determine search strategy */ 1860 recoverDisconnect, /* xDisconnect - Disconnect from a table */ 1861 recoverDestroy, /* xDestroy - Drop a table */ 1862 recoverOpen, /* xOpen - open a cursor */ 1863 recoverClose, /* xClose - close a cursor */ 1864 recoverFilter, /* xFilter - configure scan constraints */ 1865 recoverNext, /* xNext - advance a cursor */ 1866 recoverEof, /* xEof */ 1867 recoverColumn, /* xColumn - read data */ 1868 recoverRowid, /* xRowid - read data */ 1869 0, /* xUpdate - write data */ 1870 0, /* xBegin - begin transaction */ 1871 0, /* xSync - sync transaction */ 1872 0, /* xCommit - commit transaction */ 1873 0, /* xRollback - rollback transaction */ 1874 0, /* xFindFunction - function overloading */ 1875 0, /* xRename - rename the table */ 1876 }; 1877 1878 int recoverVtableInit(sqlite3 *db){ 1879 return sqlite3_create_module_v2(db, "recover", &recoverModule, NULL, 0); 1880 } 1881 1882 /* This section of code is for parsing the create input and 1883 * initializing the module. 1884 */ 1885 1886 /* Find the next word in zText and place the endpoints in pzWord*. 1887 * Returns true if the word is non-empty. "Word" is defined as 1888 * ASCII alphanumeric plus '_' at this time. 1889 */ 1890 static int findWord(const char *zText, 1891 const char **pzWordStart, const char **pzWordEnd){ 1892 int r; 1893 while( ascii_isspace(*zText) ){ 1894 zText++; 1895 } 1896 *pzWordStart = zText; 1897 while( ascii_isalnum(*zText) || *zText=='_' ){ 1898 zText++; 1899 } 1900 r = zText>*pzWordStart; /* In case pzWordStart==pzWordEnd */ 1901 *pzWordEnd = zText; 1902 return r; 1903 } 1904 1905 /* Return true if the next word in zText is zWord, also setting 1906 * *pzContinue to the character after the word. 1907 */ 1908 static int expectWord(const char *zText, const char *zWord, 1909 const char **pzContinue){ 1910 const char *zWordStart, *zWordEnd; 1911 if( findWord(zText, &zWordStart, &zWordEnd) && 1912 ascii_strncasecmp(zWord, zWordStart, zWordEnd - zWordStart)==0 ){ 1913 *pzContinue = zWordEnd; 1914 return 1; 1915 } 1916 return 0; 1917 } 1918 1919 /* Parse the name and type information out of parameter. In case of 1920 * success, *pzNameStart/End contain the name of the column, 1921 * *pzTypeStart/End contain the top-level type, and *pTypeMask has the 1922 * type mask to use for the column. 1923 */ 1924 static int findNameAndType(const char *parameter, 1925 const char **pzNameStart, const char **pzNameEnd, 1926 const char **pzTypeStart, const char **pzTypeEnd, 1927 unsigned char *pTypeMask){ 1928 unsigned nNameLen; /* Length of found name. */ 1929 const char *zEnd; /* Current end of parsed column information. */ 1930 int bNotNull; /* Non-zero if NULL is not allowed for name. */ 1931 int bStrict; /* Non-zero if column requires exact type match. */ 1932 const char *zDummy; /* Dummy parameter, result unused. */ 1933 unsigned i; 1934 1935 /* strictMask is used for STRICT, strictMask|otherMask if STRICT is 1936 * not supplied. zReplace provides an alternate type to expose to 1937 * the caller. 1938 */ 1939 static struct { 1940 const char *zName; 1941 unsigned char strictMask; 1942 unsigned char otherMask; 1943 const char *zReplace; 1944 } kTypeInfo[] = { 1945 { "ANY", 1946 MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL, 1947 0, "", 1948 }, 1949 { "ROWID", MASK_INTEGER | MASK_ROWID, 0, "INTEGER", }, 1950 { "INTEGER", MASK_INTEGER | MASK_NULL, 0, NULL, }, 1951 { "FLOAT", MASK_FLOAT | MASK_NULL, MASK_INTEGER, NULL, }, 1952 { "NUMERIC", MASK_INTEGER | MASK_FLOAT | MASK_NULL, MASK_TEXT, NULL, }, 1953 { "TEXT", MASK_TEXT | MASK_NULL, MASK_BLOB, NULL, }, 1954 { "BLOB", MASK_BLOB | MASK_NULL, 0, NULL, }, 1955 }; 1956 1957 if( !findWord(parameter, pzNameStart, pzNameEnd) ){ 1958 return SQLITE_MISUSE; 1959 } 1960 1961 /* Manifest typing, accept any storage type. */ 1962 if( !findWord(*pzNameEnd, pzTypeStart, pzTypeEnd) ){ 1963 *pzTypeEnd = *pzTypeStart = ""; 1964 *pTypeMask = MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL; 1965 return SQLITE_OK; 1966 } 1967 1968 nNameLen = *pzTypeEnd - *pzTypeStart; 1969 for( i=0; i<ArraySize(kTypeInfo); ++i ){ 1970 if( ascii_strncasecmp(kTypeInfo[i].zName, *pzTypeStart, nNameLen)==0 ){ 1971 break; 1972 } 1973 } 1974 if( i==ArraySize(kTypeInfo) ){ 1975 return SQLITE_MISUSE; 1976 } 1977 1978 zEnd = *pzTypeEnd; 1979 bStrict = 0; 1980 if( expectWord(zEnd, "STRICT", &zEnd) ){ 1981 /* TODO(shess): Ick. But I don't want another single-purpose 1982 * flag, either. 1983 */ 1984 if( kTypeInfo[i].zReplace && !kTypeInfo[i].zReplace[0] ){ 1985 return SQLITE_MISUSE; 1986 } 1987 bStrict = 1; 1988 } 1989 1990 bNotNull = 0; 1991 if( expectWord(zEnd, "NOT", &zEnd) ){ 1992 if( expectWord(zEnd, "NULL", &zEnd) ){ 1993 bNotNull = 1; 1994 }else{ 1995 /* Anything other than NULL after NOT is an error. */ 1996 return SQLITE_MISUSE; 1997 } 1998 } 1999 2000 /* Anything else is an error. */ 2001 if( findWord(zEnd, &zDummy, &zDummy) ){ 2002 return SQLITE_MISUSE; 2003 } 2004 2005 *pTypeMask = kTypeInfo[i].strictMask; 2006 if( !bStrict ){ 2007 *pTypeMask |= kTypeInfo[i].otherMask; 2008 } 2009 if( bNotNull ){ 2010 *pTypeMask &= ~MASK_NULL; 2011 } 2012 if( kTypeInfo[i].zReplace ){ 2013 *pzTypeStart = kTypeInfo[i].zReplace; 2014 *pzTypeEnd = *pzTypeStart + strlen(*pzTypeStart); 2015 } 2016 return SQLITE_OK; 2017 } 2018 2019 /* Parse the arguments, placing type masks in *pTypes and the exposed 2020 * schema in *pzCreateSql (for sqlite3_declare_vtab). 2021 */ 2022 static int ParseColumnsAndGenerateCreate(unsigned nCols, 2023 const char *const *pCols, 2024 char **pzCreateSql, 2025 unsigned char *pTypes, 2026 char **pzErr){ 2027 unsigned i; 2028 char *zCreateSql = sqlite3_mprintf("CREATE TABLE x("); 2029 if( !zCreateSql ){ 2030 return SQLITE_NOMEM; 2031 } 2032 2033 for( i=0; i<nCols; i++ ){ 2034 const char *zSep = (i < nCols - 1 ? ", " : ")"); 2035 const char *zNotNull = ""; 2036 const char *zNameStart, *zNameEnd; 2037 const char *zTypeStart, *zTypeEnd; 2038 int rc = findNameAndType(pCols[i], 2039 &zNameStart, &zNameEnd, 2040 &zTypeStart, &zTypeEnd, 2041 &pTypes[i]); 2042 if( rc!=SQLITE_OK ){ 2043 *pzErr = sqlite3_mprintf("unable to parse column %d", i); 2044 sqlite3_free(zCreateSql); 2045 return rc; 2046 } 2047 2048 if( !(pTypes[i]&MASK_NULL) ){ 2049 zNotNull = " NOT NULL"; 2050 } 2051 2052 /* Add name and type to the create statement. */ 2053 zCreateSql = sqlite3_mprintf("%z%.*s %.*s%s%s", 2054 zCreateSql, 2055 zNameEnd - zNameStart, zNameStart, 2056 zTypeEnd - zTypeStart, zTypeStart, 2057 zNotNull, zSep); 2058 if( !zCreateSql ){ 2059 return SQLITE_NOMEM; 2060 } 2061 } 2062 2063 *pzCreateSql = zCreateSql; 2064 return SQLITE_OK; 2065 } 2066 2067 /* Helper function for initializing the module. */ 2068 /* argv[0] module name 2069 * argv[1] db name for virtual table 2070 * argv[2] virtual table name 2071 * argv[3] backing table name 2072 * argv[4] columns 2073 */ 2074 /* TODO(shess): Since connect isn't supported, could inline into 2075 * recoverCreate(). 2076 */ 2077 /* TODO(shess): Explore cases where it would make sense to set *pzErr. */ 2078 static int recoverInit( 2079 sqlite3 *db, /* Database connection */ 2080 void *pAux, /* unused */ 2081 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ 2082 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ 2083 char **pzErr /* OUT: Error message, if any */ 2084 ){ 2085 const unsigned kTypeCol = 4; /* First argument with column type info. */ 2086 Recover *pRecover; /* Virtual table structure being created. */ 2087 char *zDot; /* Any dot found in "db.table" backing. */ 2088 u32 iRootPage; /* Root page of backing table. */ 2089 char *zCreateSql; /* Schema of created virtual table. */ 2090 int rc; 2091 2092 /* Require to be in the temp database. */ 2093 if( ascii_strcasecmp(argv[1], "temp")!=0 ){ 2094 *pzErr = sqlite3_mprintf("recover table must be in temp database"); 2095 return SQLITE_MISUSE; 2096 } 2097 2098 /* Need the backing table and at least one column. */ 2099 if( argc<=kTypeCol ){ 2100 *pzErr = sqlite3_mprintf("no columns specified"); 2101 return SQLITE_MISUSE; 2102 } 2103 2104 pRecover = sqlite3_malloc(sizeof(Recover)); 2105 if( !pRecover ){ 2106 return SQLITE_NOMEM; 2107 } 2108 memset(pRecover, 0, sizeof(*pRecover)); 2109 pRecover->base.pModule = &recoverModule; 2110 pRecover->db = db; 2111 2112 /* Parse out db.table, assuming main if no dot. */ 2113 zDot = strchr(argv[3], '.'); 2114 if( !zDot ){ 2115 pRecover->zDb = sqlite3_strdup(db->aDb[0].zName); 2116 pRecover->zTable = sqlite3_strdup(argv[3]); 2117 }else if( zDot>argv[3] && zDot[1]!='\0' ){ 2118 pRecover->zDb = sqlite3_strndup(argv[3], zDot - argv[3]); 2119 pRecover->zTable = sqlite3_strdup(zDot + 1); 2120 }else{ 2121 /* ".table" or "db." not allowed. */ 2122 *pzErr = sqlite3_mprintf("ill-formed table specifier"); 2123 recoverRelease(pRecover); 2124 return SQLITE_ERROR; 2125 } 2126 2127 pRecover->nCols = argc - kTypeCol; 2128 pRecover->pTypes = sqlite3_malloc(pRecover->nCols); 2129 if( !pRecover->zDb || !pRecover->zTable || !pRecover->pTypes ){ 2130 recoverRelease(pRecover); 2131 return SQLITE_NOMEM; 2132 } 2133 2134 /* Require the backing table to exist. */ 2135 /* TODO(shess): Be more pedantic about the form of the descriptor 2136 * string. This already fails for poorly-formed strings, simply 2137 * because there won't be a root page, but it would make more sense 2138 * to be explicit. 2139 */ 2140 rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, &iRootPage); 2141 if( rc!=SQLITE_OK ){ 2142 *pzErr = sqlite3_mprintf("unable to find backing table"); 2143 recoverRelease(pRecover); 2144 return rc; 2145 } 2146 2147 /* Parse the column definitions. */ 2148 rc = ParseColumnsAndGenerateCreate(pRecover->nCols, argv + kTypeCol, 2149 &zCreateSql, pRecover->pTypes, pzErr); 2150 if( rc!=SQLITE_OK ){ 2151 recoverRelease(pRecover); 2152 return rc; 2153 } 2154 2155 rc = sqlite3_declare_vtab(db, zCreateSql); 2156 sqlite3_free(zCreateSql); 2157 if( rc!=SQLITE_OK ){ 2158 recoverRelease(pRecover); 2159 return rc; 2160 } 2161 2162 *ppVtab = (sqlite3_vtab *)pRecover; 2163 return SQLITE_OK; 2164 } 2165