1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains both code to deal with invoking "external" functions, but 11 // also contains code that implements "exported" external functions. 12 // 13 // There are currently two mechanisms for handling external functions in the 14 // Interpreter. The first is to implement lle_* wrapper functions that are 15 // specific to well-known library functions which manually translate the 16 // arguments from GenericValues and make the call. If such a wrapper does 17 // not exist, and libffi is available, then the Interpreter will attempt to 18 // invoke the function using libffi, after finding its address. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "Interpreter.h" 23 #include "llvm/Config/config.h" // Detect libffi 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/DynamicLibrary.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/Mutex.h" 31 #include <cmath> 32 #include <csignal> 33 #include <cstdio> 34 #include <cstring> 35 #include <map> 36 37 #ifdef HAVE_FFI_CALL 38 #ifdef HAVE_FFI_H 39 #include <ffi.h> 40 #define USE_LIBFFI 41 #elif HAVE_FFI_FFI_H 42 #include <ffi/ffi.h> 43 #define USE_LIBFFI 44 #endif 45 #endif 46 47 using namespace llvm; 48 49 static ManagedStatic<sys::Mutex> FunctionsLock; 50 51 typedef GenericValue (*ExFunc)(FunctionType *, 52 const std::vector<GenericValue> &); 53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 54 static std::map<std::string, ExFunc> FuncNames; 55 56 #ifdef USE_LIBFFI 57 typedef void (*RawFunc)(); 58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 59 #endif 60 61 static Interpreter *TheInterpreter; 62 63 static char getTypeID(Type *Ty) { 64 switch (Ty->getTypeID()) { 65 case Type::VoidTyID: return 'V'; 66 case Type::IntegerTyID: 67 switch (cast<IntegerType>(Ty)->getBitWidth()) { 68 case 1: return 'o'; 69 case 8: return 'B'; 70 case 16: return 'S'; 71 case 32: return 'I'; 72 case 64: return 'L'; 73 default: return 'N'; 74 } 75 case Type::FloatTyID: return 'F'; 76 case Type::DoubleTyID: return 'D'; 77 case Type::PointerTyID: return 'P'; 78 case Type::FunctionTyID:return 'M'; 79 case Type::StructTyID: return 'T'; 80 case Type::ArrayTyID: return 'A'; 81 default: return 'U'; 82 } 83 } 84 85 // Try to find address of external function given a Function object. 86 // Please note, that interpreter doesn't know how to assemble a 87 // real call in general case (this is JIT job), that's why it assumes, 88 // that all external functions has the same (and pretty "general") signature. 89 // The typical example of such functions are "lle_X_" ones. 90 static ExFunc lookupFunction(const Function *F) { 91 // Function not found, look it up... start by figuring out what the 92 // composite function name should be. 93 std::string ExtName = "lle_"; 94 FunctionType *FT = F->getFunctionType(); 95 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 96 ExtName += getTypeID(FT->getContainedType(i)); 97 ExtName += "_" + F->getName().str(); 98 99 sys::ScopedLock Writer(*FunctionsLock); 100 ExFunc FnPtr = FuncNames[ExtName]; 101 if (!FnPtr) 102 FnPtr = FuncNames["lle_X_" + F->getName().str()]; 103 if (!FnPtr) // Try calling a generic function... if it exists... 104 FnPtr = (ExFunc)(intptr_t) 105 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" + 106 F->getName().str()); 107 if (FnPtr) 108 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 109 return FnPtr; 110 } 111 112 #ifdef USE_LIBFFI 113 static ffi_type *ffiTypeFor(Type *Ty) { 114 switch (Ty->getTypeID()) { 115 case Type::VoidTyID: return &ffi_type_void; 116 case Type::IntegerTyID: 117 switch (cast<IntegerType>(Ty)->getBitWidth()) { 118 case 8: return &ffi_type_sint8; 119 case 16: return &ffi_type_sint16; 120 case 32: return &ffi_type_sint32; 121 case 64: return &ffi_type_sint64; 122 } 123 case Type::FloatTyID: return &ffi_type_float; 124 case Type::DoubleTyID: return &ffi_type_double; 125 case Type::PointerTyID: return &ffi_type_pointer; 126 default: break; 127 } 128 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 129 report_fatal_error("Type could not be mapped for use with libffi."); 130 return NULL; 131 } 132 133 static void *ffiValueFor(Type *Ty, const GenericValue &AV, 134 void *ArgDataPtr) { 135 switch (Ty->getTypeID()) { 136 case Type::IntegerTyID: 137 switch (cast<IntegerType>(Ty)->getBitWidth()) { 138 case 8: { 139 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 140 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 141 return ArgDataPtr; 142 } 143 case 16: { 144 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 145 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 146 return ArgDataPtr; 147 } 148 case 32: { 149 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 150 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 151 return ArgDataPtr; 152 } 153 case 64: { 154 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 155 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 156 return ArgDataPtr; 157 } 158 } 159 case Type::FloatTyID: { 160 float *FloatPtr = (float *) ArgDataPtr; 161 *FloatPtr = AV.FloatVal; 162 return ArgDataPtr; 163 } 164 case Type::DoubleTyID: { 165 double *DoublePtr = (double *) ArgDataPtr; 166 *DoublePtr = AV.DoubleVal; 167 return ArgDataPtr; 168 } 169 case Type::PointerTyID: { 170 void **PtrPtr = (void **) ArgDataPtr; 171 *PtrPtr = GVTOP(AV); 172 return ArgDataPtr; 173 } 174 default: break; 175 } 176 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 177 report_fatal_error("Type value could not be mapped for use with libffi."); 178 return NULL; 179 } 180 181 static bool ffiInvoke(RawFunc Fn, Function *F, 182 const std::vector<GenericValue> &ArgVals, 183 const DataLayout *TD, GenericValue &Result) { 184 ffi_cif cif; 185 FunctionType *FTy = F->getFunctionType(); 186 const unsigned NumArgs = F->arg_size(); 187 188 // TODO: We don't have type information about the remaining arguments, because 189 // this information is never passed into ExecutionEngine::runFunction(). 190 if (ArgVals.size() > NumArgs && F->isVarArg()) { 191 report_fatal_error("Calling external var arg function '" + F->getName() 192 + "' is not supported by the Interpreter."); 193 } 194 195 unsigned ArgBytes = 0; 196 197 std::vector<ffi_type*> args(NumArgs); 198 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 199 A != E; ++A) { 200 const unsigned ArgNo = A->getArgNo(); 201 Type *ArgTy = FTy->getParamType(ArgNo); 202 args[ArgNo] = ffiTypeFor(ArgTy); 203 ArgBytes += TD->getTypeStoreSize(ArgTy); 204 } 205 206 SmallVector<uint8_t, 128> ArgData; 207 ArgData.resize(ArgBytes); 208 uint8_t *ArgDataPtr = ArgData.data(); 209 SmallVector<void*, 16> values(NumArgs); 210 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 211 A != E; ++A) { 212 const unsigned ArgNo = A->getArgNo(); 213 Type *ArgTy = FTy->getParamType(ArgNo); 214 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 215 ArgDataPtr += TD->getTypeStoreSize(ArgTy); 216 } 217 218 Type *RetTy = FTy->getReturnType(); 219 ffi_type *rtype = ffiTypeFor(RetTy); 220 221 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { 222 SmallVector<uint8_t, 128> ret; 223 if (RetTy->getTypeID() != Type::VoidTyID) 224 ret.resize(TD->getTypeStoreSize(RetTy)); 225 ffi_call(&cif, Fn, ret.data(), values.data()); 226 switch (RetTy->getTypeID()) { 227 case Type::IntegerTyID: 228 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 229 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; 230 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; 231 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; 232 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; 233 } 234 break; 235 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; 236 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; 237 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; 238 default: break; 239 } 240 return true; 241 } 242 243 return false; 244 } 245 #endif // USE_LIBFFI 246 247 GenericValue Interpreter::callExternalFunction(Function *F, 248 const std::vector<GenericValue> &ArgVals) { 249 TheInterpreter = this; 250 251 FunctionsLock->acquire(); 252 253 // Do a lookup to see if the function is in our cache... this should just be a 254 // deferred annotation! 255 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 256 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 257 : FI->second) { 258 FunctionsLock->release(); 259 return Fn(F->getFunctionType(), ArgVals); 260 } 261 262 #ifdef USE_LIBFFI 263 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 264 RawFunc RawFn; 265 if (RF == RawFunctions->end()) { 266 RawFn = (RawFunc)(intptr_t) 267 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 268 if (!RawFn) 269 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); 270 if (RawFn != 0) 271 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 272 } else { 273 RawFn = RF->second; 274 } 275 276 FunctionsLock->release(); 277 278 GenericValue Result; 279 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) 280 return Result; 281 #endif // USE_LIBFFI 282 283 if (F->getName() == "__main") 284 errs() << "Tried to execute an unknown external function: " 285 << *F->getType() << " __main\n"; 286 else 287 report_fatal_error("Tried to execute an unknown external function: " + 288 F->getName()); 289 #ifndef USE_LIBFFI 290 errs() << "Recompiling LLVM with --enable-libffi might help.\n"; 291 #endif 292 return GenericValue(); 293 } 294 295 296 //===----------------------------------------------------------------------===// 297 // Functions "exported" to the running application... 298 // 299 300 // void atexit(Function*) 301 static 302 GenericValue lle_X_atexit(FunctionType *FT, 303 const std::vector<GenericValue> &Args) { 304 assert(Args.size() == 1); 305 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 306 GenericValue GV; 307 GV.IntVal = 0; 308 return GV; 309 } 310 311 // void exit(int) 312 static 313 GenericValue lle_X_exit(FunctionType *FT, 314 const std::vector<GenericValue> &Args) { 315 TheInterpreter->exitCalled(Args[0]); 316 return GenericValue(); 317 } 318 319 // void abort(void) 320 static 321 GenericValue lle_X_abort(FunctionType *FT, 322 const std::vector<GenericValue> &Args) { 323 //FIXME: should we report or raise here? 324 //report_fatal_error("Interpreted program raised SIGABRT"); 325 raise (SIGABRT); 326 return GenericValue(); 327 } 328 329 // int sprintf(char *, const char *, ...) - a very rough implementation to make 330 // output useful. 331 static 332 GenericValue lle_X_sprintf(FunctionType *FT, 333 const std::vector<GenericValue> &Args) { 334 char *OutputBuffer = (char *)GVTOP(Args[0]); 335 const char *FmtStr = (const char *)GVTOP(Args[1]); 336 unsigned ArgNo = 2; 337 338 // printf should return # chars printed. This is completely incorrect, but 339 // close enough for now. 340 GenericValue GV; 341 GV.IntVal = APInt(32, strlen(FmtStr)); 342 while (1) { 343 switch (*FmtStr) { 344 case 0: return GV; // Null terminator... 345 default: // Normal nonspecial character 346 sprintf(OutputBuffer++, "%c", *FmtStr++); 347 break; 348 case '\\': { // Handle escape codes 349 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 350 FmtStr += 2; OutputBuffer += 2; 351 break; 352 } 353 case '%': { // Handle format specifiers 354 char FmtBuf[100] = "", Buffer[1000] = ""; 355 char *FB = FmtBuf; 356 *FB++ = *FmtStr++; 357 char Last = *FB++ = *FmtStr++; 358 unsigned HowLong = 0; 359 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 360 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 361 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 362 Last != 'p' && Last != 's' && Last != '%') { 363 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 364 Last = *FB++ = *FmtStr++; 365 } 366 *FB = 0; 367 368 switch (Last) { 369 case '%': 370 memcpy(Buffer, "%", 2); break; 371 case 'c': 372 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 373 break; 374 case 'd': case 'i': 375 case 'u': case 'o': 376 case 'x': case 'X': 377 if (HowLong >= 1) { 378 if (HowLong == 1 && 379 TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 && 380 sizeof(long) < sizeof(int64_t)) { 381 // Make sure we use %lld with a 64 bit argument because we might be 382 // compiling LLI on a 32 bit compiler. 383 unsigned Size = strlen(FmtBuf); 384 FmtBuf[Size] = FmtBuf[Size-1]; 385 FmtBuf[Size+1] = 0; 386 FmtBuf[Size-1] = 'l'; 387 } 388 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 389 } else 390 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 391 break; 392 case 'e': case 'E': case 'g': case 'G': case 'f': 393 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 394 case 'p': 395 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 396 case 's': 397 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 398 default: 399 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 400 ArgNo++; break; 401 } 402 size_t Len = strlen(Buffer); 403 memcpy(OutputBuffer, Buffer, Len + 1); 404 OutputBuffer += Len; 405 } 406 break; 407 } 408 } 409 return GV; 410 } 411 412 // int printf(const char *, ...) - a very rough implementation to make output 413 // useful. 414 static 415 GenericValue lle_X_printf(FunctionType *FT, 416 const std::vector<GenericValue> &Args) { 417 char Buffer[10000]; 418 std::vector<GenericValue> NewArgs; 419 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 420 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 421 GenericValue GV = lle_X_sprintf(FT, NewArgs); 422 outs() << Buffer; 423 return GV; 424 } 425 426 // int sscanf(const char *format, ...); 427 static 428 GenericValue lle_X_sscanf(FunctionType *FT, 429 const std::vector<GenericValue> &args) { 430 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 431 432 char *Args[10]; 433 for (unsigned i = 0; i < args.size(); ++i) 434 Args[i] = (char*)GVTOP(args[i]); 435 436 GenericValue GV; 437 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 438 Args[5], Args[6], Args[7], Args[8], Args[9])); 439 return GV; 440 } 441 442 // int scanf(const char *format, ...); 443 static 444 GenericValue lle_X_scanf(FunctionType *FT, 445 const std::vector<GenericValue> &args) { 446 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 447 448 char *Args[10]; 449 for (unsigned i = 0; i < args.size(); ++i) 450 Args[i] = (char*)GVTOP(args[i]); 451 452 GenericValue GV; 453 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 454 Args[5], Args[6], Args[7], Args[8], Args[9])); 455 return GV; 456 } 457 458 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 459 // output useful. 460 static 461 GenericValue lle_X_fprintf(FunctionType *FT, 462 const std::vector<GenericValue> &Args) { 463 assert(Args.size() >= 2); 464 char Buffer[10000]; 465 std::vector<GenericValue> NewArgs; 466 NewArgs.push_back(PTOGV(Buffer)); 467 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 468 GenericValue GV = lle_X_sprintf(FT, NewArgs); 469 470 fputs(Buffer, (FILE *) GVTOP(Args[0])); 471 return GV; 472 } 473 474 static GenericValue lle_X_memset(FunctionType *FT, 475 const std::vector<GenericValue> &Args) { 476 int val = (int)Args[1].IntVal.getSExtValue(); 477 size_t len = (size_t)Args[2].IntVal.getZExtValue(); 478 memset((void *)GVTOP(Args[0]), val, len); 479 // llvm.memset.* returns void, lle_X_* returns GenericValue, 480 // so here we return GenericValue with IntVal set to zero 481 GenericValue GV; 482 GV.IntVal = 0; 483 return GV; 484 } 485 486 static GenericValue lle_X_memcpy(FunctionType *FT, 487 const std::vector<GenericValue> &Args) { 488 memcpy(GVTOP(Args[0]), GVTOP(Args[1]), 489 (size_t)(Args[2].IntVal.getLimitedValue())); 490 491 // llvm.memcpy* returns void, lle_X_* returns GenericValue, 492 // so here we return GenericValue with IntVal set to zero 493 GenericValue GV; 494 GV.IntVal = 0; 495 return GV; 496 } 497 498 void Interpreter::initializeExternalFunctions() { 499 sys::ScopedLock Writer(*FunctionsLock); 500 FuncNames["lle_X_atexit"] = lle_X_atexit; 501 FuncNames["lle_X_exit"] = lle_X_exit; 502 FuncNames["lle_X_abort"] = lle_X_abort; 503 504 FuncNames["lle_X_printf"] = lle_X_printf; 505 FuncNames["lle_X_sprintf"] = lle_X_sprintf; 506 FuncNames["lle_X_sscanf"] = lle_X_sscanf; 507 FuncNames["lle_X_scanf"] = lle_X_scanf; 508 FuncNames["lle_X_fprintf"] = lle_X_fprintf; 509 FuncNames["lle_X_memset"] = lle_X_memset; 510 FuncNames["lle_X_memcpy"] = lle_X_memcpy; 511 } 512