1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** The code in this file implements execution method of the 13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") 14 ** handles housekeeping details such as creating and deleting 15 ** VDBE instances. This file is solely interested in executing 16 ** the VDBE program. 17 ** 18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer 19 ** to a VDBE. 20 ** 21 ** The SQL parser generates a program which is then executed by 22 ** the VDBE to do the work of the SQL statement. VDBE programs are 23 ** similar in form to assembly language. The program consists of 24 ** a linear sequence of operations. Each operation has an opcode 25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 26 ** is a null-terminated string. Operand P5 is an unsigned character. 27 ** Few opcodes use all 5 operands. 28 ** 29 ** Computation results are stored on a set of registers numbered beginning 30 ** with 1 and going up to Vdbe.nMem. Each register can store 31 ** either an integer, a null-terminated string, a floating point 32 ** number, or the SQL "NULL" value. An implicit conversion from one 33 ** type to the other occurs as necessary. 34 ** 35 ** Most of the code in this file is taken up by the sqlite3VdbeExec() 36 ** function which does the work of interpreting a VDBE program. 37 ** But other routines are also provided to help in building up 38 ** a program instruction by instruction. 39 ** 40 ** Various scripts scan this source file in order to generate HTML 41 ** documentation, headers files, or other derived files. The formatting 42 ** of the code in this file is, therefore, important. See other comments 43 ** in this file for details. If in doubt, do not deviate from existing 44 ** commenting and indentation practices when changing or adding code. 45 */ 46 #include "sqliteInt.h" 47 #include "vdbeInt.h" 48 49 /* 50 ** Invoke this macro on memory cells just prior to changing the 51 ** value of the cell. This macro verifies that shallow copies are 52 ** not misused. 53 */ 54 #ifdef SQLITE_DEBUG 55 # define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M) 56 #else 57 # define memAboutToChange(P,M) 58 #endif 59 60 /* 61 ** The following global variable is incremented every time a cursor 62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 63 ** procedures use this information to make sure that indices are 64 ** working correctly. This variable has no function other than to 65 ** help verify the correct operation of the library. 66 */ 67 #ifdef SQLITE_TEST 68 int sqlite3_search_count = 0; 69 #endif 70 71 /* 72 ** When this global variable is positive, it gets decremented once before 73 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted 74 ** field of the sqlite3 structure is set in order to simulate and interrupt. 75 ** 76 ** This facility is used for testing purposes only. It does not function 77 ** in an ordinary build. 78 */ 79 #ifdef SQLITE_TEST 80 int sqlite3_interrupt_count = 0; 81 #endif 82 83 /* 84 ** The next global variable is incremented each type the OP_Sort opcode 85 ** is executed. The test procedures use this information to make sure that 86 ** sorting is occurring or not occurring at appropriate times. This variable 87 ** has no function other than to help verify the correct operation of the 88 ** library. 89 */ 90 #ifdef SQLITE_TEST 91 int sqlite3_sort_count = 0; 92 #endif 93 94 /* 95 ** The next global variable records the size of the largest MEM_Blob 96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 97 ** use this information to make sure that the zero-blob functionality 98 ** is working correctly. This variable has no function other than to 99 ** help verify the correct operation of the library. 100 */ 101 #ifdef SQLITE_TEST 102 int sqlite3_max_blobsize = 0; 103 static void updateMaxBlobsize(Mem *p){ 104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 105 sqlite3_max_blobsize = p->n; 106 } 107 } 108 #endif 109 110 /* 111 ** The next global variable is incremented each type the OP_Found opcode 112 ** is executed. This is used to test whether or not the foreign key 113 ** operation implemented using OP_FkIsZero is working. This variable 114 ** has no function other than to help verify the correct operation of the 115 ** library. 116 */ 117 #ifdef SQLITE_TEST 118 int sqlite3_found_count = 0; 119 #endif 120 121 /* 122 ** Test a register to see if it exceeds the current maximum blob size. 123 ** If it does, record the new maximum blob size. 124 */ 125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) 126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 127 #else 128 # define UPDATE_MAX_BLOBSIZE(P) 129 #endif 130 131 /* 132 ** Convert the given register into a string if it isn't one 133 ** already. Return non-zero if a malloc() fails. 134 */ 135 #define Stringify(P, enc) \ 136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ 137 { goto no_mem; } 138 139 /* 140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 141 ** a pointer to a dynamically allocated string where some other entity 142 ** is responsible for deallocating that string. Because the register 143 ** does not control the string, it might be deleted without the register 144 ** knowing it. 145 ** 146 ** This routine converts an ephemeral string into a dynamically allocated 147 ** string that the register itself controls. In other words, it 148 ** converts an MEM_Ephem string into an MEM_Dyn string. 149 */ 150 #define Deephemeralize(P) \ 151 if( ((P)->flags&MEM_Ephem)!=0 \ 152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 153 154 /* 155 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) 156 ** P if required. 157 */ 158 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) 159 160 /* 161 ** Argument pMem points at a register that will be passed to a 162 ** user-defined function or returned to the user as the result of a query. 163 ** This routine sets the pMem->type variable used by the sqlite3_value_*() 164 ** routines. 165 */ 166 void sqlite3VdbeMemStoreType(Mem *pMem){ 167 int flags = pMem->flags; 168 if( flags & MEM_Null ){ 169 pMem->type = SQLITE_NULL; 170 } 171 else if( flags & MEM_Int ){ 172 pMem->type = SQLITE_INTEGER; 173 } 174 else if( flags & MEM_Real ){ 175 pMem->type = SQLITE_FLOAT; 176 } 177 else if( flags & MEM_Str ){ 178 pMem->type = SQLITE_TEXT; 179 }else{ 180 pMem->type = SQLITE_BLOB; 181 } 182 } 183 184 /* 185 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 186 ** if we run out of memory. 187 */ 188 static VdbeCursor *allocateCursor( 189 Vdbe *p, /* The virtual machine */ 190 int iCur, /* Index of the new VdbeCursor */ 191 int nField, /* Number of fields in the table or index */ 192 int iDb, /* When database the cursor belongs to, or -1 */ 193 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ 194 ){ 195 /* Find the memory cell that will be used to store the blob of memory 196 ** required for this VdbeCursor structure. It is convenient to use a 197 ** vdbe memory cell to manage the memory allocation required for a 198 ** VdbeCursor structure for the following reasons: 199 ** 200 ** * Sometimes cursor numbers are used for a couple of different 201 ** purposes in a vdbe program. The different uses might require 202 ** different sized allocations. Memory cells provide growable 203 ** allocations. 204 ** 205 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 206 ** be freed lazily via the sqlite3_release_memory() API. This 207 ** minimizes the number of malloc calls made by the system. 208 ** 209 ** Memory cells for cursors are allocated at the top of the address 210 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for 211 ** cursor 1 is managed by memory cell (p->nMem-1), etc. 212 */ 213 Mem *pMem = &p->aMem[p->nMem-iCur]; 214 215 int nByte; 216 VdbeCursor *pCx = 0; 217 nByte = 218 ROUND8(sizeof(VdbeCursor)) + 219 (isBtreeCursor?sqlite3BtreeCursorSize():0) + 220 2*nField*sizeof(u32); 221 222 assert( iCur<p->nCursor ); 223 if( p->apCsr[iCur] ){ 224 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); 225 p->apCsr[iCur] = 0; 226 } 227 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ 228 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; 229 memset(pCx, 0, sizeof(VdbeCursor)); 230 pCx->iDb = iDb; 231 pCx->nField = nField; 232 if( nField ){ 233 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))]; 234 } 235 if( isBtreeCursor ){ 236 pCx->pCursor = (BtCursor*) 237 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)]; 238 sqlite3BtreeCursorZero(pCx->pCursor); 239 } 240 } 241 return pCx; 242 } 243 244 /* 245 ** Try to convert a value into a numeric representation if we can 246 ** do so without loss of information. In other words, if the string 247 ** looks like a number, convert it into a number. If it does not 248 ** look like a number, leave it alone. 249 */ 250 static void applyNumericAffinity(Mem *pRec){ 251 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ 252 double rValue; 253 i64 iValue; 254 u8 enc = pRec->enc; 255 if( (pRec->flags&MEM_Str)==0 ) return; 256 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; 257 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ 258 pRec->u.i = iValue; 259 pRec->flags |= MEM_Int; 260 }else{ 261 pRec->r = rValue; 262 pRec->flags |= MEM_Real; 263 } 264 } 265 } 266 267 /* 268 ** Processing is determine by the affinity parameter: 269 ** 270 ** SQLITE_AFF_INTEGER: 271 ** SQLITE_AFF_REAL: 272 ** SQLITE_AFF_NUMERIC: 273 ** Try to convert pRec to an integer representation or a 274 ** floating-point representation if an integer representation 275 ** is not possible. Note that the integer representation is 276 ** always preferred, even if the affinity is REAL, because 277 ** an integer representation is more space efficient on disk. 278 ** 279 ** SQLITE_AFF_TEXT: 280 ** Convert pRec to a text representation. 281 ** 282 ** SQLITE_AFF_NONE: 283 ** No-op. pRec is unchanged. 284 */ 285 static void applyAffinity( 286 Mem *pRec, /* The value to apply affinity to */ 287 char affinity, /* The affinity to be applied */ 288 u8 enc /* Use this text encoding */ 289 ){ 290 if( affinity==SQLITE_AFF_TEXT ){ 291 /* Only attempt the conversion to TEXT if there is an integer or real 292 ** representation (blob and NULL do not get converted) but no string 293 ** representation. 294 */ 295 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ 296 sqlite3VdbeMemStringify(pRec, enc); 297 } 298 pRec->flags &= ~(MEM_Real|MEM_Int); 299 }else if( affinity!=SQLITE_AFF_NONE ){ 300 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 301 || affinity==SQLITE_AFF_NUMERIC ); 302 applyNumericAffinity(pRec); 303 if( pRec->flags & MEM_Real ){ 304 sqlite3VdbeIntegerAffinity(pRec); 305 } 306 } 307 } 308 309 /* 310 ** Try to convert the type of a function argument or a result column 311 ** into a numeric representation. Use either INTEGER or REAL whichever 312 ** is appropriate. But only do the conversion if it is possible without 313 ** loss of information and return the revised type of the argument. 314 */ 315 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 316 Mem *pMem = (Mem*)pVal; 317 if( pMem->type==SQLITE_TEXT ){ 318 applyNumericAffinity(pMem); 319 sqlite3VdbeMemStoreType(pMem); 320 } 321 return pMem->type; 322 } 323 324 /* 325 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 326 ** not the internal Mem* type. 327 */ 328 void sqlite3ValueApplyAffinity( 329 sqlite3_value *pVal, 330 u8 affinity, 331 u8 enc 332 ){ 333 applyAffinity((Mem *)pVal, affinity, enc); 334 } 335 336 #ifdef SQLITE_DEBUG 337 /* 338 ** Write a nice string representation of the contents of cell pMem 339 ** into buffer zBuf, length nBuf. 340 */ 341 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ 342 char *zCsr = zBuf; 343 int f = pMem->flags; 344 345 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 346 347 if( f&MEM_Blob ){ 348 int i; 349 char c; 350 if( f & MEM_Dyn ){ 351 c = 'z'; 352 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 353 }else if( f & MEM_Static ){ 354 c = 't'; 355 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 356 }else if( f & MEM_Ephem ){ 357 c = 'e'; 358 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 359 }else{ 360 c = 's'; 361 } 362 363 sqlite3_snprintf(100, zCsr, "%c", c); 364 zCsr += sqlite3Strlen30(zCsr); 365 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); 366 zCsr += sqlite3Strlen30(zCsr); 367 for(i=0; i<16 && i<pMem->n; i++){ 368 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); 369 zCsr += sqlite3Strlen30(zCsr); 370 } 371 for(i=0; i<16 && i<pMem->n; i++){ 372 char z = pMem->z[i]; 373 if( z<32 || z>126 ) *zCsr++ = '.'; 374 else *zCsr++ = z; 375 } 376 377 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); 378 zCsr += sqlite3Strlen30(zCsr); 379 if( f & MEM_Zero ){ 380 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); 381 zCsr += sqlite3Strlen30(zCsr); 382 } 383 *zCsr = '\0'; 384 }else if( f & MEM_Str ){ 385 int j, k; 386 zBuf[0] = ' '; 387 if( f & MEM_Dyn ){ 388 zBuf[1] = 'z'; 389 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 390 }else if( f & MEM_Static ){ 391 zBuf[1] = 't'; 392 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 393 }else if( f & MEM_Ephem ){ 394 zBuf[1] = 'e'; 395 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 396 }else{ 397 zBuf[1] = 's'; 398 } 399 k = 2; 400 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); 401 k += sqlite3Strlen30(&zBuf[k]); 402 zBuf[k++] = '['; 403 for(j=0; j<15 && j<pMem->n; j++){ 404 u8 c = pMem->z[j]; 405 if( c>=0x20 && c<0x7f ){ 406 zBuf[k++] = c; 407 }else{ 408 zBuf[k++] = '.'; 409 } 410 } 411 zBuf[k++] = ']'; 412 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); 413 k += sqlite3Strlen30(&zBuf[k]); 414 zBuf[k++] = 0; 415 } 416 } 417 #endif 418 419 #ifdef SQLITE_DEBUG 420 /* 421 ** Print the value of a register for tracing purposes: 422 */ 423 static void memTracePrint(FILE *out, Mem *p){ 424 if( p->flags & MEM_Null ){ 425 fprintf(out, " NULL"); 426 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 427 fprintf(out, " si:%lld", p->u.i); 428 }else if( p->flags & MEM_Int ){ 429 fprintf(out, " i:%lld", p->u.i); 430 #ifndef SQLITE_OMIT_FLOATING_POINT 431 }else if( p->flags & MEM_Real ){ 432 fprintf(out, " r:%g", p->r); 433 #endif 434 }else if( p->flags & MEM_RowSet ){ 435 fprintf(out, " (rowset)"); 436 }else{ 437 char zBuf[200]; 438 sqlite3VdbeMemPrettyPrint(p, zBuf); 439 fprintf(out, " "); 440 fprintf(out, "%s", zBuf); 441 } 442 } 443 static void registerTrace(FILE *out, int iReg, Mem *p){ 444 fprintf(out, "REG[%d] = ", iReg); 445 memTracePrint(out, p); 446 fprintf(out, "\n"); 447 } 448 #endif 449 450 #ifdef SQLITE_DEBUG 451 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) 452 #else 453 # define REGISTER_TRACE(R,M) 454 #endif 455 456 457 #ifdef VDBE_PROFILE 458 459 /* 460 ** hwtime.h contains inline assembler code for implementing 461 ** high-performance timing routines. 462 */ 463 #include "hwtime.h" 464 465 #endif 466 467 /* 468 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the 469 ** sqlite3_interrupt() routine has been called. If it has been, then 470 ** processing of the VDBE program is interrupted. 471 ** 472 ** This macro added to every instruction that does a jump in order to 473 ** implement a loop. This test used to be on every single instruction, 474 ** but that meant we more testing that we needed. By only testing the 475 ** flag on jump instructions, we get a (small) speed improvement. 476 */ 477 #define CHECK_FOR_INTERRUPT \ 478 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; 479 480 481 #ifndef NDEBUG 482 /* 483 ** This function is only called from within an assert() expression. It 484 ** checks that the sqlite3.nTransaction variable is correctly set to 485 ** the number of non-transaction savepoints currently in the 486 ** linked list starting at sqlite3.pSavepoint. 487 ** 488 ** Usage: 489 ** 490 ** assert( checkSavepointCount(db) ); 491 */ 492 static int checkSavepointCount(sqlite3 *db){ 493 int n = 0; 494 Savepoint *p; 495 for(p=db->pSavepoint; p; p=p->pNext) n++; 496 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 497 return 1; 498 } 499 #endif 500 501 /* 502 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 503 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 504 ** in memory obtained from sqlite3DbMalloc). 505 */ 506 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ 507 sqlite3 *db = p->db; 508 sqlite3DbFree(db, p->zErrMsg); 509 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 510 sqlite3_free(pVtab->zErrMsg); 511 pVtab->zErrMsg = 0; 512 } 513 514 515 /* 516 ** Execute as much of a VDBE program as we can then return. 517 ** 518 ** sqlite3VdbeMakeReady() must be called before this routine in order to 519 ** close the program with a final OP_Halt and to set up the callbacks 520 ** and the error message pointer. 521 ** 522 ** Whenever a row or result data is available, this routine will either 523 ** invoke the result callback (if there is one) or return with 524 ** SQLITE_ROW. 525 ** 526 ** If an attempt is made to open a locked database, then this routine 527 ** will either invoke the busy callback (if there is one) or it will 528 ** return SQLITE_BUSY. 529 ** 530 ** If an error occurs, an error message is written to memory obtained 531 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. 532 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR. 533 ** 534 ** If the callback ever returns non-zero, then the program exits 535 ** immediately. There will be no error message but the p->rc field is 536 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. 537 ** 538 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this 539 ** routine to return SQLITE_ERROR. 540 ** 541 ** Other fatal errors return SQLITE_ERROR. 542 ** 543 ** After this routine has finished, sqlite3VdbeFinalize() should be 544 ** used to clean up the mess that was left behind. 545 */ 546 int sqlite3VdbeExec( 547 Vdbe *p /* The VDBE */ 548 ){ 549 int pc=0; /* The program counter */ 550 Op *aOp = p->aOp; /* Copy of p->aOp */ 551 Op *pOp; /* Current operation */ 552 int rc = SQLITE_OK; /* Value to return */ 553 sqlite3 *db = p->db; /* The database */ 554 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 555 u8 encoding = ENC(db); /* The database encoding */ 556 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 557 int checkProgress; /* True if progress callbacks are enabled */ 558 int nProgressOps = 0; /* Opcodes executed since progress callback. */ 559 #endif 560 Mem *aMem = p->aMem; /* Copy of p->aMem */ 561 Mem *pIn1 = 0; /* 1st input operand */ 562 Mem *pIn2 = 0; /* 2nd input operand */ 563 Mem *pIn3 = 0; /* 3rd input operand */ 564 Mem *pOut = 0; /* Output operand */ 565 int iCompare = 0; /* Result of last OP_Compare operation */ 566 int *aPermute = 0; /* Permutation of columns for OP_Compare */ 567 #ifdef VDBE_PROFILE 568 u64 start; /* CPU clock count at start of opcode */ 569 int origPc; /* Program counter at start of opcode */ 570 #endif 571 /*** INSERT STACK UNION HERE ***/ 572 573 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ 574 sqlite3VdbeEnter(p); 575 if( p->rc==SQLITE_NOMEM ){ 576 /* This happens if a malloc() inside a call to sqlite3_column_text() or 577 ** sqlite3_column_text16() failed. */ 578 goto no_mem; 579 } 580 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); 581 p->rc = SQLITE_OK; 582 assert( p->explain==0 ); 583 p->pResultSet = 0; 584 db->busyHandler.nBusy = 0; 585 CHECK_FOR_INTERRUPT; 586 sqlite3VdbeIOTraceSql(p); 587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 588 checkProgress = db->xProgress!=0; 589 #endif 590 #ifdef SQLITE_DEBUG 591 sqlite3BeginBenignMalloc(); 592 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ 593 int i; 594 printf("VDBE Program Listing:\n"); 595 sqlite3VdbePrintSql(p); 596 for(i=0; i<p->nOp; i++){ 597 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 598 } 599 } 600 sqlite3EndBenignMalloc(); 601 #endif 602 for(pc=p->pc; rc==SQLITE_OK; pc++){ 603 assert( pc>=0 && pc<p->nOp ); 604 if( db->mallocFailed ) goto no_mem; 605 #ifdef VDBE_PROFILE 606 origPc = pc; 607 start = sqlite3Hwtime(); 608 #endif 609 pOp = &aOp[pc]; 610 611 /* Only allow tracing if SQLITE_DEBUG is defined. 612 */ 613 #ifdef SQLITE_DEBUG 614 if( p->trace ){ 615 if( pc==0 ){ 616 printf("VDBE Execution Trace:\n"); 617 sqlite3VdbePrintSql(p); 618 } 619 sqlite3VdbePrintOp(p->trace, pc, pOp); 620 } 621 #endif 622 623 624 /* Check to see if we need to simulate an interrupt. This only happens 625 ** if we have a special test build. 626 */ 627 #ifdef SQLITE_TEST 628 if( sqlite3_interrupt_count>0 ){ 629 sqlite3_interrupt_count--; 630 if( sqlite3_interrupt_count==0 ){ 631 sqlite3_interrupt(db); 632 } 633 } 634 #endif 635 636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 637 /* Call the progress callback if it is configured and the required number 638 ** of VDBE ops have been executed (either since this invocation of 639 ** sqlite3VdbeExec() or since last time the progress callback was called). 640 ** If the progress callback returns non-zero, exit the virtual machine with 641 ** a return code SQLITE_ABORT. 642 */ 643 if( checkProgress ){ 644 if( db->nProgressOps==nProgressOps ){ 645 int prc; 646 prc = db->xProgress(db->pProgressArg); 647 if( prc!=0 ){ 648 rc = SQLITE_INTERRUPT; 649 goto vdbe_error_halt; 650 } 651 nProgressOps = 0; 652 } 653 nProgressOps++; 654 } 655 #endif 656 657 /* On any opcode with the "out2-prerelase" tag, free any 658 ** external allocations out of mem[p2] and set mem[p2] to be 659 ** an undefined integer. Opcodes will either fill in the integer 660 ** value or convert mem[p2] to a different type. 661 */ 662 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); 663 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ 664 assert( pOp->p2>0 ); 665 assert( pOp->p2<=p->nMem ); 666 pOut = &aMem[pOp->p2]; 667 memAboutToChange(p, pOut); 668 sqlite3VdbeMemReleaseExternal(pOut); 669 pOut->flags = MEM_Int; 670 } 671 672 /* Sanity checking on other operands */ 673 #ifdef SQLITE_DEBUG 674 if( (pOp->opflags & OPFLG_IN1)!=0 ){ 675 assert( pOp->p1>0 ); 676 assert( pOp->p1<=p->nMem ); 677 assert( memIsValid(&aMem[pOp->p1]) ); 678 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 679 } 680 if( (pOp->opflags & OPFLG_IN2)!=0 ){ 681 assert( pOp->p2>0 ); 682 assert( pOp->p2<=p->nMem ); 683 assert( memIsValid(&aMem[pOp->p2]) ); 684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 685 } 686 if( (pOp->opflags & OPFLG_IN3)!=0 ){ 687 assert( pOp->p3>0 ); 688 assert( pOp->p3<=p->nMem ); 689 assert( memIsValid(&aMem[pOp->p3]) ); 690 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 691 } 692 if( (pOp->opflags & OPFLG_OUT2)!=0 ){ 693 assert( pOp->p2>0 ); 694 assert( pOp->p2<=p->nMem ); 695 memAboutToChange(p, &aMem[pOp->p2]); 696 } 697 if( (pOp->opflags & OPFLG_OUT3)!=0 ){ 698 assert( pOp->p3>0 ); 699 assert( pOp->p3<=p->nMem ); 700 memAboutToChange(p, &aMem[pOp->p3]); 701 } 702 #endif 703 704 switch( pOp->opcode ){ 705 706 /***************************************************************************** 707 ** What follows is a massive switch statement where each case implements a 708 ** separate instruction in the virtual machine. If we follow the usual 709 ** indentation conventions, each case should be indented by 6 spaces. But 710 ** that is a lot of wasted space on the left margin. So the code within 711 ** the switch statement will break with convention and be flush-left. Another 712 ** big comment (similar to this one) will mark the point in the code where 713 ** we transition back to normal indentation. 714 ** 715 ** The formatting of each case is important. The makefile for SQLite 716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 717 ** file looking for lines that begin with "case OP_". The opcodes.h files 718 ** will be filled with #defines that give unique integer values to each 719 ** opcode and the opcodes.c file is filled with an array of strings where 720 ** each string is the symbolic name for the corresponding opcode. If the 721 ** case statement is followed by a comment of the form "/# same as ... #/" 722 ** that comment is used to determine the particular value of the opcode. 723 ** 724 ** Other keywords in the comment that follows each case are used to 725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 726 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See 727 ** the mkopcodeh.awk script for additional information. 728 ** 729 ** Documentation about VDBE opcodes is generated by scanning this file 730 ** for lines of that contain "Opcode:". That line and all subsequent 731 ** comment lines are used in the generation of the opcode.html documentation 732 ** file. 733 ** 734 ** SUMMARY: 735 ** 736 ** Formatting is important to scripts that scan this file. 737 ** Do not deviate from the formatting style currently in use. 738 ** 739 *****************************************************************************/ 740 741 /* Opcode: Goto * P2 * * * 742 ** 743 ** An unconditional jump to address P2. 744 ** The next instruction executed will be 745 ** the one at index P2 from the beginning of 746 ** the program. 747 */ 748 case OP_Goto: { /* jump */ 749 CHECK_FOR_INTERRUPT; 750 pc = pOp->p2 - 1; 751 break; 752 } 753 754 /* Opcode: Gosub P1 P2 * * * 755 ** 756 ** Write the current address onto register P1 757 ** and then jump to address P2. 758 */ 759 case OP_Gosub: { /* jump, in1 */ 760 pIn1 = &aMem[pOp->p1]; 761 assert( (pIn1->flags & MEM_Dyn)==0 ); 762 memAboutToChange(p, pIn1); 763 pIn1->flags = MEM_Int; 764 pIn1->u.i = pc; 765 REGISTER_TRACE(pOp->p1, pIn1); 766 pc = pOp->p2 - 1; 767 break; 768 } 769 770 /* Opcode: Return P1 * * * * 771 ** 772 ** Jump to the next instruction after the address in register P1. 773 */ 774 case OP_Return: { /* in1 */ 775 pIn1 = &aMem[pOp->p1]; 776 assert( pIn1->flags & MEM_Int ); 777 pc = (int)pIn1->u.i; 778 break; 779 } 780 781 /* Opcode: Yield P1 * * * * 782 ** 783 ** Swap the program counter with the value in register P1. 784 */ 785 case OP_Yield: { /* in1 */ 786 int pcDest; 787 pIn1 = &aMem[pOp->p1]; 788 assert( (pIn1->flags & MEM_Dyn)==0 ); 789 pIn1->flags = MEM_Int; 790 pcDest = (int)pIn1->u.i; 791 pIn1->u.i = pc; 792 REGISTER_TRACE(pOp->p1, pIn1); 793 pc = pcDest; 794 break; 795 } 796 797 /* Opcode: HaltIfNull P1 P2 P3 P4 * 798 ** 799 ** Check the value in register P3. If is is NULL then Halt using 800 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 801 ** value in register P3 is not NULL, then this routine is a no-op. 802 */ 803 case OP_HaltIfNull: { /* in3 */ 804 pIn3 = &aMem[pOp->p3]; 805 if( (pIn3->flags & MEM_Null)==0 ) break; 806 /* Fall through into OP_Halt */ 807 } 808 809 /* Opcode: Halt P1 P2 * P4 * 810 ** 811 ** Exit immediately. All open cursors, etc are closed 812 ** automatically. 813 ** 814 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 815 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 816 ** For errors, it can be some other value. If P1!=0 then P2 will determine 817 ** whether or not to rollback the current transaction. Do not rollback 818 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 819 ** then back out all changes that have occurred during this execution of the 820 ** VDBE, but do not rollback the transaction. 821 ** 822 ** If P4 is not null then it is an error message string. 823 ** 824 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 825 ** every program. So a jump past the last instruction of the program 826 ** is the same as executing Halt. 827 */ 828 case OP_Halt: { 829 if( pOp->p1==SQLITE_OK && p->pFrame ){ 830 /* Halt the sub-program. Return control to the parent frame. */ 831 VdbeFrame *pFrame = p->pFrame; 832 p->pFrame = pFrame->pParent; 833 p->nFrame--; 834 sqlite3VdbeSetChanges(db, p->nChange); 835 pc = sqlite3VdbeFrameRestore(pFrame); 836 if( pOp->p2==OE_Ignore ){ 837 /* Instruction pc is the OP_Program that invoked the sub-program 838 ** currently being halted. If the p2 instruction of this OP_Halt 839 ** instruction is set to OE_Ignore, then the sub-program is throwing 840 ** an IGNORE exception. In this case jump to the address specified 841 ** as the p2 of the calling OP_Program. */ 842 pc = p->aOp[pc].p2-1; 843 } 844 aOp = p->aOp; 845 aMem = p->aMem; 846 break; 847 } 848 849 p->rc = pOp->p1; 850 p->errorAction = (u8)pOp->p2; 851 p->pc = pc; 852 if( pOp->p4.z ){ 853 assert( p->rc!=SQLITE_OK ); 854 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); 855 testcase( sqlite3GlobalConfig.xLog!=0 ); 856 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z); 857 }else if( p->rc ){ 858 testcase( sqlite3GlobalConfig.xLog!=0 ); 859 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql); 860 } 861 rc = sqlite3VdbeHalt(p); 862 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 863 if( rc==SQLITE_BUSY ){ 864 p->rc = rc = SQLITE_BUSY; 865 }else{ 866 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ); 867 assert( rc==SQLITE_OK || db->nDeferredCons>0 ); 868 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 869 } 870 goto vdbe_return; 871 } 872 873 /* Opcode: Integer P1 P2 * * * 874 ** 875 ** The 32-bit integer value P1 is written into register P2. 876 */ 877 case OP_Integer: { /* out2-prerelease */ 878 pOut->u.i = pOp->p1; 879 break; 880 } 881 882 /* Opcode: Int64 * P2 * P4 * 883 ** 884 ** P4 is a pointer to a 64-bit integer value. 885 ** Write that value into register P2. 886 */ 887 case OP_Int64: { /* out2-prerelease */ 888 assert( pOp->p4.pI64!=0 ); 889 pOut->u.i = *pOp->p4.pI64; 890 break; 891 } 892 893 #ifndef SQLITE_OMIT_FLOATING_POINT 894 /* Opcode: Real * P2 * P4 * 895 ** 896 ** P4 is a pointer to a 64-bit floating point value. 897 ** Write that value into register P2. 898 */ 899 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ 900 pOut->flags = MEM_Real; 901 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 902 pOut->r = *pOp->p4.pReal; 903 break; 904 } 905 #endif 906 907 /* Opcode: String8 * P2 * P4 * 908 ** 909 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 910 ** into an OP_String before it is executed for the first time. 911 */ 912 case OP_String8: { /* same as TK_STRING, out2-prerelease */ 913 assert( pOp->p4.z!=0 ); 914 pOp->opcode = OP_String; 915 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 916 917 #ifndef SQLITE_OMIT_UTF16 918 if( encoding!=SQLITE_UTF8 ){ 919 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 920 if( rc==SQLITE_TOOBIG ) goto too_big; 921 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 922 assert( pOut->zMalloc==pOut->z ); 923 assert( pOut->flags & MEM_Dyn ); 924 pOut->zMalloc = 0; 925 pOut->flags |= MEM_Static; 926 pOut->flags &= ~MEM_Dyn; 927 if( pOp->p4type==P4_DYNAMIC ){ 928 sqlite3DbFree(db, pOp->p4.z); 929 } 930 pOp->p4type = P4_DYNAMIC; 931 pOp->p4.z = pOut->z; 932 pOp->p1 = pOut->n; 933 } 934 #endif 935 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 936 goto too_big; 937 } 938 /* Fall through to the next case, OP_String */ 939 } 940 941 /* Opcode: String P1 P2 * P4 * 942 ** 943 ** The string value P4 of length P1 (bytes) is stored in register P2. 944 */ 945 case OP_String: { /* out2-prerelease */ 946 assert( pOp->p4.z!=0 ); 947 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 948 pOut->z = pOp->p4.z; 949 pOut->n = pOp->p1; 950 pOut->enc = encoding; 951 UPDATE_MAX_BLOBSIZE(pOut); 952 break; 953 } 954 955 /* Opcode: Null * P2 * * * 956 ** 957 ** Write a NULL into register P2. 958 */ 959 case OP_Null: { /* out2-prerelease */ 960 pOut->flags = MEM_Null; 961 break; 962 } 963 964 965 /* Opcode: Blob P1 P2 * P4 966 ** 967 ** P4 points to a blob of data P1 bytes long. Store this 968 ** blob in register P2. 969 */ 970 case OP_Blob: { /* out2-prerelease */ 971 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 972 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 973 pOut->enc = encoding; 974 UPDATE_MAX_BLOBSIZE(pOut); 975 break; 976 } 977 978 /* Opcode: Variable P1 P2 * P4 * 979 ** 980 ** Transfer the values of bound parameter P1 into register P2 981 ** 982 ** If the parameter is named, then its name appears in P4 and P3==1. 983 ** The P4 value is used by sqlite3_bind_parameter_name(). 984 */ 985 case OP_Variable: { /* out2-prerelease */ 986 Mem *pVar; /* Value being transferred */ 987 988 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 989 pVar = &p->aVar[pOp->p1 - 1]; 990 if( sqlite3VdbeMemTooBig(pVar) ){ 991 goto too_big; 992 } 993 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); 994 UPDATE_MAX_BLOBSIZE(pOut); 995 break; 996 } 997 998 /* Opcode: Move P1 P2 P3 * * 999 ** 1000 ** Move the values in register P1..P1+P3-1 over into 1001 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are 1002 ** left holding a NULL. It is an error for register ranges 1003 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. 1004 */ 1005 case OP_Move: { 1006 char *zMalloc; /* Holding variable for allocated memory */ 1007 int n; /* Number of registers left to copy */ 1008 int p1; /* Register to copy from */ 1009 int p2; /* Register to copy to */ 1010 1011 n = pOp->p3; 1012 p1 = pOp->p1; 1013 p2 = pOp->p2; 1014 assert( n>0 && p1>0 && p2>0 ); 1015 assert( p1+n<=p2 || p2+n<=p1 ); 1016 1017 pIn1 = &aMem[p1]; 1018 pOut = &aMem[p2]; 1019 while( n-- ){ 1020 assert( pOut<=&aMem[p->nMem] ); 1021 assert( pIn1<=&aMem[p->nMem] ); 1022 assert( memIsValid(pIn1) ); 1023 memAboutToChange(p, pOut); 1024 zMalloc = pOut->zMalloc; 1025 pOut->zMalloc = 0; 1026 sqlite3VdbeMemMove(pOut, pIn1); 1027 pIn1->zMalloc = zMalloc; 1028 REGISTER_TRACE(p2++, pOut); 1029 pIn1++; 1030 pOut++; 1031 } 1032 break; 1033 } 1034 1035 /* Opcode: Copy P1 P2 * * * 1036 ** 1037 ** Make a copy of register P1 into register P2. 1038 ** 1039 ** This instruction makes a deep copy of the value. A duplicate 1040 ** is made of any string or blob constant. See also OP_SCopy. 1041 */ 1042 case OP_Copy: { /* in1, out2 */ 1043 pIn1 = &aMem[pOp->p1]; 1044 pOut = &aMem[pOp->p2]; 1045 assert( pOut!=pIn1 ); 1046 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1047 Deephemeralize(pOut); 1048 REGISTER_TRACE(pOp->p2, pOut); 1049 break; 1050 } 1051 1052 /* Opcode: SCopy P1 P2 * * * 1053 ** 1054 ** Make a shallow copy of register P1 into register P2. 1055 ** 1056 ** This instruction makes a shallow copy of the value. If the value 1057 ** is a string or blob, then the copy is only a pointer to the 1058 ** original and hence if the original changes so will the copy. 1059 ** Worse, if the original is deallocated, the copy becomes invalid. 1060 ** Thus the program must guarantee that the original will not change 1061 ** during the lifetime of the copy. Use OP_Copy to make a complete 1062 ** copy. 1063 */ 1064 case OP_SCopy: { /* in1, out2 */ 1065 pIn1 = &aMem[pOp->p1]; 1066 pOut = &aMem[pOp->p2]; 1067 assert( pOut!=pIn1 ); 1068 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 1069 #ifdef SQLITE_DEBUG 1070 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; 1071 #endif 1072 REGISTER_TRACE(pOp->p2, pOut); 1073 break; 1074 } 1075 1076 /* Opcode: ResultRow P1 P2 * * * 1077 ** 1078 ** The registers P1 through P1+P2-1 contain a single row of 1079 ** results. This opcode causes the sqlite3_step() call to terminate 1080 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 1081 ** structure to provide access to the top P1 values as the result 1082 ** row. 1083 */ 1084 case OP_ResultRow: { 1085 Mem *pMem; 1086 int i; 1087 assert( p->nResColumn==pOp->p2 ); 1088 assert( pOp->p1>0 ); 1089 assert( pOp->p1+pOp->p2<=p->nMem+1 ); 1090 1091 /* If this statement has violated immediate foreign key constraints, do 1092 ** not return the number of rows modified. And do not RELEASE the statement 1093 ** transaction. It needs to be rolled back. */ 1094 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ 1095 assert( db->flags&SQLITE_CountRows ); 1096 assert( p->usesStmtJournal ); 1097 break; 1098 } 1099 1100 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 1101 ** DML statements invoke this opcode to return the number of rows 1102 ** modified to the user. This is the only way that a VM that 1103 ** opens a statement transaction may invoke this opcode. 1104 ** 1105 ** In case this is such a statement, close any statement transaction 1106 ** opened by this VM before returning control to the user. This is to 1107 ** ensure that statement-transactions are always nested, not overlapping. 1108 ** If the open statement-transaction is not closed here, then the user 1109 ** may step another VM that opens its own statement transaction. This 1110 ** may lead to overlapping statement transactions. 1111 ** 1112 ** The statement transaction is never a top-level transaction. Hence 1113 ** the RELEASE call below can never fail. 1114 */ 1115 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); 1116 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); 1117 if( NEVER(rc!=SQLITE_OK) ){ 1118 break; 1119 } 1120 1121 /* Invalidate all ephemeral cursor row caches */ 1122 p->cacheCtr = (p->cacheCtr + 2)|1; 1123 1124 /* Make sure the results of the current row are \000 terminated 1125 ** and have an assigned type. The results are de-ephemeralized as 1126 ** as side effect. 1127 */ 1128 pMem = p->pResultSet = &aMem[pOp->p1]; 1129 for(i=0; i<pOp->p2; i++){ 1130 assert( memIsValid(&pMem[i]) ); 1131 Deephemeralize(&pMem[i]); 1132 assert( (pMem[i].flags & MEM_Ephem)==0 1133 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); 1134 sqlite3VdbeMemNulTerminate(&pMem[i]); 1135 sqlite3VdbeMemStoreType(&pMem[i]); 1136 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 1137 } 1138 if( db->mallocFailed ) goto no_mem; 1139 1140 /* Return SQLITE_ROW 1141 */ 1142 p->pc = pc + 1; 1143 rc = SQLITE_ROW; 1144 goto vdbe_return; 1145 } 1146 1147 /* Opcode: Concat P1 P2 P3 * * 1148 ** 1149 ** Add the text in register P1 onto the end of the text in 1150 ** register P2 and store the result in register P3. 1151 ** If either the P1 or P2 text are NULL then store NULL in P3. 1152 ** 1153 ** P3 = P2 || P1 1154 ** 1155 ** It is illegal for P1 and P3 to be the same register. Sometimes, 1156 ** if P3 is the same register as P2, the implementation is able 1157 ** to avoid a memcpy(). 1158 */ 1159 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 1160 i64 nByte; 1161 1162 pIn1 = &aMem[pOp->p1]; 1163 pIn2 = &aMem[pOp->p2]; 1164 pOut = &aMem[pOp->p3]; 1165 assert( pIn1!=pOut ); 1166 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1167 sqlite3VdbeMemSetNull(pOut); 1168 break; 1169 } 1170 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; 1171 Stringify(pIn1, encoding); 1172 Stringify(pIn2, encoding); 1173 nByte = pIn1->n + pIn2->n; 1174 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 1175 goto too_big; 1176 } 1177 MemSetTypeFlag(pOut, MEM_Str); 1178 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 1179 goto no_mem; 1180 } 1181 if( pOut!=pIn2 ){ 1182 memcpy(pOut->z, pIn2->z, pIn2->n); 1183 } 1184 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 1185 pOut->z[nByte] = 0; 1186 pOut->z[nByte+1] = 0; 1187 pOut->flags |= MEM_Term; 1188 pOut->n = (int)nByte; 1189 pOut->enc = encoding; 1190 UPDATE_MAX_BLOBSIZE(pOut); 1191 break; 1192 } 1193 1194 /* Opcode: Add P1 P2 P3 * * 1195 ** 1196 ** Add the value in register P1 to the value in register P2 1197 ** and store the result in register P3. 1198 ** If either input is NULL, the result is NULL. 1199 */ 1200 /* Opcode: Multiply P1 P2 P3 * * 1201 ** 1202 ** 1203 ** Multiply the value in register P1 by the value in register P2 1204 ** and store the result in register P3. 1205 ** If either input is NULL, the result is NULL. 1206 */ 1207 /* Opcode: Subtract P1 P2 P3 * * 1208 ** 1209 ** Subtract the value in register P1 from the value in register P2 1210 ** and store the result in register P3. 1211 ** If either input is NULL, the result is NULL. 1212 */ 1213 /* Opcode: Divide P1 P2 P3 * * 1214 ** 1215 ** Divide the value in register P1 by the value in register P2 1216 ** and store the result in register P3 (P3=P2/P1). If the value in 1217 ** register P1 is zero, then the result is NULL. If either input is 1218 ** NULL, the result is NULL. 1219 */ 1220 /* Opcode: Remainder P1 P2 P3 * * 1221 ** 1222 ** Compute the remainder after integer division of the value in 1223 ** register P1 by the value in register P2 and store the result in P3. 1224 ** If the value in register P2 is zero the result is NULL. 1225 ** If either operand is NULL, the result is NULL. 1226 */ 1227 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 1228 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 1229 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 1230 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 1231 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 1232 int flags; /* Combined MEM_* flags from both inputs */ 1233 i64 iA; /* Integer value of left operand */ 1234 i64 iB; /* Integer value of right operand */ 1235 double rA; /* Real value of left operand */ 1236 double rB; /* Real value of right operand */ 1237 1238 pIn1 = &aMem[pOp->p1]; 1239 applyNumericAffinity(pIn1); 1240 pIn2 = &aMem[pOp->p2]; 1241 applyNumericAffinity(pIn2); 1242 pOut = &aMem[pOp->p3]; 1243 flags = pIn1->flags | pIn2->flags; 1244 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; 1245 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ 1246 iA = pIn1->u.i; 1247 iB = pIn2->u.i; 1248 switch( pOp->opcode ){ 1249 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 1250 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 1251 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 1252 case OP_Divide: { 1253 if( iA==0 ) goto arithmetic_result_is_null; 1254 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 1255 iB /= iA; 1256 break; 1257 } 1258 default: { 1259 if( iA==0 ) goto arithmetic_result_is_null; 1260 if( iA==-1 ) iA = 1; 1261 iB %= iA; 1262 break; 1263 } 1264 } 1265 pOut->u.i = iB; 1266 MemSetTypeFlag(pOut, MEM_Int); 1267 }else{ 1268 fp_math: 1269 rA = sqlite3VdbeRealValue(pIn1); 1270 rB = sqlite3VdbeRealValue(pIn2); 1271 switch( pOp->opcode ){ 1272 case OP_Add: rB += rA; break; 1273 case OP_Subtract: rB -= rA; break; 1274 case OP_Multiply: rB *= rA; break; 1275 case OP_Divide: { 1276 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1277 if( rA==(double)0 ) goto arithmetic_result_is_null; 1278 rB /= rA; 1279 break; 1280 } 1281 default: { 1282 iA = (i64)rA; 1283 iB = (i64)rB; 1284 if( iA==0 ) goto arithmetic_result_is_null; 1285 if( iA==-1 ) iA = 1; 1286 rB = (double)(iB % iA); 1287 break; 1288 } 1289 } 1290 #ifdef SQLITE_OMIT_FLOATING_POINT 1291 pOut->u.i = rB; 1292 MemSetTypeFlag(pOut, MEM_Int); 1293 #else 1294 if( sqlite3IsNaN(rB) ){ 1295 goto arithmetic_result_is_null; 1296 } 1297 pOut->r = rB; 1298 MemSetTypeFlag(pOut, MEM_Real); 1299 if( (flags & MEM_Real)==0 ){ 1300 sqlite3VdbeIntegerAffinity(pOut); 1301 } 1302 #endif 1303 } 1304 break; 1305 1306 arithmetic_result_is_null: 1307 sqlite3VdbeMemSetNull(pOut); 1308 break; 1309 } 1310 1311 /* Opcode: CollSeq * * P4 1312 ** 1313 ** P4 is a pointer to a CollSeq struct. If the next call to a user function 1314 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 1315 ** be returned. This is used by the built-in min(), max() and nullif() 1316 ** functions. 1317 ** 1318 ** The interface used by the implementation of the aforementioned functions 1319 ** to retrieve the collation sequence set by this opcode is not available 1320 ** publicly, only to user functions defined in func.c. 1321 */ 1322 case OP_CollSeq: { 1323 assert( pOp->p4type==P4_COLLSEQ ); 1324 break; 1325 } 1326 1327 /* Opcode: Function P1 P2 P3 P4 P5 1328 ** 1329 ** Invoke a user function (P4 is a pointer to a Function structure that 1330 ** defines the function) with P5 arguments taken from register P2 and 1331 ** successors. The result of the function is stored in register P3. 1332 ** Register P3 must not be one of the function inputs. 1333 ** 1334 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 1335 ** function was determined to be constant at compile time. If the first 1336 ** argument was constant then bit 0 of P1 is set. This is used to determine 1337 ** whether meta data associated with a user function argument using the 1338 ** sqlite3_set_auxdata() API may be safely retained until the next 1339 ** invocation of this opcode. 1340 ** 1341 ** See also: AggStep and AggFinal 1342 */ 1343 case OP_Function: { 1344 int i; 1345 Mem *pArg; 1346 sqlite3_context ctx; 1347 sqlite3_value **apVal; 1348 int n; 1349 1350 n = pOp->p5; 1351 apVal = p->apArg; 1352 assert( apVal || n==0 ); 1353 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 1354 pOut = &aMem[pOp->p3]; 1355 memAboutToChange(p, pOut); 1356 1357 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); 1358 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 1359 pArg = &aMem[pOp->p2]; 1360 for(i=0; i<n; i++, pArg++){ 1361 assert( memIsValid(pArg) ); 1362 apVal[i] = pArg; 1363 Deephemeralize(pArg); 1364 sqlite3VdbeMemStoreType(pArg); 1365 REGISTER_TRACE(pOp->p2+i, pArg); 1366 } 1367 1368 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); 1369 if( pOp->p4type==P4_FUNCDEF ){ 1370 ctx.pFunc = pOp->p4.pFunc; 1371 ctx.pVdbeFunc = 0; 1372 }else{ 1373 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; 1374 ctx.pFunc = ctx.pVdbeFunc->pFunc; 1375 } 1376 1377 ctx.s.flags = MEM_Null; 1378 ctx.s.db = db; 1379 ctx.s.xDel = 0; 1380 ctx.s.zMalloc = 0; 1381 1382 /* The output cell may already have a buffer allocated. Move 1383 ** the pointer to ctx.s so in case the user-function can use 1384 ** the already allocated buffer instead of allocating a new one. 1385 */ 1386 sqlite3VdbeMemMove(&ctx.s, pOut); 1387 MemSetTypeFlag(&ctx.s, MEM_Null); 1388 1389 ctx.isError = 0; 1390 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 1391 assert( pOp>aOp ); 1392 assert( pOp[-1].p4type==P4_COLLSEQ ); 1393 assert( pOp[-1].opcode==OP_CollSeq ); 1394 ctx.pColl = pOp[-1].p4.pColl; 1395 } 1396 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 1397 if( db->mallocFailed ){ 1398 /* Even though a malloc() has failed, the implementation of the 1399 ** user function may have called an sqlite3_result_XXX() function 1400 ** to return a value. The following call releases any resources 1401 ** associated with such a value. 1402 */ 1403 sqlite3VdbeMemRelease(&ctx.s); 1404 goto no_mem; 1405 } 1406 1407 /* If any auxiliary data functions have been called by this user function, 1408 ** immediately call the destructor for any non-static values. 1409 */ 1410 if( ctx.pVdbeFunc ){ 1411 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); 1412 pOp->p4.pVdbeFunc = ctx.pVdbeFunc; 1413 pOp->p4type = P4_VDBEFUNC; 1414 } 1415 1416 /* If the function returned an error, throw an exception */ 1417 if( ctx.isError ){ 1418 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 1419 rc = ctx.isError; 1420 } 1421 1422 /* Copy the result of the function into register P3 */ 1423 sqlite3VdbeChangeEncoding(&ctx.s, encoding); 1424 sqlite3VdbeMemMove(pOut, &ctx.s); 1425 if( sqlite3VdbeMemTooBig(pOut) ){ 1426 goto too_big; 1427 } 1428 1429 #if 0 1430 /* The app-defined function has done something that as caused this 1431 ** statement to expire. (Perhaps the function called sqlite3_exec() 1432 ** with a CREATE TABLE statement.) 1433 */ 1434 if( p->expired ) rc = SQLITE_ABORT; 1435 #endif 1436 1437 REGISTER_TRACE(pOp->p3, pOut); 1438 UPDATE_MAX_BLOBSIZE(pOut); 1439 break; 1440 } 1441 1442 /* Opcode: BitAnd P1 P2 P3 * * 1443 ** 1444 ** Take the bit-wise AND of the values in register P1 and P2 and 1445 ** store the result in register P3. 1446 ** If either input is NULL, the result is NULL. 1447 */ 1448 /* Opcode: BitOr P1 P2 P3 * * 1449 ** 1450 ** Take the bit-wise OR of the values in register P1 and P2 and 1451 ** store the result in register P3. 1452 ** If either input is NULL, the result is NULL. 1453 */ 1454 /* Opcode: ShiftLeft P1 P2 P3 * * 1455 ** 1456 ** Shift the integer value in register P2 to the left by the 1457 ** number of bits specified by the integer in register P1. 1458 ** Store the result in register P3. 1459 ** If either input is NULL, the result is NULL. 1460 */ 1461 /* Opcode: ShiftRight P1 P2 P3 * * 1462 ** 1463 ** Shift the integer value in register P2 to the right by the 1464 ** number of bits specified by the integer in register P1. 1465 ** Store the result in register P3. 1466 ** If either input is NULL, the result is NULL. 1467 */ 1468 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 1469 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 1470 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 1471 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 1472 i64 iA; 1473 u64 uA; 1474 i64 iB; 1475 u8 op; 1476 1477 pIn1 = &aMem[pOp->p1]; 1478 pIn2 = &aMem[pOp->p2]; 1479 pOut = &aMem[pOp->p3]; 1480 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 1481 sqlite3VdbeMemSetNull(pOut); 1482 break; 1483 } 1484 iA = sqlite3VdbeIntValue(pIn2); 1485 iB = sqlite3VdbeIntValue(pIn1); 1486 op = pOp->opcode; 1487 if( op==OP_BitAnd ){ 1488 iA &= iB; 1489 }else if( op==OP_BitOr ){ 1490 iA |= iB; 1491 }else if( iB!=0 ){ 1492 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 1493 1494 /* If shifting by a negative amount, shift in the other direction */ 1495 if( iB<0 ){ 1496 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 1497 op = 2*OP_ShiftLeft + 1 - op; 1498 iB = iB>(-64) ? -iB : 64; 1499 } 1500 1501 if( iB>=64 ){ 1502 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 1503 }else{ 1504 memcpy(&uA, &iA, sizeof(uA)); 1505 if( op==OP_ShiftLeft ){ 1506 uA <<= iB; 1507 }else{ 1508 uA >>= iB; 1509 /* Sign-extend on a right shift of a negative number */ 1510 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 1511 } 1512 memcpy(&iA, &uA, sizeof(iA)); 1513 } 1514 } 1515 pOut->u.i = iA; 1516 MemSetTypeFlag(pOut, MEM_Int); 1517 break; 1518 } 1519 1520 /* Opcode: AddImm P1 P2 * * * 1521 ** 1522 ** Add the constant P2 to the value in register P1. 1523 ** The result is always an integer. 1524 ** 1525 ** To force any register to be an integer, just add 0. 1526 */ 1527 case OP_AddImm: { /* in1 */ 1528 pIn1 = &aMem[pOp->p1]; 1529 memAboutToChange(p, pIn1); 1530 sqlite3VdbeMemIntegerify(pIn1); 1531 pIn1->u.i += pOp->p2; 1532 break; 1533 } 1534 1535 /* Opcode: MustBeInt P1 P2 * * * 1536 ** 1537 ** Force the value in register P1 to be an integer. If the value 1538 ** in P1 is not an integer and cannot be converted into an integer 1539 ** without data loss, then jump immediately to P2, or if P2==0 1540 ** raise an SQLITE_MISMATCH exception. 1541 */ 1542 case OP_MustBeInt: { /* jump, in1 */ 1543 pIn1 = &aMem[pOp->p1]; 1544 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 1545 if( (pIn1->flags & MEM_Int)==0 ){ 1546 if( pOp->p2==0 ){ 1547 rc = SQLITE_MISMATCH; 1548 goto abort_due_to_error; 1549 }else{ 1550 pc = pOp->p2 - 1; 1551 } 1552 }else{ 1553 MemSetTypeFlag(pIn1, MEM_Int); 1554 } 1555 break; 1556 } 1557 1558 #ifndef SQLITE_OMIT_FLOATING_POINT 1559 /* Opcode: RealAffinity P1 * * * * 1560 ** 1561 ** If register P1 holds an integer convert it to a real value. 1562 ** 1563 ** This opcode is used when extracting information from a column that 1564 ** has REAL affinity. Such column values may still be stored as 1565 ** integers, for space efficiency, but after extraction we want them 1566 ** to have only a real value. 1567 */ 1568 case OP_RealAffinity: { /* in1 */ 1569 pIn1 = &aMem[pOp->p1]; 1570 if( pIn1->flags & MEM_Int ){ 1571 sqlite3VdbeMemRealify(pIn1); 1572 } 1573 break; 1574 } 1575 #endif 1576 1577 #ifndef SQLITE_OMIT_CAST 1578 /* Opcode: ToText P1 * * * * 1579 ** 1580 ** Force the value in register P1 to be text. 1581 ** If the value is numeric, convert it to a string using the 1582 ** equivalent of printf(). Blob values are unchanged and 1583 ** are afterwards simply interpreted as text. 1584 ** 1585 ** A NULL value is not changed by this routine. It remains NULL. 1586 */ 1587 case OP_ToText: { /* same as TK_TO_TEXT, in1 */ 1588 pIn1 = &aMem[pOp->p1]; 1589 memAboutToChange(p, pIn1); 1590 if( pIn1->flags & MEM_Null ) break; 1591 assert( MEM_Str==(MEM_Blob>>3) ); 1592 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; 1593 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1594 rc = ExpandBlob(pIn1); 1595 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1596 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); 1597 UPDATE_MAX_BLOBSIZE(pIn1); 1598 break; 1599 } 1600 1601 /* Opcode: ToBlob P1 * * * * 1602 ** 1603 ** Force the value in register P1 to be a BLOB. 1604 ** If the value is numeric, convert it to a string first. 1605 ** Strings are simply reinterpreted as blobs with no change 1606 ** to the underlying data. 1607 ** 1608 ** A NULL value is not changed by this routine. It remains NULL. 1609 */ 1610 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ 1611 pIn1 = &aMem[pOp->p1]; 1612 if( pIn1->flags & MEM_Null ) break; 1613 if( (pIn1->flags & MEM_Blob)==0 ){ 1614 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); 1615 assert( pIn1->flags & MEM_Str || db->mallocFailed ); 1616 MemSetTypeFlag(pIn1, MEM_Blob); 1617 }else{ 1618 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); 1619 } 1620 UPDATE_MAX_BLOBSIZE(pIn1); 1621 break; 1622 } 1623 1624 /* Opcode: ToNumeric P1 * * * * 1625 ** 1626 ** Force the value in register P1 to be numeric (either an 1627 ** integer or a floating-point number.) 1628 ** If the value is text or blob, try to convert it to an using the 1629 ** equivalent of atoi() or atof() and store 0 if no such conversion 1630 ** is possible. 1631 ** 1632 ** A NULL value is not changed by this routine. It remains NULL. 1633 */ 1634 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ 1635 pIn1 = &aMem[pOp->p1]; 1636 sqlite3VdbeMemNumerify(pIn1); 1637 break; 1638 } 1639 #endif /* SQLITE_OMIT_CAST */ 1640 1641 /* Opcode: ToInt P1 * * * * 1642 ** 1643 ** Force the value in register P1 to be an integer. If 1644 ** The value is currently a real number, drop its fractional part. 1645 ** If the value is text or blob, try to convert it to an integer using the 1646 ** equivalent of atoi() and store 0 if no such conversion is possible. 1647 ** 1648 ** A NULL value is not changed by this routine. It remains NULL. 1649 */ 1650 case OP_ToInt: { /* same as TK_TO_INT, in1 */ 1651 pIn1 = &aMem[pOp->p1]; 1652 if( (pIn1->flags & MEM_Null)==0 ){ 1653 sqlite3VdbeMemIntegerify(pIn1); 1654 } 1655 break; 1656 } 1657 1658 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) 1659 /* Opcode: ToReal P1 * * * * 1660 ** 1661 ** Force the value in register P1 to be a floating point number. 1662 ** If The value is currently an integer, convert it. 1663 ** If the value is text or blob, try to convert it to an integer using the 1664 ** equivalent of atoi() and store 0.0 if no such conversion is possible. 1665 ** 1666 ** A NULL value is not changed by this routine. It remains NULL. 1667 */ 1668 case OP_ToReal: { /* same as TK_TO_REAL, in1 */ 1669 pIn1 = &aMem[pOp->p1]; 1670 memAboutToChange(p, pIn1); 1671 if( (pIn1->flags & MEM_Null)==0 ){ 1672 sqlite3VdbeMemRealify(pIn1); 1673 } 1674 break; 1675 } 1676 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ 1677 1678 /* Opcode: Lt P1 P2 P3 P4 P5 1679 ** 1680 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 1681 ** jump to address P2. 1682 ** 1683 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 1684 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL 1685 ** bit is clear then fall through if either operand is NULL. 1686 ** 1687 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 1688 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 1689 ** to coerce both inputs according to this affinity before the 1690 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 1691 ** affinity is used. Note that the affinity conversions are stored 1692 ** back into the input registers P1 and P3. So this opcode can cause 1693 ** persistent changes to registers P1 and P3. 1694 ** 1695 ** Once any conversions have taken place, and neither value is NULL, 1696 ** the values are compared. If both values are blobs then memcmp() is 1697 ** used to determine the results of the comparison. If both values 1698 ** are text, then the appropriate collating function specified in 1699 ** P4 is used to do the comparison. If P4 is not specified then 1700 ** memcmp() is used to compare text string. If both values are 1701 ** numeric, then a numeric comparison is used. If the two values 1702 ** are of different types, then numbers are considered less than 1703 ** strings and strings are considered less than blobs. 1704 ** 1705 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, 1706 ** store a boolean result (either 0, or 1, or NULL) in register P2. 1707 */ 1708 /* Opcode: Ne P1 P2 P3 P4 P5 1709 ** 1710 ** This works just like the Lt opcode except that the jump is taken if 1711 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for 1712 ** additional information. 1713 ** 1714 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1715 ** true or false and is never NULL. If both operands are NULL then the result 1716 ** of comparison is false. If either operand is NULL then the result is true. 1717 ** If neither operand is NULL the the result is the same as it would be if 1718 ** the SQLITE_NULLEQ flag were omitted from P5. 1719 */ 1720 /* Opcode: Eq P1 P2 P3 P4 P5 1721 ** 1722 ** This works just like the Lt opcode except that the jump is taken if 1723 ** the operands in registers P1 and P3 are equal. 1724 ** See the Lt opcode for additional information. 1725 ** 1726 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 1727 ** true or false and is never NULL. If both operands are NULL then the result 1728 ** of comparison is true. If either operand is NULL then the result is false. 1729 ** If neither operand is NULL the the result is the same as it would be if 1730 ** the SQLITE_NULLEQ flag were omitted from P5. 1731 */ 1732 /* Opcode: Le P1 P2 P3 P4 P5 1733 ** 1734 ** This works just like the Lt opcode except that the jump is taken if 1735 ** the content of register P3 is less than or equal to the content of 1736 ** register P1. See the Lt opcode for additional information. 1737 */ 1738 /* Opcode: Gt P1 P2 P3 P4 P5 1739 ** 1740 ** This works just like the Lt opcode except that the jump is taken if 1741 ** the content of register P3 is greater than the content of 1742 ** register P1. See the Lt opcode for additional information. 1743 */ 1744 /* Opcode: Ge P1 P2 P3 P4 P5 1745 ** 1746 ** This works just like the Lt opcode except that the jump is taken if 1747 ** the content of register P3 is greater than or equal to the content of 1748 ** register P1. See the Lt opcode for additional information. 1749 */ 1750 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 1751 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 1752 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 1753 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 1754 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 1755 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 1756 int res; /* Result of the comparison of pIn1 against pIn3 */ 1757 char affinity; /* Affinity to use for comparison */ 1758 u16 flags1; /* Copy of initial value of pIn1->flags */ 1759 u16 flags3; /* Copy of initial value of pIn3->flags */ 1760 1761 pIn1 = &aMem[pOp->p1]; 1762 pIn3 = &aMem[pOp->p3]; 1763 flags1 = pIn1->flags; 1764 flags3 = pIn3->flags; 1765 if( (pIn1->flags | pIn3->flags)&MEM_Null ){ 1766 /* One or both operands are NULL */ 1767 if( pOp->p5 & SQLITE_NULLEQ ){ 1768 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 1769 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 1770 ** or not both operands are null. 1771 */ 1772 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); 1773 res = (pIn1->flags & pIn3->flags & MEM_Null)==0; 1774 }else{ 1775 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 1776 ** then the result is always NULL. 1777 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 1778 */ 1779 if( pOp->p5 & SQLITE_STOREP2 ){ 1780 pOut = &aMem[pOp->p2]; 1781 MemSetTypeFlag(pOut, MEM_Null); 1782 REGISTER_TRACE(pOp->p2, pOut); 1783 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ 1784 pc = pOp->p2-1; 1785 } 1786 break; 1787 } 1788 }else{ 1789 /* Neither operand is NULL. Do a comparison. */ 1790 affinity = pOp->p5 & SQLITE_AFF_MASK; 1791 if( affinity ){ 1792 applyAffinity(pIn1, affinity, encoding); 1793 applyAffinity(pIn3, affinity, encoding); 1794 if( db->mallocFailed ) goto no_mem; 1795 } 1796 1797 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 1798 ExpandBlob(pIn1); 1799 ExpandBlob(pIn3); 1800 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 1801 } 1802 switch( pOp->opcode ){ 1803 case OP_Eq: res = res==0; break; 1804 case OP_Ne: res = res!=0; break; 1805 case OP_Lt: res = res<0; break; 1806 case OP_Le: res = res<=0; break; 1807 case OP_Gt: res = res>0; break; 1808 default: res = res>=0; break; 1809 } 1810 1811 if( pOp->p5 & SQLITE_STOREP2 ){ 1812 pOut = &aMem[pOp->p2]; 1813 memAboutToChange(p, pOut); 1814 MemSetTypeFlag(pOut, MEM_Int); 1815 pOut->u.i = res; 1816 REGISTER_TRACE(pOp->p2, pOut); 1817 }else if( res ){ 1818 pc = pOp->p2-1; 1819 } 1820 1821 /* Undo any changes made by applyAffinity() to the input registers. */ 1822 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); 1823 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); 1824 break; 1825 } 1826 1827 /* Opcode: Permutation * * * P4 * 1828 ** 1829 ** Set the permutation used by the OP_Compare operator to be the array 1830 ** of integers in P4. 1831 ** 1832 ** The permutation is only valid until the next OP_Permutation, OP_Compare, 1833 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur 1834 ** immediately prior to the OP_Compare. 1835 */ 1836 case OP_Permutation: { 1837 assert( pOp->p4type==P4_INTARRAY ); 1838 assert( pOp->p4.ai ); 1839 aPermute = pOp->p4.ai; 1840 break; 1841 } 1842 1843 /* Opcode: Compare P1 P2 P3 P4 * 1844 ** 1845 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 1846 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 1847 ** the comparison for use by the next OP_Jump instruct. 1848 ** 1849 ** P4 is a KeyInfo structure that defines collating sequences and sort 1850 ** orders for the comparison. The permutation applies to registers 1851 ** only. The KeyInfo elements are used sequentially. 1852 ** 1853 ** The comparison is a sort comparison, so NULLs compare equal, 1854 ** NULLs are less than numbers, numbers are less than strings, 1855 ** and strings are less than blobs. 1856 */ 1857 case OP_Compare: { 1858 int n; 1859 int i; 1860 int p1; 1861 int p2; 1862 const KeyInfo *pKeyInfo; 1863 int idx; 1864 CollSeq *pColl; /* Collating sequence to use on this term */ 1865 int bRev; /* True for DESCENDING sort order */ 1866 1867 n = pOp->p3; 1868 pKeyInfo = pOp->p4.pKeyInfo; 1869 assert( n>0 ); 1870 assert( pKeyInfo!=0 ); 1871 p1 = pOp->p1; 1872 p2 = pOp->p2; 1873 #if SQLITE_DEBUG 1874 if( aPermute ){ 1875 int k, mx = 0; 1876 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; 1877 assert( p1>0 && p1+mx<=p->nMem+1 ); 1878 assert( p2>0 && p2+mx<=p->nMem+1 ); 1879 }else{ 1880 assert( p1>0 && p1+n<=p->nMem+1 ); 1881 assert( p2>0 && p2+n<=p->nMem+1 ); 1882 } 1883 #endif /* SQLITE_DEBUG */ 1884 for(i=0; i<n; i++){ 1885 idx = aPermute ? aPermute[i] : i; 1886 assert( memIsValid(&aMem[p1+idx]) ); 1887 assert( memIsValid(&aMem[p2+idx]) ); 1888 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 1889 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 1890 assert( i<pKeyInfo->nField ); 1891 pColl = pKeyInfo->aColl[i]; 1892 bRev = pKeyInfo->aSortOrder[i]; 1893 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 1894 if( iCompare ){ 1895 if( bRev ) iCompare = -iCompare; 1896 break; 1897 } 1898 } 1899 aPermute = 0; 1900 break; 1901 } 1902 1903 /* Opcode: Jump P1 P2 P3 * * 1904 ** 1905 ** Jump to the instruction at address P1, P2, or P3 depending on whether 1906 ** in the most recent OP_Compare instruction the P1 vector was less than 1907 ** equal to, or greater than the P2 vector, respectively. 1908 */ 1909 case OP_Jump: { /* jump */ 1910 if( iCompare<0 ){ 1911 pc = pOp->p1 - 1; 1912 }else if( iCompare==0 ){ 1913 pc = pOp->p2 - 1; 1914 }else{ 1915 pc = pOp->p3 - 1; 1916 } 1917 break; 1918 } 1919 1920 /* Opcode: And P1 P2 P3 * * 1921 ** 1922 ** Take the logical AND of the values in registers P1 and P2 and 1923 ** write the result into register P3. 1924 ** 1925 ** If either P1 or P2 is 0 (false) then the result is 0 even if 1926 ** the other input is NULL. A NULL and true or two NULLs give 1927 ** a NULL output. 1928 */ 1929 /* Opcode: Or P1 P2 P3 * * 1930 ** 1931 ** Take the logical OR of the values in register P1 and P2 and 1932 ** store the answer in register P3. 1933 ** 1934 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 1935 ** even if the other input is NULL. A NULL and false or two NULLs 1936 ** give a NULL output. 1937 */ 1938 case OP_And: /* same as TK_AND, in1, in2, out3 */ 1939 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 1940 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 1941 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 1942 1943 pIn1 = &aMem[pOp->p1]; 1944 if( pIn1->flags & MEM_Null ){ 1945 v1 = 2; 1946 }else{ 1947 v1 = sqlite3VdbeIntValue(pIn1)!=0; 1948 } 1949 pIn2 = &aMem[pOp->p2]; 1950 if( pIn2->flags & MEM_Null ){ 1951 v2 = 2; 1952 }else{ 1953 v2 = sqlite3VdbeIntValue(pIn2)!=0; 1954 } 1955 if( pOp->opcode==OP_And ){ 1956 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 1957 v1 = and_logic[v1*3+v2]; 1958 }else{ 1959 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 1960 v1 = or_logic[v1*3+v2]; 1961 } 1962 pOut = &aMem[pOp->p3]; 1963 if( v1==2 ){ 1964 MemSetTypeFlag(pOut, MEM_Null); 1965 }else{ 1966 pOut->u.i = v1; 1967 MemSetTypeFlag(pOut, MEM_Int); 1968 } 1969 break; 1970 } 1971 1972 /* Opcode: Not P1 P2 * * * 1973 ** 1974 ** Interpret the value in register P1 as a boolean value. Store the 1975 ** boolean complement in register P2. If the value in register P1 is 1976 ** NULL, then a NULL is stored in P2. 1977 */ 1978 case OP_Not: { /* same as TK_NOT, in1, out2 */ 1979 pIn1 = &aMem[pOp->p1]; 1980 pOut = &aMem[pOp->p2]; 1981 if( pIn1->flags & MEM_Null ){ 1982 sqlite3VdbeMemSetNull(pOut); 1983 }else{ 1984 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); 1985 } 1986 break; 1987 } 1988 1989 /* Opcode: BitNot P1 P2 * * * 1990 ** 1991 ** Interpret the content of register P1 as an integer. Store the 1992 ** ones-complement of the P1 value into register P2. If P1 holds 1993 ** a NULL then store a NULL in P2. 1994 */ 1995 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 1996 pIn1 = &aMem[pOp->p1]; 1997 pOut = &aMem[pOp->p2]; 1998 if( pIn1->flags & MEM_Null ){ 1999 sqlite3VdbeMemSetNull(pOut); 2000 }else{ 2001 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); 2002 } 2003 break; 2004 } 2005 2006 /* Opcode: If P1 P2 P3 * * 2007 ** 2008 ** Jump to P2 if the value in register P1 is true. The value is 2009 ** is considered true if it is numeric and non-zero. If the value 2010 ** in P1 is NULL then take the jump if P3 is true. 2011 */ 2012 /* Opcode: IfNot P1 P2 P3 * * 2013 ** 2014 ** Jump to P2 if the value in register P1 is False. The value is 2015 ** is considered true if it has a numeric value of zero. If the value 2016 ** in P1 is NULL then take the jump if P3 is true. 2017 */ 2018 case OP_If: /* jump, in1 */ 2019 case OP_IfNot: { /* jump, in1 */ 2020 int c; 2021 pIn1 = &aMem[pOp->p1]; 2022 if( pIn1->flags & MEM_Null ){ 2023 c = pOp->p3; 2024 }else{ 2025 #ifdef SQLITE_OMIT_FLOATING_POINT 2026 c = sqlite3VdbeIntValue(pIn1)!=0; 2027 #else 2028 c = sqlite3VdbeRealValue(pIn1)!=0.0; 2029 #endif 2030 if( pOp->opcode==OP_IfNot ) c = !c; 2031 } 2032 if( c ){ 2033 pc = pOp->p2-1; 2034 } 2035 break; 2036 } 2037 2038 /* Opcode: IsNull P1 P2 * * * 2039 ** 2040 ** Jump to P2 if the value in register P1 is NULL. 2041 */ 2042 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 2043 pIn1 = &aMem[pOp->p1]; 2044 if( (pIn1->flags & MEM_Null)!=0 ){ 2045 pc = pOp->p2 - 1; 2046 } 2047 break; 2048 } 2049 2050 /* Opcode: NotNull P1 P2 * * * 2051 ** 2052 ** Jump to P2 if the value in register P1 is not NULL. 2053 */ 2054 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 2055 pIn1 = &aMem[pOp->p1]; 2056 if( (pIn1->flags & MEM_Null)==0 ){ 2057 pc = pOp->p2 - 1; 2058 } 2059 break; 2060 } 2061 2062 /* Opcode: Column P1 P2 P3 P4 P5 2063 ** 2064 ** Interpret the data that cursor P1 points to as a structure built using 2065 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 2066 ** information about the format of the data.) Extract the P2-th column 2067 ** from this record. If there are less that (P2+1) 2068 ** values in the record, extract a NULL. 2069 ** 2070 ** The value extracted is stored in register P3. 2071 ** 2072 ** If the column contains fewer than P2 fields, then extract a NULL. Or, 2073 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 2074 ** the result. 2075 ** 2076 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, 2077 ** then the cache of the cursor is reset prior to extracting the column. 2078 ** The first OP_Column against a pseudo-table after the value of the content 2079 ** register has changed should have this bit set. 2080 */ 2081 case OP_Column: { 2082 u32 payloadSize; /* Number of bytes in the record */ 2083 i64 payloadSize64; /* Number of bytes in the record */ 2084 int p1; /* P1 value of the opcode */ 2085 int p2; /* column number to retrieve */ 2086 VdbeCursor *pC; /* The VDBE cursor */ 2087 char *zRec; /* Pointer to complete record-data */ 2088 BtCursor *pCrsr; /* The BTree cursor */ 2089 u32 *aType; /* aType[i] holds the numeric type of the i-th column */ 2090 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 2091 int nField; /* number of fields in the record */ 2092 int len; /* The length of the serialized data for the column */ 2093 int i; /* Loop counter */ 2094 char *zData; /* Part of the record being decoded */ 2095 Mem *pDest; /* Where to write the extracted value */ 2096 Mem sMem; /* For storing the record being decoded */ 2097 u8 *zIdx; /* Index into header */ 2098 u8 *zEndHdr; /* Pointer to first byte after the header */ 2099 u32 offset; /* Offset into the data */ 2100 u32 szField; /* Number of bytes in the content of a field */ 2101 int szHdr; /* Size of the header size field at start of record */ 2102 int avail; /* Number of bytes of available data */ 2103 Mem *pReg; /* PseudoTable input register */ 2104 2105 2106 p1 = pOp->p1; 2107 p2 = pOp->p2; 2108 pC = 0; 2109 memset(&sMem, 0, sizeof(sMem)); 2110 assert( p1<p->nCursor ); 2111 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2112 pDest = &aMem[pOp->p3]; 2113 memAboutToChange(p, pDest); 2114 MemSetTypeFlag(pDest, MEM_Null); 2115 zRec = 0; 2116 2117 /* This block sets the variable payloadSize to be the total number of 2118 ** bytes in the record. 2119 ** 2120 ** zRec is set to be the complete text of the record if it is available. 2121 ** The complete record text is always available for pseudo-tables 2122 ** If the record is stored in a cursor, the complete record text 2123 ** might be available in the pC->aRow cache. Or it might not be. 2124 ** If the data is unavailable, zRec is set to NULL. 2125 ** 2126 ** We also compute the number of columns in the record. For cursors, 2127 ** the number of columns is stored in the VdbeCursor.nField element. 2128 */ 2129 pC = p->apCsr[p1]; 2130 assert( pC!=0 ); 2131 #ifndef SQLITE_OMIT_VIRTUALTABLE 2132 assert( pC->pVtabCursor==0 ); 2133 #endif 2134 pCrsr = pC->pCursor; 2135 if( pCrsr!=0 ){ 2136 /* The record is stored in a B-Tree */ 2137 rc = sqlite3VdbeCursorMoveto(pC); 2138 if( rc ) goto abort_due_to_error; 2139 if( pC->nullRow ){ 2140 payloadSize = 0; 2141 }else if( pC->cacheStatus==p->cacheCtr ){ 2142 payloadSize = pC->payloadSize; 2143 zRec = (char*)pC->aRow; 2144 }else if( pC->isIndex ){ 2145 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2146 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64); 2147 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 2148 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the 2149 ** payload size, so it is impossible for payloadSize64 to be 2150 ** larger than 32 bits. */ 2151 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); 2152 payloadSize = (u32)payloadSize64; 2153 }else{ 2154 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 2155 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); 2156 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 2157 } 2158 }else if( pC->pseudoTableReg>0 ){ 2159 pReg = &aMem[pC->pseudoTableReg]; 2160 assert( pReg->flags & MEM_Blob ); 2161 assert( memIsValid(pReg) ); 2162 payloadSize = pReg->n; 2163 zRec = pReg->z; 2164 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; 2165 assert( payloadSize==0 || zRec!=0 ); 2166 }else{ 2167 /* Consider the row to be NULL */ 2168 payloadSize = 0; 2169 } 2170 2171 /* If payloadSize is 0, then just store a NULL */ 2172 if( payloadSize==0 ){ 2173 assert( pDest->flags&MEM_Null ); 2174 goto op_column_out; 2175 } 2176 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); 2177 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2178 goto too_big; 2179 } 2180 2181 nField = pC->nField; 2182 assert( p2<nField ); 2183 2184 /* Read and parse the table header. Store the results of the parse 2185 ** into the record header cache fields of the cursor. 2186 */ 2187 aType = pC->aType; 2188 if( pC->cacheStatus==p->cacheCtr ){ 2189 aOffset = pC->aOffset; 2190 }else{ 2191 assert(aType); 2192 avail = 0; 2193 pC->aOffset = aOffset = &aType[nField]; 2194 pC->payloadSize = payloadSize; 2195 pC->cacheStatus = p->cacheCtr; 2196 2197 /* Figure out how many bytes are in the header */ 2198 if( zRec ){ 2199 zData = zRec; 2200 }else{ 2201 if( pC->isIndex ){ 2202 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); 2203 }else{ 2204 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); 2205 } 2206 /* If KeyFetch()/DataFetch() managed to get the entire payload, 2207 ** save the payload in the pC->aRow cache. That will save us from 2208 ** having to make additional calls to fetch the content portion of 2209 ** the record. 2210 */ 2211 assert( avail>=0 ); 2212 if( payloadSize <= (u32)avail ){ 2213 zRec = zData; 2214 pC->aRow = (u8*)zData; 2215 }else{ 2216 pC->aRow = 0; 2217 } 2218 } 2219 /* The following assert is true in all cases accept when 2220 ** the database file has been corrupted externally. 2221 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ 2222 szHdr = getVarint32((u8*)zData, offset); 2223 2224 /* Make sure a corrupt database has not given us an oversize header. 2225 ** Do this now to avoid an oversize memory allocation. 2226 ** 2227 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 2228 ** types use so much data space that there can only be 4096 and 32 of 2229 ** them, respectively. So the maximum header length results from a 2230 ** 3-byte type for each of the maximum of 32768 columns plus three 2231 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 2232 */ 2233 if( offset > 98307 ){ 2234 rc = SQLITE_CORRUPT_BKPT; 2235 goto op_column_out; 2236 } 2237 2238 /* Compute in len the number of bytes of data we need to read in order 2239 ** to get nField type values. offset is an upper bound on this. But 2240 ** nField might be significantly less than the true number of columns 2241 ** in the table, and in that case, 5*nField+3 might be smaller than offset. 2242 ** We want to minimize len in order to limit the size of the memory 2243 ** allocation, especially if a corrupt database file has caused offset 2244 ** to be oversized. Offset is limited to 98307 above. But 98307 might 2245 ** still exceed Robson memory allocation limits on some configurations. 2246 ** On systems that cannot tolerate large memory allocations, nField*5+3 2247 ** will likely be much smaller since nField will likely be less than 2248 ** 20 or so. This insures that Robson memory allocation limits are 2249 ** not exceeded even for corrupt database files. 2250 */ 2251 len = nField*5 + 3; 2252 if( len > (int)offset ) len = (int)offset; 2253 2254 /* The KeyFetch() or DataFetch() above are fast and will get the entire 2255 ** record header in most cases. But they will fail to get the complete 2256 ** record header if the record header does not fit on a single page 2257 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to 2258 ** acquire the complete header text. 2259 */ 2260 if( !zRec && avail<len ){ 2261 sMem.flags = 0; 2262 sMem.db = 0; 2263 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem); 2264 if( rc!=SQLITE_OK ){ 2265 goto op_column_out; 2266 } 2267 zData = sMem.z; 2268 } 2269 zEndHdr = (u8 *)&zData[len]; 2270 zIdx = (u8 *)&zData[szHdr]; 2271 2272 /* Scan the header and use it to fill in the aType[] and aOffset[] 2273 ** arrays. aType[i] will contain the type integer for the i-th 2274 ** column and aOffset[i] will contain the offset from the beginning 2275 ** of the record to the start of the data for the i-th column 2276 */ 2277 for(i=0; i<nField; i++){ 2278 if( zIdx<zEndHdr ){ 2279 aOffset[i] = offset; 2280 zIdx += getVarint32(zIdx, aType[i]); 2281 szField = sqlite3VdbeSerialTypeLen(aType[i]); 2282 offset += szField; 2283 if( offset<szField ){ /* True if offset overflows */ 2284 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ 2285 break; 2286 } 2287 }else{ 2288 /* If i is less that nField, then there are less fields in this 2289 ** record than SetNumColumns indicated there are columns in the 2290 ** table. Set the offset for any extra columns not present in 2291 ** the record to 0. This tells code below to store a NULL 2292 ** instead of deserializing a value from the record. 2293 */ 2294 aOffset[i] = 0; 2295 } 2296 } 2297 sqlite3VdbeMemRelease(&sMem); 2298 sMem.flags = MEM_Null; 2299 2300 /* If we have read more header data than was contained in the header, 2301 ** or if the end of the last field appears to be past the end of the 2302 ** record, or if the end of the last field appears to be before the end 2303 ** of the record (when all fields present), then we must be dealing 2304 ** with a corrupt database. 2305 */ 2306 if( (zIdx > zEndHdr) || (offset > payloadSize) 2307 || (zIdx==zEndHdr && offset!=payloadSize) ){ 2308 rc = SQLITE_CORRUPT_BKPT; 2309 goto op_column_out; 2310 } 2311 } 2312 2313 /* Get the column information. If aOffset[p2] is non-zero, then 2314 ** deserialize the value from the record. If aOffset[p2] is zero, 2315 ** then there are not enough fields in the record to satisfy the 2316 ** request. In this case, set the value NULL or to P4 if P4 is 2317 ** a pointer to a Mem object. 2318 */ 2319 if( aOffset[p2] ){ 2320 assert( rc==SQLITE_OK ); 2321 if( zRec ){ 2322 sqlite3VdbeMemReleaseExternal(pDest); 2323 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); 2324 }else{ 2325 len = sqlite3VdbeSerialTypeLen(aType[p2]); 2326 sqlite3VdbeMemMove(&sMem, pDest); 2327 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); 2328 if( rc!=SQLITE_OK ){ 2329 goto op_column_out; 2330 } 2331 zData = sMem.z; 2332 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); 2333 } 2334 pDest->enc = encoding; 2335 }else{ 2336 if( pOp->p4type==P4_MEM ){ 2337 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 2338 }else{ 2339 assert( pDest->flags&MEM_Null ); 2340 } 2341 } 2342 2343 /* If we dynamically allocated space to hold the data (in the 2344 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that 2345 ** dynamically allocated space over to the pDest structure. 2346 ** This prevents a memory copy. 2347 */ 2348 if( sMem.zMalloc ){ 2349 assert( sMem.z==sMem.zMalloc ); 2350 assert( !(pDest->flags & MEM_Dyn) ); 2351 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); 2352 pDest->flags &= ~(MEM_Ephem|MEM_Static); 2353 pDest->flags |= MEM_Term; 2354 pDest->z = sMem.z; 2355 pDest->zMalloc = sMem.zMalloc; 2356 } 2357 2358 rc = sqlite3VdbeMemMakeWriteable(pDest); 2359 2360 op_column_out: 2361 UPDATE_MAX_BLOBSIZE(pDest); 2362 REGISTER_TRACE(pOp->p3, pDest); 2363 break; 2364 } 2365 2366 /* Opcode: Affinity P1 P2 * P4 * 2367 ** 2368 ** Apply affinities to a range of P2 registers starting with P1. 2369 ** 2370 ** P4 is a string that is P2 characters long. The nth character of the 2371 ** string indicates the column affinity that should be used for the nth 2372 ** memory cell in the range. 2373 */ 2374 case OP_Affinity: { 2375 const char *zAffinity; /* The affinity to be applied */ 2376 char cAff; /* A single character of affinity */ 2377 2378 zAffinity = pOp->p4.z; 2379 assert( zAffinity!=0 ); 2380 assert( zAffinity[pOp->p2]==0 ); 2381 pIn1 = &aMem[pOp->p1]; 2382 while( (cAff = *(zAffinity++))!=0 ){ 2383 assert( pIn1 <= &p->aMem[p->nMem] ); 2384 assert( memIsValid(pIn1) ); 2385 ExpandBlob(pIn1); 2386 applyAffinity(pIn1, cAff, encoding); 2387 pIn1++; 2388 } 2389 break; 2390 } 2391 2392 /* Opcode: MakeRecord P1 P2 P3 P4 * 2393 ** 2394 ** Convert P2 registers beginning with P1 into the [record format] 2395 ** use as a data record in a database table or as a key 2396 ** in an index. The OP_Column opcode can decode the record later. 2397 ** 2398 ** P4 may be a string that is P2 characters long. The nth character of the 2399 ** string indicates the column affinity that should be used for the nth 2400 ** field of the index key. 2401 ** 2402 ** The mapping from character to affinity is given by the SQLITE_AFF_ 2403 ** macros defined in sqliteInt.h. 2404 ** 2405 ** If P4 is NULL then all index fields have the affinity NONE. 2406 */ 2407 case OP_MakeRecord: { 2408 u8 *zNewRecord; /* A buffer to hold the data for the new record */ 2409 Mem *pRec; /* The new record */ 2410 u64 nData; /* Number of bytes of data space */ 2411 int nHdr; /* Number of bytes of header space */ 2412 i64 nByte; /* Data space required for this record */ 2413 int nZero; /* Number of zero bytes at the end of the record */ 2414 int nVarint; /* Number of bytes in a varint */ 2415 u32 serial_type; /* Type field */ 2416 Mem *pData0; /* First field to be combined into the record */ 2417 Mem *pLast; /* Last field of the record */ 2418 int nField; /* Number of fields in the record */ 2419 char *zAffinity; /* The affinity string for the record */ 2420 int file_format; /* File format to use for encoding */ 2421 int i; /* Space used in zNewRecord[] */ 2422 int len; /* Length of a field */ 2423 2424 /* Assuming the record contains N fields, the record format looks 2425 ** like this: 2426 ** 2427 ** ------------------------------------------------------------------------ 2428 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 2429 ** ------------------------------------------------------------------------ 2430 ** 2431 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 2432 ** and so froth. 2433 ** 2434 ** Each type field is a varint representing the serial type of the 2435 ** corresponding data element (see sqlite3VdbeSerialType()). The 2436 ** hdr-size field is also a varint which is the offset from the beginning 2437 ** of the record to data0. 2438 */ 2439 nData = 0; /* Number of bytes of data space */ 2440 nHdr = 0; /* Number of bytes of header space */ 2441 nZero = 0; /* Number of zero bytes at the end of the record */ 2442 nField = pOp->p1; 2443 zAffinity = pOp->p4.z; 2444 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); 2445 pData0 = &aMem[nField]; 2446 nField = pOp->p2; 2447 pLast = &pData0[nField-1]; 2448 file_format = p->minWriteFileFormat; 2449 2450 /* Identify the output register */ 2451 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 2452 pOut = &aMem[pOp->p3]; 2453 memAboutToChange(p, pOut); 2454 2455 /* Loop through the elements that will make up the record to figure 2456 ** out how much space is required for the new record. 2457 */ 2458 for(pRec=pData0; pRec<=pLast; pRec++){ 2459 assert( memIsValid(pRec) ); 2460 if( zAffinity ){ 2461 applyAffinity(pRec, zAffinity[pRec-pData0], encoding); 2462 } 2463 if( pRec->flags&MEM_Zero && pRec->n>0 ){ 2464 sqlite3VdbeMemExpandBlob(pRec); 2465 } 2466 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2467 len = sqlite3VdbeSerialTypeLen(serial_type); 2468 nData += len; 2469 nHdr += sqlite3VarintLen(serial_type); 2470 if( pRec->flags & MEM_Zero ){ 2471 /* Only pure zero-filled BLOBs can be input to this Opcode. 2472 ** We do not allow blobs with a prefix and a zero-filled tail. */ 2473 nZero += pRec->u.nZero; 2474 }else if( len ){ 2475 nZero = 0; 2476 } 2477 } 2478 2479 /* Add the initial header varint and total the size */ 2480 nHdr += nVarint = sqlite3VarintLen(nHdr); 2481 if( nVarint<sqlite3VarintLen(nHdr) ){ 2482 nHdr++; 2483 } 2484 nByte = nHdr+nData-nZero; 2485 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 2486 goto too_big; 2487 } 2488 2489 /* Make sure the output register has a buffer large enough to store 2490 ** the new record. The output register (pOp->p3) is not allowed to 2491 ** be one of the input registers (because the following call to 2492 ** sqlite3VdbeMemGrow() could clobber the value before it is used). 2493 */ 2494 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ 2495 goto no_mem; 2496 } 2497 zNewRecord = (u8 *)pOut->z; 2498 2499 /* Write the record */ 2500 i = putVarint32(zNewRecord, nHdr); 2501 for(pRec=pData0; pRec<=pLast; pRec++){ 2502 serial_type = sqlite3VdbeSerialType(pRec, file_format); 2503 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ 2504 } 2505 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ 2506 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format); 2507 } 2508 assert( i==nByte ); 2509 2510 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 2511 pOut->n = (int)nByte; 2512 pOut->flags = MEM_Blob | MEM_Dyn; 2513 pOut->xDel = 0; 2514 if( nZero ){ 2515 pOut->u.nZero = nZero; 2516 pOut->flags |= MEM_Zero; 2517 } 2518 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ 2519 REGISTER_TRACE(pOp->p3, pOut); 2520 UPDATE_MAX_BLOBSIZE(pOut); 2521 break; 2522 } 2523 2524 /* Opcode: Count P1 P2 * * * 2525 ** 2526 ** Store the number of entries (an integer value) in the table or index 2527 ** opened by cursor P1 in register P2 2528 */ 2529 #ifndef SQLITE_OMIT_BTREECOUNT 2530 case OP_Count: { /* out2-prerelease */ 2531 i64 nEntry; 2532 BtCursor *pCrsr; 2533 2534 pCrsr = p->apCsr[pOp->p1]->pCursor; 2535 if( pCrsr ){ 2536 rc = sqlite3BtreeCount(pCrsr, &nEntry); 2537 }else{ 2538 nEntry = 0; 2539 } 2540 pOut->u.i = nEntry; 2541 break; 2542 } 2543 #endif 2544 2545 /* Opcode: Savepoint P1 * * P4 * 2546 ** 2547 ** Open, release or rollback the savepoint named by parameter P4, depending 2548 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an 2549 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. 2550 */ 2551 case OP_Savepoint: { 2552 int p1; /* Value of P1 operand */ 2553 char *zName; /* Name of savepoint */ 2554 int nName; 2555 Savepoint *pNew; 2556 Savepoint *pSavepoint; 2557 Savepoint *pTmp; 2558 int iSavepoint; 2559 int ii; 2560 2561 p1 = pOp->p1; 2562 zName = pOp->p4.z; 2563 2564 /* Assert that the p1 parameter is valid. Also that if there is no open 2565 ** transaction, then there cannot be any savepoints. 2566 */ 2567 assert( db->pSavepoint==0 || db->autoCommit==0 ); 2568 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 2569 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 2570 assert( checkSavepointCount(db) ); 2571 2572 if( p1==SAVEPOINT_BEGIN ){ 2573 if( db->writeVdbeCnt>0 ){ 2574 /* A new savepoint cannot be created if there are active write 2575 ** statements (i.e. open read/write incremental blob handles). 2576 */ 2577 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " 2578 "SQL statements in progress"); 2579 rc = SQLITE_BUSY; 2580 }else{ 2581 nName = sqlite3Strlen30(zName); 2582 2583 /* Create a new savepoint structure. */ 2584 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); 2585 if( pNew ){ 2586 pNew->zName = (char *)&pNew[1]; 2587 memcpy(pNew->zName, zName, nName+1); 2588 2589 /* If there is no open transaction, then mark this as a special 2590 ** "transaction savepoint". */ 2591 if( db->autoCommit ){ 2592 db->autoCommit = 0; 2593 db->isTransactionSavepoint = 1; 2594 }else{ 2595 db->nSavepoint++; 2596 } 2597 2598 /* Link the new savepoint into the database handle's list. */ 2599 pNew->pNext = db->pSavepoint; 2600 db->pSavepoint = pNew; 2601 pNew->nDeferredCons = db->nDeferredCons; 2602 } 2603 } 2604 }else{ 2605 iSavepoint = 0; 2606 2607 /* Find the named savepoint. If there is no such savepoint, then an 2608 ** an error is returned to the user. */ 2609 for( 2610 pSavepoint = db->pSavepoint; 2611 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 2612 pSavepoint = pSavepoint->pNext 2613 ){ 2614 iSavepoint++; 2615 } 2616 if( !pSavepoint ){ 2617 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); 2618 rc = SQLITE_ERROR; 2619 }else if( 2620 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) 2621 ){ 2622 /* It is not possible to release (commit) a savepoint if there are 2623 ** active write statements. It is not possible to rollback a savepoint 2624 ** if there are any active statements at all. 2625 */ 2626 sqlite3SetString(&p->zErrMsg, db, 2627 "cannot %s savepoint - SQL statements in progress", 2628 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release") 2629 ); 2630 rc = SQLITE_BUSY; 2631 }else{ 2632 2633 /* Determine whether or not this is a transaction savepoint. If so, 2634 ** and this is a RELEASE command, then the current transaction 2635 ** is committed. 2636 */ 2637 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 2638 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 2639 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2640 goto vdbe_return; 2641 } 2642 db->autoCommit = 1; 2643 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2644 p->pc = pc; 2645 db->autoCommit = 0; 2646 p->rc = rc = SQLITE_BUSY; 2647 goto vdbe_return; 2648 } 2649 db->isTransactionSavepoint = 0; 2650 rc = p->rc; 2651 }else{ 2652 iSavepoint = db->nSavepoint - iSavepoint - 1; 2653 for(ii=0; ii<db->nDb; ii++){ 2654 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 2655 if( rc!=SQLITE_OK ){ 2656 goto abort_due_to_error; 2657 } 2658 } 2659 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ 2660 sqlite3ExpirePreparedStatements(db); 2661 sqlite3ResetInternalSchema(db, -1); 2662 db->flags = (db->flags | SQLITE_InternChanges); 2663 } 2664 } 2665 2666 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 2667 ** savepoints nested inside of the savepoint being operated on. */ 2668 while( db->pSavepoint!=pSavepoint ){ 2669 pTmp = db->pSavepoint; 2670 db->pSavepoint = pTmp->pNext; 2671 sqlite3DbFree(db, pTmp); 2672 db->nSavepoint--; 2673 } 2674 2675 /* If it is a RELEASE, then destroy the savepoint being operated on 2676 ** too. If it is a ROLLBACK TO, then set the number of deferred 2677 ** constraint violations present in the database to the value stored 2678 ** when the savepoint was created. */ 2679 if( p1==SAVEPOINT_RELEASE ){ 2680 assert( pSavepoint==db->pSavepoint ); 2681 db->pSavepoint = pSavepoint->pNext; 2682 sqlite3DbFree(db, pSavepoint); 2683 if( !isTransaction ){ 2684 db->nSavepoint--; 2685 } 2686 }else{ 2687 db->nDeferredCons = pSavepoint->nDeferredCons; 2688 } 2689 } 2690 } 2691 2692 break; 2693 } 2694 2695 /* Opcode: AutoCommit P1 P2 * * * 2696 ** 2697 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 2698 ** back any currently active btree transactions. If there are any active 2699 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 2700 ** there are active writing VMs or active VMs that use shared cache. 2701 ** 2702 ** This instruction causes the VM to halt. 2703 */ 2704 case OP_AutoCommit: { 2705 int desiredAutoCommit; 2706 int iRollback; 2707 int turnOnAC; 2708 2709 desiredAutoCommit = pOp->p1; 2710 iRollback = pOp->p2; 2711 turnOnAC = desiredAutoCommit && !db->autoCommit; 2712 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 2713 assert( desiredAutoCommit==1 || iRollback==0 ); 2714 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ 2715 2716 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){ 2717 /* If this instruction implements a ROLLBACK and other VMs are 2718 ** still running, and a transaction is active, return an error indicating 2719 ** that the other VMs must complete first. 2720 */ 2721 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " 2722 "SQL statements in progress"); 2723 rc = SQLITE_BUSY; 2724 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){ 2725 /* If this instruction implements a COMMIT and other VMs are writing 2726 ** return an error indicating that the other VMs must complete first. 2727 */ 2728 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " 2729 "SQL statements in progress"); 2730 rc = SQLITE_BUSY; 2731 }else if( desiredAutoCommit!=db->autoCommit ){ 2732 if( iRollback ){ 2733 assert( desiredAutoCommit==1 ); 2734 sqlite3RollbackAll(db); 2735 db->autoCommit = 1; 2736 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 2737 goto vdbe_return; 2738 }else{ 2739 db->autoCommit = (u8)desiredAutoCommit; 2740 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 2741 p->pc = pc; 2742 db->autoCommit = (u8)(1-desiredAutoCommit); 2743 p->rc = rc = SQLITE_BUSY; 2744 goto vdbe_return; 2745 } 2746 } 2747 assert( db->nStatement==0 ); 2748 sqlite3CloseSavepoints(db); 2749 if( p->rc==SQLITE_OK ){ 2750 rc = SQLITE_DONE; 2751 }else{ 2752 rc = SQLITE_ERROR; 2753 } 2754 goto vdbe_return; 2755 }else{ 2756 sqlite3SetString(&p->zErrMsg, db, 2757 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 2758 (iRollback)?"cannot rollback - no transaction is active": 2759 "cannot commit - no transaction is active")); 2760 2761 rc = SQLITE_ERROR; 2762 } 2763 break; 2764 } 2765 2766 /* Opcode: Transaction P1 P2 * * * 2767 ** 2768 ** Begin a transaction. The transaction ends when a Commit or Rollback 2769 ** opcode is encountered. Depending on the ON CONFLICT setting, the 2770 ** transaction might also be rolled back if an error is encountered. 2771 ** 2772 ** P1 is the index of the database file on which the transaction is 2773 ** started. Index 0 is the main database file and index 1 is the 2774 ** file used for temporary tables. Indices of 2 or more are used for 2775 ** attached databases. 2776 ** 2777 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is 2778 ** obtained on the database file when a write-transaction is started. No 2779 ** other process can start another write transaction while this transaction is 2780 ** underway. Starting a write transaction also creates a rollback journal. A 2781 ** write transaction must be started before any changes can be made to the 2782 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained 2783 ** on the file. 2784 ** 2785 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 2786 ** true (this flag is set if the Vdbe may modify more than one row and may 2787 ** throw an ABORT exception), a statement transaction may also be opened. 2788 ** More specifically, a statement transaction is opened iff the database 2789 ** connection is currently not in autocommit mode, or if there are other 2790 ** active statements. A statement transaction allows the affects of this 2791 ** VDBE to be rolled back after an error without having to roll back the 2792 ** entire transaction. If no error is encountered, the statement transaction 2793 ** will automatically commit when the VDBE halts. 2794 ** 2795 ** If P2 is zero, then a read-lock is obtained on the database file. 2796 */ 2797 case OP_Transaction: { 2798 Btree *pBt; 2799 2800 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2801 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 2802 pBt = db->aDb[pOp->p1].pBt; 2803 2804 if( pBt ){ 2805 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); 2806 if( rc==SQLITE_BUSY ){ 2807 p->pc = pc; 2808 p->rc = rc = SQLITE_BUSY; 2809 goto vdbe_return; 2810 } 2811 if( rc!=SQLITE_OK ){ 2812 goto abort_due_to_error; 2813 } 2814 2815 if( pOp->p2 && p->usesStmtJournal 2816 && (db->autoCommit==0 || db->activeVdbeCnt>1) 2817 ){ 2818 assert( sqlite3BtreeIsInTrans(pBt) ); 2819 if( p->iStatement==0 ){ 2820 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 2821 db->nStatement++; 2822 p->iStatement = db->nSavepoint + db->nStatement; 2823 } 2824 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 2825 2826 /* Store the current value of the database handles deferred constraint 2827 ** counter. If the statement transaction needs to be rolled back, 2828 ** the value of this counter needs to be restored too. */ 2829 p->nStmtDefCons = db->nDeferredCons; 2830 } 2831 } 2832 break; 2833 } 2834 2835 /* Opcode: ReadCookie P1 P2 P3 * * 2836 ** 2837 ** Read cookie number P3 from database P1 and write it into register P2. 2838 ** P3==1 is the schema version. P3==2 is the database format. 2839 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 2840 ** the main database file and P1==1 is the database file used to store 2841 ** temporary tables. 2842 ** 2843 ** There must be a read-lock on the database (either a transaction 2844 ** must be started or there must be an open cursor) before 2845 ** executing this instruction. 2846 */ 2847 case OP_ReadCookie: { /* out2-prerelease */ 2848 int iMeta; 2849 int iDb; 2850 int iCookie; 2851 2852 iDb = pOp->p1; 2853 iCookie = pOp->p3; 2854 assert( pOp->p3<SQLITE_N_BTREE_META ); 2855 assert( iDb>=0 && iDb<db->nDb ); 2856 assert( db->aDb[iDb].pBt!=0 ); 2857 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 2858 2859 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 2860 pOut->u.i = iMeta; 2861 break; 2862 } 2863 2864 /* Opcode: SetCookie P1 P2 P3 * * 2865 ** 2866 ** Write the content of register P3 (interpreted as an integer) 2867 ** into cookie number P2 of database P1. P2==1 is the schema version. 2868 ** P2==2 is the database format. P2==3 is the recommended pager cache 2869 ** size, and so forth. P1==0 is the main database file and P1==1 is the 2870 ** database file used to store temporary tables. 2871 ** 2872 ** A transaction must be started before executing this opcode. 2873 */ 2874 case OP_SetCookie: { /* in3 */ 2875 Db *pDb; 2876 assert( pOp->p2<SQLITE_N_BTREE_META ); 2877 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2878 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 2879 pDb = &db->aDb[pOp->p1]; 2880 assert( pDb->pBt!=0 ); 2881 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 2882 pIn3 = &aMem[pOp->p3]; 2883 sqlite3VdbeMemIntegerify(pIn3); 2884 /* See note about index shifting on OP_ReadCookie */ 2885 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); 2886 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 2887 /* When the schema cookie changes, record the new cookie internally */ 2888 pDb->pSchema->schema_cookie = (int)pIn3->u.i; 2889 db->flags |= SQLITE_InternChanges; 2890 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 2891 /* Record changes in the file format */ 2892 pDb->pSchema->file_format = (u8)pIn3->u.i; 2893 } 2894 if( pOp->p1==1 ){ 2895 /* Invalidate all prepared statements whenever the TEMP database 2896 ** schema is changed. Ticket #1644 */ 2897 sqlite3ExpirePreparedStatements(db); 2898 p->expired = 0; 2899 } 2900 break; 2901 } 2902 2903 /* Opcode: VerifyCookie P1 P2 P3 * * 2904 ** 2905 ** Check the value of global database parameter number 0 (the 2906 ** schema version) and make sure it is equal to P2 and that the 2907 ** generation counter on the local schema parse equals P3. 2908 ** 2909 ** P1 is the database number which is 0 for the main database file 2910 ** and 1 for the file holding temporary tables and some higher number 2911 ** for auxiliary databases. 2912 ** 2913 ** The cookie changes its value whenever the database schema changes. 2914 ** This operation is used to detect when that the cookie has changed 2915 ** and that the current process needs to reread the schema. 2916 ** 2917 ** Either a transaction needs to have been started or an OP_Open needs 2918 ** to be executed (to establish a read lock) before this opcode is 2919 ** invoked. 2920 */ 2921 case OP_VerifyCookie: { 2922 int iMeta; 2923 int iGen; 2924 Btree *pBt; 2925 2926 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 2927 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 2928 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 2929 pBt = db->aDb[pOp->p1].pBt; 2930 if( pBt ){ 2931 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); 2932 iGen = db->aDb[pOp->p1].pSchema->iGeneration; 2933 }else{ 2934 iGen = iMeta = 0; 2935 } 2936 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){ 2937 sqlite3DbFree(db, p->zErrMsg); 2938 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 2939 /* If the schema-cookie from the database file matches the cookie 2940 ** stored with the in-memory representation of the schema, do 2941 ** not reload the schema from the database file. 2942 ** 2943 ** If virtual-tables are in use, this is not just an optimization. 2944 ** Often, v-tables store their data in other SQLite tables, which 2945 ** are queried from within xNext() and other v-table methods using 2946 ** prepared queries. If such a query is out-of-date, we do not want to 2947 ** discard the database schema, as the user code implementing the 2948 ** v-table would have to be ready for the sqlite3_vtab structure itself 2949 ** to be invalidated whenever sqlite3_step() is called from within 2950 ** a v-table method. 2951 */ 2952 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 2953 sqlite3ResetInternalSchema(db, pOp->p1); 2954 } 2955 2956 p->expired = 1; 2957 rc = SQLITE_SCHEMA; 2958 } 2959 break; 2960 } 2961 2962 /* Opcode: OpenRead P1 P2 P3 P4 P5 2963 ** 2964 ** Open a read-only cursor for the database table whose root page is 2965 ** P2 in a database file. The database file is determined by P3. 2966 ** P3==0 means the main database, P3==1 means the database used for 2967 ** temporary tables, and P3>1 means used the corresponding attached 2968 ** database. Give the new cursor an identifier of P1. The P1 2969 ** values need not be contiguous but all P1 values should be small integers. 2970 ** It is an error for P1 to be negative. 2971 ** 2972 ** If P5!=0 then use the content of register P2 as the root page, not 2973 ** the value of P2 itself. 2974 ** 2975 ** There will be a read lock on the database whenever there is an 2976 ** open cursor. If the database was unlocked prior to this instruction 2977 ** then a read lock is acquired as part of this instruction. A read 2978 ** lock allows other processes to read the database but prohibits 2979 ** any other process from modifying the database. The read lock is 2980 ** released when all cursors are closed. If this instruction attempts 2981 ** to get a read lock but fails, the script terminates with an 2982 ** SQLITE_BUSY error code. 2983 ** 2984 ** The P4 value may be either an integer (P4_INT32) or a pointer to 2985 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 2986 ** structure, then said structure defines the content and collating 2987 ** sequence of the index being opened. Otherwise, if P4 is an integer 2988 ** value, it is set to the number of columns in the table. 2989 ** 2990 ** See also OpenWrite. 2991 */ 2992 /* Opcode: OpenWrite P1 P2 P3 P4 P5 2993 ** 2994 ** Open a read/write cursor named P1 on the table or index whose root 2995 ** page is P2. Or if P5!=0 use the content of register P2 to find the 2996 ** root page. 2997 ** 2998 ** The P4 value may be either an integer (P4_INT32) or a pointer to 2999 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 3000 ** structure, then said structure defines the content and collating 3001 ** sequence of the index being opened. Otherwise, if P4 is an integer 3002 ** value, it is set to the number of columns in the table, or to the 3003 ** largest index of any column of the table that is actually used. 3004 ** 3005 ** This instruction works just like OpenRead except that it opens the cursor 3006 ** in read/write mode. For a given table, there can be one or more read-only 3007 ** cursors or a single read/write cursor but not both. 3008 ** 3009 ** See also OpenRead. 3010 */ 3011 case OP_OpenRead: 3012 case OP_OpenWrite: { 3013 int nField; 3014 KeyInfo *pKeyInfo; 3015 int p2; 3016 int iDb; 3017 int wrFlag; 3018 Btree *pX; 3019 VdbeCursor *pCur; 3020 Db *pDb; 3021 3022 if( p->expired ){ 3023 rc = SQLITE_ABORT; 3024 break; 3025 } 3026 3027 nField = 0; 3028 pKeyInfo = 0; 3029 p2 = pOp->p2; 3030 iDb = pOp->p3; 3031 assert( iDb>=0 && iDb<db->nDb ); 3032 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 3033 pDb = &db->aDb[iDb]; 3034 pX = pDb->pBt; 3035 assert( pX!=0 ); 3036 if( pOp->opcode==OP_OpenWrite ){ 3037 wrFlag = 1; 3038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3039 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 3040 p->minWriteFileFormat = pDb->pSchema->file_format; 3041 } 3042 }else{ 3043 wrFlag = 0; 3044 } 3045 if( pOp->p5 ){ 3046 assert( p2>0 ); 3047 assert( p2<=p->nMem ); 3048 pIn2 = &aMem[p2]; 3049 assert( memIsValid(pIn2) ); 3050 assert( (pIn2->flags & MEM_Int)!=0 ); 3051 sqlite3VdbeMemIntegerify(pIn2); 3052 p2 = (int)pIn2->u.i; 3053 /* The p2 value always comes from a prior OP_CreateTable opcode and 3054 ** that opcode will always set the p2 value to 2 or more or else fail. 3055 ** If there were a failure, the prepared statement would have halted 3056 ** before reaching this instruction. */ 3057 if( NEVER(p2<2) ) { 3058 rc = SQLITE_CORRUPT_BKPT; 3059 goto abort_due_to_error; 3060 } 3061 } 3062 if( pOp->p4type==P4_KEYINFO ){ 3063 pKeyInfo = pOp->p4.pKeyInfo; 3064 pKeyInfo->enc = ENC(p->db); 3065 nField = pKeyInfo->nField+1; 3066 }else if( pOp->p4type==P4_INT32 ){ 3067 nField = pOp->p4.i; 3068 } 3069 assert( pOp->p1>=0 ); 3070 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); 3071 if( pCur==0 ) goto no_mem; 3072 pCur->nullRow = 1; 3073 pCur->isOrdered = 1; 3074 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); 3075 pCur->pKeyInfo = pKeyInfo; 3076 3077 /* Since it performs no memory allocation or IO, the only values that 3078 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 3079 ** SQLITE_EMPTY is only returned when attempting to open the table 3080 ** rooted at page 1 of a zero-byte database. */ 3081 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK ); 3082 if( rc==SQLITE_EMPTY ){ 3083 pCur->pCursor = 0; 3084 rc = SQLITE_OK; 3085 } 3086 3087 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of 3088 ** SQLite used to check if the root-page flags were sane at this point 3089 ** and report database corruption if they were not, but this check has 3090 ** since moved into the btree layer. */ 3091 pCur->isTable = pOp->p4type!=P4_KEYINFO; 3092 pCur->isIndex = !pCur->isTable; 3093 break; 3094 } 3095 3096 /* Opcode: OpenEphemeral P1 P2 * P4 * 3097 ** 3098 ** Open a new cursor P1 to a transient table. 3099 ** The cursor is always opened read/write even if 3100 ** the main database is read-only. The ephemeral 3101 ** table is deleted automatically when the cursor is closed. 3102 ** 3103 ** P2 is the number of columns in the ephemeral table. 3104 ** The cursor points to a BTree table if P4==0 and to a BTree index 3105 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 3106 ** that defines the format of keys in the index. 3107 ** 3108 ** This opcode was once called OpenTemp. But that created 3109 ** confusion because the term "temp table", might refer either 3110 ** to a TEMP table at the SQL level, or to a table opened by 3111 ** this opcode. Then this opcode was call OpenVirtual. But 3112 ** that created confusion with the whole virtual-table idea. 3113 */ 3114 /* Opcode: OpenAutoindex P1 P2 * P4 * 3115 ** 3116 ** This opcode works the same as OP_OpenEphemeral. It has a 3117 ** different name to distinguish its use. Tables created using 3118 ** by this opcode will be used for automatically created transient 3119 ** indices in joins. 3120 */ 3121 case OP_OpenAutoindex: 3122 case OP_OpenEphemeral: { 3123 VdbeCursor *pCx; 3124 static const int vfsFlags = 3125 SQLITE_OPEN_READWRITE | 3126 SQLITE_OPEN_CREATE | 3127 SQLITE_OPEN_EXCLUSIVE | 3128 SQLITE_OPEN_DELETEONCLOSE | 3129 SQLITE_OPEN_TRANSIENT_DB; 3130 3131 assert( pOp->p1>=0 ); 3132 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); 3133 if( pCx==0 ) goto no_mem; 3134 pCx->nullRow = 1; 3135 rc = sqlite3BtreeOpen(0, db, &pCx->pBt, 3136 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); 3137 if( rc==SQLITE_OK ){ 3138 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); 3139 } 3140 if( rc==SQLITE_OK ){ 3141 /* If a transient index is required, create it by calling 3142 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 3143 ** opening it. If a transient table is required, just use the 3144 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 3145 */ 3146 if( pOp->p4.pKeyInfo ){ 3147 int pgno; 3148 assert( pOp->p4type==P4_KEYINFO ); 3149 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY); 3150 if( rc==SQLITE_OK ){ 3151 assert( pgno==MASTER_ROOT+1 ); 3152 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 3153 (KeyInfo*)pOp->p4.z, pCx->pCursor); 3154 pCx->pKeyInfo = pOp->p4.pKeyInfo; 3155 pCx->pKeyInfo->enc = ENC(p->db); 3156 } 3157 pCx->isTable = 0; 3158 }else{ 3159 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); 3160 pCx->isTable = 1; 3161 } 3162 } 3163 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 3164 pCx->isIndex = !pCx->isTable; 3165 break; 3166 } 3167 3168 /* Opcode: OpenPseudo P1 P2 P3 * * 3169 ** 3170 ** Open a new cursor that points to a fake table that contains a single 3171 ** row of data. The content of that one row in the content of memory 3172 ** register P2. In other words, cursor P1 becomes an alias for the 3173 ** MEM_Blob content contained in register P2. 3174 ** 3175 ** A pseudo-table created by this opcode is used to hold a single 3176 ** row output from the sorter so that the row can be decomposed into 3177 ** individual columns using the OP_Column opcode. The OP_Column opcode 3178 ** is the only cursor opcode that works with a pseudo-table. 3179 ** 3180 ** P3 is the number of fields in the records that will be stored by 3181 ** the pseudo-table. 3182 */ 3183 case OP_OpenPseudo: { 3184 VdbeCursor *pCx; 3185 3186 assert( pOp->p1>=0 ); 3187 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); 3188 if( pCx==0 ) goto no_mem; 3189 pCx->nullRow = 1; 3190 pCx->pseudoTableReg = pOp->p2; 3191 pCx->isTable = 1; 3192 pCx->isIndex = 0; 3193 break; 3194 } 3195 3196 /* Opcode: Close P1 * * * * 3197 ** 3198 ** Close a cursor previously opened as P1. If P1 is not 3199 ** currently open, this instruction is a no-op. 3200 */ 3201 case OP_Close: { 3202 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3203 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 3204 p->apCsr[pOp->p1] = 0; 3205 break; 3206 } 3207 3208 /* Opcode: SeekGe P1 P2 P3 P4 * 3209 ** 3210 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3211 ** use the value in register P3 as the key. If cursor P1 refers 3212 ** to an SQL index, then P3 is the first in an array of P4 registers 3213 ** that are used as an unpacked index key. 3214 ** 3215 ** Reposition cursor P1 so that it points to the smallest entry that 3216 ** is greater than or equal to the key value. If there are no records 3217 ** greater than or equal to the key and P2 is not zero, then jump to P2. 3218 ** 3219 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe 3220 */ 3221 /* Opcode: SeekGt P1 P2 P3 P4 * 3222 ** 3223 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3224 ** use the value in register P3 as a key. If cursor P1 refers 3225 ** to an SQL index, then P3 is the first in an array of P4 registers 3226 ** that are used as an unpacked index key. 3227 ** 3228 ** Reposition cursor P1 so that it points to the smallest entry that 3229 ** is greater than the key value. If there are no records greater than 3230 ** the key and P2 is not zero, then jump to P2. 3231 ** 3232 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe 3233 */ 3234 /* Opcode: SeekLt P1 P2 P3 P4 * 3235 ** 3236 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3237 ** use the value in register P3 as a key. If cursor P1 refers 3238 ** to an SQL index, then P3 is the first in an array of P4 registers 3239 ** that are used as an unpacked index key. 3240 ** 3241 ** Reposition cursor P1 so that it points to the largest entry that 3242 ** is less than the key value. If there are no records less than 3243 ** the key and P2 is not zero, then jump to P2. 3244 ** 3245 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe 3246 */ 3247 /* Opcode: SeekLe P1 P2 P3 P4 * 3248 ** 3249 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 3250 ** use the value in register P3 as a key. If cursor P1 refers 3251 ** to an SQL index, then P3 is the first in an array of P4 registers 3252 ** that are used as an unpacked index key. 3253 ** 3254 ** Reposition cursor P1 so that it points to the largest entry that 3255 ** is less than or equal to the key value. If there are no records 3256 ** less than or equal to the key and P2 is not zero, then jump to P2. 3257 ** 3258 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt 3259 */ 3260 case OP_SeekLt: /* jump, in3 */ 3261 case OP_SeekLe: /* jump, in3 */ 3262 case OP_SeekGe: /* jump, in3 */ 3263 case OP_SeekGt: { /* jump, in3 */ 3264 int res; 3265 int oc; 3266 VdbeCursor *pC; 3267 UnpackedRecord r; 3268 int nField; 3269 i64 iKey; /* The rowid we are to seek to */ 3270 3271 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3272 assert( pOp->p2!=0 ); 3273 pC = p->apCsr[pOp->p1]; 3274 assert( pC!=0 ); 3275 assert( pC->pseudoTableReg==0 ); 3276 assert( OP_SeekLe == OP_SeekLt+1 ); 3277 assert( OP_SeekGe == OP_SeekLt+2 ); 3278 assert( OP_SeekGt == OP_SeekLt+3 ); 3279 assert( pC->isOrdered ); 3280 if( pC->pCursor!=0 ){ 3281 oc = pOp->opcode; 3282 pC->nullRow = 0; 3283 if( pC->isTable ){ 3284 /* The input value in P3 might be of any type: integer, real, string, 3285 ** blob, or NULL. But it needs to be an integer before we can do 3286 ** the seek, so covert it. */ 3287 pIn3 = &aMem[pOp->p3]; 3288 applyNumericAffinity(pIn3); 3289 iKey = sqlite3VdbeIntValue(pIn3); 3290 pC->rowidIsValid = 0; 3291 3292 /* If the P3 value could not be converted into an integer without 3293 ** loss of information, then special processing is required... */ 3294 if( (pIn3->flags & MEM_Int)==0 ){ 3295 if( (pIn3->flags & MEM_Real)==0 ){ 3296 /* If the P3 value cannot be converted into any kind of a number, 3297 ** then the seek is not possible, so jump to P2 */ 3298 pc = pOp->p2 - 1; 3299 break; 3300 } 3301 /* If we reach this point, then the P3 value must be a floating 3302 ** point number. */ 3303 assert( (pIn3->flags & MEM_Real)!=0 ); 3304 3305 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){ 3306 /* The P3 value is too large in magnitude to be expressed as an 3307 ** integer. */ 3308 res = 1; 3309 if( pIn3->r<0 ){ 3310 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3311 rc = sqlite3BtreeFirst(pC->pCursor, &res); 3312 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3313 } 3314 }else{ 3315 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3316 rc = sqlite3BtreeLast(pC->pCursor, &res); 3317 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3318 } 3319 } 3320 if( res ){ 3321 pc = pOp->p2 - 1; 3322 } 3323 break; 3324 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){ 3325 /* Use the ceiling() function to convert real->int */ 3326 if( pIn3->r > (double)iKey ) iKey++; 3327 }else{ 3328 /* Use the floor() function to convert real->int */ 3329 assert( oc==OP_SeekLe || oc==OP_SeekGt ); 3330 if( pIn3->r < (double)iKey ) iKey--; 3331 } 3332 } 3333 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); 3334 if( rc!=SQLITE_OK ){ 3335 goto abort_due_to_error; 3336 } 3337 if( res==0 ){ 3338 pC->rowidIsValid = 1; 3339 pC->lastRowid = iKey; 3340 } 3341 }else{ 3342 nField = pOp->p4.i; 3343 assert( pOp->p4type==P4_INT32 ); 3344 assert( nField>0 ); 3345 r.pKeyInfo = pC->pKeyInfo; 3346 r.nField = (u16)nField; 3347 3348 /* The next line of code computes as follows, only faster: 3349 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){ 3350 ** r.flags = UNPACKED_INCRKEY; 3351 ** }else{ 3352 ** r.flags = 0; 3353 ** } 3354 */ 3355 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); 3356 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); 3357 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); 3358 assert( oc!=OP_SeekGe || r.flags==0 ); 3359 assert( oc!=OP_SeekLt || r.flags==0 ); 3360 3361 r.aMem = &aMem[pOp->p3]; 3362 #ifdef SQLITE_DEBUG 3363 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3364 #endif 3365 ExpandBlob(r.aMem); 3366 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); 3367 if( rc!=SQLITE_OK ){ 3368 goto abort_due_to_error; 3369 } 3370 pC->rowidIsValid = 0; 3371 } 3372 pC->deferredMoveto = 0; 3373 pC->cacheStatus = CACHE_STALE; 3374 #ifdef SQLITE_TEST 3375 sqlite3_search_count++; 3376 #endif 3377 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); 3378 if( res<0 || (res==0 && oc==OP_SeekGt) ){ 3379 rc = sqlite3BtreeNext(pC->pCursor, &res); 3380 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3381 pC->rowidIsValid = 0; 3382 }else{ 3383 res = 0; 3384 } 3385 }else{ 3386 assert( oc==OP_SeekLt || oc==OP_SeekLe ); 3387 if( res>0 || (res==0 && oc==OP_SeekLt) ){ 3388 rc = sqlite3BtreePrevious(pC->pCursor, &res); 3389 if( rc!=SQLITE_OK ) goto abort_due_to_error; 3390 pC->rowidIsValid = 0; 3391 }else{ 3392 /* res might be negative because the table is empty. Check to 3393 ** see if this is the case. 3394 */ 3395 res = sqlite3BtreeEof(pC->pCursor); 3396 } 3397 } 3398 assert( pOp->p2>0 ); 3399 if( res ){ 3400 pc = pOp->p2 - 1; 3401 } 3402 }else{ 3403 /* This happens when attempting to open the sqlite3_master table 3404 ** for read access returns SQLITE_EMPTY. In this case always 3405 ** take the jump (since there are no records in the table). 3406 */ 3407 pc = pOp->p2 - 1; 3408 } 3409 break; 3410 } 3411 3412 /* Opcode: Seek P1 P2 * * * 3413 ** 3414 ** P1 is an open table cursor and P2 is a rowid integer. Arrange 3415 ** for P1 to move so that it points to the rowid given by P2. 3416 ** 3417 ** This is actually a deferred seek. Nothing actually happens until 3418 ** the cursor is used to read a record. That way, if no reads 3419 ** occur, no unnecessary I/O happens. 3420 */ 3421 case OP_Seek: { /* in2 */ 3422 VdbeCursor *pC; 3423 3424 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3425 pC = p->apCsr[pOp->p1]; 3426 assert( pC!=0 ); 3427 if( ALWAYS(pC->pCursor!=0) ){ 3428 assert( pC->isTable ); 3429 pC->nullRow = 0; 3430 pIn2 = &aMem[pOp->p2]; 3431 pC->movetoTarget = sqlite3VdbeIntValue(pIn2); 3432 pC->rowidIsValid = 0; 3433 pC->deferredMoveto = 1; 3434 } 3435 break; 3436 } 3437 3438 3439 /* Opcode: Found P1 P2 P3 P4 * 3440 ** 3441 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3442 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3443 ** record. 3444 ** 3445 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3446 ** is a prefix of any entry in P1 then a jump is made to P2 and 3447 ** P1 is left pointing at the matching entry. 3448 */ 3449 /* Opcode: NotFound P1 P2 P3 P4 * 3450 ** 3451 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 3452 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 3453 ** record. 3454 ** 3455 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 3456 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 3457 ** does contain an entry whose prefix matches the P3/P4 record then control 3458 ** falls through to the next instruction and P1 is left pointing at the 3459 ** matching entry. 3460 ** 3461 ** See also: Found, NotExists, IsUnique 3462 */ 3463 case OP_NotFound: /* jump, in3 */ 3464 case OP_Found: { /* jump, in3 */ 3465 int alreadyExists; 3466 VdbeCursor *pC; 3467 int res; 3468 UnpackedRecord *pIdxKey; 3469 UnpackedRecord r; 3470 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; 3471 3472 #ifdef SQLITE_TEST 3473 sqlite3_found_count++; 3474 #endif 3475 3476 alreadyExists = 0; 3477 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3478 assert( pOp->p4type==P4_INT32 ); 3479 pC = p->apCsr[pOp->p1]; 3480 assert( pC!=0 ); 3481 pIn3 = &aMem[pOp->p3]; 3482 if( ALWAYS(pC->pCursor!=0) ){ 3483 3484 assert( pC->isTable==0 ); 3485 if( pOp->p4.i>0 ){ 3486 r.pKeyInfo = pC->pKeyInfo; 3487 r.nField = (u16)pOp->p4.i; 3488 r.aMem = pIn3; 3489 #ifdef SQLITE_DEBUG 3490 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3491 #endif 3492 r.flags = UNPACKED_PREFIX_MATCH; 3493 pIdxKey = &r; 3494 }else{ 3495 assert( pIn3->flags & MEM_Blob ); 3496 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ 3497 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, 3498 aTempRec, sizeof(aTempRec)); 3499 if( pIdxKey==0 ){ 3500 goto no_mem; 3501 } 3502 pIdxKey->flags |= UNPACKED_PREFIX_MATCH; 3503 } 3504 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); 3505 if( pOp->p4.i==0 ){ 3506 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 3507 } 3508 if( rc!=SQLITE_OK ){ 3509 break; 3510 } 3511 alreadyExists = (res==0); 3512 pC->deferredMoveto = 0; 3513 pC->cacheStatus = CACHE_STALE; 3514 } 3515 if( pOp->opcode==OP_Found ){ 3516 if( alreadyExists ) pc = pOp->p2 - 1; 3517 }else{ 3518 if( !alreadyExists ) pc = pOp->p2 - 1; 3519 } 3520 break; 3521 } 3522 3523 /* Opcode: IsUnique P1 P2 P3 P4 * 3524 ** 3525 ** Cursor P1 is open on an index b-tree - that is to say, a btree which 3526 ** no data and where the key are records generated by OP_MakeRecord with 3527 ** the list field being the integer ROWID of the entry that the index 3528 ** entry refers to. 3529 ** 3530 ** The P3 register contains an integer record number. Call this record 3531 ** number R. Register P4 is the first in a set of N contiguous registers 3532 ** that make up an unpacked index key that can be used with cursor P1. 3533 ** The value of N can be inferred from the cursor. N includes the rowid 3534 ** value appended to the end of the index record. This rowid value may 3535 ** or may not be the same as R. 3536 ** 3537 ** If any of the N registers beginning with register P4 contains a NULL 3538 ** value, jump immediately to P2. 3539 ** 3540 ** Otherwise, this instruction checks if cursor P1 contains an entry 3541 ** where the first (N-1) fields match but the rowid value at the end 3542 ** of the index entry is not R. If there is no such entry, control jumps 3543 ** to instruction P2. Otherwise, the rowid of the conflicting index 3544 ** entry is copied to register P3 and control falls through to the next 3545 ** instruction. 3546 ** 3547 ** See also: NotFound, NotExists, Found 3548 */ 3549 case OP_IsUnique: { /* jump, in3 */ 3550 u16 ii; 3551 VdbeCursor *pCx; 3552 BtCursor *pCrsr; 3553 u16 nField; 3554 Mem *aMx; 3555 UnpackedRecord r; /* B-Tree index search key */ 3556 i64 R; /* Rowid stored in register P3 */ 3557 3558 pIn3 = &aMem[pOp->p3]; 3559 aMx = &aMem[pOp->p4.i]; 3560 /* Assert that the values of parameters P1 and P4 are in range. */ 3561 assert( pOp->p4type==P4_INT32 ); 3562 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); 3563 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3564 3565 /* Find the index cursor. */ 3566 pCx = p->apCsr[pOp->p1]; 3567 assert( pCx->deferredMoveto==0 ); 3568 pCx->seekResult = 0; 3569 pCx->cacheStatus = CACHE_STALE; 3570 pCrsr = pCx->pCursor; 3571 3572 /* If any of the values are NULL, take the jump. */ 3573 nField = pCx->pKeyInfo->nField; 3574 for(ii=0; ii<nField; ii++){ 3575 if( aMx[ii].flags & MEM_Null ){ 3576 pc = pOp->p2 - 1; 3577 pCrsr = 0; 3578 break; 3579 } 3580 } 3581 assert( (aMx[nField].flags & MEM_Null)==0 ); 3582 3583 if( pCrsr!=0 ){ 3584 /* Populate the index search key. */ 3585 r.pKeyInfo = pCx->pKeyInfo; 3586 r.nField = nField + 1; 3587 r.flags = UNPACKED_PREFIX_SEARCH; 3588 r.aMem = aMx; 3589 #ifdef SQLITE_DEBUG 3590 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 3591 #endif 3592 3593 /* Extract the value of R from register P3. */ 3594 sqlite3VdbeMemIntegerify(pIn3); 3595 R = pIn3->u.i; 3596 3597 /* Search the B-Tree index. If no conflicting record is found, jump 3598 ** to P2. Otherwise, copy the rowid of the conflicting record to 3599 ** register P3 and fall through to the next instruction. */ 3600 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult); 3601 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){ 3602 pc = pOp->p2 - 1; 3603 }else{ 3604 pIn3->u.i = r.rowid; 3605 } 3606 } 3607 break; 3608 } 3609 3610 /* Opcode: NotExists P1 P2 P3 * * 3611 ** 3612 ** Use the content of register P3 as a integer key. If a record 3613 ** with that key does not exist in table of P1, then jump to P2. 3614 ** If the record does exist, then fall through. The cursor is left 3615 ** pointing to the record if it exists. 3616 ** 3617 ** The difference between this operation and NotFound is that this 3618 ** operation assumes the key is an integer and that P1 is a table whereas 3619 ** NotFound assumes key is a blob constructed from MakeRecord and 3620 ** P1 is an index. 3621 ** 3622 ** See also: Found, NotFound, IsUnique 3623 */ 3624 case OP_NotExists: { /* jump, in3 */ 3625 VdbeCursor *pC; 3626 BtCursor *pCrsr; 3627 int res; 3628 u64 iKey; 3629 3630 pIn3 = &aMem[pOp->p3]; 3631 assert( pIn3->flags & MEM_Int ); 3632 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3633 pC = p->apCsr[pOp->p1]; 3634 assert( pC!=0 ); 3635 assert( pC->isTable ); 3636 assert( pC->pseudoTableReg==0 ); 3637 pCrsr = pC->pCursor; 3638 if( pCrsr!=0 ){ 3639 res = 0; 3640 iKey = pIn3->u.i; 3641 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); 3642 pC->lastRowid = pIn3->u.i; 3643 pC->rowidIsValid = res==0 ?1:0; 3644 pC->nullRow = 0; 3645 pC->cacheStatus = CACHE_STALE; 3646 pC->deferredMoveto = 0; 3647 if( res!=0 ){ 3648 pc = pOp->p2 - 1; 3649 assert( pC->rowidIsValid==0 ); 3650 } 3651 pC->seekResult = res; 3652 }else{ 3653 /* This happens when an attempt to open a read cursor on the 3654 ** sqlite_master table returns SQLITE_EMPTY. 3655 */ 3656 pc = pOp->p2 - 1; 3657 assert( pC->rowidIsValid==0 ); 3658 pC->seekResult = 0; 3659 } 3660 break; 3661 } 3662 3663 /* Opcode: Sequence P1 P2 * * * 3664 ** 3665 ** Find the next available sequence number for cursor P1. 3666 ** Write the sequence number into register P2. 3667 ** The sequence number on the cursor is incremented after this 3668 ** instruction. 3669 */ 3670 case OP_Sequence: { /* out2-prerelease */ 3671 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3672 assert( p->apCsr[pOp->p1]!=0 ); 3673 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 3674 break; 3675 } 3676 3677 3678 /* Opcode: NewRowid P1 P2 P3 * * 3679 ** 3680 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 3681 ** The record number is not previously used as a key in the database 3682 ** table that cursor P1 points to. The new record number is written 3683 ** written to register P2. 3684 ** 3685 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 3686 ** the largest previously generated record number. No new record numbers are 3687 ** allowed to be less than this value. When this value reaches its maximum, 3688 ** a SQLITE_FULL error is generated. The P3 register is updated with the ' 3689 ** generated record number. This P3 mechanism is used to help implement the 3690 ** AUTOINCREMENT feature. 3691 */ 3692 case OP_NewRowid: { /* out2-prerelease */ 3693 i64 v; /* The new rowid */ 3694 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 3695 int res; /* Result of an sqlite3BtreeLast() */ 3696 int cnt; /* Counter to limit the number of searches */ 3697 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 3698 VdbeFrame *pFrame; /* Root frame of VDBE */ 3699 3700 v = 0; 3701 res = 0; 3702 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3703 pC = p->apCsr[pOp->p1]; 3704 assert( pC!=0 ); 3705 if( NEVER(pC->pCursor==0) ){ 3706 /* The zero initialization above is all that is needed */ 3707 }else{ 3708 /* The next rowid or record number (different terms for the same 3709 ** thing) is obtained in a two-step algorithm. 3710 ** 3711 ** First we attempt to find the largest existing rowid and add one 3712 ** to that. But if the largest existing rowid is already the maximum 3713 ** positive integer, we have to fall through to the second 3714 ** probabilistic algorithm 3715 ** 3716 ** The second algorithm is to select a rowid at random and see if 3717 ** it already exists in the table. If it does not exist, we have 3718 ** succeeded. If the random rowid does exist, we select a new one 3719 ** and try again, up to 100 times. 3720 */ 3721 assert( pC->isTable ); 3722 3723 #ifdef SQLITE_32BIT_ROWID 3724 # define MAX_ROWID 0x7fffffff 3725 #else 3726 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 3727 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 3728 ** to provide the constant while making all compilers happy. 3729 */ 3730 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 3731 #endif 3732 3733 if( !pC->useRandomRowid ){ 3734 v = sqlite3BtreeGetCachedRowid(pC->pCursor); 3735 if( v==0 ){ 3736 rc = sqlite3BtreeLast(pC->pCursor, &res); 3737 if( rc!=SQLITE_OK ){ 3738 goto abort_due_to_error; 3739 } 3740 if( res ){ 3741 v = 1; /* IMP: R-61914-48074 */ 3742 }else{ 3743 assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); 3744 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 3745 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ 3746 if( v==MAX_ROWID ){ 3747 pC->useRandomRowid = 1; 3748 }else{ 3749 v++; /* IMP: R-29538-34987 */ 3750 } 3751 } 3752 } 3753 3754 #ifndef SQLITE_OMIT_AUTOINCREMENT 3755 if( pOp->p3 ){ 3756 /* Assert that P3 is a valid memory cell. */ 3757 assert( pOp->p3>0 ); 3758 if( p->pFrame ){ 3759 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 3760 /* Assert that P3 is a valid memory cell. */ 3761 assert( pOp->p3<=pFrame->nMem ); 3762 pMem = &pFrame->aMem[pOp->p3]; 3763 }else{ 3764 /* Assert that P3 is a valid memory cell. */ 3765 assert( pOp->p3<=p->nMem ); 3766 pMem = &aMem[pOp->p3]; 3767 memAboutToChange(p, pMem); 3768 } 3769 assert( memIsValid(pMem) ); 3770 3771 REGISTER_TRACE(pOp->p3, pMem); 3772 sqlite3VdbeMemIntegerify(pMem); 3773 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 3774 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 3775 rc = SQLITE_FULL; /* IMP: R-12275-61338 */ 3776 goto abort_due_to_error; 3777 } 3778 if( v<pMem->u.i+1 ){ 3779 v = pMem->u.i + 1; 3780 } 3781 pMem->u.i = v; 3782 } 3783 #endif 3784 3785 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); 3786 } 3787 if( pC->useRandomRowid ){ 3788 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 3789 ** largest possible integer (9223372036854775807) then the database 3790 ** engine starts picking positive candidate ROWIDs at random until 3791 ** it finds one that is not previously used. */ 3792 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 3793 ** an AUTOINCREMENT table. */ 3794 /* on the first attempt, simply do one more than previous */ 3795 v = db->lastRowid; 3796 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3797 v++; /* ensure non-zero */ 3798 cnt = 0; 3799 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 3800 0, &res))==SQLITE_OK) 3801 && (res==0) 3802 && (++cnt<100)){ 3803 /* collision - try another random rowid */ 3804 sqlite3_randomness(sizeof(v), &v); 3805 if( cnt<5 ){ 3806 /* try "small" random rowids for the initial attempts */ 3807 v &= 0xffffff; 3808 }else{ 3809 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ 3810 } 3811 v++; /* ensure non-zero */ 3812 } 3813 if( rc==SQLITE_OK && res==0 ){ 3814 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 3815 goto abort_due_to_error; 3816 } 3817 assert( v>0 ); /* EV: R-40812-03570 */ 3818 } 3819 pC->rowidIsValid = 0; 3820 pC->deferredMoveto = 0; 3821 pC->cacheStatus = CACHE_STALE; 3822 } 3823 pOut->u.i = v; 3824 break; 3825 } 3826 3827 /* Opcode: Insert P1 P2 P3 P4 P5 3828 ** 3829 ** Write an entry into the table of cursor P1. A new entry is 3830 ** created if it doesn't already exist or the data for an existing 3831 ** entry is overwritten. The data is the value MEM_Blob stored in register 3832 ** number P2. The key is stored in register P3. The key must 3833 ** be a MEM_Int. 3834 ** 3835 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 3836 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 3837 ** then rowid is stored for subsequent return by the 3838 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 3839 ** 3840 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of 3841 ** the last seek operation (OP_NotExists) was a success, then this 3842 ** operation will not attempt to find the appropriate row before doing 3843 ** the insert but will instead overwrite the row that the cursor is 3844 ** currently pointing to. Presumably, the prior OP_NotExists opcode 3845 ** has already positioned the cursor correctly. This is an optimization 3846 ** that boosts performance by avoiding redundant seeks. 3847 ** 3848 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 3849 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 3850 ** is part of an INSERT operation. The difference is only important to 3851 ** the update hook. 3852 ** 3853 ** Parameter P4 may point to a string containing the table-name, or 3854 ** may be NULL. If it is not NULL, then the update-hook 3855 ** (sqlite3.xUpdateCallback) is invoked following a successful insert. 3856 ** 3857 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 3858 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 3859 ** and register P2 becomes ephemeral. If the cursor is changed, the 3860 ** value of register P2 will then change. Make sure this does not 3861 ** cause any problems.) 3862 ** 3863 ** This instruction only works on tables. The equivalent instruction 3864 ** for indices is OP_IdxInsert. 3865 */ 3866 /* Opcode: InsertInt P1 P2 P3 P4 P5 3867 ** 3868 ** This works exactly like OP_Insert except that the key is the 3869 ** integer value P3, not the value of the integer stored in register P3. 3870 */ 3871 case OP_Insert: 3872 case OP_InsertInt: { 3873 Mem *pData; /* MEM cell holding data for the record to be inserted */ 3874 Mem *pKey; /* MEM cell holding key for the record */ 3875 i64 iKey; /* The integer ROWID or key for the record to be inserted */ 3876 VdbeCursor *pC; /* Cursor to table into which insert is written */ 3877 int nZero; /* Number of zero-bytes to append */ 3878 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 3879 const char *zDb; /* database name - used by the update hook */ 3880 const char *zTbl; /* Table name - used by the opdate hook */ 3881 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ 3882 3883 pData = &aMem[pOp->p2]; 3884 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3885 assert( memIsValid(pData) ); 3886 pC = p->apCsr[pOp->p1]; 3887 assert( pC!=0 ); 3888 assert( pC->pCursor!=0 ); 3889 assert( pC->pseudoTableReg==0 ); 3890 assert( pC->isTable ); 3891 REGISTER_TRACE(pOp->p2, pData); 3892 3893 if( pOp->opcode==OP_Insert ){ 3894 pKey = &aMem[pOp->p3]; 3895 assert( pKey->flags & MEM_Int ); 3896 assert( memIsValid(pKey) ); 3897 REGISTER_TRACE(pOp->p3, pKey); 3898 iKey = pKey->u.i; 3899 }else{ 3900 assert( pOp->opcode==OP_InsertInt ); 3901 iKey = pOp->p3; 3902 } 3903 3904 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 3905 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey; 3906 if( pData->flags & MEM_Null ){ 3907 pData->z = 0; 3908 pData->n = 0; 3909 }else{ 3910 assert( pData->flags & (MEM_Blob|MEM_Str) ); 3911 } 3912 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 3913 if( pData->flags & MEM_Zero ){ 3914 nZero = pData->u.nZero; 3915 }else{ 3916 nZero = 0; 3917 } 3918 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 3919 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, 3920 pData->z, pData->n, nZero, 3921 pOp->p5 & OPFLAG_APPEND, seekResult 3922 ); 3923 pC->rowidIsValid = 0; 3924 pC->deferredMoveto = 0; 3925 pC->cacheStatus = CACHE_STALE; 3926 3927 /* Invoke the update-hook if required. */ 3928 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 3929 zDb = db->aDb[pC->iDb].zName; 3930 zTbl = pOp->p4.z; 3931 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); 3932 assert( pC->isTable ); 3933 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); 3934 assert( pC->iDb>=0 ); 3935 } 3936 break; 3937 } 3938 3939 /* Opcode: Delete P1 P2 * P4 * 3940 ** 3941 ** Delete the record at which the P1 cursor is currently pointing. 3942 ** 3943 ** The cursor will be left pointing at either the next or the previous 3944 ** record in the table. If it is left pointing at the next record, then 3945 ** the next Next instruction will be a no-op. Hence it is OK to delete 3946 ** a record from within an Next loop. 3947 ** 3948 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is 3949 ** incremented (otherwise not). 3950 ** 3951 ** P1 must not be pseudo-table. It has to be a real table with 3952 ** multiple rows. 3953 ** 3954 ** If P4 is not NULL, then it is the name of the table that P1 is 3955 ** pointing to. The update hook will be invoked, if it exists. 3956 ** If P4 is not NULL then the P1 cursor must have been positioned 3957 ** using OP_NotFound prior to invoking this opcode. 3958 */ 3959 case OP_Delete: { 3960 i64 iKey; 3961 VdbeCursor *pC; 3962 3963 iKey = 0; 3964 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 3965 pC = p->apCsr[pOp->p1]; 3966 assert( pC!=0 ); 3967 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ 3968 3969 /* If the update-hook will be invoked, set iKey to the rowid of the 3970 ** row being deleted. 3971 */ 3972 if( db->xUpdateCallback && pOp->p4.z ){ 3973 assert( pC->isTable ); 3974 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ 3975 iKey = pC->lastRowid; 3976 } 3977 3978 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or 3979 ** OP_Column on the same table without any intervening operations that 3980 ** might move or invalidate the cursor. Hence cursor pC is always pointing 3981 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation 3982 ** below is always a no-op and cannot fail. We will run it anyhow, though, 3983 ** to guard against future changes to the code generator. 3984 **/ 3985 assert( pC->deferredMoveto==0 ); 3986 rc = sqlite3VdbeCursorMoveto(pC); 3987 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 3988 3989 sqlite3BtreeSetCachedRowid(pC->pCursor, 0); 3990 rc = sqlite3BtreeDelete(pC->pCursor); 3991 pC->cacheStatus = CACHE_STALE; 3992 3993 /* Invoke the update-hook if required. */ 3994 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ 3995 const char *zDb = db->aDb[pC->iDb].zName; 3996 const char *zTbl = pOp->p4.z; 3997 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); 3998 assert( pC->iDb>=0 ); 3999 } 4000 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; 4001 break; 4002 } 4003 /* Opcode: ResetCount * * * * * 4004 ** 4005 ** The value of the change counter is copied to the database handle 4006 ** change counter (returned by subsequent calls to sqlite3_changes()). 4007 ** Then the VMs internal change counter resets to 0. 4008 ** This is used by trigger programs. 4009 */ 4010 case OP_ResetCount: { 4011 sqlite3VdbeSetChanges(db, p->nChange); 4012 p->nChange = 0; 4013 break; 4014 } 4015 4016 /* Opcode: RowData P1 P2 * * * 4017 ** 4018 ** Write into register P2 the complete row data for cursor P1. 4019 ** There is no interpretation of the data. 4020 ** It is just copied onto the P2 register exactly as 4021 ** it is found in the database file. 4022 ** 4023 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4024 ** of a real table, not a pseudo-table. 4025 */ 4026 /* Opcode: RowKey P1 P2 * * * 4027 ** 4028 ** Write into register P2 the complete row key for cursor P1. 4029 ** There is no interpretation of the data. 4030 ** The key is copied onto the P3 register exactly as 4031 ** it is found in the database file. 4032 ** 4033 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 4034 ** of a real table, not a pseudo-table. 4035 */ 4036 case OP_RowKey: 4037 case OP_RowData: { 4038 VdbeCursor *pC; 4039 BtCursor *pCrsr; 4040 u32 n; 4041 i64 n64; 4042 4043 pOut = &aMem[pOp->p2]; 4044 memAboutToChange(p, pOut); 4045 4046 /* Note that RowKey and RowData are really exactly the same instruction */ 4047 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4048 pC = p->apCsr[pOp->p1]; 4049 assert( pC->isTable || pOp->opcode==OP_RowKey ); 4050 assert( pC->isIndex || pOp->opcode==OP_RowData ); 4051 assert( pC!=0 ); 4052 assert( pC->nullRow==0 ); 4053 assert( pC->pseudoTableReg==0 ); 4054 assert( pC->pCursor!=0 ); 4055 pCrsr = pC->pCursor; 4056 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 4057 4058 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or 4059 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate 4060 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always 4061 ** a no-op and can never fail. But we leave it in place as a safety. 4062 */ 4063 assert( pC->deferredMoveto==0 ); 4064 rc = sqlite3VdbeCursorMoveto(pC); 4065 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; 4066 4067 if( pC->isIndex ){ 4068 assert( !pC->isTable ); 4069 rc = sqlite3BtreeKeySize(pCrsr, &n64); 4070 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ 4071 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4072 goto too_big; 4073 } 4074 n = (u32)n64; 4075 }else{ 4076 rc = sqlite3BtreeDataSize(pCrsr, &n); 4077 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ 4078 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 4079 goto too_big; 4080 } 4081 } 4082 if( sqlite3VdbeMemGrow(pOut, n, 0) ){ 4083 goto no_mem; 4084 } 4085 pOut->n = n; 4086 MemSetTypeFlag(pOut, MEM_Blob); 4087 if( pC->isIndex ){ 4088 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); 4089 }else{ 4090 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); 4091 } 4092 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ 4093 UPDATE_MAX_BLOBSIZE(pOut); 4094 break; 4095 } 4096 4097 /* Opcode: Rowid P1 P2 * * * 4098 ** 4099 ** Store in register P2 an integer which is the key of the table entry that 4100 ** P1 is currently point to. 4101 ** 4102 ** P1 can be either an ordinary table or a virtual table. There used to 4103 ** be a separate OP_VRowid opcode for use with virtual tables, but this 4104 ** one opcode now works for both table types. 4105 */ 4106 case OP_Rowid: { /* out2-prerelease */ 4107 VdbeCursor *pC; 4108 i64 v; 4109 sqlite3_vtab *pVtab; 4110 const sqlite3_module *pModule; 4111 4112 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4113 pC = p->apCsr[pOp->p1]; 4114 assert( pC!=0 ); 4115 assert( pC->pseudoTableReg==0 ); 4116 if( pC->nullRow ){ 4117 pOut->flags = MEM_Null; 4118 break; 4119 }else if( pC->deferredMoveto ){ 4120 v = pC->movetoTarget; 4121 #ifndef SQLITE_OMIT_VIRTUALTABLE 4122 }else if( pC->pVtabCursor ){ 4123 pVtab = pC->pVtabCursor->pVtab; 4124 pModule = pVtab->pModule; 4125 assert( pModule->xRowid ); 4126 rc = pModule->xRowid(pC->pVtabCursor, &v); 4127 importVtabErrMsg(p, pVtab); 4128 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4129 }else{ 4130 assert( pC->pCursor!=0 ); 4131 rc = sqlite3VdbeCursorMoveto(pC); 4132 if( rc ) goto abort_due_to_error; 4133 if( pC->rowidIsValid ){ 4134 v = pC->lastRowid; 4135 }else{ 4136 rc = sqlite3BtreeKeySize(pC->pCursor, &v); 4137 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ 4138 } 4139 } 4140 pOut->u.i = v; 4141 break; 4142 } 4143 4144 /* Opcode: NullRow P1 * * * * 4145 ** 4146 ** Move the cursor P1 to a null row. Any OP_Column operations 4147 ** that occur while the cursor is on the null row will always 4148 ** write a NULL. 4149 */ 4150 case OP_NullRow: { 4151 VdbeCursor *pC; 4152 4153 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4154 pC = p->apCsr[pOp->p1]; 4155 assert( pC!=0 ); 4156 pC->nullRow = 1; 4157 pC->rowidIsValid = 0; 4158 if( pC->pCursor ){ 4159 sqlite3BtreeClearCursor(pC->pCursor); 4160 } 4161 break; 4162 } 4163 4164 /* Opcode: Last P1 P2 * * * 4165 ** 4166 ** The next use of the Rowid or Column or Next instruction for P1 4167 ** will refer to the last entry in the database table or index. 4168 ** If the table or index is empty and P2>0, then jump immediately to P2. 4169 ** If P2 is 0 or if the table or index is not empty, fall through 4170 ** to the following instruction. 4171 */ 4172 case OP_Last: { /* jump */ 4173 VdbeCursor *pC; 4174 BtCursor *pCrsr; 4175 int res; 4176 4177 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4178 pC = p->apCsr[pOp->p1]; 4179 assert( pC!=0 ); 4180 pCrsr = pC->pCursor; 4181 if( pCrsr==0 ){ 4182 res = 1; 4183 }else{ 4184 rc = sqlite3BtreeLast(pCrsr, &res); 4185 } 4186 pC->nullRow = (u8)res; 4187 pC->deferredMoveto = 0; 4188 pC->rowidIsValid = 0; 4189 pC->cacheStatus = CACHE_STALE; 4190 if( pOp->p2>0 && res ){ 4191 pc = pOp->p2 - 1; 4192 } 4193 break; 4194 } 4195 4196 4197 /* Opcode: Sort P1 P2 * * * 4198 ** 4199 ** This opcode does exactly the same thing as OP_Rewind except that 4200 ** it increments an undocumented global variable used for testing. 4201 ** 4202 ** Sorting is accomplished by writing records into a sorting index, 4203 ** then rewinding that index and playing it back from beginning to 4204 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 4205 ** rewinding so that the global variable will be incremented and 4206 ** regression tests can determine whether or not the optimizer is 4207 ** correctly optimizing out sorts. 4208 */ 4209 case OP_Sort: { /* jump */ 4210 #ifdef SQLITE_TEST 4211 sqlite3_sort_count++; 4212 sqlite3_search_count--; 4213 #endif 4214 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; 4215 /* Fall through into OP_Rewind */ 4216 } 4217 /* Opcode: Rewind P1 P2 * * * 4218 ** 4219 ** The next use of the Rowid or Column or Next instruction for P1 4220 ** will refer to the first entry in the database table or index. 4221 ** If the table or index is empty and P2>0, then jump immediately to P2. 4222 ** If P2 is 0 or if the table or index is not empty, fall through 4223 ** to the following instruction. 4224 */ 4225 case OP_Rewind: { /* jump */ 4226 VdbeCursor *pC; 4227 BtCursor *pCrsr; 4228 int res; 4229 4230 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4231 pC = p->apCsr[pOp->p1]; 4232 assert( pC!=0 ); 4233 res = 1; 4234 if( (pCrsr = pC->pCursor)!=0 ){ 4235 rc = sqlite3BtreeFirst(pCrsr, &res); 4236 pC->atFirst = res==0 ?1:0; 4237 pC->deferredMoveto = 0; 4238 pC->cacheStatus = CACHE_STALE; 4239 pC->rowidIsValid = 0; 4240 } 4241 pC->nullRow = (u8)res; 4242 assert( pOp->p2>0 && pOp->p2<p->nOp ); 4243 if( res ){ 4244 pc = pOp->p2 - 1; 4245 } 4246 break; 4247 } 4248 4249 /* Opcode: Next P1 P2 * * P5 4250 ** 4251 ** Advance cursor P1 so that it points to the next key/data pair in its 4252 ** table or index. If there are no more key/value pairs then fall through 4253 ** to the following instruction. But if the cursor advance was successful, 4254 ** jump immediately to P2. 4255 ** 4256 ** The P1 cursor must be for a real table, not a pseudo-table. 4257 ** 4258 ** If P5 is positive and the jump is taken, then event counter 4259 ** number P5-1 in the prepared statement is incremented. 4260 ** 4261 ** See also: Prev 4262 */ 4263 /* Opcode: Prev P1 P2 * * P5 4264 ** 4265 ** Back up cursor P1 so that it points to the previous key/data pair in its 4266 ** table or index. If there is no previous key/value pairs then fall through 4267 ** to the following instruction. But if the cursor backup was successful, 4268 ** jump immediately to P2. 4269 ** 4270 ** The P1 cursor must be for a real table, not a pseudo-table. 4271 ** 4272 ** If P5 is positive and the jump is taken, then event counter 4273 ** number P5-1 in the prepared statement is incremented. 4274 */ 4275 case OP_Prev: /* jump */ 4276 case OP_Next: { /* jump */ 4277 VdbeCursor *pC; 4278 BtCursor *pCrsr; 4279 int res; 4280 4281 CHECK_FOR_INTERRUPT; 4282 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4283 assert( pOp->p5<=ArraySize(p->aCounter) ); 4284 pC = p->apCsr[pOp->p1]; 4285 if( pC==0 ){ 4286 break; /* See ticket #2273 */ 4287 } 4288 pCrsr = pC->pCursor; 4289 if( pCrsr==0 ){ 4290 pC->nullRow = 1; 4291 break; 4292 } 4293 res = 1; 4294 assert( pC->deferredMoveto==0 ); 4295 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : 4296 sqlite3BtreePrevious(pCrsr, &res); 4297 pC->nullRow = (u8)res; 4298 pC->cacheStatus = CACHE_STALE; 4299 if( res==0 ){ 4300 pc = pOp->p2 - 1; 4301 if( pOp->p5 ) p->aCounter[pOp->p5-1]++; 4302 #ifdef SQLITE_TEST 4303 sqlite3_search_count++; 4304 #endif 4305 } 4306 pC->rowidIsValid = 0; 4307 break; 4308 } 4309 4310 /* Opcode: IdxInsert P1 P2 P3 * P5 4311 ** 4312 ** Register P2 holds a SQL index key made using the 4313 ** MakeRecord instructions. This opcode writes that key 4314 ** into the index P1. Data for the entry is nil. 4315 ** 4316 ** P3 is a flag that provides a hint to the b-tree layer that this 4317 ** insert is likely to be an append. 4318 ** 4319 ** This instruction only works for indices. The equivalent instruction 4320 ** for tables is OP_Insert. 4321 */ 4322 case OP_IdxInsert: { /* in2 */ 4323 VdbeCursor *pC; 4324 BtCursor *pCrsr; 4325 int nKey; 4326 const char *zKey; 4327 4328 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4329 pC = p->apCsr[pOp->p1]; 4330 assert( pC!=0 ); 4331 pIn2 = &aMem[pOp->p2]; 4332 assert( pIn2->flags & MEM_Blob ); 4333 pCrsr = pC->pCursor; 4334 if( ALWAYS(pCrsr!=0) ){ 4335 assert( pC->isTable==0 ); 4336 rc = ExpandBlob(pIn2); 4337 if( rc==SQLITE_OK ){ 4338 nKey = pIn2->n; 4339 zKey = pIn2->z; 4340 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 4341 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 4342 ); 4343 assert( pC->deferredMoveto==0 ); 4344 pC->cacheStatus = CACHE_STALE; 4345 } 4346 } 4347 break; 4348 } 4349 4350 /* Opcode: IdxDelete P1 P2 P3 * * 4351 ** 4352 ** The content of P3 registers starting at register P2 form 4353 ** an unpacked index key. This opcode removes that entry from the 4354 ** index opened by cursor P1. 4355 */ 4356 case OP_IdxDelete: { 4357 VdbeCursor *pC; 4358 BtCursor *pCrsr; 4359 int res; 4360 UnpackedRecord r; 4361 4362 assert( pOp->p3>0 ); 4363 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); 4364 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4365 pC = p->apCsr[pOp->p1]; 4366 assert( pC!=0 ); 4367 pCrsr = pC->pCursor; 4368 if( ALWAYS(pCrsr!=0) ){ 4369 r.pKeyInfo = pC->pKeyInfo; 4370 r.nField = (u16)pOp->p3; 4371 r.flags = 0; 4372 r.aMem = &aMem[pOp->p2]; 4373 #ifdef SQLITE_DEBUG 4374 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4375 #endif 4376 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); 4377 if( rc==SQLITE_OK && res==0 ){ 4378 rc = sqlite3BtreeDelete(pCrsr); 4379 } 4380 assert( pC->deferredMoveto==0 ); 4381 pC->cacheStatus = CACHE_STALE; 4382 } 4383 break; 4384 } 4385 4386 /* Opcode: IdxRowid P1 P2 * * * 4387 ** 4388 ** Write into register P2 an integer which is the last entry in the record at 4389 ** the end of the index key pointed to by cursor P1. This integer should be 4390 ** the rowid of the table entry to which this index entry points. 4391 ** 4392 ** See also: Rowid, MakeRecord. 4393 */ 4394 case OP_IdxRowid: { /* out2-prerelease */ 4395 BtCursor *pCrsr; 4396 VdbeCursor *pC; 4397 i64 rowid; 4398 4399 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4400 pC = p->apCsr[pOp->p1]; 4401 assert( pC!=0 ); 4402 pCrsr = pC->pCursor; 4403 pOut->flags = MEM_Null; 4404 if( ALWAYS(pCrsr!=0) ){ 4405 rc = sqlite3VdbeCursorMoveto(pC); 4406 if( NEVER(rc) ) goto abort_due_to_error; 4407 assert( pC->deferredMoveto==0 ); 4408 assert( pC->isTable==0 ); 4409 if( !pC->nullRow ){ 4410 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); 4411 if( rc!=SQLITE_OK ){ 4412 goto abort_due_to_error; 4413 } 4414 pOut->u.i = rowid; 4415 pOut->flags = MEM_Int; 4416 } 4417 } 4418 break; 4419 } 4420 4421 /* Opcode: IdxGE P1 P2 P3 P4 P5 4422 ** 4423 ** The P4 register values beginning with P3 form an unpacked index 4424 ** key that omits the ROWID. Compare this key value against the index 4425 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4426 ** 4427 ** If the P1 index entry is greater than or equal to the key value 4428 ** then jump to P2. Otherwise fall through to the next instruction. 4429 ** 4430 ** If P5 is non-zero then the key value is increased by an epsilon 4431 ** prior to the comparison. This make the opcode work like IdxGT except 4432 ** that if the key from register P3 is a prefix of the key in the cursor, 4433 ** the result is false whereas it would be true with IdxGT. 4434 */ 4435 /* Opcode: IdxLT P1 P2 P3 P4 P5 4436 ** 4437 ** The P4 register values beginning with P3 form an unpacked index 4438 ** key that omits the ROWID. Compare this key value against the index 4439 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index. 4440 ** 4441 ** If the P1 index entry is less than the key value then jump to P2. 4442 ** Otherwise fall through to the next instruction. 4443 ** 4444 ** If P5 is non-zero then the key value is increased by an epsilon prior 4445 ** to the comparison. This makes the opcode work like IdxLE. 4446 */ 4447 case OP_IdxLT: /* jump */ 4448 case OP_IdxGE: { /* jump */ 4449 VdbeCursor *pC; 4450 int res; 4451 UnpackedRecord r; 4452 4453 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 4454 pC = p->apCsr[pOp->p1]; 4455 assert( pC!=0 ); 4456 assert( pC->isOrdered ); 4457 if( ALWAYS(pC->pCursor!=0) ){ 4458 assert( pC->deferredMoveto==0 ); 4459 assert( pOp->p5==0 || pOp->p5==1 ); 4460 assert( pOp->p4type==P4_INT32 ); 4461 r.pKeyInfo = pC->pKeyInfo; 4462 r.nField = (u16)pOp->p4.i; 4463 if( pOp->p5 ){ 4464 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; 4465 }else{ 4466 r.flags = UNPACKED_IGNORE_ROWID; 4467 } 4468 r.aMem = &aMem[pOp->p3]; 4469 #ifdef SQLITE_DEBUG 4470 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } 4471 #endif 4472 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); 4473 if( pOp->opcode==OP_IdxLT ){ 4474 res = -res; 4475 }else{ 4476 assert( pOp->opcode==OP_IdxGE ); 4477 res++; 4478 } 4479 if( res>0 ){ 4480 pc = pOp->p2 - 1 ; 4481 } 4482 } 4483 break; 4484 } 4485 4486 /* Opcode: Destroy P1 P2 P3 * * 4487 ** 4488 ** Delete an entire database table or index whose root page in the database 4489 ** file is given by P1. 4490 ** 4491 ** The table being destroyed is in the main database file if P3==0. If 4492 ** P3==1 then the table to be clear is in the auxiliary database file 4493 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4494 ** 4495 ** If AUTOVACUUM is enabled then it is possible that another root page 4496 ** might be moved into the newly deleted root page in order to keep all 4497 ** root pages contiguous at the beginning of the database. The former 4498 ** value of the root page that moved - its value before the move occurred - 4499 ** is stored in register P2. If no page 4500 ** movement was required (because the table being dropped was already 4501 ** the last one in the database) then a zero is stored in register P2. 4502 ** If AUTOVACUUM is disabled then a zero is stored in register P2. 4503 ** 4504 ** See also: Clear 4505 */ 4506 case OP_Destroy: { /* out2-prerelease */ 4507 int iMoved; 4508 int iCnt; 4509 Vdbe *pVdbe; 4510 int iDb; 4511 #ifndef SQLITE_OMIT_VIRTUALTABLE 4512 iCnt = 0; 4513 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ 4514 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ 4515 iCnt++; 4516 } 4517 } 4518 #else 4519 iCnt = db->activeVdbeCnt; 4520 #endif 4521 pOut->flags = MEM_Null; 4522 if( iCnt>1 ){ 4523 rc = SQLITE_LOCKED; 4524 p->errorAction = OE_Abort; 4525 }else{ 4526 iDb = pOp->p3; 4527 assert( iCnt==1 ); 4528 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); 4529 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 4530 pOut->flags = MEM_Int; 4531 pOut->u.i = iMoved; 4532 #ifndef SQLITE_OMIT_AUTOVACUUM 4533 if( rc==SQLITE_OK && iMoved!=0 ){ 4534 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 4535 /* All OP_Destroy operations occur on the same btree */ 4536 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 4537 resetSchemaOnFault = iDb+1; 4538 } 4539 #endif 4540 } 4541 break; 4542 } 4543 4544 /* Opcode: Clear P1 P2 P3 4545 ** 4546 ** Delete all contents of the database table or index whose root page 4547 ** in the database file is given by P1. But, unlike Destroy, do not 4548 ** remove the table or index from the database file. 4549 ** 4550 ** The table being clear is in the main database file if P2==0. If 4551 ** P2==1 then the table to be clear is in the auxiliary database file 4552 ** that is used to store tables create using CREATE TEMPORARY TABLE. 4553 ** 4554 ** If the P3 value is non-zero, then the table referred to must be an 4555 ** intkey table (an SQL table, not an index). In this case the row change 4556 ** count is incremented by the number of rows in the table being cleared. 4557 ** If P3 is greater than zero, then the value stored in register P3 is 4558 ** also incremented by the number of rows in the table being cleared. 4559 ** 4560 ** See also: Destroy 4561 */ 4562 case OP_Clear: { 4563 int nChange; 4564 4565 nChange = 0; 4566 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); 4567 rc = sqlite3BtreeClearTable( 4568 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) 4569 ); 4570 if( pOp->p3 ){ 4571 p->nChange += nChange; 4572 if( pOp->p3>0 ){ 4573 assert( memIsValid(&aMem[pOp->p3]) ); 4574 memAboutToChange(p, &aMem[pOp->p3]); 4575 aMem[pOp->p3].u.i += nChange; 4576 } 4577 } 4578 break; 4579 } 4580 4581 /* Opcode: CreateTable P1 P2 * * * 4582 ** 4583 ** Allocate a new table in the main database file if P1==0 or in the 4584 ** auxiliary database file if P1==1 or in an attached database if 4585 ** P1>1. Write the root page number of the new table into 4586 ** register P2 4587 ** 4588 ** The difference between a table and an index is this: A table must 4589 ** have a 4-byte integer key and can have arbitrary data. An index 4590 ** has an arbitrary key but no data. 4591 ** 4592 ** See also: CreateIndex 4593 */ 4594 /* Opcode: CreateIndex P1 P2 * * * 4595 ** 4596 ** Allocate a new index in the main database file if P1==0 or in the 4597 ** auxiliary database file if P1==1 or in an attached database if 4598 ** P1>1. Write the root page number of the new table into 4599 ** register P2. 4600 ** 4601 ** See documentation on OP_CreateTable for additional information. 4602 */ 4603 case OP_CreateIndex: /* out2-prerelease */ 4604 case OP_CreateTable: { /* out2-prerelease */ 4605 int pgno; 4606 int flags; 4607 Db *pDb; 4608 4609 pgno = 0; 4610 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4611 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 4612 pDb = &db->aDb[pOp->p1]; 4613 assert( pDb->pBt!=0 ); 4614 if( pOp->opcode==OP_CreateTable ){ 4615 /* flags = BTREE_INTKEY; */ 4616 flags = BTREE_INTKEY; 4617 }else{ 4618 flags = BTREE_BLOBKEY; 4619 } 4620 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); 4621 pOut->u.i = pgno; 4622 break; 4623 } 4624 4625 /* Opcode: ParseSchema P1 * * P4 * 4626 ** 4627 ** Read and parse all entries from the SQLITE_MASTER table of database P1 4628 ** that match the WHERE clause P4. 4629 ** 4630 ** This opcode invokes the parser to create a new virtual machine, 4631 ** then runs the new virtual machine. It is thus a re-entrant opcode. 4632 */ 4633 case OP_ParseSchema: { 4634 int iDb; 4635 const char *zMaster; 4636 char *zSql; 4637 InitData initData; 4638 4639 /* Any prepared statement that invokes this opcode will hold mutexes 4640 ** on every btree. This is a prerequisite for invoking 4641 ** sqlite3InitCallback(). 4642 */ 4643 #ifdef SQLITE_DEBUG 4644 for(iDb=0; iDb<db->nDb; iDb++){ 4645 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 4646 } 4647 #endif 4648 4649 iDb = pOp->p1; 4650 assert( iDb>=0 && iDb<db->nDb ); 4651 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); 4652 /* Used to be a conditional */ { 4653 zMaster = SCHEMA_TABLE(iDb); 4654 initData.db = db; 4655 initData.iDb = pOp->p1; 4656 initData.pzErrMsg = &p->zErrMsg; 4657 zSql = sqlite3MPrintf(db, 4658 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", 4659 db->aDb[iDb].zName, zMaster, pOp->p4.z); 4660 if( zSql==0 ){ 4661 rc = SQLITE_NOMEM; 4662 }else{ 4663 assert( db->init.busy==0 ); 4664 db->init.busy = 1; 4665 initData.rc = SQLITE_OK; 4666 assert( !db->mallocFailed ); 4667 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 4668 if( rc==SQLITE_OK ) rc = initData.rc; 4669 sqlite3DbFree(db, zSql); 4670 db->init.busy = 0; 4671 } 4672 } 4673 if( rc==SQLITE_NOMEM ){ 4674 goto no_mem; 4675 } 4676 break; 4677 } 4678 4679 #if !defined(SQLITE_OMIT_ANALYZE) 4680 /* Opcode: LoadAnalysis P1 * * * * 4681 ** 4682 ** Read the sqlite_stat1 table for database P1 and load the content 4683 ** of that table into the internal index hash table. This will cause 4684 ** the analysis to be used when preparing all subsequent queries. 4685 */ 4686 case OP_LoadAnalysis: { 4687 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 4688 rc = sqlite3AnalysisLoad(db, pOp->p1); 4689 break; 4690 } 4691 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 4692 4693 /* Opcode: DropTable P1 * * P4 * 4694 ** 4695 ** Remove the internal (in-memory) data structures that describe 4696 ** the table named P4 in database P1. This is called after a table 4697 ** is dropped in order to keep the internal representation of the 4698 ** schema consistent with what is on disk. 4699 */ 4700 case OP_DropTable: { 4701 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 4702 break; 4703 } 4704 4705 /* Opcode: DropIndex P1 * * P4 * 4706 ** 4707 ** Remove the internal (in-memory) data structures that describe 4708 ** the index named P4 in database P1. This is called after an index 4709 ** is dropped in order to keep the internal representation of the 4710 ** schema consistent with what is on disk. 4711 */ 4712 case OP_DropIndex: { 4713 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 4714 break; 4715 } 4716 4717 /* Opcode: DropTrigger P1 * * P4 * 4718 ** 4719 ** Remove the internal (in-memory) data structures that describe 4720 ** the trigger named P4 in database P1. This is called after a trigger 4721 ** is dropped in order to keep the internal representation of the 4722 ** schema consistent with what is on disk. 4723 */ 4724 case OP_DropTrigger: { 4725 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 4726 break; 4727 } 4728 4729 4730 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 4731 /* Opcode: IntegrityCk P1 P2 P3 * P5 4732 ** 4733 ** Do an analysis of the currently open database. Store in 4734 ** register P1 the text of an error message describing any problems. 4735 ** If no problems are found, store a NULL in register P1. 4736 ** 4737 ** The register P3 contains the maximum number of allowed errors. 4738 ** At most reg(P3) errors will be reported. 4739 ** In other words, the analysis stops as soon as reg(P1) errors are 4740 ** seen. Reg(P1) is updated with the number of errors remaining. 4741 ** 4742 ** The root page numbers of all tables in the database are integer 4743 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables 4744 ** total. 4745 ** 4746 ** If P5 is not zero, the check is done on the auxiliary database 4747 ** file, not the main database file. 4748 ** 4749 ** This opcode is used to implement the integrity_check pragma. 4750 */ 4751 case OP_IntegrityCk: { 4752 int nRoot; /* Number of tables to check. (Number of root pages.) */ 4753 int *aRoot; /* Array of rootpage numbers for tables to be checked */ 4754 int j; /* Loop counter */ 4755 int nErr; /* Number of errors reported */ 4756 char *z; /* Text of the error report */ 4757 Mem *pnErr; /* Register keeping track of errors remaining */ 4758 4759 nRoot = pOp->p2; 4760 assert( nRoot>0 ); 4761 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); 4762 if( aRoot==0 ) goto no_mem; 4763 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 4764 pnErr = &aMem[pOp->p3]; 4765 assert( (pnErr->flags & MEM_Int)!=0 ); 4766 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 4767 pIn1 = &aMem[pOp->p1]; 4768 for(j=0; j<nRoot; j++){ 4769 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); 4770 } 4771 aRoot[j] = 0; 4772 assert( pOp->p5<db->nDb ); 4773 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); 4774 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, 4775 (int)pnErr->u.i, &nErr); 4776 sqlite3DbFree(db, aRoot); 4777 pnErr->u.i -= nErr; 4778 sqlite3VdbeMemSetNull(pIn1); 4779 if( nErr==0 ){ 4780 assert( z==0 ); 4781 }else if( z==0 ){ 4782 goto no_mem; 4783 }else{ 4784 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 4785 } 4786 UPDATE_MAX_BLOBSIZE(pIn1); 4787 sqlite3VdbeChangeEncoding(pIn1, encoding); 4788 break; 4789 } 4790 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 4791 4792 /* Opcode: RowSetAdd P1 P2 * * * 4793 ** 4794 ** Insert the integer value held by register P2 into a boolean index 4795 ** held in register P1. 4796 ** 4797 ** An assertion fails if P2 is not an integer. 4798 */ 4799 case OP_RowSetAdd: { /* in1, in2 */ 4800 pIn1 = &aMem[pOp->p1]; 4801 pIn2 = &aMem[pOp->p2]; 4802 assert( (pIn2->flags & MEM_Int)!=0 ); 4803 if( (pIn1->flags & MEM_RowSet)==0 ){ 4804 sqlite3VdbeMemSetRowSet(pIn1); 4805 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 4806 } 4807 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); 4808 break; 4809 } 4810 4811 /* Opcode: RowSetRead P1 P2 P3 * * 4812 ** 4813 ** Extract the smallest value from boolean index P1 and put that value into 4814 ** register P3. Or, if boolean index P1 is initially empty, leave P3 4815 ** unchanged and jump to instruction P2. 4816 */ 4817 case OP_RowSetRead: { /* jump, in1, out3 */ 4818 i64 val; 4819 CHECK_FOR_INTERRUPT; 4820 pIn1 = &aMem[pOp->p1]; 4821 if( (pIn1->flags & MEM_RowSet)==0 4822 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 4823 ){ 4824 /* The boolean index is empty */ 4825 sqlite3VdbeMemSetNull(pIn1); 4826 pc = pOp->p2 - 1; 4827 }else{ 4828 /* A value was pulled from the index */ 4829 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 4830 } 4831 break; 4832 } 4833 4834 /* Opcode: RowSetTest P1 P2 P3 P4 4835 ** 4836 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 4837 ** contains a RowSet object and that RowSet object contains 4838 ** the value held in P3, jump to register P2. Otherwise, insert the 4839 ** integer in P3 into the RowSet and continue on to the 4840 ** next opcode. 4841 ** 4842 ** The RowSet object is optimized for the case where successive sets 4843 ** of integers, where each set contains no duplicates. Each set 4844 ** of values is identified by a unique P4 value. The first set 4845 ** must have P4==0, the final set P4=-1. P4 must be either -1 or 4846 ** non-negative. For non-negative values of P4 only the lower 4 4847 ** bits are significant. 4848 ** 4849 ** This allows optimizations: (a) when P4==0 there is no need to test 4850 ** the rowset object for P3, as it is guaranteed not to contain it, 4851 ** (b) when P4==-1 there is no need to insert the value, as it will 4852 ** never be tested for, and (c) when a value that is part of set X is 4853 ** inserted, there is no need to search to see if the same value was 4854 ** previously inserted as part of set X (only if it was previously 4855 ** inserted as part of some other set). 4856 */ 4857 case OP_RowSetTest: { /* jump, in1, in3 */ 4858 int iSet; 4859 int exists; 4860 4861 pIn1 = &aMem[pOp->p1]; 4862 pIn3 = &aMem[pOp->p3]; 4863 iSet = pOp->p4.i; 4864 assert( pIn3->flags&MEM_Int ); 4865 4866 /* If there is anything other than a rowset object in memory cell P1, 4867 ** delete it now and initialize P1 with an empty rowset 4868 */ 4869 if( (pIn1->flags & MEM_RowSet)==0 ){ 4870 sqlite3VdbeMemSetRowSet(pIn1); 4871 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; 4872 } 4873 4874 assert( pOp->p4type==P4_INT32 ); 4875 assert( iSet==-1 || iSet>=0 ); 4876 if( iSet ){ 4877 exists = sqlite3RowSetTest(pIn1->u.pRowSet, 4878 (u8)(iSet>=0 ? iSet & 0xf : 0xff), 4879 pIn3->u.i); 4880 if( exists ){ 4881 pc = pOp->p2 - 1; 4882 break; 4883 } 4884 } 4885 if( iSet>=0 ){ 4886 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); 4887 } 4888 break; 4889 } 4890 4891 4892 #ifndef SQLITE_OMIT_TRIGGER 4893 4894 /* Opcode: Program P1 P2 P3 P4 * 4895 ** 4896 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 4897 ** 4898 ** P1 contains the address of the memory cell that contains the first memory 4899 ** cell in an array of values used as arguments to the sub-program. P2 4900 ** contains the address to jump to if the sub-program throws an IGNORE 4901 ** exception using the RAISE() function. Register P3 contains the address 4902 ** of a memory cell in this (the parent) VM that is used to allocate the 4903 ** memory required by the sub-vdbe at runtime. 4904 ** 4905 ** P4 is a pointer to the VM containing the trigger program. 4906 */ 4907 case OP_Program: { /* jump */ 4908 int nMem; /* Number of memory registers for sub-program */ 4909 int nByte; /* Bytes of runtime space required for sub-program */ 4910 Mem *pRt; /* Register to allocate runtime space */ 4911 Mem *pMem; /* Used to iterate through memory cells */ 4912 Mem *pEnd; /* Last memory cell in new array */ 4913 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 4914 SubProgram *pProgram; /* Sub-program to execute */ 4915 void *t; /* Token identifying trigger */ 4916 4917 pProgram = pOp->p4.pProgram; 4918 pRt = &aMem[pOp->p3]; 4919 assert( memIsValid(pRt) ); 4920 assert( pProgram->nOp>0 ); 4921 4922 /* If the p5 flag is clear, then recursive invocation of triggers is 4923 ** disabled for backwards compatibility (p5 is set if this sub-program 4924 ** is really a trigger, not a foreign key action, and the flag set 4925 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 4926 ** 4927 ** It is recursive invocation of triggers, at the SQL level, that is 4928 ** disabled. In some cases a single trigger may generate more than one 4929 ** SubProgram (if the trigger may be executed with more than one different 4930 ** ON CONFLICT algorithm). SubProgram structures associated with a 4931 ** single trigger all have the same value for the SubProgram.token 4932 ** variable. */ 4933 if( pOp->p5 ){ 4934 t = pProgram->token; 4935 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 4936 if( pFrame ) break; 4937 } 4938 4939 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 4940 rc = SQLITE_ERROR; 4941 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); 4942 break; 4943 } 4944 4945 /* Register pRt is used to store the memory required to save the state 4946 ** of the current program, and the memory required at runtime to execute 4947 ** the trigger program. If this trigger has been fired before, then pRt 4948 ** is already allocated. Otherwise, it must be initialized. */ 4949 if( (pRt->flags&MEM_Frame)==0 ){ 4950 /* SubProgram.nMem is set to the number of memory cells used by the 4951 ** program stored in SubProgram.aOp. As well as these, one memory 4952 ** cell is required for each cursor used by the program. Set local 4953 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 4954 */ 4955 nMem = pProgram->nMem + pProgram->nCsr; 4956 nByte = ROUND8(sizeof(VdbeFrame)) 4957 + nMem * sizeof(Mem) 4958 + pProgram->nCsr * sizeof(VdbeCursor *); 4959 pFrame = sqlite3DbMallocZero(db, nByte); 4960 if( !pFrame ){ 4961 goto no_mem; 4962 } 4963 sqlite3VdbeMemRelease(pRt); 4964 pRt->flags = MEM_Frame; 4965 pRt->u.pFrame = pFrame; 4966 4967 pFrame->v = p; 4968 pFrame->nChildMem = nMem; 4969 pFrame->nChildCsr = pProgram->nCsr; 4970 pFrame->pc = pc; 4971 pFrame->aMem = p->aMem; 4972 pFrame->nMem = p->nMem; 4973 pFrame->apCsr = p->apCsr; 4974 pFrame->nCursor = p->nCursor; 4975 pFrame->aOp = p->aOp; 4976 pFrame->nOp = p->nOp; 4977 pFrame->token = pProgram->token; 4978 4979 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 4980 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 4981 pMem->flags = MEM_Null; 4982 pMem->db = db; 4983 } 4984 }else{ 4985 pFrame = pRt->u.pFrame; 4986 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); 4987 assert( pProgram->nCsr==pFrame->nChildCsr ); 4988 assert( pc==pFrame->pc ); 4989 } 4990 4991 p->nFrame++; 4992 pFrame->pParent = p->pFrame; 4993 pFrame->lastRowid = db->lastRowid; 4994 pFrame->nChange = p->nChange; 4995 p->nChange = 0; 4996 p->pFrame = pFrame; 4997 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; 4998 p->nMem = pFrame->nChildMem; 4999 p->nCursor = (u16)pFrame->nChildCsr; 5000 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; 5001 p->aOp = aOp = pProgram->aOp; 5002 p->nOp = pProgram->nOp; 5003 pc = -1; 5004 5005 break; 5006 } 5007 5008 /* Opcode: Param P1 P2 * * * 5009 ** 5010 ** This opcode is only ever present in sub-programs called via the 5011 ** OP_Program instruction. Copy a value currently stored in a memory 5012 ** cell of the calling (parent) frame to cell P2 in the current frames 5013 ** address space. This is used by trigger programs to access the new.* 5014 ** and old.* values. 5015 ** 5016 ** The address of the cell in the parent frame is determined by adding 5017 ** the value of the P1 argument to the value of the P1 argument to the 5018 ** calling OP_Program instruction. 5019 */ 5020 case OP_Param: { /* out2-prerelease */ 5021 VdbeFrame *pFrame; 5022 Mem *pIn; 5023 pFrame = p->pFrame; 5024 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 5025 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 5026 break; 5027 } 5028 5029 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 5030 5031 #ifndef SQLITE_OMIT_FOREIGN_KEY 5032 /* Opcode: FkCounter P1 P2 * * * 5033 ** 5034 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 5035 ** If P1 is non-zero, the database constraint counter is incremented 5036 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 5037 ** statement counter is incremented (immediate foreign key constraints). 5038 */ 5039 case OP_FkCounter: { 5040 if( pOp->p1 ){ 5041 db->nDeferredCons += pOp->p2; 5042 }else{ 5043 p->nFkConstraint += pOp->p2; 5044 } 5045 break; 5046 } 5047 5048 /* Opcode: FkIfZero P1 P2 * * * 5049 ** 5050 ** This opcode tests if a foreign key constraint-counter is currently zero. 5051 ** If so, jump to instruction P2. Otherwise, fall through to the next 5052 ** instruction. 5053 ** 5054 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 5055 ** is zero (the one that counts deferred constraint violations). If P1 is 5056 ** zero, the jump is taken if the statement constraint-counter is zero 5057 ** (immediate foreign key constraint violations). 5058 */ 5059 case OP_FkIfZero: { /* jump */ 5060 if( pOp->p1 ){ 5061 if( db->nDeferredCons==0 ) pc = pOp->p2-1; 5062 }else{ 5063 if( p->nFkConstraint==0 ) pc = pOp->p2-1; 5064 } 5065 break; 5066 } 5067 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 5068 5069 #ifndef SQLITE_OMIT_AUTOINCREMENT 5070 /* Opcode: MemMax P1 P2 * * * 5071 ** 5072 ** P1 is a register in the root frame of this VM (the root frame is 5073 ** different from the current frame if this instruction is being executed 5074 ** within a sub-program). Set the value of register P1 to the maximum of 5075 ** its current value and the value in register P2. 5076 ** 5077 ** This instruction throws an error if the memory cell is not initially 5078 ** an integer. 5079 */ 5080 case OP_MemMax: { /* in2 */ 5081 Mem *pIn1; 5082 VdbeFrame *pFrame; 5083 if( p->pFrame ){ 5084 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 5085 pIn1 = &pFrame->aMem[pOp->p1]; 5086 }else{ 5087 pIn1 = &aMem[pOp->p1]; 5088 } 5089 assert( memIsValid(pIn1) ); 5090 sqlite3VdbeMemIntegerify(pIn1); 5091 pIn2 = &aMem[pOp->p2]; 5092 sqlite3VdbeMemIntegerify(pIn2); 5093 if( pIn1->u.i<pIn2->u.i){ 5094 pIn1->u.i = pIn2->u.i; 5095 } 5096 break; 5097 } 5098 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 5099 5100 /* Opcode: IfPos P1 P2 * * * 5101 ** 5102 ** If the value of register P1 is 1 or greater, jump to P2. 5103 ** 5104 ** It is illegal to use this instruction on a register that does 5105 ** not contain an integer. An assertion fault will result if you try. 5106 */ 5107 case OP_IfPos: { /* jump, in1 */ 5108 pIn1 = &aMem[pOp->p1]; 5109 assert( pIn1->flags&MEM_Int ); 5110 if( pIn1->u.i>0 ){ 5111 pc = pOp->p2 - 1; 5112 } 5113 break; 5114 } 5115 5116 /* Opcode: IfNeg P1 P2 * * * 5117 ** 5118 ** If the value of register P1 is less than zero, jump to P2. 5119 ** 5120 ** It is illegal to use this instruction on a register that does 5121 ** not contain an integer. An assertion fault will result if you try. 5122 */ 5123 case OP_IfNeg: { /* jump, in1 */ 5124 pIn1 = &aMem[pOp->p1]; 5125 assert( pIn1->flags&MEM_Int ); 5126 if( pIn1->u.i<0 ){ 5127 pc = pOp->p2 - 1; 5128 } 5129 break; 5130 } 5131 5132 /* Opcode: IfZero P1 P2 P3 * * 5133 ** 5134 ** The register P1 must contain an integer. Add literal P3 to the 5135 ** value in register P1. If the result is exactly 0, jump to P2. 5136 ** 5137 ** It is illegal to use this instruction on a register that does 5138 ** not contain an integer. An assertion fault will result if you try. 5139 */ 5140 case OP_IfZero: { /* jump, in1 */ 5141 pIn1 = &aMem[pOp->p1]; 5142 assert( pIn1->flags&MEM_Int ); 5143 pIn1->u.i += pOp->p3; 5144 if( pIn1->u.i==0 ){ 5145 pc = pOp->p2 - 1; 5146 } 5147 break; 5148 } 5149 5150 /* Opcode: AggStep * P2 P3 P4 P5 5151 ** 5152 ** Execute the step function for an aggregate. The 5153 ** function has P5 arguments. P4 is a pointer to the FuncDef 5154 ** structure that specifies the function. Use register 5155 ** P3 as the accumulator. 5156 ** 5157 ** The P5 arguments are taken from register P2 and its 5158 ** successors. 5159 */ 5160 case OP_AggStep: { 5161 int n; 5162 int i; 5163 Mem *pMem; 5164 Mem *pRec; 5165 sqlite3_context ctx; 5166 sqlite3_value **apVal; 5167 5168 n = pOp->p5; 5169 assert( n>=0 ); 5170 pRec = &aMem[pOp->p2]; 5171 apVal = p->apArg; 5172 assert( apVal || n==0 ); 5173 for(i=0; i<n; i++, pRec++){ 5174 assert( memIsValid(pRec) ); 5175 apVal[i] = pRec; 5176 memAboutToChange(p, pRec); 5177 sqlite3VdbeMemStoreType(pRec); 5178 } 5179 ctx.pFunc = pOp->p4.pFunc; 5180 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5181 ctx.pMem = pMem = &aMem[pOp->p3]; 5182 pMem->n++; 5183 ctx.s.flags = MEM_Null; 5184 ctx.s.z = 0; 5185 ctx.s.zMalloc = 0; 5186 ctx.s.xDel = 0; 5187 ctx.s.db = db; 5188 ctx.isError = 0; 5189 ctx.pColl = 0; 5190 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 5191 assert( pOp>p->aOp ); 5192 assert( pOp[-1].p4type==P4_COLLSEQ ); 5193 assert( pOp[-1].opcode==OP_CollSeq ); 5194 ctx.pColl = pOp[-1].p4.pColl; 5195 } 5196 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ 5197 if( ctx.isError ){ 5198 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); 5199 rc = ctx.isError; 5200 } 5201 5202 sqlite3VdbeMemRelease(&ctx.s); 5203 5204 break; 5205 } 5206 5207 /* Opcode: AggFinal P1 P2 * P4 * 5208 ** 5209 ** Execute the finalizer function for an aggregate. P1 is 5210 ** the memory location that is the accumulator for the aggregate. 5211 ** 5212 ** P2 is the number of arguments that the step function takes and 5213 ** P4 is a pointer to the FuncDef for this function. The P2 5214 ** argument is not used by this opcode. It is only there to disambiguate 5215 ** functions that can take varying numbers of arguments. The 5216 ** P4 argument is only needed for the degenerate case where 5217 ** the step function was not previously called. 5218 */ 5219 case OP_AggFinal: { 5220 Mem *pMem; 5221 assert( pOp->p1>0 && pOp->p1<=p->nMem ); 5222 pMem = &aMem[pOp->p1]; 5223 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 5224 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 5225 if( rc ){ 5226 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); 5227 } 5228 sqlite3VdbeChangeEncoding(pMem, encoding); 5229 UPDATE_MAX_BLOBSIZE(pMem); 5230 if( sqlite3VdbeMemTooBig(pMem) ){ 5231 goto too_big; 5232 } 5233 break; 5234 } 5235 5236 #ifndef SQLITE_OMIT_WAL 5237 /* Opcode: Checkpoint P1 P2 P3 * * 5238 ** 5239 ** Checkpoint database P1. This is a no-op if P1 is not currently in 5240 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL 5241 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns 5242 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 5243 ** WAL after the checkpoint into mem[P3+1] and the number of pages 5244 ** in the WAL that have been checkpointed after the checkpoint 5245 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 5246 ** mem[P3+2] are initialized to -1. 5247 */ 5248 case OP_Checkpoint: { 5249 int i; /* Loop counter */ 5250 int aRes[3]; /* Results */ 5251 Mem *pMem; /* Write results here */ 5252 5253 aRes[0] = 0; 5254 aRes[1] = aRes[2] = -1; 5255 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 5256 || pOp->p2==SQLITE_CHECKPOINT_FULL 5257 || pOp->p2==SQLITE_CHECKPOINT_RESTART 5258 ); 5259 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 5260 if( rc==SQLITE_BUSY ){ 5261 rc = SQLITE_OK; 5262 aRes[0] = 1; 5263 } 5264 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 5265 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 5266 } 5267 break; 5268 }; 5269 #endif 5270 5271 #ifndef SQLITE_OMIT_PRAGMA 5272 /* Opcode: JournalMode P1 P2 P3 * P5 5273 ** 5274 ** Change the journal mode of database P1 to P3. P3 must be one of the 5275 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 5276 ** modes (delete, truncate, persist, off and memory), this is a simple 5277 ** operation. No IO is required. 5278 ** 5279 ** If changing into or out of WAL mode the procedure is more complicated. 5280 ** 5281 ** Write a string containing the final journal-mode to register P2. 5282 */ 5283 case OP_JournalMode: { /* out2-prerelease */ 5284 Btree *pBt; /* Btree to change journal mode of */ 5285 Pager *pPager; /* Pager associated with pBt */ 5286 int eNew; /* New journal mode */ 5287 int eOld; /* The old journal mode */ 5288 const char *zFilename; /* Name of database file for pPager */ 5289 5290 eNew = pOp->p3; 5291 assert( eNew==PAGER_JOURNALMODE_DELETE 5292 || eNew==PAGER_JOURNALMODE_TRUNCATE 5293 || eNew==PAGER_JOURNALMODE_PERSIST 5294 || eNew==PAGER_JOURNALMODE_OFF 5295 || eNew==PAGER_JOURNALMODE_MEMORY 5296 || eNew==PAGER_JOURNALMODE_WAL 5297 || eNew==PAGER_JOURNALMODE_QUERY 5298 ); 5299 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5300 5301 pBt = db->aDb[pOp->p1].pBt; 5302 pPager = sqlite3BtreePager(pBt); 5303 eOld = sqlite3PagerGetJournalMode(pPager); 5304 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 5305 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 5306 5307 #ifndef SQLITE_OMIT_WAL 5308 zFilename = sqlite3PagerFilename(pPager); 5309 5310 /* Do not allow a transition to journal_mode=WAL for a database 5311 ** in temporary storage or if the VFS does not support shared memory 5312 */ 5313 if( eNew==PAGER_JOURNALMODE_WAL 5314 && (zFilename[0]==0 /* Temp file */ 5315 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 5316 ){ 5317 eNew = eOld; 5318 } 5319 5320 if( (eNew!=eOld) 5321 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 5322 ){ 5323 if( !db->autoCommit || db->activeVdbeCnt>1 ){ 5324 rc = SQLITE_ERROR; 5325 sqlite3SetString(&p->zErrMsg, db, 5326 "cannot change %s wal mode from within a transaction", 5327 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 5328 ); 5329 break; 5330 }else{ 5331 5332 if( eOld==PAGER_JOURNALMODE_WAL ){ 5333 /* If leaving WAL mode, close the log file. If successful, the call 5334 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 5335 ** file. An EXCLUSIVE lock may still be held on the database file 5336 ** after a successful return. 5337 */ 5338 rc = sqlite3PagerCloseWal(pPager); 5339 if( rc==SQLITE_OK ){ 5340 sqlite3PagerSetJournalMode(pPager, eNew); 5341 } 5342 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 5343 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 5344 ** as an intermediate */ 5345 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 5346 } 5347 5348 /* Open a transaction on the database file. Regardless of the journal 5349 ** mode, this transaction always uses a rollback journal. 5350 */ 5351 assert( sqlite3BtreeIsInTrans(pBt)==0 ); 5352 if( rc==SQLITE_OK ){ 5353 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 5354 } 5355 } 5356 } 5357 #endif /* ifndef SQLITE_OMIT_WAL */ 5358 5359 if( rc ){ 5360 eNew = eOld; 5361 } 5362 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 5363 5364 pOut = &aMem[pOp->p2]; 5365 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 5366 pOut->z = (char *)sqlite3JournalModename(eNew); 5367 pOut->n = sqlite3Strlen30(pOut->z); 5368 pOut->enc = SQLITE_UTF8; 5369 sqlite3VdbeChangeEncoding(pOut, encoding); 5370 break; 5371 }; 5372 #endif /* SQLITE_OMIT_PRAGMA */ 5373 5374 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 5375 /* Opcode: Vacuum * * * * * 5376 ** 5377 ** Vacuum the entire database. This opcode will cause other virtual 5378 ** machines to be created and run. It may not be called from within 5379 ** a transaction. 5380 */ 5381 case OP_Vacuum: { 5382 rc = sqlite3RunVacuum(&p->zErrMsg, db); 5383 break; 5384 } 5385 #endif 5386 5387 #if !defined(SQLITE_OMIT_AUTOVACUUM) 5388 /* Opcode: IncrVacuum P1 P2 * * * 5389 ** 5390 ** Perform a single step of the incremental vacuum procedure on 5391 ** the P1 database. If the vacuum has finished, jump to instruction 5392 ** P2. Otherwise, fall through to the next instruction. 5393 */ 5394 case OP_IncrVacuum: { /* jump */ 5395 Btree *pBt; 5396 5397 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 5398 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); 5399 pBt = db->aDb[pOp->p1].pBt; 5400 rc = sqlite3BtreeIncrVacuum(pBt); 5401 if( rc==SQLITE_DONE ){ 5402 pc = pOp->p2 - 1; 5403 rc = SQLITE_OK; 5404 } 5405 break; 5406 } 5407 #endif 5408 5409 /* Opcode: Expire P1 * * * * 5410 ** 5411 ** Cause precompiled statements to become expired. An expired statement 5412 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 5413 ** (via sqlite3_step()). 5414 ** 5415 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 5416 ** then only the currently executing statement is affected. 5417 */ 5418 case OP_Expire: { 5419 if( !pOp->p1 ){ 5420 sqlite3ExpirePreparedStatements(db); 5421 }else{ 5422 p->expired = 1; 5423 } 5424 break; 5425 } 5426 5427 #ifndef SQLITE_OMIT_SHARED_CACHE 5428 /* Opcode: TableLock P1 P2 P3 P4 * 5429 ** 5430 ** Obtain a lock on a particular table. This instruction is only used when 5431 ** the shared-cache feature is enabled. 5432 ** 5433 ** P1 is the index of the database in sqlite3.aDb[] of the database 5434 ** on which the lock is acquired. A readlock is obtained if P3==0 or 5435 ** a write lock if P3==1. 5436 ** 5437 ** P2 contains the root-page of the table to lock. 5438 ** 5439 ** P4 contains a pointer to the name of the table being locked. This is only 5440 ** used to generate an error message if the lock cannot be obtained. 5441 */ 5442 case OP_TableLock: { 5443 u8 isWriteLock = (u8)pOp->p3; 5444 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ 5445 int p1 = pOp->p1; 5446 assert( p1>=0 && p1<db->nDb ); 5447 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); 5448 assert( isWriteLock==0 || isWriteLock==1 ); 5449 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 5450 if( (rc&0xFF)==SQLITE_LOCKED ){ 5451 const char *z = pOp->p4.z; 5452 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); 5453 } 5454 } 5455 break; 5456 } 5457 #endif /* SQLITE_OMIT_SHARED_CACHE */ 5458 5459 #ifndef SQLITE_OMIT_VIRTUALTABLE 5460 /* Opcode: VBegin * * * P4 * 5461 ** 5462 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 5463 ** xBegin method for that table. 5464 ** 5465 ** Also, whether or not P4 is set, check that this is not being called from 5466 ** within a callback to a virtual table xSync() method. If it is, the error 5467 ** code will be set to SQLITE_LOCKED. 5468 */ 5469 case OP_VBegin: { 5470 VTable *pVTab; 5471 pVTab = pOp->p4.pVtab; 5472 rc = sqlite3VtabBegin(db, pVTab); 5473 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); 5474 break; 5475 } 5476 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5477 5478 #ifndef SQLITE_OMIT_VIRTUALTABLE 5479 /* Opcode: VCreate P1 * * P4 * 5480 ** 5481 ** P4 is the name of a virtual table in database P1. Call the xCreate method 5482 ** for that table. 5483 */ 5484 case OP_VCreate: { 5485 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); 5486 break; 5487 } 5488 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5489 5490 #ifndef SQLITE_OMIT_VIRTUALTABLE 5491 /* Opcode: VDestroy P1 * * P4 * 5492 ** 5493 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 5494 ** of that table. 5495 */ 5496 case OP_VDestroy: { 5497 p->inVtabMethod = 2; 5498 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 5499 p->inVtabMethod = 0; 5500 break; 5501 } 5502 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5503 5504 #ifndef SQLITE_OMIT_VIRTUALTABLE 5505 /* Opcode: VOpen P1 * * P4 * 5506 ** 5507 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5508 ** P1 is a cursor number. This opcode opens a cursor to the virtual 5509 ** table and stores that cursor in P1. 5510 */ 5511 case OP_VOpen: { 5512 VdbeCursor *pCur; 5513 sqlite3_vtab_cursor *pVtabCursor; 5514 sqlite3_vtab *pVtab; 5515 sqlite3_module *pModule; 5516 5517 pCur = 0; 5518 pVtabCursor = 0; 5519 pVtab = pOp->p4.pVtab->pVtab; 5520 pModule = (sqlite3_module *)pVtab->pModule; 5521 assert(pVtab && pModule); 5522 rc = pModule->xOpen(pVtab, &pVtabCursor); 5523 importVtabErrMsg(p, pVtab); 5524 if( SQLITE_OK==rc ){ 5525 /* Initialize sqlite3_vtab_cursor base class */ 5526 pVtabCursor->pVtab = pVtab; 5527 5528 /* Initialise vdbe cursor object */ 5529 pCur = allocateCursor(p, pOp->p1, 0, -1, 0); 5530 if( pCur ){ 5531 pCur->pVtabCursor = pVtabCursor; 5532 pCur->pModule = pVtabCursor->pVtab->pModule; 5533 }else{ 5534 db->mallocFailed = 1; 5535 pModule->xClose(pVtabCursor); 5536 } 5537 } 5538 break; 5539 } 5540 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5541 5542 #ifndef SQLITE_OMIT_VIRTUALTABLE 5543 /* Opcode: VFilter P1 P2 P3 P4 * 5544 ** 5545 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 5546 ** the filtered result set is empty. 5547 ** 5548 ** P4 is either NULL or a string that was generated by the xBestIndex 5549 ** method of the module. The interpretation of the P4 string is left 5550 ** to the module implementation. 5551 ** 5552 ** This opcode invokes the xFilter method on the virtual table specified 5553 ** by P1. The integer query plan parameter to xFilter is stored in register 5554 ** P3. Register P3+1 stores the argc parameter to be passed to the 5555 ** xFilter method. Registers P3+2..P3+1+argc are the argc 5556 ** additional parameters which are passed to 5557 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 5558 ** 5559 ** A jump is made to P2 if the result set after filtering would be empty. 5560 */ 5561 case OP_VFilter: { /* jump */ 5562 int nArg; 5563 int iQuery; 5564 const sqlite3_module *pModule; 5565 Mem *pQuery; 5566 Mem *pArgc; 5567 sqlite3_vtab_cursor *pVtabCursor; 5568 sqlite3_vtab *pVtab; 5569 VdbeCursor *pCur; 5570 int res; 5571 int i; 5572 Mem **apArg; 5573 5574 pQuery = &aMem[pOp->p3]; 5575 pArgc = &pQuery[1]; 5576 pCur = p->apCsr[pOp->p1]; 5577 assert( memIsValid(pQuery) ); 5578 REGISTER_TRACE(pOp->p3, pQuery); 5579 assert( pCur->pVtabCursor ); 5580 pVtabCursor = pCur->pVtabCursor; 5581 pVtab = pVtabCursor->pVtab; 5582 pModule = pVtab->pModule; 5583 5584 /* Grab the index number and argc parameters */ 5585 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 5586 nArg = (int)pArgc->u.i; 5587 iQuery = (int)pQuery->u.i; 5588 5589 /* Invoke the xFilter method */ 5590 { 5591 res = 0; 5592 apArg = p->apArg; 5593 for(i = 0; i<nArg; i++){ 5594 apArg[i] = &pArgc[i+1]; 5595 sqlite3VdbeMemStoreType(apArg[i]); 5596 } 5597 5598 p->inVtabMethod = 1; 5599 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); 5600 p->inVtabMethod = 0; 5601 importVtabErrMsg(p, pVtab); 5602 if( rc==SQLITE_OK ){ 5603 res = pModule->xEof(pVtabCursor); 5604 } 5605 5606 if( res ){ 5607 pc = pOp->p2 - 1; 5608 } 5609 } 5610 pCur->nullRow = 0; 5611 5612 break; 5613 } 5614 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5615 5616 #ifndef SQLITE_OMIT_VIRTUALTABLE 5617 /* Opcode: VColumn P1 P2 P3 * * 5618 ** 5619 ** Store the value of the P2-th column of 5620 ** the row of the virtual-table that the 5621 ** P1 cursor is pointing to into register P3. 5622 */ 5623 case OP_VColumn: { 5624 sqlite3_vtab *pVtab; 5625 const sqlite3_module *pModule; 5626 Mem *pDest; 5627 sqlite3_context sContext; 5628 5629 VdbeCursor *pCur = p->apCsr[pOp->p1]; 5630 assert( pCur->pVtabCursor ); 5631 assert( pOp->p3>0 && pOp->p3<=p->nMem ); 5632 pDest = &aMem[pOp->p3]; 5633 memAboutToChange(p, pDest); 5634 if( pCur->nullRow ){ 5635 sqlite3VdbeMemSetNull(pDest); 5636 break; 5637 } 5638 pVtab = pCur->pVtabCursor->pVtab; 5639 pModule = pVtab->pModule; 5640 assert( pModule->xColumn ); 5641 memset(&sContext, 0, sizeof(sContext)); 5642 5643 /* The output cell may already have a buffer allocated. Move 5644 ** the current contents to sContext.s so in case the user-function 5645 ** can use the already allocated buffer instead of allocating a 5646 ** new one. 5647 */ 5648 sqlite3VdbeMemMove(&sContext.s, pDest); 5649 MemSetTypeFlag(&sContext.s, MEM_Null); 5650 5651 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); 5652 importVtabErrMsg(p, pVtab); 5653 if( sContext.isError ){ 5654 rc = sContext.isError; 5655 } 5656 5657 /* Copy the result of the function to the P3 register. We 5658 ** do this regardless of whether or not an error occurred to ensure any 5659 ** dynamic allocation in sContext.s (a Mem struct) is released. 5660 */ 5661 sqlite3VdbeChangeEncoding(&sContext.s, encoding); 5662 sqlite3VdbeMemMove(pDest, &sContext.s); 5663 REGISTER_TRACE(pOp->p3, pDest); 5664 UPDATE_MAX_BLOBSIZE(pDest); 5665 5666 if( sqlite3VdbeMemTooBig(pDest) ){ 5667 goto too_big; 5668 } 5669 break; 5670 } 5671 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5672 5673 #ifndef SQLITE_OMIT_VIRTUALTABLE 5674 /* Opcode: VNext P1 P2 * * * 5675 ** 5676 ** Advance virtual table P1 to the next row in its result set and 5677 ** jump to instruction P2. Or, if the virtual table has reached 5678 ** the end of its result set, then fall through to the next instruction. 5679 */ 5680 case OP_VNext: { /* jump */ 5681 sqlite3_vtab *pVtab; 5682 const sqlite3_module *pModule; 5683 int res; 5684 VdbeCursor *pCur; 5685 5686 res = 0; 5687 pCur = p->apCsr[pOp->p1]; 5688 assert( pCur->pVtabCursor ); 5689 if( pCur->nullRow ){ 5690 break; 5691 } 5692 pVtab = pCur->pVtabCursor->pVtab; 5693 pModule = pVtab->pModule; 5694 assert( pModule->xNext ); 5695 5696 /* Invoke the xNext() method of the module. There is no way for the 5697 ** underlying implementation to return an error if one occurs during 5698 ** xNext(). Instead, if an error occurs, true is returned (indicating that 5699 ** data is available) and the error code returned when xColumn or 5700 ** some other method is next invoked on the save virtual table cursor. 5701 */ 5702 p->inVtabMethod = 1; 5703 rc = pModule->xNext(pCur->pVtabCursor); 5704 p->inVtabMethod = 0; 5705 importVtabErrMsg(p, pVtab); 5706 if( rc==SQLITE_OK ){ 5707 res = pModule->xEof(pCur->pVtabCursor); 5708 } 5709 5710 if( !res ){ 5711 /* If there is data, jump to P2 */ 5712 pc = pOp->p2 - 1; 5713 } 5714 break; 5715 } 5716 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5717 5718 #ifndef SQLITE_OMIT_VIRTUALTABLE 5719 /* Opcode: VRename P1 * * P4 * 5720 ** 5721 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5722 ** This opcode invokes the corresponding xRename method. The value 5723 ** in register P1 is passed as the zName argument to the xRename method. 5724 */ 5725 case OP_VRename: { 5726 sqlite3_vtab *pVtab; 5727 Mem *pName; 5728 5729 pVtab = pOp->p4.pVtab->pVtab; 5730 pName = &aMem[pOp->p1]; 5731 assert( pVtab->pModule->xRename ); 5732 assert( memIsValid(pName) ); 5733 REGISTER_TRACE(pOp->p1, pName); 5734 assert( pName->flags & MEM_Str ); 5735 rc = pVtab->pModule->xRename(pVtab, pName->z); 5736 importVtabErrMsg(p, pVtab); 5737 p->expired = 0; 5738 5739 break; 5740 } 5741 #endif 5742 5743 #ifndef SQLITE_OMIT_VIRTUALTABLE 5744 /* Opcode: VUpdate P1 P2 P3 P4 * 5745 ** 5746 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 5747 ** This opcode invokes the corresponding xUpdate method. P2 values 5748 ** are contiguous memory cells starting at P3 to pass to the xUpdate 5749 ** invocation. The value in register (P3+P2-1) corresponds to the 5750 ** p2th element of the argv array passed to xUpdate. 5751 ** 5752 ** The xUpdate method will do a DELETE or an INSERT or both. 5753 ** The argv[0] element (which corresponds to memory cell P3) 5754 ** is the rowid of a row to delete. If argv[0] is NULL then no 5755 ** deletion occurs. The argv[1] element is the rowid of the new 5756 ** row. This can be NULL to have the virtual table select the new 5757 ** rowid for itself. The subsequent elements in the array are 5758 ** the values of columns in the new row. 5759 ** 5760 ** If P2==1 then no insert is performed. argv[0] is the rowid of 5761 ** a row to delete. 5762 ** 5763 ** P1 is a boolean flag. If it is set to true and the xUpdate call 5764 ** is successful, then the value returned by sqlite3_last_insert_rowid() 5765 ** is set to the value of the rowid for the row just inserted. 5766 */ 5767 case OP_VUpdate: { 5768 sqlite3_vtab *pVtab; 5769 sqlite3_module *pModule; 5770 int nArg; 5771 int i; 5772 sqlite_int64 rowid; 5773 Mem **apArg; 5774 Mem *pX; 5775 5776 pVtab = pOp->p4.pVtab->pVtab; 5777 pModule = (sqlite3_module *)pVtab->pModule; 5778 nArg = pOp->p2; 5779 assert( pOp->p4type==P4_VTAB ); 5780 if( ALWAYS(pModule->xUpdate) ){ 5781 apArg = p->apArg; 5782 pX = &aMem[pOp->p3]; 5783 for(i=0; i<nArg; i++){ 5784 assert( memIsValid(pX) ); 5785 memAboutToChange(p, pX); 5786 sqlite3VdbeMemStoreType(pX); 5787 apArg[i] = pX; 5788 pX++; 5789 } 5790 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 5791 importVtabErrMsg(p, pVtab); 5792 if( rc==SQLITE_OK && pOp->p1 ){ 5793 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 5794 db->lastRowid = rowid; 5795 } 5796 p->nChange++; 5797 } 5798 break; 5799 } 5800 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5801 5802 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 5803 /* Opcode: Pagecount P1 P2 * * * 5804 ** 5805 ** Write the current number of pages in database P1 to memory cell P2. 5806 */ 5807 case OP_Pagecount: { /* out2-prerelease */ 5808 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 5809 break; 5810 } 5811 #endif 5812 5813 5814 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 5815 /* Opcode: MaxPgcnt P1 P2 P3 * * 5816 ** 5817 ** Try to set the maximum page count for database P1 to the value in P3. 5818 ** Do not let the maximum page count fall below the current page count and 5819 ** do not change the maximum page count value if P3==0. 5820 ** 5821 ** Store the maximum page count after the change in register P2. 5822 */ 5823 case OP_MaxPgcnt: { /* out2-prerelease */ 5824 unsigned int newMax; 5825 Btree *pBt; 5826 5827 pBt = db->aDb[pOp->p1].pBt; 5828 newMax = 0; 5829 if( pOp->p3 ){ 5830 newMax = sqlite3BtreeLastPage(pBt); 5831 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 5832 } 5833 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 5834 break; 5835 } 5836 #endif 5837 5838 5839 #ifndef SQLITE_OMIT_TRACE 5840 /* Opcode: Trace * * * P4 * 5841 ** 5842 ** If tracing is enabled (by the sqlite3_trace()) interface, then 5843 ** the UTF-8 string contained in P4 is emitted on the trace callback. 5844 */ 5845 case OP_Trace: { 5846 char *zTrace; 5847 5848 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 5849 if( zTrace ){ 5850 if( db->xTrace ){ 5851 char *z = sqlite3VdbeExpandSql(p, zTrace); 5852 db->xTrace(db->pTraceArg, z); 5853 sqlite3DbFree(db, z); 5854 } 5855 #ifdef SQLITE_DEBUG 5856 if( (db->flags & SQLITE_SqlTrace)!=0 ){ 5857 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 5858 } 5859 #endif /* SQLITE_DEBUG */ 5860 } 5861 break; 5862 } 5863 #endif 5864 5865 5866 /* Opcode: Noop * * * * * 5867 ** 5868 ** Do nothing. This instruction is often useful as a jump 5869 ** destination. 5870 */ 5871 /* 5872 ** The magic Explain opcode are only inserted when explain==2 (which 5873 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 5874 ** This opcode records information from the optimizer. It is the 5875 ** the same as a no-op. This opcodesnever appears in a real VM program. 5876 */ 5877 default: { /* This is really OP_Noop and OP_Explain */ 5878 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 5879 break; 5880 } 5881 5882 /***************************************************************************** 5883 ** The cases of the switch statement above this line should all be indented 5884 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 5885 ** readability. From this point on down, the normal indentation rules are 5886 ** restored. 5887 *****************************************************************************/ 5888 } 5889 5890 #ifdef VDBE_PROFILE 5891 { 5892 u64 elapsed = sqlite3Hwtime() - start; 5893 pOp->cycles += elapsed; 5894 pOp->cnt++; 5895 #if 0 5896 fprintf(stdout, "%10llu ", elapsed); 5897 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); 5898 #endif 5899 } 5900 #endif 5901 5902 /* The following code adds nothing to the actual functionality 5903 ** of the program. It is only here for testing and debugging. 5904 ** On the other hand, it does burn CPU cycles every time through 5905 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 5906 */ 5907 #ifndef NDEBUG 5908 assert( pc>=-1 && pc<p->nOp ); 5909 5910 #ifdef SQLITE_DEBUG 5911 if( p->trace ){ 5912 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); 5913 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ 5914 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]); 5915 } 5916 if( pOp->opflags & OPFLG_OUT3 ){ 5917 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]); 5918 } 5919 } 5920 #endif /* SQLITE_DEBUG */ 5921 #endif /* NDEBUG */ 5922 } /* The end of the for(;;) loop the loops through opcodes */ 5923 5924 /* If we reach this point, it means that execution is finished with 5925 ** an error of some kind. 5926 */ 5927 vdbe_error_halt: 5928 assert( rc ); 5929 p->rc = rc; 5930 testcase( sqlite3GlobalConfig.xLog!=0 ); 5931 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 5932 pc, p->zSql, p->zErrMsg); 5933 sqlite3VdbeHalt(p); 5934 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; 5935 rc = SQLITE_ERROR; 5936 if( resetSchemaOnFault>0 ){ 5937 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1); 5938 } 5939 5940 /* This is the only way out of this procedure. We have to 5941 ** release the mutexes on btrees that were acquired at the 5942 ** top. */ 5943 vdbe_return: 5944 sqlite3VdbeLeave(p); 5945 return rc; 5946 5947 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 5948 ** is encountered. 5949 */ 5950 too_big: 5951 sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); 5952 rc = SQLITE_TOOBIG; 5953 goto vdbe_error_halt; 5954 5955 /* Jump to here if a malloc() fails. 5956 */ 5957 no_mem: 5958 db->mallocFailed = 1; 5959 sqlite3SetString(&p->zErrMsg, db, "out of memory"); 5960 rc = SQLITE_NOMEM; 5961 goto vdbe_error_halt; 5962 5963 /* Jump to here for any other kind of fatal error. The "rc" variable 5964 ** should hold the error number. 5965 */ 5966 abort_due_to_error: 5967 assert( p->zErrMsg==0 ); 5968 if( db->mallocFailed ) rc = SQLITE_NOMEM; 5969 if( rc!=SQLITE_IOERR_NOMEM ){ 5970 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 5971 } 5972 goto vdbe_error_halt; 5973 5974 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 5975 ** flag. 5976 */ 5977 abort_due_to_interrupt: 5978 assert( db->u1.isInterrupted ); 5979 rc = SQLITE_INTERRUPT; 5980 p->rc = rc; 5981 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); 5982 goto vdbe_error_halt; 5983 } 5984