Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2003 September 6
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This file contains code used for creating, destroying, and populating
     13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
     14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
     15 ** But that file was getting too big so this subroutines were split out.
     16 */
     17 #include "sqliteInt.h"
     18 #include "vdbeInt.h"
     19 
     20 
     21 
     22 /*
     23 ** When debugging the code generator in a symbolic debugger, one can
     24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
     25 ** as they are added to the instruction stream.
     26 */
     27 #ifdef SQLITE_DEBUG
     28 int sqlite3VdbeAddopTrace = 0;
     29 #endif
     30 
     31 
     32 /*
     33 ** Create a new virtual database engine.
     34 */
     35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
     36   Vdbe *p;
     37   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
     38   if( p==0 ) return 0;
     39   p->db = db;
     40   if( db->pVdbe ){
     41     db->pVdbe->pPrev = p;
     42   }
     43   p->pNext = db->pVdbe;
     44   p->pPrev = 0;
     45   db->pVdbe = p;
     46   p->magic = VDBE_MAGIC_INIT;
     47   return p;
     48 }
     49 
     50 /*
     51 ** Remember the SQL string for a prepared statement.
     52 */
     53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
     54   assert( isPrepareV2==1 || isPrepareV2==0 );
     55   if( p==0 ) return;
     56 #ifdef SQLITE_OMIT_TRACE
     57   if( !isPrepareV2 ) return;
     58 #endif
     59   assert( p->zSql==0 );
     60   p->zSql = sqlite3DbStrNDup(p->db, z, n);
     61   p->isPrepareV2 = (u8)isPrepareV2;
     62 }
     63 
     64 /*
     65 ** Return the SQL associated with a prepared statement
     66 */
     67 const char *sqlite3_sql(sqlite3_stmt *pStmt){
     68   Vdbe *p = (Vdbe *)pStmt;
     69   return (p && p->isPrepareV2) ? p->zSql : 0;
     70 }
     71 
     72 /*
     73 ** Swap all content between two VDBE structures.
     74 */
     75 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
     76   Vdbe tmp, *pTmp;
     77   char *zTmp;
     78   tmp = *pA;
     79   *pA = *pB;
     80   *pB = tmp;
     81   pTmp = pA->pNext;
     82   pA->pNext = pB->pNext;
     83   pB->pNext = pTmp;
     84   pTmp = pA->pPrev;
     85   pA->pPrev = pB->pPrev;
     86   pB->pPrev = pTmp;
     87   zTmp = pA->zSql;
     88   pA->zSql = pB->zSql;
     89   pB->zSql = zTmp;
     90   pB->isPrepareV2 = pA->isPrepareV2;
     91 }
     92 
     93 #ifdef SQLITE_DEBUG
     94 /*
     95 ** Turn tracing on or off
     96 */
     97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
     98   p->trace = trace;
     99 }
    100 #endif
    101 
    102 /*
    103 ** Resize the Vdbe.aOp array so that it is at least one op larger than
    104 ** it was.
    105 **
    106 ** If an out-of-memory error occurs while resizing the array, return
    107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
    108 ** unchanged (this is so that any opcodes already allocated can be
    109 ** correctly deallocated along with the rest of the Vdbe).
    110 */
    111 static int growOpArray(Vdbe *p){
    112   VdbeOp *pNew;
    113   int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
    114   pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
    115   if( pNew ){
    116     p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
    117     p->aOp = pNew;
    118   }
    119   return (pNew ? SQLITE_OK : SQLITE_NOMEM);
    120 }
    121 
    122 /*
    123 ** Add a new instruction to the list of instructions current in the
    124 ** VDBE.  Return the address of the new instruction.
    125 **
    126 ** Parameters:
    127 **
    128 **    p               Pointer to the VDBE
    129 **
    130 **    op              The opcode for this instruction
    131 **
    132 **    p1, p2, p3      Operands
    133 **
    134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
    135 ** the sqlite3VdbeChangeP4() function to change the value of the P4
    136 ** operand.
    137 */
    138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
    139   int i;
    140   VdbeOp *pOp;
    141 
    142   i = p->nOp;
    143   assert( p->magic==VDBE_MAGIC_INIT );
    144   assert( op>0 && op<0xff );
    145   if( p->nOpAlloc<=i ){
    146     if( growOpArray(p) ){
    147       return 1;
    148     }
    149   }
    150   p->nOp++;
    151   pOp = &p->aOp[i];
    152   pOp->opcode = (u8)op;
    153   pOp->p5 = 0;
    154   pOp->p1 = p1;
    155   pOp->p2 = p2;
    156   pOp->p3 = p3;
    157   pOp->p4.p = 0;
    158   pOp->p4type = P4_NOTUSED;
    159   p->expired = 0;
    160   if( op==OP_ParseSchema ){
    161     /* Any program that uses the OP_ParseSchema opcode needs to lock
    162     ** all btrees. */
    163     int j;
    164     for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
    165   }
    166 #ifdef SQLITE_DEBUG
    167   pOp->zComment = 0;
    168   if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
    169 #endif
    170 #ifdef VDBE_PROFILE
    171   pOp->cycles = 0;
    172   pOp->cnt = 0;
    173 #endif
    174   return i;
    175 }
    176 int sqlite3VdbeAddOp0(Vdbe *p, int op){
    177   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
    178 }
    179 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
    180   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
    181 }
    182 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
    183   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
    184 }
    185 
    186 
    187 /*
    188 ** Add an opcode that includes the p4 value as a pointer.
    189 */
    190 int sqlite3VdbeAddOp4(
    191   Vdbe *p,            /* Add the opcode to this VM */
    192   int op,             /* The new opcode */
    193   int p1,             /* The P1 operand */
    194   int p2,             /* The P2 operand */
    195   int p3,             /* The P3 operand */
    196   const char *zP4,    /* The P4 operand */
    197   int p4type          /* P4 operand type */
    198 ){
    199   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
    200   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
    201   return addr;
    202 }
    203 
    204 /*
    205 ** Add an opcode that includes the p4 value as an integer.
    206 */
    207 int sqlite3VdbeAddOp4Int(
    208   Vdbe *p,            /* Add the opcode to this VM */
    209   int op,             /* The new opcode */
    210   int p1,             /* The P1 operand */
    211   int p2,             /* The P2 operand */
    212   int p3,             /* The P3 operand */
    213   int p4              /* The P4 operand as an integer */
    214 ){
    215   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
    216   sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
    217   return addr;
    218 }
    219 
    220 /*
    221 ** Create a new symbolic label for an instruction that has yet to be
    222 ** coded.  The symbolic label is really just a negative number.  The
    223 ** label can be used as the P2 value of an operation.  Later, when
    224 ** the label is resolved to a specific address, the VDBE will scan
    225 ** through its operation list and change all values of P2 which match
    226 ** the label into the resolved address.
    227 **
    228 ** The VDBE knows that a P2 value is a label because labels are
    229 ** always negative and P2 values are suppose to be non-negative.
    230 ** Hence, a negative P2 value is a label that has yet to be resolved.
    231 **
    232 ** Zero is returned if a malloc() fails.
    233 */
    234 int sqlite3VdbeMakeLabel(Vdbe *p){
    235   int i;
    236   i = p->nLabel++;
    237   assert( p->magic==VDBE_MAGIC_INIT );
    238   if( i>=p->nLabelAlloc ){
    239     int n = p->nLabelAlloc*2 + 5;
    240     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
    241                                        n*sizeof(p->aLabel[0]));
    242     p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
    243   }
    244   if( p->aLabel ){
    245     p->aLabel[i] = -1;
    246   }
    247   return -1-i;
    248 }
    249 
    250 /*
    251 ** Resolve label "x" to be the address of the next instruction to
    252 ** be inserted.  The parameter "x" must have been obtained from
    253 ** a prior call to sqlite3VdbeMakeLabel().
    254 */
    255 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
    256   int j = -1-x;
    257   assert( p->magic==VDBE_MAGIC_INIT );
    258   assert( j>=0 && j<p->nLabel );
    259   if( p->aLabel ){
    260     p->aLabel[j] = p->nOp;
    261   }
    262 }
    263 
    264 /*
    265 ** Mark the VDBE as one that can only be run one time.
    266 */
    267 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
    268   p->runOnlyOnce = 1;
    269 }
    270 
    271 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
    272 
    273 /*
    274 ** The following type and function are used to iterate through all opcodes
    275 ** in a Vdbe main program and each of the sub-programs (triggers) it may
    276 ** invoke directly or indirectly. It should be used as follows:
    277 **
    278 **   Op *pOp;
    279 **   VdbeOpIter sIter;
    280 **
    281 **   memset(&sIter, 0, sizeof(sIter));
    282 **   sIter.v = v;                            // v is of type Vdbe*
    283 **   while( (pOp = opIterNext(&sIter)) ){
    284 **     // Do something with pOp
    285 **   }
    286 **   sqlite3DbFree(v->db, sIter.apSub);
    287 **
    288 */
    289 typedef struct VdbeOpIter VdbeOpIter;
    290 struct VdbeOpIter {
    291   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
    292   SubProgram **apSub;        /* Array of subprograms */
    293   int nSub;                  /* Number of entries in apSub */
    294   int iAddr;                 /* Address of next instruction to return */
    295   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
    296 };
    297 static Op *opIterNext(VdbeOpIter *p){
    298   Vdbe *v = p->v;
    299   Op *pRet = 0;
    300   Op *aOp;
    301   int nOp;
    302 
    303   if( p->iSub<=p->nSub ){
    304 
    305     if( p->iSub==0 ){
    306       aOp = v->aOp;
    307       nOp = v->nOp;
    308     }else{
    309       aOp = p->apSub[p->iSub-1]->aOp;
    310       nOp = p->apSub[p->iSub-1]->nOp;
    311     }
    312     assert( p->iAddr<nOp );
    313 
    314     pRet = &aOp[p->iAddr];
    315     p->iAddr++;
    316     if( p->iAddr==nOp ){
    317       p->iSub++;
    318       p->iAddr = 0;
    319     }
    320 
    321     if( pRet->p4type==P4_SUBPROGRAM ){
    322       int nByte = (p->nSub+1)*sizeof(SubProgram*);
    323       int j;
    324       for(j=0; j<p->nSub; j++){
    325         if( p->apSub[j]==pRet->p4.pProgram ) break;
    326       }
    327       if( j==p->nSub ){
    328         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
    329         if( !p->apSub ){
    330           pRet = 0;
    331         }else{
    332           p->apSub[p->nSub++] = pRet->p4.pProgram;
    333         }
    334       }
    335     }
    336   }
    337 
    338   return pRet;
    339 }
    340 
    341 /*
    342 ** Check if the program stored in the VM associated with pParse may
    343 ** throw an ABORT exception (causing the statement, but not entire transaction
    344 ** to be rolled back). This condition is true if the main program or any
    345 ** sub-programs contains any of the following:
    346 **
    347 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
    348 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
    349 **   *  OP_Destroy
    350 **   *  OP_VUpdate
    351 **   *  OP_VRename
    352 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
    353 **
    354 ** Then check that the value of Parse.mayAbort is true if an
    355 ** ABORT may be thrown, or false otherwise. Return true if it does
    356 ** match, or false otherwise. This function is intended to be used as
    357 ** part of an assert statement in the compiler. Similar to:
    358 **
    359 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
    360 */
    361 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
    362   int hasAbort = 0;
    363   Op *pOp;
    364   VdbeOpIter sIter;
    365   memset(&sIter, 0, sizeof(sIter));
    366   sIter.v = v;
    367 
    368   while( (pOp = opIterNext(&sIter))!=0 ){
    369     int opcode = pOp->opcode;
    370     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
    371 #ifndef SQLITE_OMIT_FOREIGN_KEY
    372      || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
    373 #endif
    374      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
    375       && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    376     ){
    377       hasAbort = 1;
    378       break;
    379     }
    380   }
    381   sqlite3DbFree(v->db, sIter.apSub);
    382 
    383   /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
    384   ** If malloc failed, then the while() loop above may not have iterated
    385   ** through all opcodes and hasAbort may be set incorrectly. Return
    386   ** true for this case to prevent the assert() in the callers frame
    387   ** from failing.  */
    388   return ( v->db->mallocFailed || hasAbort==mayAbort );
    389 }
    390 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
    391 
    392 /*
    393 ** Loop through the program looking for P2 values that are negative
    394 ** on jump instructions.  Each such value is a label.  Resolve the
    395 ** label by setting the P2 value to its correct non-zero value.
    396 **
    397 ** This routine is called once after all opcodes have been inserted.
    398 **
    399 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
    400 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
    401 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
    402 **
    403 ** The Op.opflags field is set on all opcodes.
    404 */
    405 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
    406   int i;
    407   int nMaxArgs = *pMaxFuncArgs;
    408   Op *pOp;
    409   int *aLabel = p->aLabel;
    410   p->readOnly = 1;
    411   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    412     u8 opcode = pOp->opcode;
    413 
    414     pOp->opflags = sqlite3OpcodeProperty[opcode];
    415     if( opcode==OP_Function || opcode==OP_AggStep ){
    416       if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
    417     }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
    418       p->readOnly = 0;
    419 #ifndef SQLITE_OMIT_VIRTUALTABLE
    420     }else if( opcode==OP_VUpdate ){
    421       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
    422     }else if( opcode==OP_VFilter ){
    423       int n;
    424       assert( p->nOp - i >= 3 );
    425       assert( pOp[-1].opcode==OP_Integer );
    426       n = pOp[-1].p1;
    427       if( n>nMaxArgs ) nMaxArgs = n;
    428 #endif
    429     }
    430 
    431     if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
    432       assert( -1-pOp->p2<p->nLabel );
    433       pOp->p2 = aLabel[-1-pOp->p2];
    434     }
    435   }
    436   sqlite3DbFree(p->db, p->aLabel);
    437   p->aLabel = 0;
    438 
    439   *pMaxFuncArgs = nMaxArgs;
    440 }
    441 
    442 /*
    443 ** Return the address of the next instruction to be inserted.
    444 */
    445 int sqlite3VdbeCurrentAddr(Vdbe *p){
    446   assert( p->magic==VDBE_MAGIC_INIT );
    447   return p->nOp;
    448 }
    449 
    450 /*
    451 ** This function returns a pointer to the array of opcodes associated with
    452 ** the Vdbe passed as the first argument. It is the callers responsibility
    453 ** to arrange for the returned array to be eventually freed using the
    454 ** vdbeFreeOpArray() function.
    455 **
    456 ** Before returning, *pnOp is set to the number of entries in the returned
    457 ** array. Also, *pnMaxArg is set to the larger of its current value and
    458 ** the number of entries in the Vdbe.apArg[] array required to execute the
    459 ** returned program.
    460 */
    461 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
    462   VdbeOp *aOp = p->aOp;
    463   assert( aOp && !p->db->mallocFailed );
    464 
    465   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
    466   assert( p->btreeMask==0 );
    467 
    468   resolveP2Values(p, pnMaxArg);
    469   *pnOp = p->nOp;
    470   p->aOp = 0;
    471   return aOp;
    472 }
    473 
    474 /*
    475 ** Add a whole list of operations to the operation stack.  Return the
    476 ** address of the first operation added.
    477 */
    478 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
    479   int addr;
    480   assert( p->magic==VDBE_MAGIC_INIT );
    481   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
    482     return 0;
    483   }
    484   addr = p->nOp;
    485   if( ALWAYS(nOp>0) ){
    486     int i;
    487     VdbeOpList const *pIn = aOp;
    488     for(i=0; i<nOp; i++, pIn++){
    489       int p2 = pIn->p2;
    490       VdbeOp *pOut = &p->aOp[i+addr];
    491       pOut->opcode = pIn->opcode;
    492       pOut->p1 = pIn->p1;
    493       if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
    494         pOut->p2 = addr + ADDR(p2);
    495       }else{
    496         pOut->p2 = p2;
    497       }
    498       pOut->p3 = pIn->p3;
    499       pOut->p4type = P4_NOTUSED;
    500       pOut->p4.p = 0;
    501       pOut->p5 = 0;
    502 #ifdef SQLITE_DEBUG
    503       pOut->zComment = 0;
    504       if( sqlite3VdbeAddopTrace ){
    505         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
    506       }
    507 #endif
    508     }
    509     p->nOp += nOp;
    510   }
    511   return addr;
    512 }
    513 
    514 /*
    515 ** Change the value of the P1 operand for a specific instruction.
    516 ** This routine is useful when a large program is loaded from a
    517 ** static array using sqlite3VdbeAddOpList but we want to make a
    518 ** few minor changes to the program.
    519 */
    520 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
    521   assert( p!=0 );
    522   assert( addr>=0 );
    523   if( p->nOp>addr ){
    524     p->aOp[addr].p1 = val;
    525   }
    526 }
    527 
    528 /*
    529 ** Change the value of the P2 operand for a specific instruction.
    530 ** This routine is useful for setting a jump destination.
    531 */
    532 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
    533   assert( p!=0 );
    534   assert( addr>=0 );
    535   if( p->nOp>addr ){
    536     p->aOp[addr].p2 = val;
    537   }
    538 }
    539 
    540 /*
    541 ** Change the value of the P3 operand for a specific instruction.
    542 */
    543 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
    544   assert( p!=0 );
    545   assert( addr>=0 );
    546   if( p->nOp>addr ){
    547     p->aOp[addr].p3 = val;
    548   }
    549 }
    550 
    551 /*
    552 ** Change the value of the P5 operand for the most recently
    553 ** added operation.
    554 */
    555 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
    556   assert( p!=0 );
    557   if( p->aOp ){
    558     assert( p->nOp>0 );
    559     p->aOp[p->nOp-1].p5 = val;
    560   }
    561 }
    562 
    563 /*
    564 ** Change the P2 operand of instruction addr so that it points to
    565 ** the address of the next instruction to be coded.
    566 */
    567 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
    568   assert( addr>=0 );
    569   sqlite3VdbeChangeP2(p, addr, p->nOp);
    570 }
    571 
    572 
    573 /*
    574 ** If the input FuncDef structure is ephemeral, then free it.  If
    575 ** the FuncDef is not ephermal, then do nothing.
    576 */
    577 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
    578   if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
    579     sqlite3DbFree(db, pDef);
    580   }
    581 }
    582 
    583 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
    584 
    585 /*
    586 ** Delete a P4 value if necessary.
    587 */
    588 static void freeP4(sqlite3 *db, int p4type, void *p4){
    589   if( p4 ){
    590     assert( db );
    591     switch( p4type ){
    592       case P4_REAL:
    593       case P4_INT64:
    594       case P4_DYNAMIC:
    595       case P4_KEYINFO:
    596       case P4_INTARRAY:
    597       case P4_KEYINFO_HANDOFF: {
    598         sqlite3DbFree(db, p4);
    599         break;
    600       }
    601       case P4_MPRINTF: {
    602         if( db->pnBytesFreed==0 ) sqlite3_free(p4);
    603         break;
    604       }
    605       case P4_VDBEFUNC: {
    606         VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
    607         freeEphemeralFunction(db, pVdbeFunc->pFunc);
    608         if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
    609         sqlite3DbFree(db, pVdbeFunc);
    610         break;
    611       }
    612       case P4_FUNCDEF: {
    613         freeEphemeralFunction(db, (FuncDef*)p4);
    614         break;
    615       }
    616       case P4_MEM: {
    617         if( db->pnBytesFreed==0 ){
    618           sqlite3ValueFree((sqlite3_value*)p4);
    619         }else{
    620           Mem *p = (Mem*)p4;
    621           sqlite3DbFree(db, p->zMalloc);
    622           sqlite3DbFree(db, p);
    623         }
    624         break;
    625       }
    626       case P4_VTAB : {
    627         if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
    628         break;
    629       }
    630     }
    631   }
    632 }
    633 
    634 /*
    635 ** Free the space allocated for aOp and any p4 values allocated for the
    636 ** opcodes contained within. If aOp is not NULL it is assumed to contain
    637 ** nOp entries.
    638 */
    639 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
    640   if( aOp ){
    641     Op *pOp;
    642     for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
    643       freeP4(db, pOp->p4type, pOp->p4.p);
    644 #ifdef SQLITE_DEBUG
    645       sqlite3DbFree(db, pOp->zComment);
    646 #endif
    647     }
    648   }
    649   sqlite3DbFree(db, aOp);
    650 }
    651 
    652 /*
    653 ** Link the SubProgram object passed as the second argument into the linked
    654 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
    655 ** objects when the VM is no longer required.
    656 */
    657 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
    658   p->pNext = pVdbe->pProgram;
    659   pVdbe->pProgram = p;
    660 }
    661 
    662 /*
    663 ** Change N opcodes starting at addr to No-ops.
    664 */
    665 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
    666   if( p->aOp ){
    667     VdbeOp *pOp = &p->aOp[addr];
    668     sqlite3 *db = p->db;
    669     while( N-- ){
    670       freeP4(db, pOp->p4type, pOp->p4.p);
    671       memset(pOp, 0, sizeof(pOp[0]));
    672       pOp->opcode = OP_Noop;
    673       pOp++;
    674     }
    675   }
    676 }
    677 
    678 /*
    679 ** Change the value of the P4 operand for a specific instruction.
    680 ** This routine is useful when a large program is loaded from a
    681 ** static array using sqlite3VdbeAddOpList but we want to make a
    682 ** few minor changes to the program.
    683 **
    684 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
    685 ** the string is made into memory obtained from sqlite3_malloc().
    686 ** A value of n==0 means copy bytes of zP4 up to and including the
    687 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
    688 **
    689 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
    690 ** A copy is made of the KeyInfo structure into memory obtained from
    691 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
    692 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
    693 ** stored in memory that the caller has obtained from sqlite3_malloc. The
    694 ** caller should not free the allocation, it will be freed when the Vdbe is
    695 ** finalized.
    696 **
    697 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
    698 ** to a string or structure that is guaranteed to exist for the lifetime of
    699 ** the Vdbe. In these cases we can just copy the pointer.
    700 **
    701 ** If addr<0 then change P4 on the most recently inserted instruction.
    702 */
    703 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
    704   Op *pOp;
    705   sqlite3 *db;
    706   assert( p!=0 );
    707   db = p->db;
    708   assert( p->magic==VDBE_MAGIC_INIT );
    709   if( p->aOp==0 || db->mallocFailed ){
    710     if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
    711       freeP4(db, n, (void*)*(char**)&zP4);
    712     }
    713     return;
    714   }
    715   assert( p->nOp>0 );
    716   assert( addr<p->nOp );
    717   if( addr<0 ){
    718     addr = p->nOp - 1;
    719   }
    720   pOp = &p->aOp[addr];
    721   freeP4(db, pOp->p4type, pOp->p4.p);
    722   pOp->p4.p = 0;
    723   if( n==P4_INT32 ){
    724     /* Note: this cast is safe, because the origin data point was an int
    725     ** that was cast to a (const char *). */
    726     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
    727     pOp->p4type = P4_INT32;
    728   }else if( zP4==0 ){
    729     pOp->p4.p = 0;
    730     pOp->p4type = P4_NOTUSED;
    731   }else if( n==P4_KEYINFO ){
    732     KeyInfo *pKeyInfo;
    733     int nField, nByte;
    734 
    735     nField = ((KeyInfo*)zP4)->nField;
    736     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
    737     pKeyInfo = sqlite3DbMallocRaw(0, nByte);
    738     pOp->p4.pKeyInfo = pKeyInfo;
    739     if( pKeyInfo ){
    740       u8 *aSortOrder;
    741       memcpy((char*)pKeyInfo, zP4, nByte - nField);
    742       aSortOrder = pKeyInfo->aSortOrder;
    743       if( aSortOrder ){
    744         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
    745         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
    746       }
    747       pOp->p4type = P4_KEYINFO;
    748     }else{
    749       p->db->mallocFailed = 1;
    750       pOp->p4type = P4_NOTUSED;
    751     }
    752   }else if( n==P4_KEYINFO_HANDOFF ){
    753     pOp->p4.p = (void*)zP4;
    754     pOp->p4type = P4_KEYINFO;
    755   }else if( n==P4_VTAB ){
    756     pOp->p4.p = (void*)zP4;
    757     pOp->p4type = P4_VTAB;
    758     sqlite3VtabLock((VTable *)zP4);
    759     assert( ((VTable *)zP4)->db==p->db );
    760   }else if( n<0 ){
    761     pOp->p4.p = (void*)zP4;
    762     pOp->p4type = (signed char)n;
    763   }else{
    764     if( n==0 ) n = sqlite3Strlen30(zP4);
    765     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
    766     pOp->p4type = P4_DYNAMIC;
    767   }
    768 }
    769 
    770 #ifndef NDEBUG
    771 /*
    772 ** Change the comment on the the most recently coded instruction.  Or
    773 ** insert a No-op and add the comment to that new instruction.  This
    774 ** makes the code easier to read during debugging.  None of this happens
    775 ** in a production build.
    776 */
    777 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
    778   va_list ap;
    779   if( !p ) return;
    780   assert( p->nOp>0 || p->aOp==0 );
    781   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
    782   if( p->nOp ){
    783     char **pz = &p->aOp[p->nOp-1].zComment;
    784     va_start(ap, zFormat);
    785     sqlite3DbFree(p->db, *pz);
    786     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
    787     va_end(ap);
    788   }
    789 }
    790 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
    791   va_list ap;
    792   if( !p ) return;
    793   sqlite3VdbeAddOp0(p, OP_Noop);
    794   assert( p->nOp>0 || p->aOp==0 );
    795   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
    796   if( p->nOp ){
    797     char **pz = &p->aOp[p->nOp-1].zComment;
    798     va_start(ap, zFormat);
    799     sqlite3DbFree(p->db, *pz);
    800     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
    801     va_end(ap);
    802   }
    803 }
    804 #endif  /* NDEBUG */
    805 
    806 /*
    807 ** Return the opcode for a given address.  If the address is -1, then
    808 ** return the most recently inserted opcode.
    809 **
    810 ** If a memory allocation error has occurred prior to the calling of this
    811 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
    812 ** is readable but not writable, though it is cast to a writable value.
    813 ** The return of a dummy opcode allows the call to continue functioning
    814 ** after a OOM fault without having to check to see if the return from
    815 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
    816 ** dummy will never be written to.  This is verified by code inspection and
    817 ** by running with Valgrind.
    818 **
    819 ** About the #ifdef SQLITE_OMIT_TRACE:  Normally, this routine is never called
    820 ** unless p->nOp>0.  This is because in the absense of SQLITE_OMIT_TRACE,
    821 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
    822 ** a new VDBE is created.  So we are free to set addr to p->nOp-1 without
    823 ** having to double-check to make sure that the result is non-negative. But
    824 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
    825 ** check the value of p->nOp-1 before continuing.
    826 */
    827 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
    828   /* C89 specifies that the constant "dummy" will be initialized to all
    829   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
    830   static const VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
    831   assert( p->magic==VDBE_MAGIC_INIT );
    832   if( addr<0 ){
    833 #ifdef SQLITE_OMIT_TRACE
    834     if( p->nOp==0 ) return (VdbeOp*)&dummy;
    835 #endif
    836     addr = p->nOp - 1;
    837   }
    838   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
    839   if( p->db->mallocFailed ){
    840     return (VdbeOp*)&dummy;
    841   }else{
    842     return &p->aOp[addr];
    843   }
    844 }
    845 
    846 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
    847      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
    848 /*
    849 ** Compute a string that describes the P4 parameter for an opcode.
    850 ** Use zTemp for any required temporary buffer space.
    851 */
    852 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
    853   char *zP4 = zTemp;
    854   assert( nTemp>=20 );
    855   switch( pOp->p4type ){
    856     case P4_KEYINFO_STATIC:
    857     case P4_KEYINFO: {
    858       int i, j;
    859       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
    860       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
    861       i = sqlite3Strlen30(zTemp);
    862       for(j=0; j<pKeyInfo->nField; j++){
    863         CollSeq *pColl = pKeyInfo->aColl[j];
    864         if( pColl ){
    865           int n = sqlite3Strlen30(pColl->zName);
    866           if( i+n>nTemp-6 ){
    867             memcpy(&zTemp[i],",...",4);
    868             break;
    869           }
    870           zTemp[i++] = ',';
    871           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
    872             zTemp[i++] = '-';
    873           }
    874           memcpy(&zTemp[i], pColl->zName,n+1);
    875           i += n;
    876         }else if( i+4<nTemp-6 ){
    877           memcpy(&zTemp[i],",nil",4);
    878           i += 4;
    879         }
    880       }
    881       zTemp[i++] = ')';
    882       zTemp[i] = 0;
    883       assert( i<nTemp );
    884       break;
    885     }
    886     case P4_COLLSEQ: {
    887       CollSeq *pColl = pOp->p4.pColl;
    888       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
    889       break;
    890     }
    891     case P4_FUNCDEF: {
    892       FuncDef *pDef = pOp->p4.pFunc;
    893       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
    894       break;
    895     }
    896     case P4_INT64: {
    897       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
    898       break;
    899     }
    900     case P4_INT32: {
    901       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
    902       break;
    903     }
    904     case P4_REAL: {
    905       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
    906       break;
    907     }
    908     case P4_MEM: {
    909       Mem *pMem = pOp->p4.pMem;
    910       assert( (pMem->flags & MEM_Null)==0 );
    911       if( pMem->flags & MEM_Str ){
    912         zP4 = pMem->z;
    913       }else if( pMem->flags & MEM_Int ){
    914         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
    915       }else if( pMem->flags & MEM_Real ){
    916         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
    917       }else{
    918         assert( pMem->flags & MEM_Blob );
    919         zP4 = "(blob)";
    920       }
    921       break;
    922     }
    923 #ifndef SQLITE_OMIT_VIRTUALTABLE
    924     case P4_VTAB: {
    925       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
    926       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
    927       break;
    928     }
    929 #endif
    930     case P4_INTARRAY: {
    931       sqlite3_snprintf(nTemp, zTemp, "intarray");
    932       break;
    933     }
    934     case P4_SUBPROGRAM: {
    935       sqlite3_snprintf(nTemp, zTemp, "program");
    936       break;
    937     }
    938     default: {
    939       zP4 = pOp->p4.z;
    940       if( zP4==0 ){
    941         zP4 = zTemp;
    942         zTemp[0] = 0;
    943       }
    944     }
    945   }
    946   assert( zP4!=0 );
    947   return zP4;
    948 }
    949 #endif
    950 
    951 /*
    952 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
    953 **
    954 ** The prepared statements need to know in advance the complete set of
    955 ** attached databases that they will be using.  A mask of these databases
    956 ** is maintained in p->btreeMask and is used for locking and other purposes.
    957 */
    958 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
    959   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
    960   assert( i<(int)sizeof(p->btreeMask)*8 );
    961   p->btreeMask |= ((yDbMask)1)<<i;
    962   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    963     p->lockMask |= ((yDbMask)1)<<i;
    964   }
    965 }
    966 
    967 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
    968 /*
    969 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
    970 ** this routine obtains the mutex associated with each BtShared structure
    971 ** that may be accessed by the VM passed as an argument. In doing so it also
    972 ** sets the BtShared.db member of each of the BtShared structures, ensuring
    973 ** that the correct busy-handler callback is invoked if required.
    974 **
    975 ** If SQLite is not threadsafe but does support shared-cache mode, then
    976 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
    977 ** of all of BtShared structures accessible via the database handle
    978 ** associated with the VM.
    979 **
    980 ** If SQLite is not threadsafe and does not support shared-cache mode, this
    981 ** function is a no-op.
    982 **
    983 ** The p->btreeMask field is a bitmask of all btrees that the prepared
    984 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
    985 ** corresponding to btrees that use shared cache.  Then the runtime of
    986 ** this routine is N*N.  But as N is rarely more than 1, this should not
    987 ** be a problem.
    988 */
    989 void sqlite3VdbeEnter(Vdbe *p){
    990   int i;
    991   yDbMask mask;
    992   sqlite3 *db;
    993   Db *aDb;
    994   int nDb;
    995   if( p->lockMask==0 ) return;  /* The common case */
    996   db = p->db;
    997   aDb = db->aDb;
    998   nDb = db->nDb;
    999   for(i=0, mask=1; i<nDb; i++, mask += mask){
   1000     if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
   1001       sqlite3BtreeEnter(aDb[i].pBt);
   1002     }
   1003   }
   1004 }
   1005 #endif
   1006 
   1007 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
   1008 /*
   1009 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
   1010 */
   1011 void sqlite3VdbeLeave(Vdbe *p){
   1012   int i;
   1013   yDbMask mask;
   1014   sqlite3 *db;
   1015   Db *aDb;
   1016   int nDb;
   1017   if( p->lockMask==0 ) return;  /* The common case */
   1018   db = p->db;
   1019   aDb = db->aDb;
   1020   nDb = db->nDb;
   1021   for(i=0, mask=1; i<nDb; i++, mask += mask){
   1022     if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
   1023       sqlite3BtreeLeave(aDb[i].pBt);
   1024     }
   1025   }
   1026 }
   1027 #endif
   1028 
   1029 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   1030 /*
   1031 ** Print a single opcode.  This routine is used for debugging only.
   1032 */
   1033 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
   1034   char *zP4;
   1035   char zPtr[50];
   1036   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
   1037   if( pOut==0 ) pOut = stdout;
   1038   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
   1039   fprintf(pOut, zFormat1, pc,
   1040       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
   1041 #ifdef SQLITE_DEBUG
   1042       pOp->zComment ? pOp->zComment : ""
   1043 #else
   1044       ""
   1045 #endif
   1046   );
   1047   fflush(pOut);
   1048 }
   1049 #endif
   1050 
   1051 /*
   1052 ** Release an array of N Mem elements
   1053 */
   1054 static void releaseMemArray(Mem *p, int N){
   1055   if( p && N ){
   1056     Mem *pEnd;
   1057     sqlite3 *db = p->db;
   1058     u8 malloc_failed = db->mallocFailed;
   1059     if( db->pnBytesFreed ){
   1060       for(pEnd=&p[N]; p<pEnd; p++){
   1061         sqlite3DbFree(db, p->zMalloc);
   1062       }
   1063       return;
   1064     }
   1065     for(pEnd=&p[N]; p<pEnd; p++){
   1066       assert( (&p[1])==pEnd || p[0].db==p[1].db );
   1067 
   1068       /* This block is really an inlined version of sqlite3VdbeMemRelease()
   1069       ** that takes advantage of the fact that the memory cell value is
   1070       ** being set to NULL after releasing any dynamic resources.
   1071       **
   1072       ** The justification for duplicating code is that according to
   1073       ** callgrind, this causes a certain test case to hit the CPU 4.7
   1074       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
   1075       ** sqlite3MemRelease() were called from here. With -O2, this jumps
   1076       ** to 6.6 percent. The test case is inserting 1000 rows into a table
   1077       ** with no indexes using a single prepared INSERT statement, bind()
   1078       ** and reset(). Inserts are grouped into a transaction.
   1079       */
   1080       if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
   1081         sqlite3VdbeMemRelease(p);
   1082       }else if( p->zMalloc ){
   1083         sqlite3DbFree(db, p->zMalloc);
   1084         p->zMalloc = 0;
   1085       }
   1086 
   1087       p->flags = MEM_Null;
   1088     }
   1089     db->mallocFailed = malloc_failed;
   1090   }
   1091 }
   1092 
   1093 /*
   1094 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
   1095 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
   1096 */
   1097 void sqlite3VdbeFrameDelete(VdbeFrame *p){
   1098   int i;
   1099   Mem *aMem = VdbeFrameMem(p);
   1100   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
   1101   for(i=0; i<p->nChildCsr; i++){
   1102     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
   1103   }
   1104   releaseMemArray(aMem, p->nChildMem);
   1105   sqlite3DbFree(p->v->db, p);
   1106 }
   1107 
   1108 #ifndef SQLITE_OMIT_EXPLAIN
   1109 /*
   1110 ** Give a listing of the program in the virtual machine.
   1111 **
   1112 ** The interface is the same as sqlite3VdbeExec().  But instead of
   1113 ** running the code, it invokes the callback once for each instruction.
   1114 ** This feature is used to implement "EXPLAIN".
   1115 **
   1116 ** When p->explain==1, each instruction is listed.  When
   1117 ** p->explain==2, only OP_Explain instructions are listed and these
   1118 ** are shown in a different format.  p->explain==2 is used to implement
   1119 ** EXPLAIN QUERY PLAN.
   1120 **
   1121 ** When p->explain==1, first the main program is listed, then each of
   1122 ** the trigger subprograms are listed one by one.
   1123 */
   1124 int sqlite3VdbeList(
   1125   Vdbe *p                   /* The VDBE */
   1126 ){
   1127   int nRow;                            /* Stop when row count reaches this */
   1128   int nSub = 0;                        /* Number of sub-vdbes seen so far */
   1129   SubProgram **apSub = 0;              /* Array of sub-vdbes */
   1130   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
   1131   sqlite3 *db = p->db;                 /* The database connection */
   1132   int i;                               /* Loop counter */
   1133   int rc = SQLITE_OK;                  /* Return code */
   1134   Mem *pMem = p->pResultSet = &p->aMem[1];  /* First Mem of result set */
   1135 
   1136   assert( p->explain );
   1137   assert( p->magic==VDBE_MAGIC_RUN );
   1138   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
   1139 
   1140   /* Even though this opcode does not use dynamic strings for
   1141   ** the result, result columns may become dynamic if the user calls
   1142   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
   1143   */
   1144   releaseMemArray(pMem, 8);
   1145 
   1146   if( p->rc==SQLITE_NOMEM ){
   1147     /* This happens if a malloc() inside a call to sqlite3_column_text() or
   1148     ** sqlite3_column_text16() failed.  */
   1149     db->mallocFailed = 1;
   1150     return SQLITE_ERROR;
   1151   }
   1152 
   1153   /* When the number of output rows reaches nRow, that means the
   1154   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
   1155   ** nRow is the sum of the number of rows in the main program, plus
   1156   ** the sum of the number of rows in all trigger subprograms encountered
   1157   ** so far.  The nRow value will increase as new trigger subprograms are
   1158   ** encountered, but p->pc will eventually catch up to nRow.
   1159   */
   1160   nRow = p->nOp;
   1161   if( p->explain==1 ){
   1162     /* The first 8 memory cells are used for the result set.  So we will
   1163     ** commandeer the 9th cell to use as storage for an array of pointers
   1164     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
   1165     ** cells.  */
   1166     assert( p->nMem>9 );
   1167     pSub = &p->aMem[9];
   1168     if( pSub->flags&MEM_Blob ){
   1169       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
   1170       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
   1171       nSub = pSub->n/sizeof(Vdbe*);
   1172       apSub = (SubProgram **)pSub->z;
   1173     }
   1174     for(i=0; i<nSub; i++){
   1175       nRow += apSub[i]->nOp;
   1176     }
   1177   }
   1178 
   1179   do{
   1180     i = p->pc++;
   1181   }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
   1182   if( i>=nRow ){
   1183     p->rc = SQLITE_OK;
   1184     rc = SQLITE_DONE;
   1185   }else if( db->u1.isInterrupted ){
   1186     p->rc = SQLITE_INTERRUPT;
   1187     rc = SQLITE_ERROR;
   1188     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
   1189   }else{
   1190     char *z;
   1191     Op *pOp;
   1192     if( i<p->nOp ){
   1193       /* The output line number is small enough that we are still in the
   1194       ** main program. */
   1195       pOp = &p->aOp[i];
   1196     }else{
   1197       /* We are currently listing subprograms.  Figure out which one and
   1198       ** pick up the appropriate opcode. */
   1199       int j;
   1200       i -= p->nOp;
   1201       for(j=0; i>=apSub[j]->nOp; j++){
   1202         i -= apSub[j]->nOp;
   1203       }
   1204       pOp = &apSub[j]->aOp[i];
   1205     }
   1206     if( p->explain==1 ){
   1207       pMem->flags = MEM_Int;
   1208       pMem->type = SQLITE_INTEGER;
   1209       pMem->u.i = i;                                /* Program counter */
   1210       pMem++;
   1211 
   1212       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
   1213       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
   1214       assert( pMem->z!=0 );
   1215       pMem->n = sqlite3Strlen30(pMem->z);
   1216       pMem->type = SQLITE_TEXT;
   1217       pMem->enc = SQLITE_UTF8;
   1218       pMem++;
   1219 
   1220       /* When an OP_Program opcode is encounter (the only opcode that has
   1221       ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
   1222       ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
   1223       ** has not already been seen.
   1224       */
   1225       if( pOp->p4type==P4_SUBPROGRAM ){
   1226         int nByte = (nSub+1)*sizeof(SubProgram*);
   1227         int j;
   1228         for(j=0; j<nSub; j++){
   1229           if( apSub[j]==pOp->p4.pProgram ) break;
   1230         }
   1231         if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
   1232           apSub = (SubProgram **)pSub->z;
   1233           apSub[nSub++] = pOp->p4.pProgram;
   1234           pSub->flags |= MEM_Blob;
   1235           pSub->n = nSub*sizeof(SubProgram*);
   1236         }
   1237       }
   1238     }
   1239 
   1240     pMem->flags = MEM_Int;
   1241     pMem->u.i = pOp->p1;                          /* P1 */
   1242     pMem->type = SQLITE_INTEGER;
   1243     pMem++;
   1244 
   1245     pMem->flags = MEM_Int;
   1246     pMem->u.i = pOp->p2;                          /* P2 */
   1247     pMem->type = SQLITE_INTEGER;
   1248     pMem++;
   1249 
   1250     pMem->flags = MEM_Int;
   1251     pMem->u.i = pOp->p3;                          /* P3 */
   1252     pMem->type = SQLITE_INTEGER;
   1253     pMem++;
   1254 
   1255     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
   1256       assert( p->db->mallocFailed );
   1257       return SQLITE_ERROR;
   1258     }
   1259     pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   1260     z = displayP4(pOp, pMem->z, 32);
   1261     if( z!=pMem->z ){
   1262       sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
   1263     }else{
   1264       assert( pMem->z!=0 );
   1265       pMem->n = sqlite3Strlen30(pMem->z);
   1266       pMem->enc = SQLITE_UTF8;
   1267     }
   1268     pMem->type = SQLITE_TEXT;
   1269     pMem++;
   1270 
   1271     if( p->explain==1 ){
   1272       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
   1273         assert( p->db->mallocFailed );
   1274         return SQLITE_ERROR;
   1275       }
   1276       pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   1277       pMem->n = 2;
   1278       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
   1279       pMem->type = SQLITE_TEXT;
   1280       pMem->enc = SQLITE_UTF8;
   1281       pMem++;
   1282 
   1283 #ifdef SQLITE_DEBUG
   1284       if( pOp->zComment ){
   1285         pMem->flags = MEM_Str|MEM_Term;
   1286         pMem->z = pOp->zComment;
   1287         pMem->n = sqlite3Strlen30(pMem->z);
   1288         pMem->enc = SQLITE_UTF8;
   1289         pMem->type = SQLITE_TEXT;
   1290       }else
   1291 #endif
   1292       {
   1293         pMem->flags = MEM_Null;                       /* Comment */
   1294         pMem->type = SQLITE_NULL;
   1295       }
   1296     }
   1297 
   1298     p->nResColumn = 8 - 4*(p->explain-1);
   1299     p->rc = SQLITE_OK;
   1300     rc = SQLITE_ROW;
   1301   }
   1302   return rc;
   1303 }
   1304 #endif /* SQLITE_OMIT_EXPLAIN */
   1305 
   1306 #ifdef SQLITE_DEBUG
   1307 /*
   1308 ** Print the SQL that was used to generate a VDBE program.
   1309 */
   1310 void sqlite3VdbePrintSql(Vdbe *p){
   1311   int nOp = p->nOp;
   1312   VdbeOp *pOp;
   1313   if( nOp<1 ) return;
   1314   pOp = &p->aOp[0];
   1315   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   1316     const char *z = pOp->p4.z;
   1317     while( sqlite3Isspace(*z) ) z++;
   1318     printf("SQL: [%s]\n", z);
   1319   }
   1320 }
   1321 #endif
   1322 
   1323 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
   1324 /*
   1325 ** Print an IOTRACE message showing SQL content.
   1326 */
   1327 void sqlite3VdbeIOTraceSql(Vdbe *p){
   1328   int nOp = p->nOp;
   1329   VdbeOp *pOp;
   1330   if( sqlite3IoTrace==0 ) return;
   1331   if( nOp<1 ) return;
   1332   pOp = &p->aOp[0];
   1333   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   1334     int i, j;
   1335     char z[1000];
   1336     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
   1337     for(i=0; sqlite3Isspace(z[i]); i++){}
   1338     for(j=0; z[i]; i++){
   1339       if( sqlite3Isspace(z[i]) ){
   1340         if( z[i-1]!=' ' ){
   1341           z[j++] = ' ';
   1342         }
   1343       }else{
   1344         z[j++] = z[i];
   1345       }
   1346     }
   1347     z[j] = 0;
   1348     sqlite3IoTrace("SQL %s\n", z);
   1349   }
   1350 }
   1351 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
   1352 
   1353 /*
   1354 ** Allocate space from a fixed size buffer and return a pointer to
   1355 ** that space.  If insufficient space is available, return NULL.
   1356 **
   1357 ** The pBuf parameter is the initial value of a pointer which will
   1358 ** receive the new memory.  pBuf is normally NULL.  If pBuf is not
   1359 ** NULL, it means that memory space has already been allocated and that
   1360 ** this routine should not allocate any new memory.  When pBuf is not
   1361 ** NULL simply return pBuf.  Only allocate new memory space when pBuf
   1362 ** is NULL.
   1363 **
   1364 ** nByte is the number of bytes of space needed.
   1365 **
   1366 ** *ppFrom points to available space and pEnd points to the end of the
   1367 ** available space.  When space is allocated, *ppFrom is advanced past
   1368 ** the end of the allocated space.
   1369 **
   1370 ** *pnByte is a counter of the number of bytes of space that have failed
   1371 ** to allocate.  If there is insufficient space in *ppFrom to satisfy the
   1372 ** request, then increment *pnByte by the amount of the request.
   1373 */
   1374 static void *allocSpace(
   1375   void *pBuf,          /* Where return pointer will be stored */
   1376   int nByte,           /* Number of bytes to allocate */
   1377   u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
   1378   u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
   1379   int *pnByte          /* If allocation cannot be made, increment *pnByte */
   1380 ){
   1381   assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
   1382   if( pBuf ) return pBuf;
   1383   nByte = ROUND8(nByte);
   1384   if( &(*ppFrom)[nByte] <= pEnd ){
   1385     pBuf = (void*)*ppFrom;
   1386     *ppFrom += nByte;
   1387   }else{
   1388     *pnByte += nByte;
   1389   }
   1390   return pBuf;
   1391 }
   1392 
   1393 /*
   1394 ** Prepare a virtual machine for execution.  This involves things such
   1395 ** as allocating stack space and initializing the program counter.
   1396 ** After the VDBE has be prepped, it can be executed by one or more
   1397 ** calls to sqlite3VdbeExec().
   1398 **
   1399 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
   1400 ** VDBE_MAGIC_RUN.
   1401 **
   1402 ** This function may be called more than once on a single virtual machine.
   1403 ** The first call is made while compiling the SQL statement. Subsequent
   1404 ** calls are made as part of the process of resetting a statement to be
   1405 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
   1406 ** and isExplain parameters are only passed correct values the first time
   1407 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar
   1408 ** is passed -1 and nMem, nCursor and isExplain are all passed zero.
   1409 */
   1410 void sqlite3VdbeMakeReady(
   1411   Vdbe *p,                       /* The VDBE */
   1412   int nVar,                      /* Number of '?' see in the SQL statement */
   1413   int nMem,                      /* Number of memory cells to allocate */
   1414   int nCursor,                   /* Number of cursors to allocate */
   1415   int nArg,                      /* Maximum number of args in SubPrograms */
   1416   int isExplain,                 /* True if the EXPLAIN keywords is present */
   1417   int usesStmtJournal            /* True to set Vdbe.usesStmtJournal */
   1418 ){
   1419   int n;
   1420   sqlite3 *db = p->db;
   1421 
   1422   assert( p!=0 );
   1423   assert( p->magic==VDBE_MAGIC_INIT );
   1424 
   1425   /* There should be at least one opcode.
   1426   */
   1427   assert( p->nOp>0 );
   1428 
   1429   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
   1430   p->magic = VDBE_MAGIC_RUN;
   1431 
   1432   /* For each cursor required, also allocate a memory cell. Memory
   1433   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
   1434   ** the vdbe program. Instead they are used to allocate space for
   1435   ** VdbeCursor/BtCursor structures. The blob of memory associated with
   1436   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
   1437   ** stores the blob of memory associated with cursor 1, etc.
   1438   **
   1439   ** See also: allocateCursor().
   1440   */
   1441   nMem += nCursor;
   1442 
   1443   /* Allocate space for memory registers, SQL variables, VDBE cursors and
   1444   ** an array to marshal SQL function arguments in. This is only done the
   1445   ** first time this function is called for a given VDBE, not when it is
   1446   ** being called from sqlite3_reset() to reset the virtual machine.
   1447   */
   1448   if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
   1449     u8 *zCsr = (u8 *)&p->aOp[p->nOp];       /* Memory avaliable for alloation */
   1450     u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];  /* First byte past available mem */
   1451     int nByte;                              /* How much extra memory needed */
   1452 
   1453     resolveP2Values(p, &nArg);
   1454     p->usesStmtJournal = (u8)usesStmtJournal;
   1455     if( isExplain && nMem<10 ){
   1456       nMem = 10;
   1457     }
   1458     memset(zCsr, 0, zEnd-zCsr);
   1459     zCsr += (zCsr - (u8*)0)&7;
   1460     assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
   1461 
   1462     /* Memory for registers, parameters, cursor, etc, is allocated in two
   1463     ** passes.  On the first pass, we try to reuse unused space at the
   1464     ** end of the opcode array.  If we are unable to satisfy all memory
   1465     ** requirements by reusing the opcode array tail, then the second
   1466     ** pass will fill in the rest using a fresh allocation.
   1467     **
   1468     ** This two-pass approach that reuses as much memory as possible from
   1469     ** the leftover space at the end of the opcode array can significantly
   1470     ** reduce the amount of memory held by a prepared statement.
   1471     */
   1472     do {
   1473       nByte = 0;
   1474       p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
   1475       p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
   1476       p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
   1477       p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
   1478       p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
   1479                             &zCsr, zEnd, &nByte);
   1480       if( nByte ){
   1481         p->pFree = sqlite3DbMallocZero(db, nByte);
   1482       }
   1483       zCsr = p->pFree;
   1484       zEnd = &zCsr[nByte];
   1485     }while( nByte && !db->mallocFailed );
   1486 
   1487     p->nCursor = (u16)nCursor;
   1488     if( p->aVar ){
   1489       p->nVar = (ynVar)nVar;
   1490       for(n=0; n<nVar; n++){
   1491         p->aVar[n].flags = MEM_Null;
   1492         p->aVar[n].db = db;
   1493       }
   1494     }
   1495     if( p->aMem ){
   1496       p->aMem--;                      /* aMem[] goes from 1..nMem */
   1497       p->nMem = nMem;                 /*       not from 0..nMem-1 */
   1498       for(n=1; n<=nMem; n++){
   1499         p->aMem[n].flags = MEM_Null;
   1500         p->aMem[n].db = db;
   1501       }
   1502     }
   1503   }
   1504 #ifdef SQLITE_DEBUG
   1505   for(n=1; n<p->nMem; n++){
   1506     assert( p->aMem[n].db==db );
   1507   }
   1508 #endif
   1509 
   1510   p->pc = -1;
   1511   p->rc = SQLITE_OK;
   1512   p->errorAction = OE_Abort;
   1513   p->explain |= isExplain;
   1514   p->magic = VDBE_MAGIC_RUN;
   1515   p->nChange = 0;
   1516   p->cacheCtr = 1;
   1517   p->minWriteFileFormat = 255;
   1518   p->iStatement = 0;
   1519   p->nFkConstraint = 0;
   1520 #ifdef VDBE_PROFILE
   1521   {
   1522     int i;
   1523     for(i=0; i<p->nOp; i++){
   1524       p->aOp[i].cnt = 0;
   1525       p->aOp[i].cycles = 0;
   1526     }
   1527   }
   1528 #endif
   1529 }
   1530 
   1531 /*
   1532 ** Close a VDBE cursor and release all the resources that cursor
   1533 ** happens to hold.
   1534 */
   1535 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
   1536   if( pCx==0 ){
   1537     return;
   1538   }
   1539   if( pCx->pBt ){
   1540     sqlite3BtreeClose(pCx->pBt);
   1541     /* The pCx->pCursor will be close automatically, if it exists, by
   1542     ** the call above. */
   1543   }else if( pCx->pCursor ){
   1544     sqlite3BtreeCloseCursor(pCx->pCursor);
   1545   }
   1546 #ifndef SQLITE_OMIT_VIRTUALTABLE
   1547   if( pCx->pVtabCursor ){
   1548     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
   1549     const sqlite3_module *pModule = pCx->pModule;
   1550     p->inVtabMethod = 1;
   1551     pModule->xClose(pVtabCursor);
   1552     p->inVtabMethod = 0;
   1553   }
   1554 #endif
   1555 }
   1556 
   1557 /*
   1558 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
   1559 ** is used, for example, when a trigger sub-program is halted to restore
   1560 ** control to the main program.
   1561 */
   1562 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
   1563   Vdbe *v = pFrame->v;
   1564   v->aOp = pFrame->aOp;
   1565   v->nOp = pFrame->nOp;
   1566   v->aMem = pFrame->aMem;
   1567   v->nMem = pFrame->nMem;
   1568   v->apCsr = pFrame->apCsr;
   1569   v->nCursor = pFrame->nCursor;
   1570   v->db->lastRowid = pFrame->lastRowid;
   1571   v->nChange = pFrame->nChange;
   1572   return pFrame->pc;
   1573 }
   1574 
   1575 /*
   1576 ** Close all cursors.
   1577 **
   1578 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
   1579 ** cell array. This is necessary as the memory cell array may contain
   1580 ** pointers to VdbeFrame objects, which may in turn contain pointers to
   1581 ** open cursors.
   1582 */
   1583 static void closeAllCursors(Vdbe *p){
   1584   if( p->pFrame ){
   1585     VdbeFrame *pFrame;
   1586     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
   1587     sqlite3VdbeFrameRestore(pFrame);
   1588   }
   1589   p->pFrame = 0;
   1590   p->nFrame = 0;
   1591 
   1592   if( p->apCsr ){
   1593     int i;
   1594     for(i=0; i<p->nCursor; i++){
   1595       VdbeCursor *pC = p->apCsr[i];
   1596       if( pC ){
   1597         sqlite3VdbeFreeCursor(p, pC);
   1598         p->apCsr[i] = 0;
   1599       }
   1600     }
   1601   }
   1602   if( p->aMem ){
   1603     releaseMemArray(&p->aMem[1], p->nMem);
   1604   }
   1605   while( p->pDelFrame ){
   1606     VdbeFrame *pDel = p->pDelFrame;
   1607     p->pDelFrame = pDel->pParent;
   1608     sqlite3VdbeFrameDelete(pDel);
   1609   }
   1610 }
   1611 
   1612 /*
   1613 ** Clean up the VM after execution.
   1614 **
   1615 ** This routine will automatically close any cursors, lists, and/or
   1616 ** sorters that were left open.  It also deletes the values of
   1617 ** variables in the aVar[] array.
   1618 */
   1619 static void Cleanup(Vdbe *p){
   1620   sqlite3 *db = p->db;
   1621 
   1622 #ifdef SQLITE_DEBUG
   1623   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
   1624   ** Vdbe.aMem[] arrays have already been cleaned up.  */
   1625   int i;
   1626   for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
   1627   for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
   1628 #endif
   1629 
   1630   sqlite3DbFree(db, p->zErrMsg);
   1631   p->zErrMsg = 0;
   1632   p->pResultSet = 0;
   1633 }
   1634 
   1635 /*
   1636 ** Set the number of result columns that will be returned by this SQL
   1637 ** statement. This is now set at compile time, rather than during
   1638 ** execution of the vdbe program so that sqlite3_column_count() can
   1639 ** be called on an SQL statement before sqlite3_step().
   1640 */
   1641 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
   1642   Mem *pColName;
   1643   int n;
   1644   sqlite3 *db = p->db;
   1645 
   1646   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
   1647   sqlite3DbFree(db, p->aColName);
   1648   n = nResColumn*COLNAME_N;
   1649   p->nResColumn = (u16)nResColumn;
   1650   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
   1651   if( p->aColName==0 ) return;
   1652   while( n-- > 0 ){
   1653     pColName->flags = MEM_Null;
   1654     pColName->db = p->db;
   1655     pColName++;
   1656   }
   1657 }
   1658 
   1659 /*
   1660 ** Set the name of the idx'th column to be returned by the SQL statement.
   1661 ** zName must be a pointer to a nul terminated string.
   1662 **
   1663 ** This call must be made after a call to sqlite3VdbeSetNumCols().
   1664 **
   1665 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
   1666 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
   1667 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
   1668 */
   1669 int sqlite3VdbeSetColName(
   1670   Vdbe *p,                         /* Vdbe being configured */
   1671   int idx,                         /* Index of column zName applies to */
   1672   int var,                         /* One of the COLNAME_* constants */
   1673   const char *zName,               /* Pointer to buffer containing name */
   1674   void (*xDel)(void*)              /* Memory management strategy for zName */
   1675 ){
   1676   int rc;
   1677   Mem *pColName;
   1678   assert( idx<p->nResColumn );
   1679   assert( var<COLNAME_N );
   1680   if( p->db->mallocFailed ){
   1681     assert( !zName || xDel!=SQLITE_DYNAMIC );
   1682     return SQLITE_NOMEM;
   1683   }
   1684   assert( p->aColName!=0 );
   1685   pColName = &(p->aColName[idx+var*p->nResColumn]);
   1686   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
   1687   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
   1688   return rc;
   1689 }
   1690 
   1691 /*
   1692 ** A read or write transaction may or may not be active on database handle
   1693 ** db. If a transaction is active, commit it. If there is a
   1694 ** write-transaction spanning more than one database file, this routine
   1695 ** takes care of the master journal trickery.
   1696 */
   1697 static int vdbeCommit(sqlite3 *db, Vdbe *p){
   1698   int i;
   1699   int nTrans = 0;  /* Number of databases with an active write-transaction */
   1700   int rc = SQLITE_OK;
   1701   int needXcommit = 0;
   1702 
   1703 #ifdef SQLITE_OMIT_VIRTUALTABLE
   1704   /* With this option, sqlite3VtabSync() is defined to be simply
   1705   ** SQLITE_OK so p is not used.
   1706   */
   1707   UNUSED_PARAMETER(p);
   1708 #endif
   1709 
   1710   /* Before doing anything else, call the xSync() callback for any
   1711   ** virtual module tables written in this transaction. This has to
   1712   ** be done before determining whether a master journal file is
   1713   ** required, as an xSync() callback may add an attached database
   1714   ** to the transaction.
   1715   */
   1716   rc = sqlite3VtabSync(db, &p->zErrMsg);
   1717 
   1718   /* This loop determines (a) if the commit hook should be invoked and
   1719   ** (b) how many database files have open write transactions, not
   1720   ** including the temp database. (b) is important because if more than
   1721   ** one database file has an open write transaction, a master journal
   1722   ** file is required for an atomic commit.
   1723   */
   1724   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
   1725     Btree *pBt = db->aDb[i].pBt;
   1726     if( sqlite3BtreeIsInTrans(pBt) ){
   1727       needXcommit = 1;
   1728       if( i!=1 ) nTrans++;
   1729       rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
   1730     }
   1731   }
   1732   if( rc!=SQLITE_OK ){
   1733     return rc;
   1734   }
   1735 
   1736   /* If there are any write-transactions at all, invoke the commit hook */
   1737   if( needXcommit && db->xCommitCallback ){
   1738     rc = db->xCommitCallback(db->pCommitArg);
   1739     if( rc ){
   1740       return SQLITE_CONSTRAINT;
   1741     }
   1742   }
   1743 
   1744   /* The simple case - no more than one database file (not counting the
   1745   ** TEMP database) has a transaction active.   There is no need for the
   1746   ** master-journal.
   1747   **
   1748   ** If the return value of sqlite3BtreeGetFilename() is a zero length
   1749   ** string, it means the main database is :memory: or a temp file.  In
   1750   ** that case we do not support atomic multi-file commits, so use the
   1751   ** simple case then too.
   1752   */
   1753   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
   1754    || nTrans<=1
   1755   ){
   1756     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
   1757       Btree *pBt = db->aDb[i].pBt;
   1758       if( pBt ){
   1759         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
   1760       }
   1761     }
   1762 
   1763     /* Do the commit only if all databases successfully complete phase 1.
   1764     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
   1765     ** IO error while deleting or truncating a journal file. It is unlikely,
   1766     ** but could happen. In this case abandon processing and return the error.
   1767     */
   1768     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
   1769       Btree *pBt = db->aDb[i].pBt;
   1770       if( pBt ){
   1771         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
   1772       }
   1773     }
   1774     if( rc==SQLITE_OK ){
   1775       sqlite3VtabCommit(db);
   1776     }
   1777   }
   1778 
   1779   /* The complex case - There is a multi-file write-transaction active.
   1780   ** This requires a master journal file to ensure the transaction is
   1781   ** committed atomicly.
   1782   */
   1783 #ifndef SQLITE_OMIT_DISKIO
   1784   else{
   1785     sqlite3_vfs *pVfs = db->pVfs;
   1786     int needSync = 0;
   1787     char *zMaster = 0;   /* File-name for the master journal */
   1788     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
   1789     sqlite3_file *pMaster = 0;
   1790     i64 offset = 0;
   1791     int res;
   1792 
   1793     /* Select a master journal file name */
   1794     do {
   1795       u32 iRandom;
   1796       sqlite3DbFree(db, zMaster);
   1797       sqlite3_randomness(sizeof(iRandom), &iRandom);
   1798       zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
   1799       if( !zMaster ){
   1800         return SQLITE_NOMEM;
   1801       }
   1802       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
   1803     }while( rc==SQLITE_OK && res );
   1804     if( rc==SQLITE_OK ){
   1805       /* Open the master journal. */
   1806       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
   1807           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
   1808           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
   1809       );
   1810     }
   1811     if( rc!=SQLITE_OK ){
   1812       sqlite3DbFree(db, zMaster);
   1813       return rc;
   1814     }
   1815 
   1816     /* Write the name of each database file in the transaction into the new
   1817     ** master journal file. If an error occurs at this point close
   1818     ** and delete the master journal file. All the individual journal files
   1819     ** still have 'null' as the master journal pointer, so they will roll
   1820     ** back independently if a failure occurs.
   1821     */
   1822     for(i=0; i<db->nDb; i++){
   1823       Btree *pBt = db->aDb[i].pBt;
   1824       if( sqlite3BtreeIsInTrans(pBt) ){
   1825         char const *zFile = sqlite3BtreeGetJournalname(pBt);
   1826         if( zFile==0 ){
   1827           continue;  /* Ignore TEMP and :memory: databases */
   1828         }
   1829         assert( zFile[0]!=0 );
   1830         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
   1831           needSync = 1;
   1832         }
   1833         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
   1834         offset += sqlite3Strlen30(zFile)+1;
   1835         if( rc!=SQLITE_OK ){
   1836           sqlite3OsCloseFree(pMaster);
   1837           sqlite3OsDelete(pVfs, zMaster, 0);
   1838           sqlite3DbFree(db, zMaster);
   1839           return rc;
   1840         }
   1841       }
   1842     }
   1843 
   1844     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
   1845     ** flag is set this is not required.
   1846     */
   1847     if( needSync
   1848      && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
   1849      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
   1850     ){
   1851       sqlite3OsCloseFree(pMaster);
   1852       sqlite3OsDelete(pVfs, zMaster, 0);
   1853       sqlite3DbFree(db, zMaster);
   1854       return rc;
   1855     }
   1856 
   1857     /* Sync all the db files involved in the transaction. The same call
   1858     ** sets the master journal pointer in each individual journal. If
   1859     ** an error occurs here, do not delete the master journal file.
   1860     **
   1861     ** If the error occurs during the first call to
   1862     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
   1863     ** master journal file will be orphaned. But we cannot delete it,
   1864     ** in case the master journal file name was written into the journal
   1865     ** file before the failure occurred.
   1866     */
   1867     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
   1868       Btree *pBt = db->aDb[i].pBt;
   1869       if( pBt ){
   1870         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
   1871       }
   1872     }
   1873     sqlite3OsCloseFree(pMaster);
   1874     assert( rc!=SQLITE_BUSY );
   1875     if( rc!=SQLITE_OK ){
   1876       sqlite3DbFree(db, zMaster);
   1877       return rc;
   1878     }
   1879 
   1880     /* Delete the master journal file. This commits the transaction. After
   1881     ** doing this the directory is synced again before any individual
   1882     ** transaction files are deleted.
   1883     */
   1884     rc = sqlite3OsDelete(pVfs, zMaster, 1);
   1885     sqlite3DbFree(db, zMaster);
   1886     zMaster = 0;
   1887     if( rc ){
   1888       return rc;
   1889     }
   1890 
   1891     /* All files and directories have already been synced, so the following
   1892     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
   1893     ** deleting or truncating journals. If something goes wrong while
   1894     ** this is happening we don't really care. The integrity of the
   1895     ** transaction is already guaranteed, but some stray 'cold' journals
   1896     ** may be lying around. Returning an error code won't help matters.
   1897     */
   1898     disable_simulated_io_errors();
   1899     sqlite3BeginBenignMalloc();
   1900     for(i=0; i<db->nDb; i++){
   1901       Btree *pBt = db->aDb[i].pBt;
   1902       if( pBt ){
   1903         sqlite3BtreeCommitPhaseTwo(pBt, 1);
   1904       }
   1905     }
   1906     sqlite3EndBenignMalloc();
   1907     enable_simulated_io_errors();
   1908 
   1909     sqlite3VtabCommit(db);
   1910   }
   1911 #endif
   1912 
   1913   return rc;
   1914 }
   1915 
   1916 /*
   1917 ** This routine checks that the sqlite3.activeVdbeCnt count variable
   1918 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
   1919 ** currently active. An assertion fails if the two counts do not match.
   1920 ** This is an internal self-check only - it is not an essential processing
   1921 ** step.
   1922 **
   1923 ** This is a no-op if NDEBUG is defined.
   1924 */
   1925 #ifndef NDEBUG
   1926 static void checkActiveVdbeCnt(sqlite3 *db){
   1927   Vdbe *p;
   1928   int cnt = 0;
   1929   int nWrite = 0;
   1930   p = db->pVdbe;
   1931   while( p ){
   1932     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
   1933       cnt++;
   1934       if( p->readOnly==0 ) nWrite++;
   1935     }
   1936     p = p->pNext;
   1937   }
   1938   assert( cnt==db->activeVdbeCnt );
   1939   assert( nWrite==db->writeVdbeCnt );
   1940 }
   1941 #else
   1942 #define checkActiveVdbeCnt(x)
   1943 #endif
   1944 
   1945 /*
   1946 ** For every Btree that in database connection db which
   1947 ** has been modified, "trip" or invalidate each cursor in
   1948 ** that Btree might have been modified so that the cursor
   1949 ** can never be used again.  This happens when a rollback
   1950 *** occurs.  We have to trip all the other cursors, even
   1951 ** cursor from other VMs in different database connections,
   1952 ** so that none of them try to use the data at which they
   1953 ** were pointing and which now may have been changed due
   1954 ** to the rollback.
   1955 **
   1956 ** Remember that a rollback can delete tables complete and
   1957 ** reorder rootpages.  So it is not sufficient just to save
   1958 ** the state of the cursor.  We have to invalidate the cursor
   1959 ** so that it is never used again.
   1960 */
   1961 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
   1962   int i;
   1963   for(i=0; i<db->nDb; i++){
   1964     Btree *p = db->aDb[i].pBt;
   1965     if( p && sqlite3BtreeIsInTrans(p) ){
   1966       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
   1967     }
   1968   }
   1969 }
   1970 
   1971 /*
   1972 ** If the Vdbe passed as the first argument opened a statement-transaction,
   1973 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
   1974 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
   1975 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
   1976 ** statement transaction is commtted.
   1977 **
   1978 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
   1979 ** Otherwise SQLITE_OK.
   1980 */
   1981 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
   1982   sqlite3 *const db = p->db;
   1983   int rc = SQLITE_OK;
   1984 
   1985   /* If p->iStatement is greater than zero, then this Vdbe opened a
   1986   ** statement transaction that should be closed here. The only exception
   1987   ** is that an IO error may have occured, causing an emergency rollback.
   1988   ** In this case (db->nStatement==0), and there is nothing to do.
   1989   */
   1990   if( db->nStatement && p->iStatement ){
   1991     int i;
   1992     const int iSavepoint = p->iStatement-1;
   1993 
   1994     assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
   1995     assert( db->nStatement>0 );
   1996     assert( p->iStatement==(db->nStatement+db->nSavepoint) );
   1997 
   1998     for(i=0; i<db->nDb; i++){
   1999       int rc2 = SQLITE_OK;
   2000       Btree *pBt = db->aDb[i].pBt;
   2001       if( pBt ){
   2002         if( eOp==SAVEPOINT_ROLLBACK ){
   2003           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
   2004         }
   2005         if( rc2==SQLITE_OK ){
   2006           rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
   2007         }
   2008         if( rc==SQLITE_OK ){
   2009           rc = rc2;
   2010         }
   2011       }
   2012     }
   2013     db->nStatement--;
   2014     p->iStatement = 0;
   2015 
   2016     /* If the statement transaction is being rolled back, also restore the
   2017     ** database handles deferred constraint counter to the value it had when
   2018     ** the statement transaction was opened.  */
   2019     if( eOp==SAVEPOINT_ROLLBACK ){
   2020       db->nDeferredCons = p->nStmtDefCons;
   2021     }
   2022   }
   2023   return rc;
   2024 }
   2025 
   2026 /*
   2027 ** This function is called when a transaction opened by the database
   2028 ** handle associated with the VM passed as an argument is about to be
   2029 ** committed. If there are outstanding deferred foreign key constraint
   2030 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
   2031 **
   2032 ** If there are outstanding FK violations and this function returns
   2033 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
   2034 ** an error message to it. Then return SQLITE_ERROR.
   2035 */
   2036 #ifndef SQLITE_OMIT_FOREIGN_KEY
   2037 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
   2038   sqlite3 *db = p->db;
   2039   if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
   2040     p->rc = SQLITE_CONSTRAINT;
   2041     p->errorAction = OE_Abort;
   2042     sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
   2043     return SQLITE_ERROR;
   2044   }
   2045   return SQLITE_OK;
   2046 }
   2047 #endif
   2048 
   2049 /*
   2050 ** This routine is called the when a VDBE tries to halt.  If the VDBE
   2051 ** has made changes and is in autocommit mode, then commit those
   2052 ** changes.  If a rollback is needed, then do the rollback.
   2053 **
   2054 ** This routine is the only way to move the state of a VM from
   2055 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
   2056 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
   2057 **
   2058 ** Return an error code.  If the commit could not complete because of
   2059 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
   2060 ** means the close did not happen and needs to be repeated.
   2061 */
   2062 int sqlite3VdbeHalt(Vdbe *p){
   2063   int rc;                         /* Used to store transient return codes */
   2064   sqlite3 *db = p->db;
   2065 
   2066   /* This function contains the logic that determines if a statement or
   2067   ** transaction will be committed or rolled back as a result of the
   2068   ** execution of this virtual machine.
   2069   **
   2070   ** If any of the following errors occur:
   2071   **
   2072   **     SQLITE_NOMEM
   2073   **     SQLITE_IOERR
   2074   **     SQLITE_FULL
   2075   **     SQLITE_INTERRUPT
   2076   **
   2077   ** Then the internal cache might have been left in an inconsistent
   2078   ** state.  We need to rollback the statement transaction, if there is
   2079   ** one, or the complete transaction if there is no statement transaction.
   2080   */
   2081 
   2082   if( p->db->mallocFailed ){
   2083     p->rc = SQLITE_NOMEM;
   2084   }
   2085   closeAllCursors(p);
   2086   if( p->magic!=VDBE_MAGIC_RUN ){
   2087     return SQLITE_OK;
   2088   }
   2089   checkActiveVdbeCnt(db);
   2090 
   2091   /* No commit or rollback needed if the program never started */
   2092   if( p->pc>=0 ){
   2093     int mrc;   /* Primary error code from p->rc */
   2094     int eStatementOp = 0;
   2095     int isSpecialError;            /* Set to true if a 'special' error */
   2096 
   2097     /* Lock all btrees used by the statement */
   2098     sqlite3VdbeEnter(p);
   2099 
   2100     /* Check for one of the special errors */
   2101     mrc = p->rc & 0xff;
   2102     assert( p->rc!=SQLITE_IOERR_BLOCKED );  /* This error no longer exists */
   2103     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
   2104                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
   2105     if( isSpecialError ){
   2106       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
   2107       ** no rollback is necessary. Otherwise, at least a savepoint
   2108       ** transaction must be rolled back to restore the database to a
   2109       ** consistent state.
   2110       **
   2111       ** Even if the statement is read-only, it is important to perform
   2112       ** a statement or transaction rollback operation. If the error
   2113       ** occured while writing to the journal, sub-journal or database
   2114       ** file as part of an effort to free up cache space (see function
   2115       ** pagerStress() in pager.c), the rollback is required to restore
   2116       ** the pager to a consistent state.
   2117       */
   2118       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
   2119         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
   2120           eStatementOp = SAVEPOINT_ROLLBACK;
   2121         }else{
   2122           /* We are forced to roll back the active transaction. Before doing
   2123           ** so, abort any other statements this handle currently has active.
   2124           */
   2125           invalidateCursorsOnModifiedBtrees(db);
   2126           sqlite3RollbackAll(db);
   2127           sqlite3CloseSavepoints(db);
   2128           db->autoCommit = 1;
   2129         }
   2130       }
   2131     }
   2132 
   2133     /* Check for immediate foreign key violations. */
   2134     if( p->rc==SQLITE_OK ){
   2135       sqlite3VdbeCheckFk(p, 0);
   2136     }
   2137 
   2138     /* If the auto-commit flag is set and this is the only active writer
   2139     ** VM, then we do either a commit or rollback of the current transaction.
   2140     **
   2141     ** Note: This block also runs if one of the special errors handled
   2142     ** above has occurred.
   2143     */
   2144     if( !sqlite3VtabInSync(db)
   2145      && db->autoCommit
   2146      && db->writeVdbeCnt==(p->readOnly==0)
   2147     ){
   2148       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
   2149         rc = sqlite3VdbeCheckFk(p, 1);
   2150         if( rc!=SQLITE_OK ){
   2151           if( NEVER(p->readOnly) ){
   2152             sqlite3VdbeLeave(p);
   2153             return SQLITE_ERROR;
   2154           }
   2155           rc = SQLITE_CONSTRAINT;
   2156         }else{
   2157           /* The auto-commit flag is true, the vdbe program was successful
   2158           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
   2159           ** key constraints to hold up the transaction. This means a commit
   2160           ** is required. */
   2161           rc = vdbeCommit(db, p);
   2162         }
   2163         if( rc==SQLITE_BUSY && p->readOnly ){
   2164           sqlite3VdbeLeave(p);
   2165           return SQLITE_BUSY;
   2166         }else if( rc!=SQLITE_OK ){
   2167           p->rc = rc;
   2168           sqlite3RollbackAll(db);
   2169         }else{
   2170           db->nDeferredCons = 0;
   2171           sqlite3CommitInternalChanges(db);
   2172         }
   2173       }else{
   2174         sqlite3RollbackAll(db);
   2175       }
   2176       db->nStatement = 0;
   2177     }else if( eStatementOp==0 ){
   2178       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
   2179         eStatementOp = SAVEPOINT_RELEASE;
   2180       }else if( p->errorAction==OE_Abort ){
   2181         eStatementOp = SAVEPOINT_ROLLBACK;
   2182       }else{
   2183         invalidateCursorsOnModifiedBtrees(db);
   2184         sqlite3RollbackAll(db);
   2185         sqlite3CloseSavepoints(db);
   2186         db->autoCommit = 1;
   2187       }
   2188     }
   2189 
   2190     /* If eStatementOp is non-zero, then a statement transaction needs to
   2191     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
   2192     ** do so. If this operation returns an error, and the current statement
   2193     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
   2194     ** current statement error code.
   2195     **
   2196     ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp
   2197     ** is SAVEPOINT_ROLLBACK.  But if p->rc==SQLITE_OK then eStatementOp
   2198     ** must be SAVEPOINT_RELEASE.  Hence the NEVER(p->rc==SQLITE_OK) in
   2199     ** the following code.
   2200     */
   2201     if( eStatementOp ){
   2202       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
   2203       if( rc ){
   2204         assert( eStatementOp==SAVEPOINT_ROLLBACK );
   2205         if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){
   2206           p->rc = rc;
   2207           sqlite3DbFree(db, p->zErrMsg);
   2208           p->zErrMsg = 0;
   2209         }
   2210         invalidateCursorsOnModifiedBtrees(db);
   2211         sqlite3RollbackAll(db);
   2212         sqlite3CloseSavepoints(db);
   2213         db->autoCommit = 1;
   2214       }
   2215     }
   2216 
   2217     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
   2218     ** has been rolled back, update the database connection change-counter.
   2219     */
   2220     if( p->changeCntOn ){
   2221       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
   2222         sqlite3VdbeSetChanges(db, p->nChange);
   2223       }else{
   2224         sqlite3VdbeSetChanges(db, 0);
   2225       }
   2226       p->nChange = 0;
   2227     }
   2228 
   2229     /* Rollback or commit any schema changes that occurred. */
   2230     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
   2231       sqlite3ResetInternalSchema(db, -1);
   2232       db->flags = (db->flags | SQLITE_InternChanges);
   2233     }
   2234 
   2235     /* Release the locks */
   2236     sqlite3VdbeLeave(p);
   2237   }
   2238 
   2239   /* We have successfully halted and closed the VM.  Record this fact. */
   2240   if( p->pc>=0 ){
   2241     db->activeVdbeCnt--;
   2242     if( !p->readOnly ){
   2243       db->writeVdbeCnt--;
   2244     }
   2245     assert( db->activeVdbeCnt>=db->writeVdbeCnt );
   2246   }
   2247   p->magic = VDBE_MAGIC_HALT;
   2248   checkActiveVdbeCnt(db);
   2249   if( p->db->mallocFailed ){
   2250     p->rc = SQLITE_NOMEM;
   2251   }
   2252 
   2253   /* If the auto-commit flag is set to true, then any locks that were held
   2254   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
   2255   ** to invoke any required unlock-notify callbacks.
   2256   */
   2257   if( db->autoCommit ){
   2258     sqlite3ConnectionUnlocked(db);
   2259   }
   2260 
   2261   assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
   2262   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
   2263 }
   2264 
   2265 
   2266 /*
   2267 ** Each VDBE holds the result of the most recent sqlite3_step() call
   2268 ** in p->rc.  This routine sets that result back to SQLITE_OK.
   2269 */
   2270 void sqlite3VdbeResetStepResult(Vdbe *p){
   2271   p->rc = SQLITE_OK;
   2272 }
   2273 
   2274 /*
   2275 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
   2276 ** Write any error messages into *pzErrMsg.  Return the result code.
   2277 **
   2278 ** After this routine is run, the VDBE should be ready to be executed
   2279 ** again.
   2280 **
   2281 ** To look at it another way, this routine resets the state of the
   2282 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
   2283 ** VDBE_MAGIC_INIT.
   2284 */
   2285 int sqlite3VdbeReset(Vdbe *p){
   2286   sqlite3 *db;
   2287   db = p->db;
   2288 
   2289   /* If the VM did not run to completion or if it encountered an
   2290   ** error, then it might not have been halted properly.  So halt
   2291   ** it now.
   2292   */
   2293   sqlite3VdbeHalt(p);
   2294 
   2295   /* If the VDBE has be run even partially, then transfer the error code
   2296   ** and error message from the VDBE into the main database structure.  But
   2297   ** if the VDBE has just been set to run but has not actually executed any
   2298   ** instructions yet, leave the main database error information unchanged.
   2299   */
   2300   if( p->pc>=0 ){
   2301     if( p->zErrMsg ){
   2302       sqlite3BeginBenignMalloc();
   2303       sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
   2304       sqlite3EndBenignMalloc();
   2305       db->errCode = p->rc;
   2306       sqlite3DbFree(db, p->zErrMsg);
   2307       p->zErrMsg = 0;
   2308     }else if( p->rc ){
   2309       sqlite3Error(db, p->rc, 0);
   2310     }else{
   2311       sqlite3Error(db, SQLITE_OK, 0);
   2312     }
   2313     if( p->runOnlyOnce ) p->expired = 1;
   2314   }else if( p->rc && p->expired ){
   2315     /* The expired flag was set on the VDBE before the first call
   2316     ** to sqlite3_step(). For consistency (since sqlite3_step() was
   2317     ** called), set the database error in this case as well.
   2318     */
   2319     sqlite3Error(db, p->rc, 0);
   2320     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
   2321     sqlite3DbFree(db, p->zErrMsg);
   2322     p->zErrMsg = 0;
   2323   }
   2324 
   2325   /* Reclaim all memory used by the VDBE
   2326   */
   2327   Cleanup(p);
   2328 
   2329   /* Save profiling information from this VDBE run.
   2330   */
   2331 #ifdef VDBE_PROFILE
   2332   {
   2333     FILE *out = fopen("vdbe_profile.out", "a");
   2334     if( out ){
   2335       int i;
   2336       fprintf(out, "---- ");
   2337       for(i=0; i<p->nOp; i++){
   2338         fprintf(out, "%02x", p->aOp[i].opcode);
   2339       }
   2340       fprintf(out, "\n");
   2341       for(i=0; i<p->nOp; i++){
   2342         fprintf(out, "%6d %10lld %8lld ",
   2343            p->aOp[i].cnt,
   2344            p->aOp[i].cycles,
   2345            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
   2346         );
   2347         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
   2348       }
   2349       fclose(out);
   2350     }
   2351   }
   2352 #endif
   2353   p->magic = VDBE_MAGIC_INIT;
   2354   return p->rc & db->errMask;
   2355 }
   2356 
   2357 /*
   2358 ** Clean up and delete a VDBE after execution.  Return an integer which is
   2359 ** the result code.  Write any error message text into *pzErrMsg.
   2360 */
   2361 int sqlite3VdbeFinalize(Vdbe *p){
   2362   int rc = SQLITE_OK;
   2363   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
   2364     rc = sqlite3VdbeReset(p);
   2365     assert( (rc & p->db->errMask)==rc );
   2366   }
   2367   sqlite3VdbeDelete(p);
   2368   return rc;
   2369 }
   2370 
   2371 /*
   2372 ** Call the destructor for each auxdata entry in pVdbeFunc for which
   2373 ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
   2374 ** are always destroyed.  To destroy all auxdata entries, call this
   2375 ** routine with mask==0.
   2376 */
   2377 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
   2378   int i;
   2379   for(i=0; i<pVdbeFunc->nAux; i++){
   2380     struct AuxData *pAux = &pVdbeFunc->apAux[i];
   2381     if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
   2382       if( pAux->xDelete ){
   2383         pAux->xDelete(pAux->pAux);
   2384       }
   2385       pAux->pAux = 0;
   2386     }
   2387   }
   2388 }
   2389 
   2390 /*
   2391 ** Free all memory associated with the Vdbe passed as the second argument.
   2392 ** The difference between this function and sqlite3VdbeDelete() is that
   2393 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
   2394 ** the database connection.
   2395 */
   2396 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
   2397   SubProgram *pSub, *pNext;
   2398   assert( p->db==0 || p->db==db );
   2399   releaseMemArray(p->aVar, p->nVar);
   2400   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
   2401   for(pSub=p->pProgram; pSub; pSub=pNext){
   2402     pNext = pSub->pNext;
   2403     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
   2404     sqlite3DbFree(db, pSub);
   2405   }
   2406   vdbeFreeOpArray(db, p->aOp, p->nOp);
   2407   sqlite3DbFree(db, p->aLabel);
   2408   sqlite3DbFree(db, p->aColName);
   2409   sqlite3DbFree(db, p->zSql);
   2410   sqlite3DbFree(db, p->pFree);
   2411   sqlite3DbFree(db, p);
   2412 }
   2413 
   2414 /*
   2415 ** Delete an entire VDBE.
   2416 */
   2417 void sqlite3VdbeDelete(Vdbe *p){
   2418   sqlite3 *db;
   2419 
   2420   if( NEVER(p==0) ) return;
   2421   db = p->db;
   2422   if( p->pPrev ){
   2423     p->pPrev->pNext = p->pNext;
   2424   }else{
   2425     assert( db->pVdbe==p );
   2426     db->pVdbe = p->pNext;
   2427   }
   2428   if( p->pNext ){
   2429     p->pNext->pPrev = p->pPrev;
   2430   }
   2431   p->magic = VDBE_MAGIC_DEAD;
   2432   p->db = 0;
   2433   sqlite3VdbeDeleteObject(db, p);
   2434 }
   2435 
   2436 /*
   2437 ** Make sure the cursor p is ready to read or write the row to which it
   2438 ** was last positioned.  Return an error code if an OOM fault or I/O error
   2439 ** prevents us from positioning the cursor to its correct position.
   2440 **
   2441 ** If a MoveTo operation is pending on the given cursor, then do that
   2442 ** MoveTo now.  If no move is pending, check to see if the row has been
   2443 ** deleted out from under the cursor and if it has, mark the row as
   2444 ** a NULL row.
   2445 **
   2446 ** If the cursor is already pointing to the correct row and that row has
   2447 ** not been deleted out from under the cursor, then this routine is a no-op.
   2448 */
   2449 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
   2450   if( p->deferredMoveto ){
   2451     int res, rc;
   2452 #ifdef SQLITE_TEST
   2453     extern int sqlite3_search_count;
   2454 #endif
   2455     assert( p->isTable );
   2456     rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
   2457     if( rc ) return rc;
   2458     p->lastRowid = p->movetoTarget;
   2459     if( res!=0 ) return SQLITE_CORRUPT_BKPT;
   2460     p->rowidIsValid = 1;
   2461 #ifdef SQLITE_TEST
   2462     sqlite3_search_count++;
   2463 #endif
   2464     p->deferredMoveto = 0;
   2465     p->cacheStatus = CACHE_STALE;
   2466   }else if( ALWAYS(p->pCursor) ){
   2467     int hasMoved;
   2468     int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
   2469     if( rc ) return rc;
   2470     if( hasMoved ){
   2471       p->cacheStatus = CACHE_STALE;
   2472       p->nullRow = 1;
   2473     }
   2474   }
   2475   return SQLITE_OK;
   2476 }
   2477 
   2478 /*
   2479 ** The following functions:
   2480 **
   2481 ** sqlite3VdbeSerialType()
   2482 ** sqlite3VdbeSerialTypeLen()
   2483 ** sqlite3VdbeSerialLen()
   2484 ** sqlite3VdbeSerialPut()
   2485 ** sqlite3VdbeSerialGet()
   2486 **
   2487 ** encapsulate the code that serializes values for storage in SQLite
   2488 ** data and index records. Each serialized value consists of a
   2489 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
   2490 ** integer, stored as a varint.
   2491 **
   2492 ** In an SQLite index record, the serial type is stored directly before
   2493 ** the blob of data that it corresponds to. In a table record, all serial
   2494 ** types are stored at the start of the record, and the blobs of data at
   2495 ** the end. Hence these functions allow the caller to handle the
   2496 ** serial-type and data blob seperately.
   2497 **
   2498 ** The following table describes the various storage classes for data:
   2499 **
   2500 **   serial type        bytes of data      type
   2501 **   --------------     ---------------    ---------------
   2502 **      0                     0            NULL
   2503 **      1                     1            signed integer
   2504 **      2                     2            signed integer
   2505 **      3                     3            signed integer
   2506 **      4                     4            signed integer
   2507 **      5                     6            signed integer
   2508 **      6                     8            signed integer
   2509 **      7                     8            IEEE float
   2510 **      8                     0            Integer constant 0
   2511 **      9                     0            Integer constant 1
   2512 **     10,11                               reserved for expansion
   2513 **    N>=12 and even       (N-12)/2        BLOB
   2514 **    N>=13 and odd        (N-13)/2        text
   2515 **
   2516 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
   2517 ** of SQLite will not understand those serial types.
   2518 */
   2519 
   2520 /*
   2521 ** Return the serial-type for the value stored in pMem.
   2522 */
   2523 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
   2524   int flags = pMem->flags;
   2525   int n;
   2526 
   2527   if( flags&MEM_Null ){
   2528     return 0;
   2529   }
   2530   if( flags&MEM_Int ){
   2531     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
   2532 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
   2533     i64 i = pMem->u.i;
   2534     u64 u;
   2535     if( file_format>=4 && (i&1)==i ){
   2536       return 8+(u32)i;
   2537     }
   2538     if( i<0 ){
   2539       if( i<(-MAX_6BYTE) ) return 6;
   2540       /* Previous test prevents:  u = -(-9223372036854775808) */
   2541       u = -i;
   2542     }else{
   2543       u = i;
   2544     }
   2545     if( u<=127 ) return 1;
   2546     if( u<=32767 ) return 2;
   2547     if( u<=8388607 ) return 3;
   2548     if( u<=2147483647 ) return 4;
   2549     if( u<=MAX_6BYTE ) return 5;
   2550     return 6;
   2551   }
   2552   if( flags&MEM_Real ){
   2553     return 7;
   2554   }
   2555   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
   2556   n = pMem->n;
   2557   if( flags & MEM_Zero ){
   2558     n += pMem->u.nZero;
   2559   }
   2560   assert( n>=0 );
   2561   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
   2562 }
   2563 
   2564 /*
   2565 ** Return the length of the data corresponding to the supplied serial-type.
   2566 */
   2567 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
   2568   if( serial_type>=12 ){
   2569     return (serial_type-12)/2;
   2570   }else{
   2571     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
   2572     return aSize[serial_type];
   2573   }
   2574 }
   2575 
   2576 /*
   2577 ** If we are on an architecture with mixed-endian floating
   2578 ** points (ex: ARM7) then swap the lower 4 bytes with the
   2579 ** upper 4 bytes.  Return the result.
   2580 **
   2581 ** For most architectures, this is a no-op.
   2582 **
   2583 ** (later):  It is reported to me that the mixed-endian problem
   2584 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
   2585 ** that early versions of GCC stored the two words of a 64-bit
   2586 ** float in the wrong order.  And that error has been propagated
   2587 ** ever since.  The blame is not necessarily with GCC, though.
   2588 ** GCC might have just copying the problem from a prior compiler.
   2589 ** I am also told that newer versions of GCC that follow a different
   2590 ** ABI get the byte order right.
   2591 **
   2592 ** Developers using SQLite on an ARM7 should compile and run their
   2593 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
   2594 ** enabled, some asserts below will ensure that the byte order of
   2595 ** floating point values is correct.
   2596 **
   2597 ** (2007-08-30)  Frank van Vugt has studied this problem closely
   2598 ** and has send his findings to the SQLite developers.  Frank
   2599 ** writes that some Linux kernels offer floating point hardware
   2600 ** emulation that uses only 32-bit mantissas instead of a full
   2601 ** 48-bits as required by the IEEE standard.  (This is the
   2602 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
   2603 ** byte swapping becomes very complicated.  To avoid problems,
   2604 ** the necessary byte swapping is carried out using a 64-bit integer
   2605 ** rather than a 64-bit float.  Frank assures us that the code here
   2606 ** works for him.  We, the developers, have no way to independently
   2607 ** verify this, but Frank seems to know what he is talking about
   2608 ** so we trust him.
   2609 */
   2610 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
   2611 static u64 floatSwap(u64 in){
   2612   union {
   2613     u64 r;
   2614     u32 i[2];
   2615   } u;
   2616   u32 t;
   2617 
   2618   u.r = in;
   2619   t = u.i[0];
   2620   u.i[0] = u.i[1];
   2621   u.i[1] = t;
   2622   return u.r;
   2623 }
   2624 # define swapMixedEndianFloat(X)  X = floatSwap(X)
   2625 #else
   2626 # define swapMixedEndianFloat(X)
   2627 #endif
   2628 
   2629 /*
   2630 ** Write the serialized data blob for the value stored in pMem into
   2631 ** buf. It is assumed that the caller has allocated sufficient space.
   2632 ** Return the number of bytes written.
   2633 **
   2634 ** nBuf is the amount of space left in buf[].  nBuf must always be
   2635 ** large enough to hold the entire field.  Except, if the field is
   2636 ** a blob with a zero-filled tail, then buf[] might be just the right
   2637 ** size to hold everything except for the zero-filled tail.  If buf[]
   2638 ** is only big enough to hold the non-zero prefix, then only write that
   2639 ** prefix into buf[].  But if buf[] is large enough to hold both the
   2640 ** prefix and the tail then write the prefix and set the tail to all
   2641 ** zeros.
   2642 **
   2643 ** Return the number of bytes actually written into buf[].  The number
   2644 ** of bytes in the zero-filled tail is included in the return value only
   2645 ** if those bytes were zeroed in buf[].
   2646 */
   2647 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
   2648   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
   2649   u32 len;
   2650 
   2651   /* Integer and Real */
   2652   if( serial_type<=7 && serial_type>0 ){
   2653     u64 v;
   2654     u32 i;
   2655     if( serial_type==7 ){
   2656       assert( sizeof(v)==sizeof(pMem->r) );
   2657       memcpy(&v, &pMem->r, sizeof(v));
   2658       swapMixedEndianFloat(v);
   2659     }else{
   2660       v = pMem->u.i;
   2661     }
   2662     len = i = sqlite3VdbeSerialTypeLen(serial_type);
   2663     assert( len<=(u32)nBuf );
   2664     while( i-- ){
   2665       buf[i] = (u8)(v&0xFF);
   2666       v >>= 8;
   2667     }
   2668     return len;
   2669   }
   2670 
   2671   /* String or blob */
   2672   if( serial_type>=12 ){
   2673     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
   2674              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
   2675     assert( pMem->n<=nBuf );
   2676     len = pMem->n;
   2677     memcpy(buf, pMem->z, len);
   2678     if( pMem->flags & MEM_Zero ){
   2679       len += pMem->u.nZero;
   2680       assert( nBuf>=0 );
   2681       if( len > (u32)nBuf ){
   2682         len = (u32)nBuf;
   2683       }
   2684       memset(&buf[pMem->n], 0, len-pMem->n);
   2685     }
   2686     return len;
   2687   }
   2688 
   2689   /* NULL or constants 0 or 1 */
   2690   return 0;
   2691 }
   2692 
   2693 /*
   2694 ** Deserialize the data blob pointed to by buf as serial type serial_type
   2695 ** and store the result in pMem.  Return the number of bytes read.
   2696 */
   2697 u32 sqlite3VdbeSerialGet(
   2698   const unsigned char *buf,     /* Buffer to deserialize from */
   2699   u32 serial_type,              /* Serial type to deserialize */
   2700   Mem *pMem                     /* Memory cell to write value into */
   2701 ){
   2702   switch( serial_type ){
   2703     case 10:   /* Reserved for future use */
   2704     case 11:   /* Reserved for future use */
   2705     case 0: {  /* NULL */
   2706       pMem->flags = MEM_Null;
   2707       break;
   2708     }
   2709     case 1: { /* 1-byte signed integer */
   2710       pMem->u.i = (signed char)buf[0];
   2711       pMem->flags = MEM_Int;
   2712       return 1;
   2713     }
   2714     case 2: { /* 2-byte signed integer */
   2715       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
   2716       pMem->flags = MEM_Int;
   2717       return 2;
   2718     }
   2719     case 3: { /* 3-byte signed integer */
   2720       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
   2721       pMem->flags = MEM_Int;
   2722       return 3;
   2723     }
   2724     case 4: { /* 4-byte signed integer */
   2725       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
   2726       pMem->flags = MEM_Int;
   2727       return 4;
   2728     }
   2729     case 5: { /* 6-byte signed integer */
   2730       u64 x = (((signed char)buf[0])<<8) | buf[1];
   2731       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
   2732       x = (x<<32) | y;
   2733       pMem->u.i = *(i64*)&x;
   2734       pMem->flags = MEM_Int;
   2735       return 6;
   2736     }
   2737     case 6:   /* 8-byte signed integer */
   2738     case 7: { /* IEEE floating point */
   2739       u64 x;
   2740       u32 y;
   2741 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
   2742       /* Verify that integers and floating point values use the same
   2743       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
   2744       ** defined that 64-bit floating point values really are mixed
   2745       ** endian.
   2746       */
   2747       static const u64 t1 = ((u64)0x3ff00000)<<32;
   2748       static const double r1 = 1.0;
   2749       u64 t2 = t1;
   2750       swapMixedEndianFloat(t2);
   2751       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
   2752 #endif
   2753 
   2754       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
   2755       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
   2756       x = (x<<32) | y;
   2757       if( serial_type==6 ){
   2758         pMem->u.i = *(i64*)&x;
   2759         pMem->flags = MEM_Int;
   2760       }else{
   2761         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
   2762         swapMixedEndianFloat(x);
   2763         memcpy(&pMem->r, &x, sizeof(x));
   2764         pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
   2765       }
   2766       return 8;
   2767     }
   2768     case 8:    /* Integer 0 */
   2769     case 9: {  /* Integer 1 */
   2770       pMem->u.i = serial_type-8;
   2771       pMem->flags = MEM_Int;
   2772       return 0;
   2773     }
   2774     default: {
   2775       u32 len = (serial_type-12)/2;
   2776       pMem->z = (char *)buf;
   2777       pMem->n = len;
   2778       pMem->xDel = 0;
   2779       if( serial_type&0x01 ){
   2780         pMem->flags = MEM_Str | MEM_Ephem;
   2781       }else{
   2782         pMem->flags = MEM_Blob | MEM_Ephem;
   2783       }
   2784       return len;
   2785     }
   2786   }
   2787   return 0;
   2788 }
   2789 
   2790 
   2791 /*
   2792 ** Given the nKey-byte encoding of a record in pKey[], parse the
   2793 ** record into a UnpackedRecord structure.  Return a pointer to
   2794 ** that structure.
   2795 **
   2796 ** The calling function might provide szSpace bytes of memory
   2797 ** space at pSpace.  This space can be used to hold the returned
   2798 ** VDbeParsedRecord structure if it is large enough.  If it is
   2799 ** not big enough, space is obtained from sqlite3_malloc().
   2800 **
   2801 ** The returned structure should be closed by a call to
   2802 ** sqlite3VdbeDeleteUnpackedRecord().
   2803 */
   2804 UnpackedRecord *sqlite3VdbeRecordUnpack(
   2805   KeyInfo *pKeyInfo,     /* Information about the record format */
   2806   int nKey,              /* Size of the binary record */
   2807   const void *pKey,      /* The binary record */
   2808   char *pSpace,          /* Unaligned space available to hold the object */
   2809   int szSpace            /* Size of pSpace[] in bytes */
   2810 ){
   2811   const unsigned char *aKey = (const unsigned char *)pKey;
   2812   UnpackedRecord *p;  /* The unpacked record that we will return */
   2813   int nByte;          /* Memory space needed to hold p, in bytes */
   2814   int d;
   2815   u32 idx;
   2816   u16 u;              /* Unsigned loop counter */
   2817   u32 szHdr;
   2818   Mem *pMem;
   2819   int nOff;           /* Increase pSpace by this much to 8-byte align it */
   2820 
   2821   /*
   2822   ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
   2823   ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
   2824   ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
   2825   */
   2826   nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
   2827   pSpace += nOff;
   2828   szSpace -= nOff;
   2829   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
   2830   if( nByte>szSpace ){
   2831     p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
   2832     if( p==0 ) return 0;
   2833     p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
   2834   }else{
   2835     p = (UnpackedRecord*)pSpace;
   2836     p->flags = UNPACKED_NEED_DESTROY;
   2837   }
   2838   p->pKeyInfo = pKeyInfo;
   2839   p->nField = pKeyInfo->nField + 1;
   2840   p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
   2841   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
   2842   idx = getVarint32(aKey, szHdr);
   2843   d = szHdr;
   2844   u = 0;
   2845   while( idx<szHdr && u<p->nField && d<=nKey ){
   2846     u32 serial_type;
   2847 
   2848     idx += getVarint32(&aKey[idx], serial_type);
   2849     pMem->enc = pKeyInfo->enc;
   2850     pMem->db = pKeyInfo->db;
   2851     pMem->flags = 0;
   2852     pMem->zMalloc = 0;
   2853     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
   2854     pMem++;
   2855     u++;
   2856   }
   2857   assert( u<=pKeyInfo->nField + 1 );
   2858   p->nField = u;
   2859   return (void*)p;
   2860 }
   2861 
   2862 /*
   2863 ** This routine destroys a UnpackedRecord object.
   2864 */
   2865 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
   2866   int i;
   2867   Mem *pMem;
   2868 
   2869   assert( p!=0 );
   2870   assert( p->flags & UNPACKED_NEED_DESTROY );
   2871   for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
   2872     /* The unpacked record is always constructed by the
   2873     ** sqlite3VdbeUnpackRecord() function above, which makes all
   2874     ** strings and blobs static.  And none of the elements are
   2875     ** ever transformed, so there is never anything to delete.
   2876     */
   2877     if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
   2878   }
   2879   if( p->flags & UNPACKED_NEED_FREE ){
   2880     sqlite3DbFree(p->pKeyInfo->db, p);
   2881   }
   2882 }
   2883 
   2884 /*
   2885 ** This function compares the two table rows or index records
   2886 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
   2887 ** or positive integer if key1 is less than, equal to or
   2888 ** greater than key2.  The {nKey1, pKey1} key must be a blob
   2889 ** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
   2890 ** key must be a parsed key such as obtained from
   2891 ** sqlite3VdbeParseRecord.
   2892 **
   2893 ** Key1 and Key2 do not have to contain the same number of fields.
   2894 ** The key with fewer fields is usually compares less than the
   2895 ** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
   2896 ** and the common prefixes are equal, then key1 is less than key2.
   2897 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
   2898 ** equal, then the keys are considered to be equal and
   2899 ** the parts beyond the common prefix are ignored.
   2900 **
   2901 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
   2902 ** the header of pKey1 is ignored.  It is assumed that pKey1 is
   2903 ** an index key, and thus ends with a rowid value.  The last byte
   2904 ** of the header will therefore be the serial type of the rowid:
   2905 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
   2906 ** The serial type of the final rowid will always be a single byte.
   2907 ** By ignoring this last byte of the header, we force the comparison
   2908 ** to ignore the rowid at the end of key1.
   2909 */
   2910 int sqlite3VdbeRecordCompare(
   2911   int nKey1, const void *pKey1, /* Left key */
   2912   UnpackedRecord *pPKey2        /* Right key */
   2913 ){
   2914   int d1;            /* Offset into aKey[] of next data element */
   2915   u32 idx1;          /* Offset into aKey[] of next header element */
   2916   u32 szHdr1;        /* Number of bytes in header */
   2917   int i = 0;
   2918   int nField;
   2919   int rc = 0;
   2920   const unsigned char *aKey1 = (const unsigned char *)pKey1;
   2921   KeyInfo *pKeyInfo;
   2922   Mem mem1;
   2923 
   2924   pKeyInfo = pPKey2->pKeyInfo;
   2925   mem1.enc = pKeyInfo->enc;
   2926   mem1.db = pKeyInfo->db;
   2927   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
   2928   VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
   2929 
   2930   /* Compilers may complain that mem1.u.i is potentially uninitialized.
   2931   ** We could initialize it, as shown here, to silence those complaints.
   2932   ** But in fact, mem1.u.i will never actually be used initialized, and doing
   2933   ** the unnecessary initialization has a measurable negative performance
   2934   ** impact, since this routine is a very high runner.  And so, we choose
   2935   ** to ignore the compiler warnings and leave this variable uninitialized.
   2936   */
   2937   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
   2938 
   2939   idx1 = getVarint32(aKey1, szHdr1);
   2940   d1 = szHdr1;
   2941   if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
   2942     szHdr1--;
   2943   }
   2944   nField = pKeyInfo->nField;
   2945   while( idx1<szHdr1 && i<pPKey2->nField ){
   2946     u32 serial_type1;
   2947 
   2948     /* Read the serial types for the next element in each key. */
   2949     idx1 += getVarint32( aKey1+idx1, serial_type1 );
   2950     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
   2951 
   2952     /* Extract the values to be compared.
   2953     */
   2954     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
   2955 
   2956     /* Do the comparison
   2957     */
   2958     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
   2959                            i<nField ? pKeyInfo->aColl[i] : 0);
   2960     if( rc!=0 ){
   2961       assert( mem1.zMalloc==0 );  /* See comment below */
   2962 
   2963       /* Invert the result if we are using DESC sort order. */
   2964       if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
   2965         rc = -rc;
   2966       }
   2967 
   2968       /* If the PREFIX_SEARCH flag is set and all fields except the final
   2969       ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
   2970       ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
   2971       ** This is used by the OP_IsUnique opcode.
   2972       */
   2973       if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
   2974         assert( idx1==szHdr1 && rc );
   2975         assert( mem1.flags & MEM_Int );
   2976         pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
   2977         pPKey2->rowid = mem1.u.i;
   2978       }
   2979 
   2980       return rc;
   2981     }
   2982     i++;
   2983   }
   2984 
   2985   /* No memory allocation is ever used on mem1.  Prove this using
   2986   ** the following assert().  If the assert() fails, it indicates a
   2987   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
   2988   */
   2989   assert( mem1.zMalloc==0 );
   2990 
   2991   /* rc==0 here means that one of the keys ran out of fields and
   2992   ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
   2993   ** flag is set, then break the tie by treating key2 as larger.
   2994   ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
   2995   ** are considered to be equal.  Otherwise, the longer key is the
   2996   ** larger.  As it happens, the pPKey2 will always be the longer
   2997   ** if there is a difference.
   2998   */
   2999   assert( rc==0 );
   3000   if( pPKey2->flags & UNPACKED_INCRKEY ){
   3001     rc = -1;
   3002   }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
   3003     /* Leave rc==0 */
   3004   }else if( idx1<szHdr1 ){
   3005     rc = 1;
   3006   }
   3007   return rc;
   3008 }
   3009 
   3010 
   3011 /*
   3012 ** pCur points at an index entry created using the OP_MakeRecord opcode.
   3013 ** Read the rowid (the last field in the record) and store it in *rowid.
   3014 ** Return SQLITE_OK if everything works, or an error code otherwise.
   3015 **
   3016 ** pCur might be pointing to text obtained from a corrupt database file.
   3017 ** So the content cannot be trusted.  Do appropriate checks on the content.
   3018 */
   3019 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
   3020   i64 nCellKey = 0;
   3021   int rc;
   3022   u32 szHdr;        /* Size of the header */
   3023   u32 typeRowid;    /* Serial type of the rowid */
   3024   u32 lenRowid;     /* Size of the rowid */
   3025   Mem m, v;
   3026 
   3027   UNUSED_PARAMETER(db);
   3028 
   3029   /* Get the size of the index entry.  Only indices entries of less
   3030   ** than 2GiB are support - anything large must be database corruption.
   3031   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
   3032   ** this code can safely assume that nCellKey is 32-bits
   3033   */
   3034   assert( sqlite3BtreeCursorIsValid(pCur) );
   3035   rc = sqlite3BtreeKeySize(pCur, &nCellKey);
   3036   assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
   3037   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
   3038 
   3039   /* Read in the complete content of the index entry */
   3040   memset(&m, 0, sizeof(m));
   3041   rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
   3042   if( rc ){
   3043     return rc;
   3044   }
   3045 
   3046   /* The index entry must begin with a header size */
   3047   (void)getVarint32((u8*)m.z, szHdr);
   3048   testcase( szHdr==3 );
   3049   testcase( szHdr==m.n );
   3050   if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
   3051     goto idx_rowid_corruption;
   3052   }
   3053 
   3054   /* The last field of the index should be an integer - the ROWID.
   3055   ** Verify that the last entry really is an integer. */
   3056   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
   3057   testcase( typeRowid==1 );
   3058   testcase( typeRowid==2 );
   3059   testcase( typeRowid==3 );
   3060   testcase( typeRowid==4 );
   3061   testcase( typeRowid==5 );
   3062   testcase( typeRowid==6 );
   3063   testcase( typeRowid==8 );
   3064   testcase( typeRowid==9 );
   3065   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
   3066     goto idx_rowid_corruption;
   3067   }
   3068   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
   3069   testcase( (u32)m.n==szHdr+lenRowid );
   3070   if( unlikely((u32)m.n<szHdr+lenRowid) ){
   3071     goto idx_rowid_corruption;
   3072   }
   3073 
   3074   /* Fetch the integer off the end of the index record */
   3075   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
   3076   *rowid = v.u.i;
   3077   sqlite3VdbeMemRelease(&m);
   3078   return SQLITE_OK;
   3079 
   3080   /* Jump here if database corruption is detected after m has been
   3081   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
   3082 idx_rowid_corruption:
   3083   testcase( m.zMalloc!=0 );
   3084   sqlite3VdbeMemRelease(&m);
   3085   return SQLITE_CORRUPT_BKPT;
   3086 }
   3087 
   3088 /*
   3089 ** Compare the key of the index entry that cursor pC is pointing to against
   3090 ** the key string in pUnpacked.  Write into *pRes a number
   3091 ** that is negative, zero, or positive if pC is less than, equal to,
   3092 ** or greater than pUnpacked.  Return SQLITE_OK on success.
   3093 **
   3094 ** pUnpacked is either created without a rowid or is truncated so that it
   3095 ** omits the rowid at the end.  The rowid at the end of the index entry
   3096 ** is ignored as well.  Hence, this routine only compares the prefixes
   3097 ** of the keys prior to the final rowid, not the entire key.
   3098 */
   3099 int sqlite3VdbeIdxKeyCompare(
   3100   VdbeCursor *pC,             /* The cursor to compare against */
   3101   UnpackedRecord *pUnpacked,  /* Unpacked version of key to compare against */
   3102   int *res                    /* Write the comparison result here */
   3103 ){
   3104   i64 nCellKey = 0;
   3105   int rc;
   3106   BtCursor *pCur = pC->pCursor;
   3107   Mem m;
   3108 
   3109   assert( sqlite3BtreeCursorIsValid(pCur) );
   3110   rc = sqlite3BtreeKeySize(pCur, &nCellKey);
   3111   assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
   3112   /* nCellKey will always be between 0 and 0xffffffff because of the say
   3113   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
   3114   if( nCellKey<=0 || nCellKey>0x7fffffff ){
   3115     *res = 0;
   3116     return SQLITE_CORRUPT_BKPT;
   3117   }
   3118   memset(&m, 0, sizeof(m));
   3119   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
   3120   if( rc ){
   3121     return rc;
   3122   }
   3123   assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
   3124   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
   3125   sqlite3VdbeMemRelease(&m);
   3126   return SQLITE_OK;
   3127 }
   3128 
   3129 /*
   3130 ** This routine sets the value to be returned by subsequent calls to
   3131 ** sqlite3_changes() on the database handle 'db'.
   3132 */
   3133 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
   3134   assert( sqlite3_mutex_held(db->mutex) );
   3135   db->nChange = nChange;
   3136   db->nTotalChange += nChange;
   3137 }
   3138 
   3139 /*
   3140 ** Set a flag in the vdbe to update the change counter when it is finalised
   3141 ** or reset.
   3142 */
   3143 void sqlite3VdbeCountChanges(Vdbe *v){
   3144   v->changeCntOn = 1;
   3145 }
   3146 
   3147 /*
   3148 ** Mark every prepared statement associated with a database connection
   3149 ** as expired.
   3150 **
   3151 ** An expired statement means that recompilation of the statement is
   3152 ** recommend.  Statements expire when things happen that make their
   3153 ** programs obsolete.  Removing user-defined functions or collating
   3154 ** sequences, or changing an authorization function are the types of
   3155 ** things that make prepared statements obsolete.
   3156 */
   3157 void sqlite3ExpirePreparedStatements(sqlite3 *db){
   3158   Vdbe *p;
   3159   for(p = db->pVdbe; p; p=p->pNext){
   3160     p->expired = 1;
   3161   }
   3162 }
   3163 
   3164 /*
   3165 ** Return the database associated with the Vdbe.
   3166 */
   3167 sqlite3 *sqlite3VdbeDb(Vdbe *v){
   3168   return v->db;
   3169 }
   3170 
   3171 /*
   3172 ** Return a pointer to an sqlite3_value structure containing the value bound
   3173 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
   3174 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
   3175 ** constants) to the value before returning it.
   3176 **
   3177 ** The returned value must be freed by the caller using sqlite3ValueFree().
   3178 */
   3179 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
   3180   assert( iVar>0 );
   3181   if( v ){
   3182     Mem *pMem = &v->aVar[iVar-1];
   3183     if( 0==(pMem->flags & MEM_Null) ){
   3184       sqlite3_value *pRet = sqlite3ValueNew(v->db);
   3185       if( pRet ){
   3186         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
   3187         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
   3188         sqlite3VdbeMemStoreType((Mem *)pRet);
   3189       }
   3190       return pRet;
   3191     }
   3192   }
   3193   return 0;
   3194 }
   3195 
   3196 /*
   3197 ** Configure SQL variable iVar so that binding a new value to it signals
   3198 ** to sqlite3_reoptimize() that re-preparing the statement may result
   3199 ** in a better query plan.
   3200 */
   3201 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
   3202   assert( iVar>0 );
   3203   if( iVar>32 ){
   3204     v->expmask = 0xffffffff;
   3205   }else{
   3206     v->expmask |= ((u32)1 << (iVar-1));
   3207   }
   3208 }
   3209