1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Expression/DWARFExpression.h" 11 12 #include <vector> 13 14 #include "lldb/Core/DataEncoder.h" 15 #include "lldb/Core/dwarf.h" 16 #include "lldb/Core/Log.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Core/StreamString.h" 19 #include "lldb/Core/Scalar.h" 20 #include "lldb/Core/Value.h" 21 #include "lldb/Core/VMRange.h" 22 23 #include "lldb/Expression/ClangExpressionDeclMap.h" 24 #include "lldb/Expression/ClangExpressionVariable.h" 25 26 #include "lldb/Host/Endian.h" 27 #include "lldb/Host/Host.h" 28 29 #include "lldb/lldb-private-log.h" 30 31 #include "lldb/Symbol/ClangASTType.h" 32 #include "lldb/Symbol/ClangASTContext.h" 33 #include "lldb/Symbol/Type.h" 34 35 #include "lldb/Target/ABI.h" 36 #include "lldb/Target/ExecutionContext.h" 37 #include "lldb/Target/Process.h" 38 #include "lldb/Target/RegisterContext.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/StackID.h" 41 42 using namespace lldb; 43 using namespace lldb_private; 44 45 const char * 46 DW_OP_value_to_name (uint32_t val) 47 { 48 static char invalid[100]; 49 switch (val) { 50 case 0x03: return "DW_OP_addr"; 51 case 0x06: return "DW_OP_deref"; 52 case 0x08: return "DW_OP_const1u"; 53 case 0x09: return "DW_OP_const1s"; 54 case 0x0a: return "DW_OP_const2u"; 55 case 0x0b: return "DW_OP_const2s"; 56 case 0x0c: return "DW_OP_const4u"; 57 case 0x0d: return "DW_OP_const4s"; 58 case 0x0e: return "DW_OP_const8u"; 59 case 0x0f: return "DW_OP_const8s"; 60 case 0x10: return "DW_OP_constu"; 61 case 0x11: return "DW_OP_consts"; 62 case 0x12: return "DW_OP_dup"; 63 case 0x13: return "DW_OP_drop"; 64 case 0x14: return "DW_OP_over"; 65 case 0x15: return "DW_OP_pick"; 66 case 0x16: return "DW_OP_swap"; 67 case 0x17: return "DW_OP_rot"; 68 case 0x18: return "DW_OP_xderef"; 69 case 0x19: return "DW_OP_abs"; 70 case 0x1a: return "DW_OP_and"; 71 case 0x1b: return "DW_OP_div"; 72 case 0x1c: return "DW_OP_minus"; 73 case 0x1d: return "DW_OP_mod"; 74 case 0x1e: return "DW_OP_mul"; 75 case 0x1f: return "DW_OP_neg"; 76 case 0x20: return "DW_OP_not"; 77 case 0x21: return "DW_OP_or"; 78 case 0x22: return "DW_OP_plus"; 79 case 0x23: return "DW_OP_plus_uconst"; 80 case 0x24: return "DW_OP_shl"; 81 case 0x25: return "DW_OP_shr"; 82 case 0x26: return "DW_OP_shra"; 83 case 0x27: return "DW_OP_xor"; 84 case 0x2f: return "DW_OP_skip"; 85 case 0x28: return "DW_OP_bra"; 86 case 0x29: return "DW_OP_eq"; 87 case 0x2a: return "DW_OP_ge"; 88 case 0x2b: return "DW_OP_gt"; 89 case 0x2c: return "DW_OP_le"; 90 case 0x2d: return "DW_OP_lt"; 91 case 0x2e: return "DW_OP_ne"; 92 case 0x30: return "DW_OP_lit0"; 93 case 0x31: return "DW_OP_lit1"; 94 case 0x32: return "DW_OP_lit2"; 95 case 0x33: return "DW_OP_lit3"; 96 case 0x34: return "DW_OP_lit4"; 97 case 0x35: return "DW_OP_lit5"; 98 case 0x36: return "DW_OP_lit6"; 99 case 0x37: return "DW_OP_lit7"; 100 case 0x38: return "DW_OP_lit8"; 101 case 0x39: return "DW_OP_lit9"; 102 case 0x3a: return "DW_OP_lit10"; 103 case 0x3b: return "DW_OP_lit11"; 104 case 0x3c: return "DW_OP_lit12"; 105 case 0x3d: return "DW_OP_lit13"; 106 case 0x3e: return "DW_OP_lit14"; 107 case 0x3f: return "DW_OP_lit15"; 108 case 0x40: return "DW_OP_lit16"; 109 case 0x41: return "DW_OP_lit17"; 110 case 0x42: return "DW_OP_lit18"; 111 case 0x43: return "DW_OP_lit19"; 112 case 0x44: return "DW_OP_lit20"; 113 case 0x45: return "DW_OP_lit21"; 114 case 0x46: return "DW_OP_lit22"; 115 case 0x47: return "DW_OP_lit23"; 116 case 0x48: return "DW_OP_lit24"; 117 case 0x49: return "DW_OP_lit25"; 118 case 0x4a: return "DW_OP_lit26"; 119 case 0x4b: return "DW_OP_lit27"; 120 case 0x4c: return "DW_OP_lit28"; 121 case 0x4d: return "DW_OP_lit29"; 122 case 0x4e: return "DW_OP_lit30"; 123 case 0x4f: return "DW_OP_lit31"; 124 case 0x50: return "DW_OP_reg0"; 125 case 0x51: return "DW_OP_reg1"; 126 case 0x52: return "DW_OP_reg2"; 127 case 0x53: return "DW_OP_reg3"; 128 case 0x54: return "DW_OP_reg4"; 129 case 0x55: return "DW_OP_reg5"; 130 case 0x56: return "DW_OP_reg6"; 131 case 0x57: return "DW_OP_reg7"; 132 case 0x58: return "DW_OP_reg8"; 133 case 0x59: return "DW_OP_reg9"; 134 case 0x5a: return "DW_OP_reg10"; 135 case 0x5b: return "DW_OP_reg11"; 136 case 0x5c: return "DW_OP_reg12"; 137 case 0x5d: return "DW_OP_reg13"; 138 case 0x5e: return "DW_OP_reg14"; 139 case 0x5f: return "DW_OP_reg15"; 140 case 0x60: return "DW_OP_reg16"; 141 case 0x61: return "DW_OP_reg17"; 142 case 0x62: return "DW_OP_reg18"; 143 case 0x63: return "DW_OP_reg19"; 144 case 0x64: return "DW_OP_reg20"; 145 case 0x65: return "DW_OP_reg21"; 146 case 0x66: return "DW_OP_reg22"; 147 case 0x67: return "DW_OP_reg23"; 148 case 0x68: return "DW_OP_reg24"; 149 case 0x69: return "DW_OP_reg25"; 150 case 0x6a: return "DW_OP_reg26"; 151 case 0x6b: return "DW_OP_reg27"; 152 case 0x6c: return "DW_OP_reg28"; 153 case 0x6d: return "DW_OP_reg29"; 154 case 0x6e: return "DW_OP_reg30"; 155 case 0x6f: return "DW_OP_reg31"; 156 case 0x70: return "DW_OP_breg0"; 157 case 0x71: return "DW_OP_breg1"; 158 case 0x72: return "DW_OP_breg2"; 159 case 0x73: return "DW_OP_breg3"; 160 case 0x74: return "DW_OP_breg4"; 161 case 0x75: return "DW_OP_breg5"; 162 case 0x76: return "DW_OP_breg6"; 163 case 0x77: return "DW_OP_breg7"; 164 case 0x78: return "DW_OP_breg8"; 165 case 0x79: return "DW_OP_breg9"; 166 case 0x7a: return "DW_OP_breg10"; 167 case 0x7b: return "DW_OP_breg11"; 168 case 0x7c: return "DW_OP_breg12"; 169 case 0x7d: return "DW_OP_breg13"; 170 case 0x7e: return "DW_OP_breg14"; 171 case 0x7f: return "DW_OP_breg15"; 172 case 0x80: return "DW_OP_breg16"; 173 case 0x81: return "DW_OP_breg17"; 174 case 0x82: return "DW_OP_breg18"; 175 case 0x83: return "DW_OP_breg19"; 176 case 0x84: return "DW_OP_breg20"; 177 case 0x85: return "DW_OP_breg21"; 178 case 0x86: return "DW_OP_breg22"; 179 case 0x87: return "DW_OP_breg23"; 180 case 0x88: return "DW_OP_breg24"; 181 case 0x89: return "DW_OP_breg25"; 182 case 0x8a: return "DW_OP_breg26"; 183 case 0x8b: return "DW_OP_breg27"; 184 case 0x8c: return "DW_OP_breg28"; 185 case 0x8d: return "DW_OP_breg29"; 186 case 0x8e: return "DW_OP_breg30"; 187 case 0x8f: return "DW_OP_breg31"; 188 case 0x90: return "DW_OP_regx"; 189 case 0x91: return "DW_OP_fbreg"; 190 case 0x92: return "DW_OP_bregx"; 191 case 0x93: return "DW_OP_piece"; 192 case 0x94: return "DW_OP_deref_size"; 193 case 0x95: return "DW_OP_xderef_size"; 194 case 0x96: return "DW_OP_nop"; 195 case 0x97: return "DW_OP_push_object_address"; 196 case 0x98: return "DW_OP_call2"; 197 case 0x99: return "DW_OP_call4"; 198 case 0x9a: return "DW_OP_call_ref"; 199 // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref"; 200 // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern"; 201 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit"; 202 // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign"; 203 // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of"; 204 // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of"; 205 // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type"; 206 // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local"; 207 // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf"; 208 // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast"; 209 // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast"; 210 // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear"; 211 // case DW_OP_APPLE_error: return "DW_OP_APPLE_error"; 212 default: 213 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val); 214 return invalid; 215 } 216 } 217 218 219 //---------------------------------------------------------------------- 220 // DWARFExpression constructor 221 //---------------------------------------------------------------------- 222 DWARFExpression::DWARFExpression() : 223 m_data(), 224 m_reg_kind (eRegisterKindDWARF), 225 m_loclist_slide (LLDB_INVALID_ADDRESS) 226 { 227 } 228 229 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) : 230 m_data(rhs.m_data), 231 m_reg_kind (rhs.m_reg_kind), 232 m_loclist_slide(rhs.m_loclist_slide) 233 { 234 } 235 236 237 DWARFExpression::DWARFExpression(const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) : 238 m_data(data, data_offset, data_length), 239 m_reg_kind (eRegisterKindDWARF), 240 m_loclist_slide(LLDB_INVALID_ADDRESS) 241 { 242 } 243 244 //---------------------------------------------------------------------- 245 // Destructor 246 //---------------------------------------------------------------------- 247 DWARFExpression::~DWARFExpression() 248 { 249 } 250 251 252 bool 253 DWARFExpression::IsValid() const 254 { 255 return m_data.GetByteSize() > 0; 256 } 257 258 void 259 DWARFExpression::SetOpcodeData (const DataExtractor& data) 260 { 261 m_data = data; 262 } 263 264 void 265 DWARFExpression::CopyOpcodeData (const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) 266 { 267 const uint8_t *bytes = data.PeekData(data_offset, data_length); 268 if (bytes) 269 { 270 m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length))); 271 m_data.SetByteOrder(data.GetByteOrder()); 272 m_data.SetAddressByteSize(data.GetAddressByteSize()); 273 } 274 } 275 276 void 277 DWARFExpression::SetOpcodeData (const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) 278 { 279 m_data.SetData(data, data_offset, data_length); 280 } 281 282 void 283 DWARFExpression::DumpLocation (Stream *s, lldb::offset_t offset, lldb::offset_t length, lldb::DescriptionLevel level, ABI *abi) const 284 { 285 if (!m_data.ValidOffsetForDataOfSize(offset, length)) 286 return; 287 const lldb::offset_t start_offset = offset; 288 const lldb::offset_t end_offset = offset + length; 289 while (m_data.ValidOffset(offset) && offset < end_offset) 290 { 291 const lldb::offset_t op_offset = offset; 292 const uint8_t op = m_data.GetU8(&offset); 293 294 switch (level) 295 { 296 default: 297 break; 298 299 case lldb::eDescriptionLevelBrief: 300 if (offset > start_offset) 301 s->PutChar(' '); 302 break; 303 304 case lldb::eDescriptionLevelFull: 305 case lldb::eDescriptionLevelVerbose: 306 if (offset > start_offset) 307 s->EOL(); 308 s->Indent(); 309 if (level == lldb::eDescriptionLevelFull) 310 break; 311 // Fall through for verbose and print offset and DW_OP prefix.. 312 s->Printf("0x%8.8" PRIx64 ": %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); 313 break; 314 } 315 316 switch (op) 317 { 318 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address 319 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 320 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant 321 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant 322 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant 323 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant 324 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant 325 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant 326 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant 327 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant 328 case DW_OP_constu: s->Printf("DW_OP_constu(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant 329 case DW_OP_consts: s->Printf("DW_OP_consts(0x%" PRId64 ") ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant 330 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 331 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 332 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 333 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index 334 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 335 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 336 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 337 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 338 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a 339 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b 340 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c 341 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d 342 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e 343 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f 344 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 345 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 346 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 347 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 348 s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); 349 break; 350 351 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 352 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 353 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 354 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 355 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant 356 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant 357 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 358 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a 359 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b 360 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c 361 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d 362 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e 363 364 case DW_OP_lit0: // 0x30 365 case DW_OP_lit1: // 0x31 366 case DW_OP_lit2: // 0x32 367 case DW_OP_lit3: // 0x33 368 case DW_OP_lit4: // 0x34 369 case DW_OP_lit5: // 0x35 370 case DW_OP_lit6: // 0x36 371 case DW_OP_lit7: // 0x37 372 case DW_OP_lit8: // 0x38 373 case DW_OP_lit9: // 0x39 374 case DW_OP_lit10: // 0x3A 375 case DW_OP_lit11: // 0x3B 376 case DW_OP_lit12: // 0x3C 377 case DW_OP_lit13: // 0x3D 378 case DW_OP_lit14: // 0x3E 379 case DW_OP_lit15: // 0x3F 380 case DW_OP_lit16: // 0x40 381 case DW_OP_lit17: // 0x41 382 case DW_OP_lit18: // 0x42 383 case DW_OP_lit19: // 0x43 384 case DW_OP_lit20: // 0x44 385 case DW_OP_lit21: // 0x45 386 case DW_OP_lit22: // 0x46 387 case DW_OP_lit23: // 0x47 388 case DW_OP_lit24: // 0x48 389 case DW_OP_lit25: // 0x49 390 case DW_OP_lit26: // 0x4A 391 case DW_OP_lit27: // 0x4B 392 case DW_OP_lit28: // 0x4C 393 case DW_OP_lit29: // 0x4D 394 case DW_OP_lit30: // 0x4E 395 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f 396 397 case DW_OP_reg0: // 0x50 398 case DW_OP_reg1: // 0x51 399 case DW_OP_reg2: // 0x52 400 case DW_OP_reg3: // 0x53 401 case DW_OP_reg4: // 0x54 402 case DW_OP_reg5: // 0x55 403 case DW_OP_reg6: // 0x56 404 case DW_OP_reg7: // 0x57 405 case DW_OP_reg8: // 0x58 406 case DW_OP_reg9: // 0x59 407 case DW_OP_reg10: // 0x5A 408 case DW_OP_reg11: // 0x5B 409 case DW_OP_reg12: // 0x5C 410 case DW_OP_reg13: // 0x5D 411 case DW_OP_reg14: // 0x5E 412 case DW_OP_reg15: // 0x5F 413 case DW_OP_reg16: // 0x60 414 case DW_OP_reg17: // 0x61 415 case DW_OP_reg18: // 0x62 416 case DW_OP_reg19: // 0x63 417 case DW_OP_reg20: // 0x64 418 case DW_OP_reg21: // 0x65 419 case DW_OP_reg22: // 0x66 420 case DW_OP_reg23: // 0x67 421 case DW_OP_reg24: // 0x68 422 case DW_OP_reg25: // 0x69 423 case DW_OP_reg26: // 0x6A 424 case DW_OP_reg27: // 0x6B 425 case DW_OP_reg28: // 0x6C 426 case DW_OP_reg29: // 0x6D 427 case DW_OP_reg30: // 0x6E 428 case DW_OP_reg31: // 0x6F 429 { 430 uint32_t reg_num = op - DW_OP_reg0; 431 if (abi) 432 { 433 RegisterInfo reg_info; 434 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 435 { 436 if (reg_info.name) 437 { 438 s->PutCString (reg_info.name); 439 break; 440 } 441 else if (reg_info.alt_name) 442 { 443 s->PutCString (reg_info.alt_name); 444 break; 445 } 446 } 447 } 448 s->Printf("DW_OP_reg%u", reg_num); break; 449 } 450 break; 451 452 case DW_OP_breg0: 453 case DW_OP_breg1: 454 case DW_OP_breg2: 455 case DW_OP_breg3: 456 case DW_OP_breg4: 457 case DW_OP_breg5: 458 case DW_OP_breg6: 459 case DW_OP_breg7: 460 case DW_OP_breg8: 461 case DW_OP_breg9: 462 case DW_OP_breg10: 463 case DW_OP_breg11: 464 case DW_OP_breg12: 465 case DW_OP_breg13: 466 case DW_OP_breg14: 467 case DW_OP_breg15: 468 case DW_OP_breg16: 469 case DW_OP_breg17: 470 case DW_OP_breg18: 471 case DW_OP_breg19: 472 case DW_OP_breg20: 473 case DW_OP_breg21: 474 case DW_OP_breg22: 475 case DW_OP_breg23: 476 case DW_OP_breg24: 477 case DW_OP_breg25: 478 case DW_OP_breg26: 479 case DW_OP_breg27: 480 case DW_OP_breg28: 481 case DW_OP_breg29: 482 case DW_OP_breg30: 483 case DW_OP_breg31: 484 { 485 uint32_t reg_num = op - DW_OP_breg0; 486 int64_t reg_offset = m_data.GetSLEB128(&offset); 487 if (abi) 488 { 489 RegisterInfo reg_info; 490 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 491 { 492 if (reg_info.name) 493 { 494 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); 495 break; 496 } 497 else if (reg_info.alt_name) 498 { 499 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); 500 break; 501 } 502 } 503 } 504 s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset); 505 } 506 break; 507 508 case DW_OP_regx: // 0x90 1 ULEB128 register 509 { 510 uint32_t reg_num = m_data.GetULEB128(&offset); 511 if (abi) 512 { 513 RegisterInfo reg_info; 514 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 515 { 516 if (reg_info.name) 517 { 518 s->PutCString (reg_info.name); 519 break; 520 } 521 else if (reg_info.alt_name) 522 { 523 s->PutCString (reg_info.alt_name); 524 break; 525 } 526 } 527 } 528 s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num); break; 529 } 530 break; 531 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 532 s->Printf("DW_OP_fbreg(%" PRIi64 ")",m_data.GetSLEB128(&offset)); 533 break; 534 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 535 { 536 uint32_t reg_num = m_data.GetULEB128(&offset); 537 int64_t reg_offset = m_data.GetSLEB128(&offset); 538 if (abi) 539 { 540 RegisterInfo reg_info; 541 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) 542 { 543 if (reg_info.name) 544 { 545 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); 546 break; 547 } 548 else if (reg_info.alt_name) 549 { 550 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); 551 break; 552 } 553 } 554 } 555 s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num, reg_offset); 556 } 557 break; 558 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 559 s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset)); 560 break; 561 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 562 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); 563 break; 564 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 565 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); 566 break; 567 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 568 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 569 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE 570 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); 571 break; 572 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE 573 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); 574 break; 575 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE 576 s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset)); 577 break; 578 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3 579 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3 580 // case DW_OP_bit_piece: // 0x9d DWARF3 2 581 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); 582 // break; 583 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0 584 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff 585 // case DW_OP_APPLE_extern: 586 // s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")", m_data.GetULEB128(&offset)); 587 // break; 588 // case DW_OP_APPLE_array_ref: 589 // s->PutCString("DW_OP_APPLE_array_ref"); 590 // break; 591 case DW_OP_APPLE_uninit: 592 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 593 break; 594 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context) 595 // s->PutCString("DW_OP_APPLE_assign"); 596 // break; 597 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already) 598 // s->PutCString("DW_OP_APPLE_address_of"); 599 // break; 600 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local) 601 // s->PutCString("DW_OP_APPLE_value_of"); 602 // break; 603 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type) 604 // s->PutCString("DW_OP_APPLE_deref_type"); 605 // break; 606 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index 607 // s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")", m_data.GetULEB128(&offset)); 608 // break; 609 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data 610 // { 611 // uint8_t float_length = m_data.GetU8(&offset); 612 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); 613 // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); 614 // s->PutChar(')'); 615 // // Consume the float data 616 // m_data.GetData(&offset, float_length); 617 // } 618 // break; 619 // case DW_OP_APPLE_scalar_cast: 620 // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset))); 621 // break; 622 // case DW_OP_APPLE_clang_cast: 623 // { 624 // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*)); 625 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); 626 // } 627 // break; 628 // case DW_OP_APPLE_clear: 629 // s->PutCString("DW_OP_APPLE_clear"); 630 // break; 631 // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args) 632 // s->PutCString("DW_OP_APPLE_error"); 633 // break; 634 } 635 } 636 } 637 638 void 639 DWARFExpression::SetLocationListSlide (addr_t slide) 640 { 641 m_loclist_slide = slide; 642 } 643 644 int 645 DWARFExpression::GetRegisterKind () 646 { 647 return m_reg_kind; 648 } 649 650 void 651 DWARFExpression::SetRegisterKind (RegisterKind reg_kind) 652 { 653 m_reg_kind = reg_kind; 654 } 655 656 bool 657 DWARFExpression::IsLocationList() const 658 { 659 return m_loclist_slide != LLDB_INVALID_ADDRESS; 660 } 661 662 void 663 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const 664 { 665 if (IsLocationList()) 666 { 667 // We have a location list 668 lldb::offset_t offset = 0; 669 uint32_t count = 0; 670 addr_t curr_base_addr = location_list_base_addr; 671 while (m_data.ValidOffset(offset)) 672 { 673 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset); 674 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset); 675 if (begin_addr_offset < end_addr_offset) 676 { 677 if (count > 0) 678 s->PutCString(", "); 679 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); 680 addr_range.Dump(s, 0, 8); 681 s->PutChar('{'); 682 lldb::offset_t location_length = m_data.GetU16(&offset); 683 DumpLocation (s, offset, location_length, level, abi); 684 s->PutChar('}'); 685 offset += location_length; 686 } 687 else if (begin_addr_offset == 0 && end_addr_offset == 0) 688 { 689 // The end of the location list is marked by both the start and end offset being zero 690 break; 691 } 692 else 693 { 694 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || 695 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) 696 { 697 curr_base_addr = end_addr_offset + location_list_base_addr; 698 // We have a new base address 699 if (count > 0) 700 s->PutCString(", "); 701 *s << "base_addr = " << end_addr_offset; 702 } 703 } 704 705 count++; 706 } 707 } 708 else 709 { 710 // We have a normal location that contains DW_OP location opcodes 711 DumpLocation (s, 0, m_data.GetByteSize(), level, abi); 712 } 713 } 714 715 static bool 716 ReadRegisterValueAsScalar 717 ( 718 RegisterContext *reg_ctx, 719 uint32_t reg_kind, 720 uint32_t reg_num, 721 Error *error_ptr, 722 Value &value 723 ) 724 { 725 if (reg_ctx == NULL) 726 { 727 if (error_ptr) 728 error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); 729 } 730 else 731 { 732 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); 733 if (native_reg == LLDB_INVALID_REGNUM) 734 { 735 if (error_ptr) 736 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num); 737 } 738 else 739 { 740 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); 741 RegisterValue reg_value; 742 if (reg_ctx->ReadRegister (reg_info, reg_value)) 743 { 744 if (reg_value.GetScalarValue(value.GetScalar())) 745 { 746 value.SetValueType (Value::eValueTypeScalar); 747 value.SetContext (Value::eContextTypeRegisterInfo, 748 const_cast<RegisterInfo *>(reg_info)); 749 if (error_ptr) 750 error_ptr->Clear(); 751 return true; 752 } 753 else 754 { 755 // If we get this error, then we need to implement a value 756 // buffer in the dwarf expression evaluation function... 757 if (error_ptr) 758 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value", 759 reg_info->name); 760 } 761 } 762 else 763 { 764 if (error_ptr) 765 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); 766 } 767 } 768 } 769 return false; 770 } 771 772 //bool 773 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const 774 //{ 775 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process)); 776 //} 777 // 778 //bool 779 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const 780 //{ 781 // if (load_addr == LLDB_INVALID_ADDRESS) 782 // return false; 783 // 784 // if (IsLocationList()) 785 // { 786 // lldb::offset_t offset = 0; 787 // 788 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); 789 // 790 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) 791 // return false; 792 // 793 // while (m_data.ValidOffset(offset)) 794 // { 795 // // We need to figure out what the value is for the location. 796 // addr_t lo_pc = m_data.GetAddress(&offset); 797 // addr_t hi_pc = m_data.GetAddress(&offset); 798 // if (lo_pc == 0 && hi_pc == 0) 799 // break; 800 // else 801 // { 802 // lo_pc += loc_list_base_addr; 803 // hi_pc += loc_list_base_addr; 804 // 805 // if (lo_pc <= load_addr && load_addr < hi_pc) 806 // return true; 807 // 808 // offset += m_data.GetU16(&offset); 809 // } 810 // } 811 // } 812 // return false; 813 //} 814 815 static offset_t 816 GetOpcodeDataSize (const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op) 817 { 818 lldb::offset_t offset = data_offset; 819 switch (op) 820 { 821 case DW_OP_addr: 822 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) 823 return data.GetAddressByteSize(); 824 825 // Opcodes with no arguments 826 case DW_OP_deref: // 0x06 827 case DW_OP_dup: // 0x12 828 case DW_OP_drop: // 0x13 829 case DW_OP_over: // 0x14 830 case DW_OP_swap: // 0x16 831 case DW_OP_rot: // 0x17 832 case DW_OP_xderef: // 0x18 833 case DW_OP_abs: // 0x19 834 case DW_OP_and: // 0x1a 835 case DW_OP_div: // 0x1b 836 case DW_OP_minus: // 0x1c 837 case DW_OP_mod: // 0x1d 838 case DW_OP_mul: // 0x1e 839 case DW_OP_neg: // 0x1f 840 case DW_OP_not: // 0x20 841 case DW_OP_or: // 0x21 842 case DW_OP_plus: // 0x22 843 case DW_OP_shl: // 0x24 844 case DW_OP_shr: // 0x25 845 case DW_OP_shra: // 0x26 846 case DW_OP_xor: // 0x27 847 case DW_OP_eq: // 0x29 848 case DW_OP_ge: // 0x2a 849 case DW_OP_gt: // 0x2b 850 case DW_OP_le: // 0x2c 851 case DW_OP_lt: // 0x2d 852 case DW_OP_ne: // 0x2e 853 case DW_OP_lit0: // 0x30 854 case DW_OP_lit1: // 0x31 855 case DW_OP_lit2: // 0x32 856 case DW_OP_lit3: // 0x33 857 case DW_OP_lit4: // 0x34 858 case DW_OP_lit5: // 0x35 859 case DW_OP_lit6: // 0x36 860 case DW_OP_lit7: // 0x37 861 case DW_OP_lit8: // 0x38 862 case DW_OP_lit9: // 0x39 863 case DW_OP_lit10: // 0x3A 864 case DW_OP_lit11: // 0x3B 865 case DW_OP_lit12: // 0x3C 866 case DW_OP_lit13: // 0x3D 867 case DW_OP_lit14: // 0x3E 868 case DW_OP_lit15: // 0x3F 869 case DW_OP_lit16: // 0x40 870 case DW_OP_lit17: // 0x41 871 case DW_OP_lit18: // 0x42 872 case DW_OP_lit19: // 0x43 873 case DW_OP_lit20: // 0x44 874 case DW_OP_lit21: // 0x45 875 case DW_OP_lit22: // 0x46 876 case DW_OP_lit23: // 0x47 877 case DW_OP_lit24: // 0x48 878 case DW_OP_lit25: // 0x49 879 case DW_OP_lit26: // 0x4A 880 case DW_OP_lit27: // 0x4B 881 case DW_OP_lit28: // 0x4C 882 case DW_OP_lit29: // 0x4D 883 case DW_OP_lit30: // 0x4E 884 case DW_OP_lit31: // 0x4f 885 case DW_OP_reg0: // 0x50 886 case DW_OP_reg1: // 0x51 887 case DW_OP_reg2: // 0x52 888 case DW_OP_reg3: // 0x53 889 case DW_OP_reg4: // 0x54 890 case DW_OP_reg5: // 0x55 891 case DW_OP_reg6: // 0x56 892 case DW_OP_reg7: // 0x57 893 case DW_OP_reg8: // 0x58 894 case DW_OP_reg9: // 0x59 895 case DW_OP_reg10: // 0x5A 896 case DW_OP_reg11: // 0x5B 897 case DW_OP_reg12: // 0x5C 898 case DW_OP_reg13: // 0x5D 899 case DW_OP_reg14: // 0x5E 900 case DW_OP_reg15: // 0x5F 901 case DW_OP_reg16: // 0x60 902 case DW_OP_reg17: // 0x61 903 case DW_OP_reg18: // 0x62 904 case DW_OP_reg19: // 0x63 905 case DW_OP_reg20: // 0x64 906 case DW_OP_reg21: // 0x65 907 case DW_OP_reg22: // 0x66 908 case DW_OP_reg23: // 0x67 909 case DW_OP_reg24: // 0x68 910 case DW_OP_reg25: // 0x69 911 case DW_OP_reg26: // 0x6A 912 case DW_OP_reg27: // 0x6B 913 case DW_OP_reg28: // 0x6C 914 case DW_OP_reg29: // 0x6D 915 case DW_OP_reg30: // 0x6E 916 case DW_OP_reg31: // 0x6F 917 case DW_OP_nop: // 0x96 918 case DW_OP_push_object_address: // 0x97 DWARF3 919 case DW_OP_form_tls_address: // 0x9b DWARF3 920 case DW_OP_call_frame_cfa: // 0x9c DWARF3 921 case DW_OP_stack_value: // 0x9f DWARF4 922 return 0; 923 924 // Opcodes with a single 1 byte arguments 925 case DW_OP_const1u: // 0x08 1 1-byte constant 926 case DW_OP_const1s: // 0x09 1 1-byte constant 927 case DW_OP_pick: // 0x15 1 1-byte stack index 928 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved 929 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved 930 return 1; 931 932 // Opcodes with a single 2 byte arguments 933 case DW_OP_const2u: // 0x0a 1 2-byte constant 934 case DW_OP_const2s: // 0x0b 1 2-byte constant 935 case DW_OP_skip: // 0x2f 1 signed 2-byte constant 936 case DW_OP_bra: // 0x28 1 signed 2-byte constant 937 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) 938 return 2; 939 940 // Opcodes with a single 4 byte arguments 941 case DW_OP_const4u: // 0x0c 1 4-byte constant 942 case DW_OP_const4s: // 0x0d 1 4-byte constant 943 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) 944 return 4; 945 946 // Opcodes with a single 8 byte arguments 947 case DW_OP_const8u: // 0x0e 1 8-byte constant 948 case DW_OP_const8s: // 0x0f 1 8-byte constant 949 return 8; 950 951 // All opcodes that have a single ULEB (signed or unsigned) argument 952 case DW_OP_constu: // 0x10 1 ULEB128 constant 953 case DW_OP_consts: // 0x11 1 SLEB128 constant 954 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend 955 case DW_OP_breg0: // 0x70 1 ULEB128 register 956 case DW_OP_breg1: // 0x71 1 ULEB128 register 957 case DW_OP_breg2: // 0x72 1 ULEB128 register 958 case DW_OP_breg3: // 0x73 1 ULEB128 register 959 case DW_OP_breg4: // 0x74 1 ULEB128 register 960 case DW_OP_breg5: // 0x75 1 ULEB128 register 961 case DW_OP_breg6: // 0x76 1 ULEB128 register 962 case DW_OP_breg7: // 0x77 1 ULEB128 register 963 case DW_OP_breg8: // 0x78 1 ULEB128 register 964 case DW_OP_breg9: // 0x79 1 ULEB128 register 965 case DW_OP_breg10: // 0x7a 1 ULEB128 register 966 case DW_OP_breg11: // 0x7b 1 ULEB128 register 967 case DW_OP_breg12: // 0x7c 1 ULEB128 register 968 case DW_OP_breg13: // 0x7d 1 ULEB128 register 969 case DW_OP_breg14: // 0x7e 1 ULEB128 register 970 case DW_OP_breg15: // 0x7f 1 ULEB128 register 971 case DW_OP_breg16: // 0x80 1 ULEB128 register 972 case DW_OP_breg17: // 0x81 1 ULEB128 register 973 case DW_OP_breg18: // 0x82 1 ULEB128 register 974 case DW_OP_breg19: // 0x83 1 ULEB128 register 975 case DW_OP_breg20: // 0x84 1 ULEB128 register 976 case DW_OP_breg21: // 0x85 1 ULEB128 register 977 case DW_OP_breg22: // 0x86 1 ULEB128 register 978 case DW_OP_breg23: // 0x87 1 ULEB128 register 979 case DW_OP_breg24: // 0x88 1 ULEB128 register 980 case DW_OP_breg25: // 0x89 1 ULEB128 register 981 case DW_OP_breg26: // 0x8a 1 ULEB128 register 982 case DW_OP_breg27: // 0x8b 1 ULEB128 register 983 case DW_OP_breg28: // 0x8c 1 ULEB128 register 984 case DW_OP_breg29: // 0x8d 1 ULEB128 register 985 case DW_OP_breg30: // 0x8e 1 ULEB128 register 986 case DW_OP_breg31: // 0x8f 1 ULEB128 register 987 case DW_OP_regx: // 0x90 1 ULEB128 register 988 case DW_OP_fbreg: // 0x91 1 SLEB128 offset 989 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed 990 data.Skip_LEB128(&offset); 991 return offset - data_offset; 992 993 // All opcodes that have a 2 ULEB (signed or unsigned) arguments 994 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset 995 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); 996 data.Skip_LEB128(&offset); 997 data.Skip_LEB128(&offset); 998 return offset - data_offset; 999 1000 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4) 1001 { 1002 uint64_t block_len = data.Skip_LEB128(&offset); 1003 offset += block_len; 1004 return offset - data_offset; 1005 } 1006 1007 default: 1008 break; 1009 } 1010 return LLDB_INVALID_OFFSET; 1011 } 1012 1013 lldb::addr_t 1014 DWARFExpression::GetLocation_DW_OP_addr (uint32_t op_addr_idx, bool &error) const 1015 { 1016 error = false; 1017 if (IsLocationList()) 1018 return LLDB_INVALID_ADDRESS; 1019 lldb::offset_t offset = 0; 1020 uint32_t curr_op_addr_idx = 0; 1021 while (m_data.ValidOffset(offset)) 1022 { 1023 const uint8_t op = m_data.GetU8(&offset); 1024 1025 if (op == DW_OP_addr) 1026 { 1027 const lldb::addr_t op_file_addr = m_data.GetAddress(&offset); 1028 if (curr_op_addr_idx == op_addr_idx) 1029 return op_file_addr; 1030 else 1031 ++curr_op_addr_idx; 1032 } 1033 else 1034 { 1035 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1036 if (op_arg_size == LLDB_INVALID_OFFSET) 1037 { 1038 error = true; 1039 break; 1040 } 1041 offset += op_arg_size; 1042 } 1043 } 1044 return LLDB_INVALID_ADDRESS; 1045 } 1046 1047 bool 1048 DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr) 1049 { 1050 if (IsLocationList()) 1051 return false; 1052 lldb::offset_t offset = 0; 1053 while (m_data.ValidOffset(offset)) 1054 { 1055 const uint8_t op = m_data.GetU8(&offset); 1056 1057 if (op == DW_OP_addr) 1058 { 1059 const uint32_t addr_byte_size = m_data.GetAddressByteSize(); 1060 // We have to make a copy of the data as we don't know if this 1061 // data is from a read only memory mapped buffer, so we duplicate 1062 // all of the data first, then modify it, and if all goes well, 1063 // we then replace the data for this expression 1064 1065 // So first we copy the data into a heap buffer 1066 std::unique_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(), 1067 m_data.GetByteSize())); 1068 1069 // Make en encoder so we can write the address into the buffer using 1070 // the correct byte order (endianness) 1071 DataEncoder encoder (head_data_ap->GetBytes(), 1072 head_data_ap->GetByteSize(), 1073 m_data.GetByteOrder(), 1074 addr_byte_size); 1075 1076 // Replace the address in the new buffer 1077 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX) 1078 return false; 1079 1080 // All went well, so now we can reset the data using a shared 1081 // pointer to the heap data so "m_data" will now correctly 1082 // manage the heap data. 1083 m_data.SetData (DataBufferSP (head_data_ap.release())); 1084 return true; 1085 } 1086 else 1087 { 1088 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op); 1089 if (op_arg_size == LLDB_INVALID_OFFSET) 1090 break; 1091 offset += op_arg_size; 1092 } 1093 } 1094 return false; 1095 } 1096 1097 bool 1098 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const 1099 { 1100 if (addr == LLDB_INVALID_ADDRESS) 1101 return false; 1102 1103 if (IsLocationList()) 1104 { 1105 lldb::offset_t offset = 0; 1106 1107 if (loclist_base_addr == LLDB_INVALID_ADDRESS) 1108 return false; 1109 1110 while (m_data.ValidOffset(offset)) 1111 { 1112 // We need to figure out what the value is for the location. 1113 addr_t lo_pc = m_data.GetAddress(&offset); 1114 addr_t hi_pc = m_data.GetAddress(&offset); 1115 if (lo_pc == 0 && hi_pc == 0) 1116 break; 1117 else 1118 { 1119 lo_pc += loclist_base_addr - m_loclist_slide; 1120 hi_pc += loclist_base_addr - m_loclist_slide; 1121 1122 if (lo_pc <= addr && addr < hi_pc) 1123 return true; 1124 1125 offset += m_data.GetU16(&offset); 1126 } 1127 } 1128 } 1129 return false; 1130 } 1131 1132 bool 1133 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, lldb::offset_t &offset, lldb::offset_t &length) 1134 { 1135 offset = 0; 1136 if (!IsLocationList()) 1137 { 1138 length = m_data.GetByteSize(); 1139 return true; 1140 } 1141 1142 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) 1143 { 1144 addr_t curr_base_addr = base_addr; 1145 1146 while (m_data.ValidOffset(offset)) 1147 { 1148 // We need to figure out what the value is for the location. 1149 addr_t lo_pc = m_data.GetAddress(&offset); 1150 addr_t hi_pc = m_data.GetAddress(&offset); 1151 if (lo_pc == 0 && hi_pc == 0) 1152 { 1153 break; 1154 } 1155 else 1156 { 1157 lo_pc += curr_base_addr - m_loclist_slide; 1158 hi_pc += curr_base_addr - m_loclist_slide; 1159 1160 length = m_data.GetU16(&offset); 1161 1162 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1163 return true; 1164 1165 offset += length; 1166 } 1167 } 1168 } 1169 offset = LLDB_INVALID_OFFSET; 1170 length = 0; 1171 return false; 1172 } 1173 1174 bool 1175 DWARFExpression::DumpLocationForAddress (Stream *s, 1176 lldb::DescriptionLevel level, 1177 addr_t base_addr, 1178 addr_t address, 1179 ABI *abi) 1180 { 1181 lldb::offset_t offset = 0; 1182 lldb::offset_t length = 0; 1183 1184 if (GetLocation (base_addr, address, offset, length)) 1185 { 1186 if (length > 0) 1187 { 1188 DumpLocation(s, offset, length, level, abi); 1189 return true; 1190 } 1191 } 1192 return false; 1193 } 1194 1195 bool 1196 DWARFExpression::Evaluate 1197 ( 1198 ExecutionContextScope *exe_scope, 1199 ClangExpressionVariableList *expr_locals, 1200 ClangExpressionDeclMap *decl_map, 1201 lldb::addr_t loclist_base_load_addr, 1202 const Value* initial_value_ptr, 1203 Value& result, 1204 Error *error_ptr 1205 ) const 1206 { 1207 ExecutionContext exe_ctx (exe_scope); 1208 return Evaluate(&exe_ctx, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr); 1209 } 1210 1211 bool 1212 DWARFExpression::Evaluate 1213 ( 1214 ExecutionContext *exe_ctx, 1215 ClangExpressionVariableList *expr_locals, 1216 ClangExpressionDeclMap *decl_map, 1217 RegisterContext *reg_ctx, 1218 lldb::addr_t loclist_base_load_addr, 1219 const Value* initial_value_ptr, 1220 Value& result, 1221 Error *error_ptr 1222 ) const 1223 { 1224 if (IsLocationList()) 1225 { 1226 lldb::offset_t offset = 0; 1227 addr_t pc; 1228 StackFrame *frame = NULL; 1229 if (reg_ctx) 1230 pc = reg_ctx->GetPC(); 1231 else 1232 { 1233 frame = exe_ctx->GetFramePtr(); 1234 if (!frame) 1235 return false; 1236 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); 1237 if (!reg_ctx_sp) 1238 return false; 1239 pc = reg_ctx_sp->GetPC(); 1240 } 1241 1242 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) 1243 { 1244 if (pc == LLDB_INVALID_ADDRESS) 1245 { 1246 if (error_ptr) 1247 error_ptr->SetErrorString("Invalid PC in frame."); 1248 return false; 1249 } 1250 1251 addr_t curr_loclist_base_load_addr = loclist_base_load_addr; 1252 1253 while (m_data.ValidOffset(offset)) 1254 { 1255 // We need to figure out what the value is for the location. 1256 addr_t lo_pc = m_data.GetAddress(&offset); 1257 addr_t hi_pc = m_data.GetAddress(&offset); 1258 if (lo_pc == 0 && hi_pc == 0) 1259 { 1260 break; 1261 } 1262 else 1263 { 1264 lo_pc += curr_loclist_base_load_addr - m_loclist_slide; 1265 hi_pc += curr_loclist_base_load_addr - m_loclist_slide; 1266 1267 uint16_t length = m_data.GetU16(&offset); 1268 1269 if (length > 0 && lo_pc <= pc && pc < hi_pc) 1270 { 1271 return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr); 1272 } 1273 offset += length; 1274 } 1275 } 1276 } 1277 if (error_ptr) 1278 error_ptr->SetErrorString ("variable not available"); 1279 return false; 1280 } 1281 1282 // Not a location list, just a single expression. 1283 return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr); 1284 } 1285 1286 1287 1288 bool 1289 DWARFExpression::Evaluate 1290 ( 1291 ExecutionContext *exe_ctx, 1292 ClangExpressionVariableList *expr_locals, 1293 ClangExpressionDeclMap *decl_map, 1294 RegisterContext *reg_ctx, 1295 const DataExtractor& opcodes, 1296 const lldb::offset_t opcodes_offset, 1297 const lldb::offset_t opcodes_length, 1298 const uint32_t reg_kind, 1299 const Value* initial_value_ptr, 1300 Value& result, 1301 Error *error_ptr 1302 ) 1303 { 1304 1305 if (opcodes_length == 0) 1306 { 1307 if (error_ptr) 1308 error_ptr->SetErrorString ("no location, value may have been optimized out"); 1309 return false; 1310 } 1311 std::vector<Value> stack; 1312 1313 Process *process = NULL; 1314 StackFrame *frame = NULL; 1315 1316 if (exe_ctx) 1317 { 1318 process = exe_ctx->GetProcessPtr(); 1319 frame = exe_ctx->GetFramePtr(); 1320 } 1321 if (reg_ctx == NULL && frame) 1322 reg_ctx = frame->GetRegisterContext().get(); 1323 1324 if (initial_value_ptr) 1325 stack.push_back(*initial_value_ptr); 1326 1327 lldb::offset_t offset = opcodes_offset; 1328 const lldb::offset_t end_offset = opcodes_offset + opcodes_length; 1329 Value tmp; 1330 uint32_t reg_num; 1331 1332 // Make sure all of the data is available in opcodes. 1333 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) 1334 { 1335 if (error_ptr) 1336 error_ptr->SetErrorString ("invalid offset and/or length for opcodes buffer."); 1337 return false; 1338 } 1339 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); 1340 1341 1342 while (opcodes.ValidOffset(offset) && offset < end_offset) 1343 { 1344 const lldb::offset_t op_offset = offset; 1345 const uint8_t op = opcodes.GetU8(&offset); 1346 1347 if (log && log->GetVerbose()) 1348 { 1349 size_t count = stack.size(); 1350 log->Printf("Stack before operation has %lu values:", count); 1351 for (size_t i=0; i<count; ++i) 1352 { 1353 StreamString new_value; 1354 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 1355 stack[i].Dump(&new_value); 1356 log->Printf(" %s", new_value.GetData()); 1357 } 1358 log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op)); 1359 } 1360 switch (op) 1361 { 1362 //---------------------------------------------------------------------- 1363 // The DW_OP_addr operation has a single operand that encodes a machine 1364 // address and whose size is the size of an address on the target machine. 1365 //---------------------------------------------------------------------- 1366 case DW_OP_addr: 1367 stack.push_back(Scalar(opcodes.GetAddress(&offset))); 1368 stack.back().SetValueType (Value::eValueTypeFileAddress); 1369 break; 1370 1371 //---------------------------------------------------------------------- 1372 // The DW_OP_addr_sect_offset4 is used for any location expressions in 1373 // shared libraries that have a location like: 1374 // DW_OP_addr(0x1000) 1375 // If this address resides in a shared library, then this virtual 1376 // address won't make sense when it is evaluated in the context of a 1377 // running process where shared libraries have been slid. To account for 1378 // this, this new address type where we can store the section pointer 1379 // and a 4 byte offset. 1380 //---------------------------------------------------------------------- 1381 // case DW_OP_addr_sect_offset4: 1382 // { 1383 // result_type = eResultTypeFileAddress; 1384 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *)); 1385 // lldb::addr_t sect_offset = opcodes.GetU32(&offset); 1386 // 1387 // Address so_addr (sect, sect_offset); 1388 // lldb::addr_t load_addr = so_addr.GetLoadAddress(); 1389 // if (load_addr != LLDB_INVALID_ADDRESS) 1390 // { 1391 // // We successfully resolve a file address to a load 1392 // // address. 1393 // stack.push_back(load_addr); 1394 // break; 1395 // } 1396 // else 1397 // { 1398 // // We were able 1399 // if (error_ptr) 1400 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString()); 1401 // return false; 1402 // } 1403 // } 1404 // break; 1405 1406 //---------------------------------------------------------------------- 1407 // OPCODE: DW_OP_deref 1408 // OPERANDS: none 1409 // DESCRIPTION: Pops the top stack entry and treats it as an address. 1410 // The value retrieved from that address is pushed. The size of the 1411 // data retrieved from the dereferenced address is the size of an 1412 // address on the target machine. 1413 //---------------------------------------------------------------------- 1414 case DW_OP_deref: 1415 { 1416 Value::ValueType value_type = stack.back().GetValueType(); 1417 switch (value_type) 1418 { 1419 case Value::eValueTypeHostAddress: 1420 { 1421 void *src = (void *)stack.back().GetScalar().ULongLong(); 1422 intptr_t ptr; 1423 ::memcpy (&ptr, src, sizeof(void *)); 1424 stack.back().GetScalar() = ptr; 1425 stack.back().ClearContext(); 1426 } 1427 break; 1428 case Value::eValueTypeLoadAddress: 1429 if (exe_ctx) 1430 { 1431 if (process) 1432 { 1433 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1434 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1435 uint32_t addr_size = process->GetAddressByteSize(); 1436 Error error; 1437 if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size) 1438 { 1439 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size); 1440 lldb::offset_t addr_data_offset = 0; 1441 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1442 stack.back().ClearContext(); 1443 } 1444 else 1445 { 1446 if (error_ptr) 1447 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", 1448 pointer_addr, 1449 error.AsCString()); 1450 return false; 1451 } 1452 } 1453 else 1454 { 1455 if (error_ptr) 1456 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1457 return false; 1458 } 1459 } 1460 else 1461 { 1462 if (error_ptr) 1463 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1464 return false; 1465 } 1466 break; 1467 1468 default: 1469 break; 1470 } 1471 1472 } 1473 break; 1474 1475 //---------------------------------------------------------------------- 1476 // OPCODE: DW_OP_deref_size 1477 // OPERANDS: 1 1478 // 1 - uint8_t that specifies the size of the data to dereference. 1479 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top 1480 // stack entry and treats it as an address. The value retrieved from that 1481 // address is pushed. In the DW_OP_deref_size operation, however, the 1482 // size in bytes of the data retrieved from the dereferenced address is 1483 // specified by the single operand. This operand is a 1-byte unsigned 1484 // integral constant whose value may not be larger than the size of an 1485 // address on the target machine. The data retrieved is zero extended 1486 // to the size of an address on the target machine before being pushed 1487 // on the expression stack. 1488 //---------------------------------------------------------------------- 1489 case DW_OP_deref_size: 1490 { 1491 uint8_t size = opcodes.GetU8(&offset); 1492 Value::ValueType value_type = stack.back().GetValueType(); 1493 switch (value_type) 1494 { 1495 case Value::eValueTypeHostAddress: 1496 { 1497 void *src = (void *)stack.back().GetScalar().ULongLong(); 1498 intptr_t ptr; 1499 ::memcpy (&ptr, src, sizeof(void *)); 1500 // I can't decide whether the size operand should apply to the bytes in their 1501 // lldb-host endianness or the target endianness.. I doubt this'll ever come up 1502 // but I'll opt for assuming big endian regardless. 1503 switch (size) 1504 { 1505 case 1: ptr = ptr & 0xff; break; 1506 case 2: ptr = ptr & 0xffff; break; 1507 case 3: ptr = ptr & 0xffffff; break; 1508 case 4: ptr = ptr & 0xffffffff; break; 1509 // the casts are added to work around the case where intptr_t is a 32 bit quantity; 1510 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program. 1511 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break; 1512 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break; 1513 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break; 1514 default: break; 1515 } 1516 stack.back().GetScalar() = ptr; 1517 stack.back().ClearContext(); 1518 } 1519 break; 1520 case Value::eValueTypeLoadAddress: 1521 if (exe_ctx) 1522 { 1523 if (process) 1524 { 1525 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1526 uint8_t addr_bytes[sizeof(lldb::addr_t)]; 1527 Error error; 1528 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) 1529 { 1530 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); 1531 lldb::offset_t addr_data_offset = 0; 1532 switch (size) 1533 { 1534 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; 1535 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; 1536 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; 1537 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; 1538 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); 1539 } 1540 stack.back().ClearContext(); 1541 } 1542 else 1543 { 1544 if (error_ptr) 1545 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", 1546 pointer_addr, 1547 error.AsCString()); 1548 return false; 1549 } 1550 } 1551 else 1552 { 1553 if (error_ptr) 1554 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n"); 1555 return false; 1556 } 1557 } 1558 else 1559 { 1560 if (error_ptr) 1561 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n"); 1562 return false; 1563 } 1564 break; 1565 1566 default: 1567 break; 1568 } 1569 1570 } 1571 break; 1572 1573 //---------------------------------------------------------------------- 1574 // OPCODE: DW_OP_xderef_size 1575 // OPERANDS: 1 1576 // 1 - uint8_t that specifies the size of the data to dereference. 1577 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at 1578 // the top of the stack is treated as an address. The second stack 1579 // entry is treated as an "address space identifier" for those 1580 // architectures that support multiple address spaces. The top two 1581 // stack elements are popped, a data item is retrieved through an 1582 // implementation-defined address calculation and pushed as the new 1583 // stack top. In the DW_OP_xderef_size operation, however, the size in 1584 // bytes of the data retrieved from the dereferenced address is 1585 // specified by the single operand. This operand is a 1-byte unsigned 1586 // integral constant whose value may not be larger than the size of an 1587 // address on the target machine. The data retrieved is zero extended 1588 // to the size of an address on the target machine before being pushed 1589 // on the expression stack. 1590 //---------------------------------------------------------------------- 1591 case DW_OP_xderef_size: 1592 if (error_ptr) 1593 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); 1594 return false; 1595 //---------------------------------------------------------------------- 1596 // OPCODE: DW_OP_xderef 1597 // OPERANDS: none 1598 // DESCRIPTION: Provides an extended dereference mechanism. The entry at 1599 // the top of the stack is treated as an address. The second stack entry 1600 // is treated as an "address space identifier" for those architectures 1601 // that support multiple address spaces. The top two stack elements are 1602 // popped, a data item is retrieved through an implementation-defined 1603 // address calculation and pushed as the new stack top. The size of the 1604 // data retrieved from the dereferenced address is the size of an address 1605 // on the target machine. 1606 //---------------------------------------------------------------------- 1607 case DW_OP_xderef: 1608 if (error_ptr) 1609 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); 1610 return false; 1611 1612 //---------------------------------------------------------------------- 1613 // All DW_OP_constXXX opcodes have a single operand as noted below: 1614 // 1615 // Opcode Operand 1 1616 // --------------- ---------------------------------------------------- 1617 // DW_OP_const1u 1-byte unsigned integer constant 1618 // DW_OP_const1s 1-byte signed integer constant 1619 // DW_OP_const2u 2-byte unsigned integer constant 1620 // DW_OP_const2s 2-byte signed integer constant 1621 // DW_OP_const4u 4-byte unsigned integer constant 1622 // DW_OP_const4s 4-byte signed integer constant 1623 // DW_OP_const8u 8-byte unsigned integer constant 1624 // DW_OP_const8s 8-byte signed integer constant 1625 // DW_OP_constu unsigned LEB128 integer constant 1626 // DW_OP_consts signed LEB128 integer constant 1627 //---------------------------------------------------------------------- 1628 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break; 1629 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break; 1630 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break; 1631 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break; 1632 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break; 1633 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break; 1634 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break; 1635 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break; 1636 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break; 1637 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break; 1638 1639 //---------------------------------------------------------------------- 1640 // OPCODE: DW_OP_dup 1641 // OPERANDS: none 1642 // DESCRIPTION: duplicates the value at the top of the stack 1643 //---------------------------------------------------------------------- 1644 case DW_OP_dup: 1645 if (stack.empty()) 1646 { 1647 if (error_ptr) 1648 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); 1649 return false; 1650 } 1651 else 1652 stack.push_back(stack.back()); 1653 break; 1654 1655 //---------------------------------------------------------------------- 1656 // OPCODE: DW_OP_drop 1657 // OPERANDS: none 1658 // DESCRIPTION: pops the value at the top of the stack 1659 //---------------------------------------------------------------------- 1660 case DW_OP_drop: 1661 if (stack.empty()) 1662 { 1663 if (error_ptr) 1664 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); 1665 return false; 1666 } 1667 else 1668 stack.pop_back(); 1669 break; 1670 1671 //---------------------------------------------------------------------- 1672 // OPCODE: DW_OP_over 1673 // OPERANDS: none 1674 // DESCRIPTION: Duplicates the entry currently second in the stack at 1675 // the top of the stack. 1676 //---------------------------------------------------------------------- 1677 case DW_OP_over: 1678 if (stack.size() < 2) 1679 { 1680 if (error_ptr) 1681 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over."); 1682 return false; 1683 } 1684 else 1685 stack.push_back(stack[stack.size() - 2]); 1686 break; 1687 1688 1689 //---------------------------------------------------------------------- 1690 // OPCODE: DW_OP_pick 1691 // OPERANDS: uint8_t index into the current stack 1692 // DESCRIPTION: The stack entry with the specified index (0 through 255, 1693 // inclusive) is pushed on the stack 1694 //---------------------------------------------------------------------- 1695 case DW_OP_pick: 1696 { 1697 uint8_t pick_idx = opcodes.GetU8(&offset); 1698 if (pick_idx < stack.size()) 1699 stack.push_back(stack[pick_idx]); 1700 else 1701 { 1702 if (error_ptr) 1703 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx); 1704 return false; 1705 } 1706 } 1707 break; 1708 1709 //---------------------------------------------------------------------- 1710 // OPCODE: DW_OP_swap 1711 // OPERANDS: none 1712 // DESCRIPTION: swaps the top two stack entries. The entry at the top 1713 // of the stack becomes the second stack entry, and the second entry 1714 // becomes the top of the stack 1715 //---------------------------------------------------------------------- 1716 case DW_OP_swap: 1717 if (stack.size() < 2) 1718 { 1719 if (error_ptr) 1720 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap."); 1721 return false; 1722 } 1723 else 1724 { 1725 tmp = stack.back(); 1726 stack.back() = stack[stack.size() - 2]; 1727 stack[stack.size() - 2] = tmp; 1728 } 1729 break; 1730 1731 //---------------------------------------------------------------------- 1732 // OPCODE: DW_OP_rot 1733 // OPERANDS: none 1734 // DESCRIPTION: Rotates the first three stack entries. The entry at 1735 // the top of the stack becomes the third stack entry, the second 1736 // entry becomes the top of the stack, and the third entry becomes 1737 // the second entry. 1738 //---------------------------------------------------------------------- 1739 case DW_OP_rot: 1740 if (stack.size() < 3) 1741 { 1742 if (error_ptr) 1743 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot."); 1744 return false; 1745 } 1746 else 1747 { 1748 size_t last_idx = stack.size() - 1; 1749 Value old_top = stack[last_idx]; 1750 stack[last_idx] = stack[last_idx - 1]; 1751 stack[last_idx - 1] = stack[last_idx - 2]; 1752 stack[last_idx - 2] = old_top; 1753 } 1754 break; 1755 1756 //---------------------------------------------------------------------- 1757 // OPCODE: DW_OP_abs 1758 // OPERANDS: none 1759 // DESCRIPTION: pops the top stack entry, interprets it as a signed 1760 // value and pushes its absolute value. If the absolute value can not be 1761 // represented, the result is undefined. 1762 //---------------------------------------------------------------------- 1763 case DW_OP_abs: 1764 if (stack.empty()) 1765 { 1766 if (error_ptr) 1767 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs."); 1768 return false; 1769 } 1770 else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false) 1771 { 1772 if (error_ptr) 1773 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item."); 1774 return false; 1775 } 1776 break; 1777 1778 //---------------------------------------------------------------------- 1779 // OPCODE: DW_OP_and 1780 // OPERANDS: none 1781 // DESCRIPTION: pops the top two stack values, performs a bitwise and 1782 // operation on the two, and pushes the result. 1783 //---------------------------------------------------------------------- 1784 case DW_OP_and: 1785 if (stack.size() < 2) 1786 { 1787 if (error_ptr) 1788 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and."); 1789 return false; 1790 } 1791 else 1792 { 1793 tmp = stack.back(); 1794 stack.pop_back(); 1795 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx); 1796 } 1797 break; 1798 1799 //---------------------------------------------------------------------- 1800 // OPCODE: DW_OP_div 1801 // OPERANDS: none 1802 // DESCRIPTION: pops the top two stack values, divides the former second 1803 // entry by the former top of the stack using signed division, and 1804 // pushes the result. 1805 //---------------------------------------------------------------------- 1806 case DW_OP_div: 1807 if (stack.size() < 2) 1808 { 1809 if (error_ptr) 1810 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div."); 1811 return false; 1812 } 1813 else 1814 { 1815 tmp = stack.back(); 1816 if (tmp.ResolveValue(exe_ctx).IsZero()) 1817 { 1818 if (error_ptr) 1819 error_ptr->SetErrorString("Divide by zero."); 1820 return false; 1821 } 1822 else 1823 { 1824 stack.pop_back(); 1825 stack.back() = stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx); 1826 if (!stack.back().ResolveValue(exe_ctx).IsValid()) 1827 { 1828 if (error_ptr) 1829 error_ptr->SetErrorString("Divide failed."); 1830 return false; 1831 } 1832 } 1833 } 1834 break; 1835 1836 //---------------------------------------------------------------------- 1837 // OPCODE: DW_OP_minus 1838 // OPERANDS: none 1839 // DESCRIPTION: pops the top two stack values, subtracts the former top 1840 // of the stack from the former second entry, and pushes the result. 1841 //---------------------------------------------------------------------- 1842 case DW_OP_minus: 1843 if (stack.size() < 2) 1844 { 1845 if (error_ptr) 1846 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus."); 1847 return false; 1848 } 1849 else 1850 { 1851 tmp = stack.back(); 1852 stack.pop_back(); 1853 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx); 1854 } 1855 break; 1856 1857 //---------------------------------------------------------------------- 1858 // OPCODE: DW_OP_mod 1859 // OPERANDS: none 1860 // DESCRIPTION: pops the top two stack values and pushes the result of 1861 // the calculation: former second stack entry modulo the former top of 1862 // the stack. 1863 //---------------------------------------------------------------------- 1864 case DW_OP_mod: 1865 if (stack.size() < 2) 1866 { 1867 if (error_ptr) 1868 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod."); 1869 return false; 1870 } 1871 else 1872 { 1873 tmp = stack.back(); 1874 stack.pop_back(); 1875 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx); 1876 } 1877 break; 1878 1879 1880 //---------------------------------------------------------------------- 1881 // OPCODE: DW_OP_mul 1882 // OPERANDS: none 1883 // DESCRIPTION: pops the top two stack entries, multiplies them 1884 // together, and pushes the result. 1885 //---------------------------------------------------------------------- 1886 case DW_OP_mul: 1887 if (stack.size() < 2) 1888 { 1889 if (error_ptr) 1890 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul."); 1891 return false; 1892 } 1893 else 1894 { 1895 tmp = stack.back(); 1896 stack.pop_back(); 1897 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx); 1898 } 1899 break; 1900 1901 //---------------------------------------------------------------------- 1902 // OPCODE: DW_OP_neg 1903 // OPERANDS: none 1904 // DESCRIPTION: pops the top stack entry, and pushes its negation. 1905 //---------------------------------------------------------------------- 1906 case DW_OP_neg: 1907 if (stack.empty()) 1908 { 1909 if (error_ptr) 1910 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg."); 1911 return false; 1912 } 1913 else 1914 { 1915 if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false) 1916 { 1917 if (error_ptr) 1918 error_ptr->SetErrorString("Unary negate failed."); 1919 return false; 1920 } 1921 } 1922 break; 1923 1924 //---------------------------------------------------------------------- 1925 // OPCODE: DW_OP_not 1926 // OPERANDS: none 1927 // DESCRIPTION: pops the top stack entry, and pushes its bitwise 1928 // complement 1929 //---------------------------------------------------------------------- 1930 case DW_OP_not: 1931 if (stack.empty()) 1932 { 1933 if (error_ptr) 1934 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not."); 1935 return false; 1936 } 1937 else 1938 { 1939 if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false) 1940 { 1941 if (error_ptr) 1942 error_ptr->SetErrorString("Logical NOT failed."); 1943 return false; 1944 } 1945 } 1946 break; 1947 1948 //---------------------------------------------------------------------- 1949 // OPCODE: DW_OP_or 1950 // OPERANDS: none 1951 // DESCRIPTION: pops the top two stack entries, performs a bitwise or 1952 // operation on the two, and pushes the result. 1953 //---------------------------------------------------------------------- 1954 case DW_OP_or: 1955 if (stack.size() < 2) 1956 { 1957 if (error_ptr) 1958 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or."); 1959 return false; 1960 } 1961 else 1962 { 1963 tmp = stack.back(); 1964 stack.pop_back(); 1965 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx); 1966 } 1967 break; 1968 1969 //---------------------------------------------------------------------- 1970 // OPCODE: DW_OP_plus 1971 // OPERANDS: none 1972 // DESCRIPTION: pops the top two stack entries, adds them together, and 1973 // pushes the result. 1974 //---------------------------------------------------------------------- 1975 case DW_OP_plus: 1976 if (stack.size() < 2) 1977 { 1978 if (error_ptr) 1979 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus."); 1980 return false; 1981 } 1982 else 1983 { 1984 tmp = stack.back(); 1985 stack.pop_back(); 1986 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) + tmp.ResolveValue(exe_ctx); 1987 } 1988 break; 1989 1990 //---------------------------------------------------------------------- 1991 // OPCODE: DW_OP_plus_uconst 1992 // OPERANDS: none 1993 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 1994 // constant operand and pushes the result. 1995 //---------------------------------------------------------------------- 1996 case DW_OP_plus_uconst: 1997 if (stack.empty()) 1998 { 1999 if (error_ptr) 2000 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst."); 2001 return false; 2002 } 2003 else 2004 { 2005 const uint64_t uconst_value = opcodes.GetULEB128(&offset); 2006 // Implicit conversion from a UINT to a Scalar... 2007 stack.back().ResolveValue(exe_ctx) += uconst_value; 2008 if (!stack.back().ResolveValue(exe_ctx).IsValid()) 2009 { 2010 if (error_ptr) 2011 error_ptr->SetErrorString("DW_OP_plus_uconst failed."); 2012 return false; 2013 } 2014 } 2015 break; 2016 2017 //---------------------------------------------------------------------- 2018 // OPCODE: DW_OP_shl 2019 // OPERANDS: none 2020 // DESCRIPTION: pops the top two stack entries, shifts the former 2021 // second entry left by the number of bits specified by the former top 2022 // of the stack, and pushes the result. 2023 //---------------------------------------------------------------------- 2024 case DW_OP_shl: 2025 if (stack.size() < 2) 2026 { 2027 if (error_ptr) 2028 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl."); 2029 return false; 2030 } 2031 else 2032 { 2033 tmp = stack.back(); 2034 stack.pop_back(); 2035 stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx); 2036 } 2037 break; 2038 2039 //---------------------------------------------------------------------- 2040 // OPCODE: DW_OP_shr 2041 // OPERANDS: none 2042 // DESCRIPTION: pops the top two stack entries, shifts the former second 2043 // entry right logically (filling with zero bits) by the number of bits 2044 // specified by the former top of the stack, and pushes the result. 2045 //---------------------------------------------------------------------- 2046 case DW_OP_shr: 2047 if (stack.size() < 2) 2048 { 2049 if (error_ptr) 2050 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr."); 2051 return false; 2052 } 2053 else 2054 { 2055 tmp = stack.back(); 2056 stack.pop_back(); 2057 if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical(tmp.ResolveValue(exe_ctx)) == false) 2058 { 2059 if (error_ptr) 2060 error_ptr->SetErrorString("DW_OP_shr failed."); 2061 return false; 2062 } 2063 } 2064 break; 2065 2066 //---------------------------------------------------------------------- 2067 // OPCODE: DW_OP_shra 2068 // OPERANDS: none 2069 // DESCRIPTION: pops the top two stack entries, shifts the former second 2070 // entry right arithmetically (divide the magnitude by 2, keep the same 2071 // sign for the result) by the number of bits specified by the former 2072 // top of the stack, and pushes the result. 2073 //---------------------------------------------------------------------- 2074 case DW_OP_shra: 2075 if (stack.size() < 2) 2076 { 2077 if (error_ptr) 2078 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra."); 2079 return false; 2080 } 2081 else 2082 { 2083 tmp = stack.back(); 2084 stack.pop_back(); 2085 stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx); 2086 } 2087 break; 2088 2089 //---------------------------------------------------------------------- 2090 // OPCODE: DW_OP_xor 2091 // OPERANDS: none 2092 // DESCRIPTION: pops the top two stack entries, performs the bitwise 2093 // exclusive-or operation on the two, and pushes the result. 2094 //---------------------------------------------------------------------- 2095 case DW_OP_xor: 2096 if (stack.size() < 2) 2097 { 2098 if (error_ptr) 2099 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor."); 2100 return false; 2101 } 2102 else 2103 { 2104 tmp = stack.back(); 2105 stack.pop_back(); 2106 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx); 2107 } 2108 break; 2109 2110 2111 //---------------------------------------------------------------------- 2112 // OPCODE: DW_OP_skip 2113 // OPERANDS: int16_t 2114 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte 2115 // signed integer constant. The 2-byte constant is the number of bytes 2116 // of the DWARF expression to skip forward or backward from the current 2117 // operation, beginning after the 2-byte constant. 2118 //---------------------------------------------------------------------- 2119 case DW_OP_skip: 2120 { 2121 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); 2122 lldb::offset_t new_offset = offset + skip_offset; 2123 if (new_offset >= opcodes_offset && new_offset < end_offset) 2124 offset = new_offset; 2125 else 2126 { 2127 if (error_ptr) 2128 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); 2129 return false; 2130 } 2131 } 2132 break; 2133 2134 //---------------------------------------------------------------------- 2135 // OPCODE: DW_OP_bra 2136 // OPERANDS: int16_t 2137 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte 2138 // signed integer constant. This operation pops the top of stack. If 2139 // the value popped is not the constant 0, the 2-byte constant operand 2140 // is the number of bytes of the DWARF expression to skip forward or 2141 // backward from the current operation, beginning after the 2-byte 2142 // constant. 2143 //---------------------------------------------------------------------- 2144 case DW_OP_bra: 2145 { 2146 tmp = stack.back(); 2147 stack.pop_back(); 2148 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); 2149 Scalar zero(0); 2150 if (tmp.ResolveValue(exe_ctx) != zero) 2151 { 2152 lldb::offset_t new_offset = offset + bra_offset; 2153 if (new_offset >= opcodes_offset && new_offset < end_offset) 2154 offset = new_offset; 2155 else 2156 { 2157 if (error_ptr) 2158 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); 2159 return false; 2160 } 2161 } 2162 } 2163 break; 2164 2165 //---------------------------------------------------------------------- 2166 // OPCODE: DW_OP_eq 2167 // OPERANDS: none 2168 // DESCRIPTION: pops the top two stack values, compares using the 2169 // equals (==) operator. 2170 // STACK RESULT: push the constant value 1 onto the stack if the result 2171 // of the operation is true or the constant value 0 if the result of the 2172 // operation is false. 2173 //---------------------------------------------------------------------- 2174 case DW_OP_eq: 2175 if (stack.size() < 2) 2176 { 2177 if (error_ptr) 2178 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq."); 2179 return false; 2180 } 2181 else 2182 { 2183 tmp = stack.back(); 2184 stack.pop_back(); 2185 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx); 2186 } 2187 break; 2188 2189 //---------------------------------------------------------------------- 2190 // OPCODE: DW_OP_ge 2191 // OPERANDS: none 2192 // DESCRIPTION: pops the top two stack values, compares using the 2193 // greater than or equal to (>=) operator. 2194 // STACK RESULT: push the constant value 1 onto the stack if the result 2195 // of the operation is true or the constant value 0 if the result of the 2196 // operation is false. 2197 //---------------------------------------------------------------------- 2198 case DW_OP_ge: 2199 if (stack.size() < 2) 2200 { 2201 if (error_ptr) 2202 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge."); 2203 return false; 2204 } 2205 else 2206 { 2207 tmp = stack.back(); 2208 stack.pop_back(); 2209 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx); 2210 } 2211 break; 2212 2213 //---------------------------------------------------------------------- 2214 // OPCODE: DW_OP_gt 2215 // OPERANDS: none 2216 // DESCRIPTION: pops the top two stack values, compares using the 2217 // greater than (>) operator. 2218 // STACK RESULT: push the constant value 1 onto the stack if the result 2219 // of the operation is true or the constant value 0 if the result of the 2220 // operation is false. 2221 //---------------------------------------------------------------------- 2222 case DW_OP_gt: 2223 if (stack.size() < 2) 2224 { 2225 if (error_ptr) 2226 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt."); 2227 return false; 2228 } 2229 else 2230 { 2231 tmp = stack.back(); 2232 stack.pop_back(); 2233 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx); 2234 } 2235 break; 2236 2237 //---------------------------------------------------------------------- 2238 // OPCODE: DW_OP_le 2239 // OPERANDS: none 2240 // DESCRIPTION: pops the top two stack values, compares using the 2241 // less than or equal to (<=) operator. 2242 // STACK RESULT: push the constant value 1 onto the stack if the result 2243 // of the operation is true or the constant value 0 if the result of the 2244 // operation is false. 2245 //---------------------------------------------------------------------- 2246 case DW_OP_le: 2247 if (stack.size() < 2) 2248 { 2249 if (error_ptr) 2250 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le."); 2251 return false; 2252 } 2253 else 2254 { 2255 tmp = stack.back(); 2256 stack.pop_back(); 2257 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx); 2258 } 2259 break; 2260 2261 //---------------------------------------------------------------------- 2262 // OPCODE: DW_OP_lt 2263 // OPERANDS: none 2264 // DESCRIPTION: pops the top two stack values, compares using the 2265 // less than (<) operator. 2266 // STACK RESULT: push the constant value 1 onto the stack if the result 2267 // of the operation is true or the constant value 0 if the result of the 2268 // operation is false. 2269 //---------------------------------------------------------------------- 2270 case DW_OP_lt: 2271 if (stack.size() < 2) 2272 { 2273 if (error_ptr) 2274 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt."); 2275 return false; 2276 } 2277 else 2278 { 2279 tmp = stack.back(); 2280 stack.pop_back(); 2281 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx); 2282 } 2283 break; 2284 2285 //---------------------------------------------------------------------- 2286 // OPCODE: DW_OP_ne 2287 // OPERANDS: none 2288 // DESCRIPTION: pops the top two stack values, compares using the 2289 // not equal (!=) operator. 2290 // STACK RESULT: push the constant value 1 onto the stack if the result 2291 // of the operation is true or the constant value 0 if the result of the 2292 // operation is false. 2293 //---------------------------------------------------------------------- 2294 case DW_OP_ne: 2295 if (stack.size() < 2) 2296 { 2297 if (error_ptr) 2298 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne."); 2299 return false; 2300 } 2301 else 2302 { 2303 tmp = stack.back(); 2304 stack.pop_back(); 2305 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx); 2306 } 2307 break; 2308 2309 //---------------------------------------------------------------------- 2310 // OPCODE: DW_OP_litn 2311 // OPERANDS: none 2312 // DESCRIPTION: encode the unsigned literal values from 0 through 31. 2313 // STACK RESULT: push the unsigned literal constant value onto the top 2314 // of the stack. 2315 //---------------------------------------------------------------------- 2316 case DW_OP_lit0: 2317 case DW_OP_lit1: 2318 case DW_OP_lit2: 2319 case DW_OP_lit3: 2320 case DW_OP_lit4: 2321 case DW_OP_lit5: 2322 case DW_OP_lit6: 2323 case DW_OP_lit7: 2324 case DW_OP_lit8: 2325 case DW_OP_lit9: 2326 case DW_OP_lit10: 2327 case DW_OP_lit11: 2328 case DW_OP_lit12: 2329 case DW_OP_lit13: 2330 case DW_OP_lit14: 2331 case DW_OP_lit15: 2332 case DW_OP_lit16: 2333 case DW_OP_lit17: 2334 case DW_OP_lit18: 2335 case DW_OP_lit19: 2336 case DW_OP_lit20: 2337 case DW_OP_lit21: 2338 case DW_OP_lit22: 2339 case DW_OP_lit23: 2340 case DW_OP_lit24: 2341 case DW_OP_lit25: 2342 case DW_OP_lit26: 2343 case DW_OP_lit27: 2344 case DW_OP_lit28: 2345 case DW_OP_lit29: 2346 case DW_OP_lit30: 2347 case DW_OP_lit31: 2348 stack.push_back(Scalar(op - DW_OP_lit0)); 2349 break; 2350 2351 //---------------------------------------------------------------------- 2352 // OPCODE: DW_OP_regN 2353 // OPERANDS: none 2354 // DESCRIPTION: Push the value in register n on the top of the stack. 2355 //---------------------------------------------------------------------- 2356 case DW_OP_reg0: 2357 case DW_OP_reg1: 2358 case DW_OP_reg2: 2359 case DW_OP_reg3: 2360 case DW_OP_reg4: 2361 case DW_OP_reg5: 2362 case DW_OP_reg6: 2363 case DW_OP_reg7: 2364 case DW_OP_reg8: 2365 case DW_OP_reg9: 2366 case DW_OP_reg10: 2367 case DW_OP_reg11: 2368 case DW_OP_reg12: 2369 case DW_OP_reg13: 2370 case DW_OP_reg14: 2371 case DW_OP_reg15: 2372 case DW_OP_reg16: 2373 case DW_OP_reg17: 2374 case DW_OP_reg18: 2375 case DW_OP_reg19: 2376 case DW_OP_reg20: 2377 case DW_OP_reg21: 2378 case DW_OP_reg22: 2379 case DW_OP_reg23: 2380 case DW_OP_reg24: 2381 case DW_OP_reg25: 2382 case DW_OP_reg26: 2383 case DW_OP_reg27: 2384 case DW_OP_reg28: 2385 case DW_OP_reg29: 2386 case DW_OP_reg30: 2387 case DW_OP_reg31: 2388 { 2389 reg_num = op - DW_OP_reg0; 2390 2391 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2392 stack.push_back(tmp); 2393 else 2394 return false; 2395 } 2396 break; 2397 //---------------------------------------------------------------------- 2398 // OPCODE: DW_OP_regx 2399 // OPERANDS: 2400 // ULEB128 literal operand that encodes the register. 2401 // DESCRIPTION: Push the value in register on the top of the stack. 2402 //---------------------------------------------------------------------- 2403 case DW_OP_regx: 2404 { 2405 reg_num = opcodes.GetULEB128(&offset); 2406 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2407 stack.push_back(tmp); 2408 else 2409 return false; 2410 } 2411 break; 2412 2413 //---------------------------------------------------------------------- 2414 // OPCODE: DW_OP_bregN 2415 // OPERANDS: 2416 // SLEB128 offset from register N 2417 // DESCRIPTION: Value is in memory at the address specified by register 2418 // N plus an offset. 2419 //---------------------------------------------------------------------- 2420 case DW_OP_breg0: 2421 case DW_OP_breg1: 2422 case DW_OP_breg2: 2423 case DW_OP_breg3: 2424 case DW_OP_breg4: 2425 case DW_OP_breg5: 2426 case DW_OP_breg6: 2427 case DW_OP_breg7: 2428 case DW_OP_breg8: 2429 case DW_OP_breg9: 2430 case DW_OP_breg10: 2431 case DW_OP_breg11: 2432 case DW_OP_breg12: 2433 case DW_OP_breg13: 2434 case DW_OP_breg14: 2435 case DW_OP_breg15: 2436 case DW_OP_breg16: 2437 case DW_OP_breg17: 2438 case DW_OP_breg18: 2439 case DW_OP_breg19: 2440 case DW_OP_breg20: 2441 case DW_OP_breg21: 2442 case DW_OP_breg22: 2443 case DW_OP_breg23: 2444 case DW_OP_breg24: 2445 case DW_OP_breg25: 2446 case DW_OP_breg26: 2447 case DW_OP_breg27: 2448 case DW_OP_breg28: 2449 case DW_OP_breg29: 2450 case DW_OP_breg30: 2451 case DW_OP_breg31: 2452 { 2453 reg_num = op - DW_OP_breg0; 2454 2455 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2456 { 2457 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2458 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; 2459 tmp.ClearContext(); 2460 stack.push_back(tmp); 2461 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2462 } 2463 else 2464 return false; 2465 } 2466 break; 2467 //---------------------------------------------------------------------- 2468 // OPCODE: DW_OP_bregx 2469 // OPERANDS: 2 2470 // ULEB128 literal operand that encodes the register. 2471 // SLEB128 offset from register N 2472 // DESCRIPTION: Value is in memory at the address specified by register 2473 // N plus an offset. 2474 //---------------------------------------------------------------------- 2475 case DW_OP_bregx: 2476 { 2477 reg_num = opcodes.GetULEB128(&offset); 2478 2479 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp)) 2480 { 2481 int64_t breg_offset = opcodes.GetSLEB128(&offset); 2482 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; 2483 tmp.ClearContext(); 2484 stack.push_back(tmp); 2485 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2486 } 2487 else 2488 return false; 2489 } 2490 break; 2491 2492 case DW_OP_fbreg: 2493 if (exe_ctx) 2494 { 2495 if (frame) 2496 { 2497 Scalar value; 2498 if (frame->GetFrameBaseValue(value, error_ptr)) 2499 { 2500 int64_t fbreg_offset = opcodes.GetSLEB128(&offset); 2501 value += fbreg_offset; 2502 stack.push_back(value); 2503 stack.back().SetValueType (Value::eValueTypeLoadAddress); 2504 } 2505 else 2506 return false; 2507 } 2508 else 2509 { 2510 if (error_ptr) 2511 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode."); 2512 return false; 2513 } 2514 } 2515 else 2516 { 2517 if (error_ptr) 2518 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n"); 2519 return false; 2520 } 2521 2522 break; 2523 2524 //---------------------------------------------------------------------- 2525 // OPCODE: DW_OP_nop 2526 // OPERANDS: none 2527 // DESCRIPTION: A place holder. It has no effect on the location stack 2528 // or any of its values. 2529 //---------------------------------------------------------------------- 2530 case DW_OP_nop: 2531 break; 2532 2533 //---------------------------------------------------------------------- 2534 // OPCODE: DW_OP_piece 2535 // OPERANDS: 1 2536 // ULEB128: byte size of the piece 2537 // DESCRIPTION: The operand describes the size in bytes of the piece of 2538 // the object referenced by the DWARF expression whose result is at the 2539 // top of the stack. If the piece is located in a register, but does not 2540 // occupy the entire register, the placement of the piece within that 2541 // register is defined by the ABI. 2542 // 2543 // Many compilers store a single variable in sets of registers, or store 2544 // a variable partially in memory and partially in registers. 2545 // DW_OP_piece provides a way of describing how large a part of a 2546 // variable a particular DWARF expression refers to. 2547 //---------------------------------------------------------------------- 2548 case DW_OP_piece: 2549 if (error_ptr) 2550 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece."); 2551 return false; 2552 2553 //---------------------------------------------------------------------- 2554 // OPCODE: DW_OP_push_object_address 2555 // OPERANDS: none 2556 // DESCRIPTION: Pushes the address of the object currently being 2557 // evaluated as part of evaluation of a user presented expression. 2558 // This object may correspond to an independent variable described by 2559 // its own DIE or it may be a component of an array, structure, or class 2560 // whose address has been dynamically determined by an earlier step 2561 // during user expression evaluation. 2562 //---------------------------------------------------------------------- 2563 case DW_OP_push_object_address: 2564 if (error_ptr) 2565 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address."); 2566 return false; 2567 2568 //---------------------------------------------------------------------- 2569 // OPCODE: DW_OP_call2 2570 // OPERANDS: 2571 // uint16_t compile unit relative offset of a DIE 2572 // DESCRIPTION: Performs subroutine calls during evaluation 2573 // of a DWARF expression. The operand is the 2-byte unsigned offset 2574 // of a debugging information entry in the current compilation unit. 2575 // 2576 // Operand interpretation is exactly like that for DW_FORM_ref2. 2577 // 2578 // This operation transfers control of DWARF expression evaluation 2579 // to the DW_AT_location attribute of the referenced DIE. If there is 2580 // no such attribute, then there is no effect. Execution of the DWARF 2581 // expression of a DW_AT_location attribute may add to and/or remove from 2582 // values on the stack. Execution returns to the point following the call 2583 // when the end of the attribute is reached. Values on the stack at the 2584 // time of the call may be used as parameters by the called expression 2585 // and values left on the stack by the called expression may be used as 2586 // return values by prior agreement between the calling and called 2587 // expressions. 2588 //---------------------------------------------------------------------- 2589 case DW_OP_call2: 2590 if (error_ptr) 2591 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2."); 2592 return false; 2593 //---------------------------------------------------------------------- 2594 // OPCODE: DW_OP_call4 2595 // OPERANDS: 1 2596 // uint32_t compile unit relative offset of a DIE 2597 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF 2598 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset 2599 // of a debugging information entry in the current compilation unit. 2600 // 2601 // Operand interpretation DW_OP_call4 is exactly like that for 2602 // DW_FORM_ref4. 2603 // 2604 // This operation transfers control of DWARF expression evaluation 2605 // to the DW_AT_location attribute of the referenced DIE. If there is 2606 // no such attribute, then there is no effect. Execution of the DWARF 2607 // expression of a DW_AT_location attribute may add to and/or remove from 2608 // values on the stack. Execution returns to the point following the call 2609 // when the end of the attribute is reached. Values on the stack at the 2610 // time of the call may be used as parameters by the called expression 2611 // and values left on the stack by the called expression may be used as 2612 // return values by prior agreement between the calling and called 2613 // expressions. 2614 //---------------------------------------------------------------------- 2615 case DW_OP_call4: 2616 if (error_ptr) 2617 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4."); 2618 return false; 2619 2620 //---------------------------------------------------------------------- 2621 // OPCODE: DW_OP_stack_value 2622 // OPERANDS: None 2623 // DESCRIPTION: Specifies that the object does not exist in memory but 2624 // rather is a constant value. The value from the top of the stack is 2625 // the value to be used. This is the actual object value and not the 2626 // location. 2627 //---------------------------------------------------------------------- 2628 case DW_OP_stack_value: 2629 stack.back().SetValueType(Value::eValueTypeScalar); 2630 break; 2631 2632 //---------------------------------------------------------------------- 2633 // OPCODE: DW_OP_call_frame_cfa 2634 // OPERANDS: None 2635 // DESCRIPTION: Specifies a DWARF expression that pushes the value of 2636 // the canonical frame address consistent with the call frame information 2637 // located in .debug_frame (or in the FDEs of the eh_frame section). 2638 //---------------------------------------------------------------------- 2639 case DW_OP_call_frame_cfa: 2640 if (frame) 2641 { 2642 // Note that we don't have to parse FDEs because this DWARF expression 2643 // is commonly evaluated with a valid stack frame. 2644 StackID id = frame->GetStackID(); 2645 addr_t cfa = id.GetCallFrameAddress(); 2646 if (cfa != LLDB_INVALID_ADDRESS) 2647 { 2648 stack.push_back(Scalar(cfa)); 2649 stack.back().SetValueType (Value::eValueTypeHostAddress); 2650 } 2651 else 2652 if (error_ptr) 2653 error_ptr->SetErrorString ("Stack frame does not include a canonical frame address for DW_OP_call_frame_cfa opcode."); 2654 } 2655 else 2656 { 2657 if (error_ptr) 2658 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_call_frame_cfa opcode."); 2659 return false; 2660 } 2661 break; 2662 default: 2663 if (log) 2664 log->Printf("Unhandled opcode %s in DWARFExpression.", DW_OP_value_to_name(op)); 2665 break; 2666 } 2667 } 2668 2669 if (stack.empty()) 2670 { 2671 if (error_ptr) 2672 error_ptr->SetErrorString ("Stack empty after evaluation."); 2673 return false; 2674 } 2675 else if (log && log->GetVerbose()) 2676 { 2677 size_t count = stack.size(); 2678 log->Printf("Stack after operation has %lu values:", count); 2679 for (size_t i=0; i<count; ++i) 2680 { 2681 StreamString new_value; 2682 new_value.Printf("[%" PRIu64 "]", (uint64_t)i); 2683 stack[i].Dump(&new_value); 2684 log->Printf(" %s", new_value.GetData()); 2685 } 2686 } 2687 2688 result = stack.back(); 2689 return true; // Return true on success 2690 } 2691 2692