Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2001 September 15
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This file contains routines used for analyzing expressions and
     13 ** for generating VDBE code that evaluates expressions in SQLite.
     14 */
     15 #include "sqliteInt.h"
     16 
     17 /*
     18 ** Return the 'affinity' of the expression pExpr if any.
     19 **
     20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
     21 ** or a sub-select with a column as the return value, then the
     22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
     23 ** indicating no affinity for the expression.
     24 **
     25 ** i.e. the WHERE clause expresssions in the following statements all
     26 ** have an affinity:
     27 **
     28 ** CREATE TABLE t1(a);
     29 ** SELECT * FROM t1 WHERE a;
     30 ** SELECT a AS b FROM t1 WHERE b;
     31 ** SELECT * FROM t1 WHERE (select a from t1);
     32 */
     33 char sqlite3ExprAffinity(Expr *pExpr){
     34   int op = pExpr->op;
     35   if( op==TK_SELECT ){
     36     assert( pExpr->flags&EP_xIsSelect );
     37     return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
     38   }
     39 #ifndef SQLITE_OMIT_CAST
     40   if( op==TK_CAST ){
     41     assert( !ExprHasProperty(pExpr, EP_IntValue) );
     42     return sqlite3AffinityType(pExpr->u.zToken);
     43   }
     44 #endif
     45   if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
     46    && pExpr->pTab!=0
     47   ){
     48     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
     49     ** a TK_COLUMN but was previously evaluated and cached in a register */
     50     int j = pExpr->iColumn;
     51     if( j<0 ) return SQLITE_AFF_INTEGER;
     52     assert( pExpr->pTab && j<pExpr->pTab->nCol );
     53     return pExpr->pTab->aCol[j].affinity;
     54   }
     55   return pExpr->affinity;
     56 }
     57 
     58 /*
     59 ** Set the explicit collating sequence for an expression to the
     60 ** collating sequence supplied in the second argument.
     61 */
     62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
     63   if( pExpr && pColl ){
     64     pExpr->pColl = pColl;
     65     pExpr->flags |= EP_ExpCollate;
     66   }
     67   return pExpr;
     68 }
     69 
     70 /*
     71 ** Set the collating sequence for expression pExpr to be the collating
     72 ** sequence named by pToken.   Return a pointer to the revised expression.
     73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
     74 ** flag.  An explicit collating sequence will override implicit
     75 ** collating sequences.
     76 */
     77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
     78   char *zColl = 0;            /* Dequoted name of collation sequence */
     79   CollSeq *pColl;
     80   sqlite3 *db = pParse->db;
     81   zColl = sqlite3NameFromToken(db, pCollName);
     82   pColl = sqlite3LocateCollSeq(pParse, zColl);
     83   sqlite3ExprSetColl(pExpr, pColl);
     84   sqlite3DbFree(db, zColl);
     85   return pExpr;
     86 }
     87 
     88 /*
     89 ** Return the default collation sequence for the expression pExpr. If
     90 ** there is no default collation type, return 0.
     91 */
     92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
     93   CollSeq *pColl = 0;
     94   Expr *p = pExpr;
     95   while( p ){
     96     int op;
     97     pColl = p->pColl;
     98     if( pColl ) break;
     99     op = p->op;
    100     if( p->pTab!=0 && (
    101         op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
    102     )){
    103       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
    104       ** a TK_COLUMN but was previously evaluated and cached in a register */
    105       const char *zColl;
    106       int j = p->iColumn;
    107       if( j>=0 ){
    108         sqlite3 *db = pParse->db;
    109         zColl = p->pTab->aCol[j].zColl;
    110         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
    111         pExpr->pColl = pColl;
    112       }
    113       break;
    114     }
    115     if( op!=TK_CAST && op!=TK_UPLUS ){
    116       break;
    117     }
    118     p = p->pLeft;
    119   }
    120   if( sqlite3CheckCollSeq(pParse, pColl) ){
    121     pColl = 0;
    122   }
    123   return pColl;
    124 }
    125 
    126 /*
    127 ** pExpr is an operand of a comparison operator.  aff2 is the
    128 ** type affinity of the other operand.  This routine returns the
    129 ** type affinity that should be used for the comparison operator.
    130 */
    131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
    132   char aff1 = sqlite3ExprAffinity(pExpr);
    133   if( aff1 && aff2 ){
    134     /* Both sides of the comparison are columns. If one has numeric
    135     ** affinity, use that. Otherwise use no affinity.
    136     */
    137     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
    138       return SQLITE_AFF_NUMERIC;
    139     }else{
    140       return SQLITE_AFF_NONE;
    141     }
    142   }else if( !aff1 && !aff2 ){
    143     /* Neither side of the comparison is a column.  Compare the
    144     ** results directly.
    145     */
    146     return SQLITE_AFF_NONE;
    147   }else{
    148     /* One side is a column, the other is not. Use the columns affinity. */
    149     assert( aff1==0 || aff2==0 );
    150     return (aff1 + aff2);
    151   }
    152 }
    153 
    154 /*
    155 ** pExpr is a comparison operator.  Return the type affinity that should
    156 ** be applied to both operands prior to doing the comparison.
    157 */
    158 static char comparisonAffinity(Expr *pExpr){
    159   char aff;
    160   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
    161           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
    162           pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
    163   assert( pExpr->pLeft );
    164   aff = sqlite3ExprAffinity(pExpr->pLeft);
    165   if( pExpr->pRight ){
    166     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
    167   }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    168     aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
    169   }else if( !aff ){
    170     aff = SQLITE_AFF_NONE;
    171   }
    172   return aff;
    173 }
    174 
    175 /*
    176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
    177 ** idx_affinity is the affinity of an indexed column. Return true
    178 ** if the index with affinity idx_affinity may be used to implement
    179 ** the comparison in pExpr.
    180 */
    181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
    182   char aff = comparisonAffinity(pExpr);
    183   switch( aff ){
    184     case SQLITE_AFF_NONE:
    185       return 1;
    186     case SQLITE_AFF_TEXT:
    187       return idx_affinity==SQLITE_AFF_TEXT;
    188     default:
    189       return sqlite3IsNumericAffinity(idx_affinity);
    190   }
    191 }
    192 
    193 /*
    194 ** Return the P5 value that should be used for a binary comparison
    195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
    196 */
    197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
    198   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
    199   aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
    200   return aff;
    201 }
    202 
    203 /*
    204 ** Return a pointer to the collation sequence that should be used by
    205 ** a binary comparison operator comparing pLeft and pRight.
    206 **
    207 ** If the left hand expression has a collating sequence type, then it is
    208 ** used. Otherwise the collation sequence for the right hand expression
    209 ** is used, or the default (BINARY) if neither expression has a collating
    210 ** type.
    211 **
    212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
    213 ** it is not considered.
    214 */
    215 CollSeq *sqlite3BinaryCompareCollSeq(
    216   Parse *pParse,
    217   Expr *pLeft,
    218   Expr *pRight
    219 ){
    220   CollSeq *pColl;
    221   assert( pLeft );
    222   if( pLeft->flags & EP_ExpCollate ){
    223     assert( pLeft->pColl );
    224     pColl = pLeft->pColl;
    225   }else if( pRight && pRight->flags & EP_ExpCollate ){
    226     assert( pRight->pColl );
    227     pColl = pRight->pColl;
    228   }else{
    229     pColl = sqlite3ExprCollSeq(pParse, pLeft);
    230     if( !pColl ){
    231       pColl = sqlite3ExprCollSeq(pParse, pRight);
    232     }
    233   }
    234   return pColl;
    235 }
    236 
    237 /*
    238 ** Generate code for a comparison operator.
    239 */
    240 static int codeCompare(
    241   Parse *pParse,    /* The parsing (and code generating) context */
    242   Expr *pLeft,      /* The left operand */
    243   Expr *pRight,     /* The right operand */
    244   int opcode,       /* The comparison opcode */
    245   int in1, int in2, /* Register holding operands */
    246   int dest,         /* Jump here if true.  */
    247   int jumpIfNull    /* If true, jump if either operand is NULL */
    248 ){
    249   int p5;
    250   int addr;
    251   CollSeq *p4;
    252 
    253   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
    254   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
    255   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
    256                            (void*)p4, P4_COLLSEQ);
    257   sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
    258   return addr;
    259 }
    260 
    261 #if SQLITE_MAX_EXPR_DEPTH>0
    262 /*
    263 ** Check that argument nHeight is less than or equal to the maximum
    264 ** expression depth allowed. If it is not, leave an error message in
    265 ** pParse.
    266 */
    267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
    268   int rc = SQLITE_OK;
    269   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
    270   if( nHeight>mxHeight ){
    271     sqlite3ErrorMsg(pParse,
    272        "Expression tree is too large (maximum depth %d)", mxHeight
    273     );
    274     rc = SQLITE_ERROR;
    275   }
    276   return rc;
    277 }
    278 
    279 /* The following three functions, heightOfExpr(), heightOfExprList()
    280 ** and heightOfSelect(), are used to determine the maximum height
    281 ** of any expression tree referenced by the structure passed as the
    282 ** first argument.
    283 **
    284 ** If this maximum height is greater than the current value pointed
    285 ** to by pnHeight, the second parameter, then set *pnHeight to that
    286 ** value.
    287 */
    288 static void heightOfExpr(Expr *p, int *pnHeight){
    289   if( p ){
    290     if( p->nHeight>*pnHeight ){
    291       *pnHeight = p->nHeight;
    292     }
    293   }
    294 }
    295 static void heightOfExprList(ExprList *p, int *pnHeight){
    296   if( p ){
    297     int i;
    298     for(i=0; i<p->nExpr; i++){
    299       heightOfExpr(p->a[i].pExpr, pnHeight);
    300     }
    301   }
    302 }
    303 static void heightOfSelect(Select *p, int *pnHeight){
    304   if( p ){
    305     heightOfExpr(p->pWhere, pnHeight);
    306     heightOfExpr(p->pHaving, pnHeight);
    307     heightOfExpr(p->pLimit, pnHeight);
    308     heightOfExpr(p->pOffset, pnHeight);
    309     heightOfExprList(p->pEList, pnHeight);
    310     heightOfExprList(p->pGroupBy, pnHeight);
    311     heightOfExprList(p->pOrderBy, pnHeight);
    312     heightOfSelect(p->pPrior, pnHeight);
    313   }
    314 }
    315 
    316 /*
    317 ** Set the Expr.nHeight variable in the structure passed as an
    318 ** argument. An expression with no children, Expr.pList or
    319 ** Expr.pSelect member has a height of 1. Any other expression
    320 ** has a height equal to the maximum height of any other
    321 ** referenced Expr plus one.
    322 */
    323 static void exprSetHeight(Expr *p){
    324   int nHeight = 0;
    325   heightOfExpr(p->pLeft, &nHeight);
    326   heightOfExpr(p->pRight, &nHeight);
    327   if( ExprHasProperty(p, EP_xIsSelect) ){
    328     heightOfSelect(p->x.pSelect, &nHeight);
    329   }else{
    330     heightOfExprList(p->x.pList, &nHeight);
    331   }
    332   p->nHeight = nHeight + 1;
    333 }
    334 
    335 /*
    336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
    337 ** the height is greater than the maximum allowed expression depth,
    338 ** leave an error in pParse.
    339 */
    340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
    341   exprSetHeight(p);
    342   sqlite3ExprCheckHeight(pParse, p->nHeight);
    343 }
    344 
    345 /*
    346 ** Return the maximum height of any expression tree referenced
    347 ** by the select statement passed as an argument.
    348 */
    349 int sqlite3SelectExprHeight(Select *p){
    350   int nHeight = 0;
    351   heightOfSelect(p, &nHeight);
    352   return nHeight;
    353 }
    354 #else
    355   #define exprSetHeight(y)
    356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
    357 
    358 /*
    359 ** This routine is the core allocator for Expr nodes.
    360 **
    361 ** Construct a new expression node and return a pointer to it.  Memory
    362 ** for this node and for the pToken argument is a single allocation
    363 ** obtained from sqlite3DbMalloc().  The calling function
    364 ** is responsible for making sure the node eventually gets freed.
    365 **
    366 ** If dequote is true, then the token (if it exists) is dequoted.
    367 ** If dequote is false, no dequoting is performance.  The deQuote
    368 ** parameter is ignored if pToken is NULL or if the token does not
    369 ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
    370 ** then the EP_DblQuoted flag is set on the expression node.
    371 **
    372 ** Special case:  If op==TK_INTEGER and pToken points to a string that
    373 ** can be translated into a 32-bit integer, then the token is not
    374 ** stored in u.zToken.  Instead, the integer values is written
    375 ** into u.iValue and the EP_IntValue flag is set.  No extra storage
    376 ** is allocated to hold the integer text and the dequote flag is ignored.
    377 */
    378 Expr *sqlite3ExprAlloc(
    379   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
    380   int op,                 /* Expression opcode */
    381   const Token *pToken,    /* Token argument.  Might be NULL */
    382   int dequote             /* True to dequote */
    383 ){
    384   Expr *pNew;
    385   int nExtra = 0;
    386   int iValue = 0;
    387 
    388   if( pToken ){
    389     if( op!=TK_INTEGER || pToken->z==0
    390           || sqlite3GetInt32(pToken->z, &iValue)==0 ){
    391       nExtra = pToken->n+1;
    392       assert( iValue>=0 );
    393     }
    394   }
    395   pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
    396   if( pNew ){
    397     pNew->op = (u8)op;
    398     pNew->iAgg = -1;
    399     if( pToken ){
    400       if( nExtra==0 ){
    401         pNew->flags |= EP_IntValue;
    402         pNew->u.iValue = iValue;
    403       }else{
    404         int c;
    405         pNew->u.zToken = (char*)&pNew[1];
    406         memcpy(pNew->u.zToken, pToken->z, pToken->n);
    407         pNew->u.zToken[pToken->n] = 0;
    408         if( dequote && nExtra>=3
    409              && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
    410           sqlite3Dequote(pNew->u.zToken);
    411           if( c=='"' ) pNew->flags |= EP_DblQuoted;
    412         }
    413       }
    414     }
    415 #if SQLITE_MAX_EXPR_DEPTH>0
    416     pNew->nHeight = 1;
    417 #endif
    418   }
    419   return pNew;
    420 }
    421 
    422 /*
    423 ** Allocate a new expression node from a zero-terminated token that has
    424 ** already been dequoted.
    425 */
    426 Expr *sqlite3Expr(
    427   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
    428   int op,                 /* Expression opcode */
    429   const char *zToken      /* Token argument.  Might be NULL */
    430 ){
    431   Token x;
    432   x.z = zToken;
    433   x.n = zToken ? sqlite3Strlen30(zToken) : 0;
    434   return sqlite3ExprAlloc(db, op, &x, 0);
    435 }
    436 
    437 /*
    438 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
    439 **
    440 ** If pRoot==NULL that means that a memory allocation error has occurred.
    441 ** In that case, delete the subtrees pLeft and pRight.
    442 */
    443 void sqlite3ExprAttachSubtrees(
    444   sqlite3 *db,
    445   Expr *pRoot,
    446   Expr *pLeft,
    447   Expr *pRight
    448 ){
    449   if( pRoot==0 ){
    450     assert( db->mallocFailed );
    451     sqlite3ExprDelete(db, pLeft);
    452     sqlite3ExprDelete(db, pRight);
    453   }else{
    454     if( pRight ){
    455       pRoot->pRight = pRight;
    456       if( pRight->flags & EP_ExpCollate ){
    457         pRoot->flags |= EP_ExpCollate;
    458         pRoot->pColl = pRight->pColl;
    459       }
    460     }
    461     if( pLeft ){
    462       pRoot->pLeft = pLeft;
    463       if( pLeft->flags & EP_ExpCollate ){
    464         pRoot->flags |= EP_ExpCollate;
    465         pRoot->pColl = pLeft->pColl;
    466       }
    467     }
    468     exprSetHeight(pRoot);
    469   }
    470 }
    471 
    472 /*
    473 ** Allocate a Expr node which joins as many as two subtrees.
    474 **
    475 ** One or both of the subtrees can be NULL.  Return a pointer to the new
    476 ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
    477 ** free the subtrees and return NULL.
    478 */
    479 Expr *sqlite3PExpr(
    480   Parse *pParse,          /* Parsing context */
    481   int op,                 /* Expression opcode */
    482   Expr *pLeft,            /* Left operand */
    483   Expr *pRight,           /* Right operand */
    484   const Token *pToken     /* Argument token */
    485 ){
    486   Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
    487   sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
    488   if( p ) {
    489     sqlite3ExprCheckHeight(pParse, p->nHeight);
    490   }
    491   return p;
    492 }
    493 
    494 /*
    495 ** Join two expressions using an AND operator.  If either expression is
    496 ** NULL, then just return the other expression.
    497 */
    498 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
    499   if( pLeft==0 ){
    500     return pRight;
    501   }else if( pRight==0 ){
    502     return pLeft;
    503   }else{
    504     Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
    505     sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
    506     return pNew;
    507   }
    508 }
    509 
    510 /*
    511 ** Construct a new expression node for a function with multiple
    512 ** arguments.
    513 */
    514 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
    515   Expr *pNew;
    516   sqlite3 *db = pParse->db;
    517   assert( pToken );
    518   pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
    519   if( pNew==0 ){
    520     sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
    521     return 0;
    522   }
    523   pNew->x.pList = pList;
    524   assert( !ExprHasProperty(pNew, EP_xIsSelect) );
    525   sqlite3ExprSetHeight(pParse, pNew);
    526   return pNew;
    527 }
    528 
    529 /*
    530 ** Assign a variable number to an expression that encodes a wildcard
    531 ** in the original SQL statement.
    532 **
    533 ** Wildcards consisting of a single "?" are assigned the next sequential
    534 ** variable number.
    535 **
    536 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
    537 ** sure "nnn" is not too be to avoid a denial of service attack when
    538 ** the SQL statement comes from an external source.
    539 **
    540 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
    541 ** as the previous instance of the same wildcard.  Or if this is the first
    542 ** instance of the wildcard, the next sequenial variable number is
    543 ** assigned.
    544 */
    545 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
    546   sqlite3 *db = pParse->db;
    547   const char *z;
    548 
    549   if( pExpr==0 ) return;
    550   assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
    551   z = pExpr->u.zToken;
    552   assert( z!=0 );
    553   assert( z[0]!=0 );
    554   if( z[1]==0 ){
    555     /* Wildcard of the form "?".  Assign the next variable number */
    556     assert( z[0]=='?' );
    557     pExpr->iColumn = (ynVar)(++pParse->nVar);
    558   }else if( z[0]=='?' ){
    559     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
    560     ** use it as the variable number */
    561     i64 i;
    562     int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
    563     pExpr->iColumn = (ynVar)i;
    564     testcase( i==0 );
    565     testcase( i==1 );
    566     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
    567     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
    568     if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
    569       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
    570           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
    571     }
    572     if( i>pParse->nVar ){
    573       pParse->nVar = (int)i;
    574     }
    575   }else{
    576     /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
    577     ** number as the prior appearance of the same name, or if the name
    578     ** has never appeared before, reuse the same variable number
    579     */
    580     int i;
    581     for(i=0; i<pParse->nVarExpr; i++){
    582       Expr *pE = pParse->apVarExpr[i];
    583       assert( pE!=0 );
    584       if( strcmp(pE->u.zToken, z)==0 ){
    585         pExpr->iColumn = pE->iColumn;
    586         break;
    587       }
    588     }
    589     if( i>=pParse->nVarExpr ){
    590       pExpr->iColumn = (ynVar)(++pParse->nVar);
    591       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
    592         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
    593         pParse->apVarExpr =
    594             sqlite3DbReallocOrFree(
    595               db,
    596               pParse->apVarExpr,
    597               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
    598             );
    599       }
    600       if( !db->mallocFailed ){
    601         assert( pParse->apVarExpr!=0 );
    602         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
    603       }
    604     }
    605   }
    606   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
    607     sqlite3ErrorMsg(pParse, "too many SQL variables");
    608   }
    609 }
    610 
    611 /*
    612 ** Recursively delete an expression tree.
    613 */
    614 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
    615   if( p==0 ) return;
    616   /* Sanity check: Assert that the IntValue is non-negative if it exists */
    617   assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
    618   if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
    619     sqlite3ExprDelete(db, p->pLeft);
    620     sqlite3ExprDelete(db, p->pRight);
    621     if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
    622       sqlite3DbFree(db, p->u.zToken);
    623     }
    624     if( ExprHasProperty(p, EP_xIsSelect) ){
    625       sqlite3SelectDelete(db, p->x.pSelect);
    626     }else{
    627       sqlite3ExprListDelete(db, p->x.pList);
    628     }
    629   }
    630   if( !ExprHasProperty(p, EP_Static) ){
    631     sqlite3DbFree(db, p);
    632   }
    633 }
    634 
    635 /*
    636 ** Return the number of bytes allocated for the expression structure
    637 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
    638 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
    639 */
    640 static int exprStructSize(Expr *p){
    641   if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
    642   if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
    643   return EXPR_FULLSIZE;
    644 }
    645 
    646 /*
    647 ** The dupedExpr*Size() routines each return the number of bytes required
    648 ** to store a copy of an expression or expression tree.  They differ in
    649 ** how much of the tree is measured.
    650 **
    651 **     dupedExprStructSize()     Size of only the Expr structure
    652 **     dupedExprNodeSize()       Size of Expr + space for token
    653 **     dupedExprSize()           Expr + token + subtree components
    654 **
    655 ***************************************************************************
    656 **
    657 ** The dupedExprStructSize() function returns two values OR-ed together:
    658 ** (1) the space required for a copy of the Expr structure only and
    659 ** (2) the EP_xxx flags that indicate what the structure size should be.
    660 ** The return values is always one of:
    661 **
    662 **      EXPR_FULLSIZE
    663 **      EXPR_REDUCEDSIZE   | EP_Reduced
    664 **      EXPR_TOKENONLYSIZE | EP_TokenOnly
    665 **
    666 ** The size of the structure can be found by masking the return value
    667 ** of this routine with 0xfff.  The flags can be found by masking the
    668 ** return value with EP_Reduced|EP_TokenOnly.
    669 **
    670 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
    671 ** (unreduced) Expr objects as they or originally constructed by the parser.
    672 ** During expression analysis, extra information is computed and moved into
    673 ** later parts of teh Expr object and that extra information might get chopped
    674 ** off if the expression is reduced.  Note also that it does not work to
    675 ** make a EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
    676 ** to reduce a pristine expression tree from the parser.  The implementation
    677 ** of dupedExprStructSize() contain multiple assert() statements that attempt
    678 ** to enforce this constraint.
    679 */
    680 static int dupedExprStructSize(Expr *p, int flags){
    681   int nSize;
    682   assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
    683   if( 0==(flags&EXPRDUP_REDUCE) ){
    684     nSize = EXPR_FULLSIZE;
    685   }else{
    686     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
    687     assert( !ExprHasProperty(p, EP_FromJoin) );
    688     assert( (p->flags2 & EP2_MallocedToken)==0 );
    689     assert( (p->flags2 & EP2_Irreducible)==0 );
    690     if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
    691       nSize = EXPR_REDUCEDSIZE | EP_Reduced;
    692     }else{
    693       nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
    694     }
    695   }
    696   return nSize;
    697 }
    698 
    699 /*
    700 ** This function returns the space in bytes required to store the copy
    701 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
    702 ** string is defined.)
    703 */
    704 static int dupedExprNodeSize(Expr *p, int flags){
    705   int nByte = dupedExprStructSize(p, flags) & 0xfff;
    706   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
    707     nByte += sqlite3Strlen30(p->u.zToken)+1;
    708   }
    709   return ROUND8(nByte);
    710 }
    711 
    712 /*
    713 ** Return the number of bytes required to create a duplicate of the
    714 ** expression passed as the first argument. The second argument is a
    715 ** mask containing EXPRDUP_XXX flags.
    716 **
    717 ** The value returned includes space to create a copy of the Expr struct
    718 ** itself and the buffer referred to by Expr.u.zToken, if any.
    719 **
    720 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
    721 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
    722 ** and Expr.pRight variables (but not for any structures pointed to or
    723 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
    724 */
    725 static int dupedExprSize(Expr *p, int flags){
    726   int nByte = 0;
    727   if( p ){
    728     nByte = dupedExprNodeSize(p, flags);
    729     if( flags&EXPRDUP_REDUCE ){
    730       nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
    731     }
    732   }
    733   return nByte;
    734 }
    735 
    736 /*
    737 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
    738 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
    739 ** to store the copy of expression p, the copies of p->u.zToken
    740 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
    741 ** if any. Before returning, *pzBuffer is set to the first byte passed the
    742 ** portion of the buffer copied into by this function.
    743 */
    744 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
    745   Expr *pNew = 0;                      /* Value to return */
    746   if( p ){
    747     const int isReduced = (flags&EXPRDUP_REDUCE);
    748     u8 *zAlloc;
    749     u32 staticFlag = 0;
    750 
    751     assert( pzBuffer==0 || isReduced );
    752 
    753     /* Figure out where to write the new Expr structure. */
    754     if( pzBuffer ){
    755       zAlloc = *pzBuffer;
    756       staticFlag = EP_Static;
    757     }else{
    758       zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
    759     }
    760     pNew = (Expr *)zAlloc;
    761 
    762     if( pNew ){
    763       /* Set nNewSize to the size allocated for the structure pointed to
    764       ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
    765       ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
    766       ** by the copy of the p->u.zToken string (if any).
    767       */
    768       const unsigned nStructSize = dupedExprStructSize(p, flags);
    769       const int nNewSize = nStructSize & 0xfff;
    770       int nToken;
    771       if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
    772         nToken = sqlite3Strlen30(p->u.zToken) + 1;
    773       }else{
    774         nToken = 0;
    775       }
    776       if( isReduced ){
    777         assert( ExprHasProperty(p, EP_Reduced)==0 );
    778         memcpy(zAlloc, p, nNewSize);
    779       }else{
    780         int nSize = exprStructSize(p);
    781         memcpy(zAlloc, p, nSize);
    782         if( EXPR_FULLSIZE>nSize ){
    783           memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
    784         }
    785       }
    786 
    787       /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
    788       pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
    789       pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
    790       pNew->flags |= staticFlag;
    791 
    792       /* Copy the p->u.zToken string, if any. */
    793       if( nToken ){
    794         char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
    795         memcpy(zToken, p->u.zToken, nToken);
    796       }
    797 
    798       if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
    799         /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
    800         if( ExprHasProperty(p, EP_xIsSelect) ){
    801           pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
    802         }else{
    803           pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
    804         }
    805       }
    806 
    807       /* Fill in pNew->pLeft and pNew->pRight. */
    808       if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
    809         zAlloc += dupedExprNodeSize(p, flags);
    810         if( ExprHasProperty(pNew, EP_Reduced) ){
    811           pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
    812           pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
    813         }
    814         if( pzBuffer ){
    815           *pzBuffer = zAlloc;
    816         }
    817       }else{
    818         pNew->flags2 = 0;
    819         if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
    820           pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
    821           pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
    822         }
    823       }
    824 
    825     }
    826   }
    827   return pNew;
    828 }
    829 
    830 /*
    831 ** The following group of routines make deep copies of expressions,
    832 ** expression lists, ID lists, and select statements.  The copies can
    833 ** be deleted (by being passed to their respective ...Delete() routines)
    834 ** without effecting the originals.
    835 **
    836 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
    837 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
    838 ** by subsequent calls to sqlite*ListAppend() routines.
    839 **
    840 ** Any tables that the SrcList might point to are not duplicated.
    841 **
    842 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
    843 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
    844 ** truncated version of the usual Expr structure that will be stored as
    845 ** part of the in-memory representation of the database schema.
    846 */
    847 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
    848   return exprDup(db, p, flags, 0);
    849 }
    850 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
    851   ExprList *pNew;
    852   struct ExprList_item *pItem, *pOldItem;
    853   int i;
    854   if( p==0 ) return 0;
    855   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
    856   if( pNew==0 ) return 0;
    857   pNew->iECursor = 0;
    858   pNew->nExpr = pNew->nAlloc = p->nExpr;
    859   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
    860   if( pItem==0 ){
    861     sqlite3DbFree(db, pNew);
    862     return 0;
    863   }
    864   pOldItem = p->a;
    865   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    866     Expr *pOldExpr = pOldItem->pExpr;
    867     pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    868     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    869     pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    870     pItem->sortOrder = pOldItem->sortOrder;
    871     pItem->done = 0;
    872     pItem->iCol = pOldItem->iCol;
    873     pItem->iAlias = pOldItem->iAlias;
    874   }
    875   return pNew;
    876 }
    877 
    878 /*
    879 ** If cursors, triggers, views and subqueries are all omitted from
    880 ** the build, then none of the following routines, except for
    881 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
    882 ** called with a NULL argument.
    883 */
    884 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
    885  || !defined(SQLITE_OMIT_SUBQUERY)
    886 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
    887   SrcList *pNew;
    888   int i;
    889   int nByte;
    890   if( p==0 ) return 0;
    891   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
    892   pNew = sqlite3DbMallocRaw(db, nByte );
    893   if( pNew==0 ) return 0;
    894   pNew->nSrc = pNew->nAlloc = p->nSrc;
    895   for(i=0; i<p->nSrc; i++){
    896     struct SrcList_item *pNewItem = &pNew->a[i];
    897     struct SrcList_item *pOldItem = &p->a[i];
    898     Table *pTab;
    899     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
    900     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    901     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
    902     pNewItem->jointype = pOldItem->jointype;
    903     pNewItem->iCursor = pOldItem->iCursor;
    904     pNewItem->isPopulated = pOldItem->isPopulated;
    905     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
    906     pNewItem->notIndexed = pOldItem->notIndexed;
    907     pNewItem->pIndex = pOldItem->pIndex;
    908     pTab = pNewItem->pTab = pOldItem->pTab;
    909     if( pTab ){
    910       pTab->nRef++;
    911     }
    912     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
    913     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
    914     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
    915     pNewItem->colUsed = pOldItem->colUsed;
    916   }
    917   return pNew;
    918 }
    919 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
    920   IdList *pNew;
    921   int i;
    922   if( p==0 ) return 0;
    923   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
    924   if( pNew==0 ) return 0;
    925   pNew->nId = pNew->nAlloc = p->nId;
    926   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
    927   if( pNew->a==0 ){
    928     sqlite3DbFree(db, pNew);
    929     return 0;
    930   }
    931   for(i=0; i<p->nId; i++){
    932     struct IdList_item *pNewItem = &pNew->a[i];
    933     struct IdList_item *pOldItem = &p->a[i];
    934     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    935     pNewItem->idx = pOldItem->idx;
    936   }
    937   return pNew;
    938 }
    939 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
    940   Select *pNew;
    941   if( p==0 ) return 0;
    942   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
    943   if( pNew==0 ) return 0;
    944   pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
    945   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
    946   pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
    947   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
    948   pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
    949   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
    950   pNew->op = p->op;
    951   pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
    952   pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
    953   pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
    954   pNew->iLimit = 0;
    955   pNew->iOffset = 0;
    956   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
    957   pNew->pRightmost = 0;
    958   pNew->addrOpenEphm[0] = -1;
    959   pNew->addrOpenEphm[1] = -1;
    960   pNew->addrOpenEphm[2] = -1;
    961   return pNew;
    962 }
    963 #else
    964 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
    965   assert( p==0 );
    966   return 0;
    967 }
    968 #endif
    969 
    970 
    971 /*
    972 ** Add a new element to the end of an expression list.  If pList is
    973 ** initially NULL, then create a new expression list.
    974 **
    975 ** If a memory allocation error occurs, the entire list is freed and
    976 ** NULL is returned.  If non-NULL is returned, then it is guaranteed
    977 ** that the new entry was successfully appended.
    978 */
    979 ExprList *sqlite3ExprListAppend(
    980   Parse *pParse,          /* Parsing context */
    981   ExprList *pList,        /* List to which to append. Might be NULL */
    982   Expr *pExpr             /* Expression to be appended. Might be NULL */
    983 ){
    984   sqlite3 *db = pParse->db;
    985   if( pList==0 ){
    986     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
    987     if( pList==0 ){
    988       goto no_mem;
    989     }
    990     assert( pList->nAlloc==0 );
    991   }
    992   if( pList->nAlloc<=pList->nExpr ){
    993     struct ExprList_item *a;
    994     int n = pList->nAlloc*2 + 4;
    995     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
    996     if( a==0 ){
    997       goto no_mem;
    998     }
    999     pList->a = a;
   1000     pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
   1001   }
   1002   assert( pList->a!=0 );
   1003   if( 1 ){
   1004     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
   1005     memset(pItem, 0, sizeof(*pItem));
   1006     pItem->pExpr = pExpr;
   1007   }
   1008   return pList;
   1009 
   1010 no_mem:
   1011   /* Avoid leaking memory if malloc has failed. */
   1012   sqlite3ExprDelete(db, pExpr);
   1013   sqlite3ExprListDelete(db, pList);
   1014   return 0;
   1015 }
   1016 
   1017 /*
   1018 ** Set the ExprList.a[].zName element of the most recently added item
   1019 ** on the expression list.
   1020 **
   1021 ** pList might be NULL following an OOM error.  But pName should never be
   1022 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
   1023 ** is set.
   1024 */
   1025 void sqlite3ExprListSetName(
   1026   Parse *pParse,          /* Parsing context */
   1027   ExprList *pList,        /* List to which to add the span. */
   1028   Token *pName,           /* Name to be added */
   1029   int dequote             /* True to cause the name to be dequoted */
   1030 ){
   1031   assert( pList!=0 || pParse->db->mallocFailed!=0 );
   1032   if( pList ){
   1033     struct ExprList_item *pItem;
   1034     assert( pList->nExpr>0 );
   1035     pItem = &pList->a[pList->nExpr-1];
   1036     assert( pItem->zName==0 );
   1037     pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
   1038     if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
   1039   }
   1040 }
   1041 
   1042 /*
   1043 ** Set the ExprList.a[].zSpan element of the most recently added item
   1044 ** on the expression list.
   1045 **
   1046 ** pList might be NULL following an OOM error.  But pSpan should never be
   1047 ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
   1048 ** is set.
   1049 */
   1050 void sqlite3ExprListSetSpan(
   1051   Parse *pParse,          /* Parsing context */
   1052   ExprList *pList,        /* List to which to add the span. */
   1053   ExprSpan *pSpan         /* The span to be added */
   1054 ){
   1055   sqlite3 *db = pParse->db;
   1056   assert( pList!=0 || db->mallocFailed!=0 );
   1057   if( pList ){
   1058     struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
   1059     assert( pList->nExpr>0 );
   1060     assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
   1061     sqlite3DbFree(db, pItem->zSpan);
   1062     pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
   1063                                     (int)(pSpan->zEnd - pSpan->zStart));
   1064   }
   1065 }
   1066 
   1067 /*
   1068 ** If the expression list pEList contains more than iLimit elements,
   1069 ** leave an error message in pParse.
   1070 */
   1071 void sqlite3ExprListCheckLength(
   1072   Parse *pParse,
   1073   ExprList *pEList,
   1074   const char *zObject
   1075 ){
   1076   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
   1077   testcase( pEList && pEList->nExpr==mx );
   1078   testcase( pEList && pEList->nExpr==mx+1 );
   1079   if( pEList && pEList->nExpr>mx ){
   1080     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
   1081   }
   1082 }
   1083 
   1084 /*
   1085 ** Delete an entire expression list.
   1086 */
   1087 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
   1088   int i;
   1089   struct ExprList_item *pItem;
   1090   if( pList==0 ) return;
   1091   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
   1092   assert( pList->nExpr<=pList->nAlloc );
   1093   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
   1094     sqlite3ExprDelete(db, pItem->pExpr);
   1095     sqlite3DbFree(db, pItem->zName);
   1096     sqlite3DbFree(db, pItem->zSpan);
   1097   }
   1098   sqlite3DbFree(db, pList->a);
   1099   sqlite3DbFree(db, pList);
   1100 }
   1101 
   1102 /*
   1103 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
   1104 ** to an integer.  These routines are checking an expression to see
   1105 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
   1106 ** not constant.
   1107 **
   1108 ** These callback routines are used to implement the following:
   1109 **
   1110 **     sqlite3ExprIsConstant()
   1111 **     sqlite3ExprIsConstantNotJoin()
   1112 **     sqlite3ExprIsConstantOrFunction()
   1113 **
   1114 */
   1115 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
   1116 
   1117   /* If pWalker->u.i is 3 then any term of the expression that comes from
   1118   ** the ON or USING clauses of a join disqualifies the expression
   1119   ** from being considered constant. */
   1120   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
   1121     pWalker->u.i = 0;
   1122     return WRC_Abort;
   1123   }
   1124 
   1125   switch( pExpr->op ){
   1126     /* Consider functions to be constant if all their arguments are constant
   1127     ** and pWalker->u.i==2 */
   1128     case TK_FUNCTION:
   1129       if( pWalker->u.i==2 ) return 0;
   1130       /* Fall through */
   1131     case TK_ID:
   1132     case TK_COLUMN:
   1133     case TK_AGG_FUNCTION:
   1134     case TK_AGG_COLUMN:
   1135       testcase( pExpr->op==TK_ID );
   1136       testcase( pExpr->op==TK_COLUMN );
   1137       testcase( pExpr->op==TK_AGG_FUNCTION );
   1138       testcase( pExpr->op==TK_AGG_COLUMN );
   1139       pWalker->u.i = 0;
   1140       return WRC_Abort;
   1141     default:
   1142       testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
   1143       testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
   1144       return WRC_Continue;
   1145   }
   1146 }
   1147 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
   1148   UNUSED_PARAMETER(NotUsed);
   1149   pWalker->u.i = 0;
   1150   return WRC_Abort;
   1151 }
   1152 static int exprIsConst(Expr *p, int initFlag){
   1153   Walker w;
   1154   w.u.i = initFlag;
   1155   w.xExprCallback = exprNodeIsConstant;
   1156   w.xSelectCallback = selectNodeIsConstant;
   1157   sqlite3WalkExpr(&w, p);
   1158   return w.u.i;
   1159 }
   1160 
   1161 /*
   1162 ** Walk an expression tree.  Return 1 if the expression is constant
   1163 ** and 0 if it involves variables or function calls.
   1164 **
   1165 ** For the purposes of this function, a double-quoted string (ex: "abc")
   1166 ** is considered a variable but a single-quoted string (ex: 'abc') is
   1167 ** a constant.
   1168 */
   1169 int sqlite3ExprIsConstant(Expr *p){
   1170   return exprIsConst(p, 1);
   1171 }
   1172 
   1173 /*
   1174 ** Walk an expression tree.  Return 1 if the expression is constant
   1175 ** that does no originate from the ON or USING clauses of a join.
   1176 ** Return 0 if it involves variables or function calls or terms from
   1177 ** an ON or USING clause.
   1178 */
   1179 int sqlite3ExprIsConstantNotJoin(Expr *p){
   1180   return exprIsConst(p, 3);
   1181 }
   1182 
   1183 /*
   1184 ** Walk an expression tree.  Return 1 if the expression is constant
   1185 ** or a function call with constant arguments.  Return and 0 if there
   1186 ** are any variables.
   1187 **
   1188 ** For the purposes of this function, a double-quoted string (ex: "abc")
   1189 ** is considered a variable but a single-quoted string (ex: 'abc') is
   1190 ** a constant.
   1191 */
   1192 int sqlite3ExprIsConstantOrFunction(Expr *p){
   1193   return exprIsConst(p, 2);
   1194 }
   1195 
   1196 /*
   1197 ** If the expression p codes a constant integer that is small enough
   1198 ** to fit in a 32-bit integer, return 1 and put the value of the integer
   1199 ** in *pValue.  If the expression is not an integer or if it is too big
   1200 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
   1201 */
   1202 int sqlite3ExprIsInteger(Expr *p, int *pValue){
   1203   int rc = 0;
   1204 
   1205   /* If an expression is an integer literal that fits in a signed 32-bit
   1206   ** integer, then the EP_IntValue flag will have already been set */
   1207   assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
   1208            || sqlite3GetInt32(p->u.zToken, &rc)==0 );
   1209 
   1210   if( p->flags & EP_IntValue ){
   1211     *pValue = p->u.iValue;
   1212     return 1;
   1213   }
   1214   switch( p->op ){
   1215     case TK_UPLUS: {
   1216       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
   1217       break;
   1218     }
   1219     case TK_UMINUS: {
   1220       int v;
   1221       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
   1222         *pValue = -v;
   1223         rc = 1;
   1224       }
   1225       break;
   1226     }
   1227     default: break;
   1228   }
   1229   return rc;
   1230 }
   1231 
   1232 /*
   1233 ** Return FALSE if there is no chance that the expression can be NULL.
   1234 **
   1235 ** If the expression might be NULL or if the expression is too complex
   1236 ** to tell return TRUE.
   1237 **
   1238 ** This routine is used as an optimization, to skip OP_IsNull opcodes
   1239 ** when we know that a value cannot be NULL.  Hence, a false positive
   1240 ** (returning TRUE when in fact the expression can never be NULL) might
   1241 ** be a small performance hit but is otherwise harmless.  On the other
   1242 ** hand, a false negative (returning FALSE when the result could be NULL)
   1243 ** will likely result in an incorrect answer.  So when in doubt, return
   1244 ** TRUE.
   1245 */
   1246 int sqlite3ExprCanBeNull(const Expr *p){
   1247   u8 op;
   1248   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
   1249   op = p->op;
   1250   if( op==TK_REGISTER ) op = p->op2;
   1251   switch( op ){
   1252     case TK_INTEGER:
   1253     case TK_STRING:
   1254     case TK_FLOAT:
   1255     case TK_BLOB:
   1256       return 0;
   1257     default:
   1258       return 1;
   1259   }
   1260 }
   1261 
   1262 /*
   1263 ** Generate an OP_IsNull instruction that tests register iReg and jumps
   1264 ** to location iDest if the value in iReg is NULL.  The value in iReg
   1265 ** was computed by pExpr.  If we can look at pExpr at compile-time and
   1266 ** determine that it can never generate a NULL, then the OP_IsNull operation
   1267 ** can be omitted.
   1268 */
   1269 void sqlite3ExprCodeIsNullJump(
   1270   Vdbe *v,            /* The VDBE under construction */
   1271   const Expr *pExpr,  /* Only generate OP_IsNull if this expr can be NULL */
   1272   int iReg,           /* Test the value in this register for NULL */
   1273   int iDest           /* Jump here if the value is null */
   1274 ){
   1275   if( sqlite3ExprCanBeNull(pExpr) ){
   1276     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
   1277   }
   1278 }
   1279 
   1280 /*
   1281 ** Return TRUE if the given expression is a constant which would be
   1282 ** unchanged by OP_Affinity with the affinity given in the second
   1283 ** argument.
   1284 **
   1285 ** This routine is used to determine if the OP_Affinity operation
   1286 ** can be omitted.  When in doubt return FALSE.  A false negative
   1287 ** is harmless.  A false positive, however, can result in the wrong
   1288 ** answer.
   1289 */
   1290 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
   1291   u8 op;
   1292   if( aff==SQLITE_AFF_NONE ) return 1;
   1293   while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
   1294   op = p->op;
   1295   if( op==TK_REGISTER ) op = p->op2;
   1296   switch( op ){
   1297     case TK_INTEGER: {
   1298       return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
   1299     }
   1300     case TK_FLOAT: {
   1301       return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
   1302     }
   1303     case TK_STRING: {
   1304       return aff==SQLITE_AFF_TEXT;
   1305     }
   1306     case TK_BLOB: {
   1307       return 1;
   1308     }
   1309     case TK_COLUMN: {
   1310       assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
   1311       return p->iColumn<0
   1312           && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
   1313     }
   1314     default: {
   1315       return 0;
   1316     }
   1317   }
   1318 }
   1319 
   1320 /*
   1321 ** Return TRUE if the given string is a row-id column name.
   1322 */
   1323 int sqlite3IsRowid(const char *z){
   1324   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
   1325   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
   1326   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
   1327   return 0;
   1328 }
   1329 
   1330 /*
   1331 ** Return true if we are able to the IN operator optimization on a
   1332 ** query of the form
   1333 **
   1334 **       x IN (SELECT ...)
   1335 **
   1336 ** Where the SELECT... clause is as specified by the parameter to this
   1337 ** routine.
   1338 **
   1339 ** The Select object passed in has already been preprocessed and no
   1340 ** errors have been found.
   1341 */
   1342 #ifndef SQLITE_OMIT_SUBQUERY
   1343 static int isCandidateForInOpt(Select *p){
   1344   SrcList *pSrc;
   1345   ExprList *pEList;
   1346   Table *pTab;
   1347   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
   1348   if( p->pPrior ) return 0;              /* Not a compound SELECT */
   1349   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
   1350     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
   1351     testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
   1352     return 0; /* No DISTINCT keyword and no aggregate functions */
   1353   }
   1354   assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
   1355   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
   1356   assert( p->pOffset==0 );               /* No LIMIT means no OFFSET */
   1357   if( p->pWhere ) return 0;              /* Has no WHERE clause */
   1358   pSrc = p->pSrc;
   1359   assert( pSrc!=0 );
   1360   if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
   1361   if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
   1362   pTab = pSrc->a[0].pTab;
   1363   if( NEVER(pTab==0) ) return 0;
   1364   assert( pTab->pSelect==0 );            /* FROM clause is not a view */
   1365   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
   1366   pEList = p->pEList;
   1367   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
   1368   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
   1369   return 1;
   1370 }
   1371 #endif /* SQLITE_OMIT_SUBQUERY */
   1372 
   1373 /*
   1374 ** This function is used by the implementation of the IN (...) operator.
   1375 ** It's job is to find or create a b-tree structure that may be used
   1376 ** either to test for membership of the (...) set or to iterate through
   1377 ** its members, skipping duplicates.
   1378 **
   1379 ** The index of the cursor opened on the b-tree (database table, database index
   1380 ** or ephermal table) is stored in pX->iTable before this function returns.
   1381 ** The returned value of this function indicates the b-tree type, as follows:
   1382 **
   1383 **   IN_INDEX_ROWID - The cursor was opened on a database table.
   1384 **   IN_INDEX_INDEX - The cursor was opened on a database index.
   1385 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
   1386 **                    populated epheremal table.
   1387 **
   1388 ** An existing b-tree may only be used if the SELECT is of the simple
   1389 ** form:
   1390 **
   1391 **     SELECT <column> FROM <table>
   1392 **
   1393 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
   1394 ** through the set members, skipping any duplicates. In this case an
   1395 ** epheremal table must be used unless the selected <column> is guaranteed
   1396 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
   1397 ** has a UNIQUE constraint or UNIQUE index.
   1398 **
   1399 ** If the prNotFound parameter is not 0, then the b-tree will be used
   1400 ** for fast set membership tests. In this case an epheremal table must
   1401 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
   1402 ** be found with <column> as its left-most column.
   1403 **
   1404 ** When the b-tree is being used for membership tests, the calling function
   1405 ** needs to know whether or not the structure contains an SQL NULL
   1406 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
   1407 ** If there is any chance that the (...) might contain a NULL value at
   1408 ** runtime, then a register is allocated and the register number written
   1409 ** to *prNotFound. If there is no chance that the (...) contains a
   1410 ** NULL value, then *prNotFound is left unchanged.
   1411 **
   1412 ** If a register is allocated and its location stored in *prNotFound, then
   1413 ** its initial value is NULL.  If the (...) does not remain constant
   1414 ** for the duration of the query (i.e. the SELECT within the (...)
   1415 ** is a correlated subquery) then the value of the allocated register is
   1416 ** reset to NULL each time the subquery is rerun. This allows the
   1417 ** caller to use vdbe code equivalent to the following:
   1418 **
   1419 **   if( register==NULL ){
   1420 **     has_null = <test if data structure contains null>
   1421 **     register = 1
   1422 **   }
   1423 **
   1424 ** in order to avoid running the <test if data structure contains null>
   1425 ** test more often than is necessary.
   1426 */
   1427 #ifndef SQLITE_OMIT_SUBQUERY
   1428 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
   1429   Select *p;                            /* SELECT to the right of IN operator */
   1430   int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
   1431   int iTab = pParse->nTab++;            /* Cursor of the RHS table */
   1432   int mustBeUnique = (prNotFound==0);   /* True if RHS must be unique */
   1433 
   1434   assert( pX->op==TK_IN );
   1435 
   1436   /* Check to see if an existing table or index can be used to
   1437   ** satisfy the query.  This is preferable to generating a new
   1438   ** ephemeral table.
   1439   */
   1440   p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
   1441   if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
   1442     sqlite3 *db = pParse->db;              /* Database connection */
   1443     Expr *pExpr = p->pEList->a[0].pExpr;   /* Expression <column> */
   1444     int iCol = pExpr->iColumn;             /* Index of column <column> */
   1445     Vdbe *v = sqlite3GetVdbe(pParse);      /* Virtual machine being coded */
   1446     Table *pTab = p->pSrc->a[0].pTab;      /* Table <table>. */
   1447     int iDb;                               /* Database idx for pTab */
   1448 
   1449     /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
   1450     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
   1451     sqlite3CodeVerifySchema(pParse, iDb);
   1452     sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
   1453 
   1454     /* This function is only called from two places. In both cases the vdbe
   1455     ** has already been allocated. So assume sqlite3GetVdbe() is always
   1456     ** successful here.
   1457     */
   1458     assert(v);
   1459     if( iCol<0 ){
   1460       int iMem = ++pParse->nMem;
   1461       int iAddr;
   1462 
   1463       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
   1464       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
   1465 
   1466       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
   1467       eType = IN_INDEX_ROWID;
   1468 
   1469       sqlite3VdbeJumpHere(v, iAddr);
   1470     }else{
   1471       Index *pIdx;                         /* Iterator variable */
   1472 
   1473       /* The collation sequence used by the comparison. If an index is to
   1474       ** be used in place of a temp-table, it must be ordered according
   1475       ** to this collation sequence.  */
   1476       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
   1477 
   1478       /* Check that the affinity that will be used to perform the
   1479       ** comparison is the same as the affinity of the column. If
   1480       ** it is not, it is not possible to use any index.
   1481       */
   1482       char aff = comparisonAffinity(pX);
   1483       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
   1484 
   1485       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
   1486         if( (pIdx->aiColumn[0]==iCol)
   1487          && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
   1488          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
   1489         ){
   1490           int iMem = ++pParse->nMem;
   1491           int iAddr;
   1492           char *pKey;
   1493 
   1494           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
   1495           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
   1496           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
   1497 
   1498           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
   1499                                pKey,P4_KEYINFO_HANDOFF);
   1500           VdbeComment((v, "%s", pIdx->zName));
   1501           eType = IN_INDEX_INDEX;
   1502 
   1503           sqlite3VdbeJumpHere(v, iAddr);
   1504           if( prNotFound && !pTab->aCol[iCol].notNull ){
   1505             *prNotFound = ++pParse->nMem;
   1506           }
   1507         }
   1508       }
   1509     }
   1510   }
   1511 
   1512   if( eType==0 ){
   1513     /* Could not found an existing table or index to use as the RHS b-tree.
   1514     ** We will have to generate an ephemeral table to do the job.
   1515     */
   1516     double savedNQueryLoop = pParse->nQueryLoop;
   1517     int rMayHaveNull = 0;
   1518     eType = IN_INDEX_EPH;
   1519     if( prNotFound ){
   1520       *prNotFound = rMayHaveNull = ++pParse->nMem;
   1521     }else{
   1522       testcase( pParse->nQueryLoop>(double)1 );
   1523       pParse->nQueryLoop = (double)1;
   1524       if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
   1525         eType = IN_INDEX_ROWID;
   1526       }
   1527     }
   1528     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
   1529     pParse->nQueryLoop = savedNQueryLoop;
   1530   }else{
   1531     pX->iTable = iTab;
   1532   }
   1533   return eType;
   1534 }
   1535 #endif
   1536 
   1537 /*
   1538 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
   1539 ** or IN operators.  Examples:
   1540 **
   1541 **     (SELECT a FROM b)          -- subquery
   1542 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
   1543 **     x IN (4,5,11)              -- IN operator with list on right-hand side
   1544 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
   1545 **
   1546 ** The pExpr parameter describes the expression that contains the IN
   1547 ** operator or subquery.
   1548 **
   1549 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
   1550 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
   1551 ** to some integer key column of a table B-Tree. In this case, use an
   1552 ** intkey B-Tree to store the set of IN(...) values instead of the usual
   1553 ** (slower) variable length keys B-Tree.
   1554 **
   1555 ** If rMayHaveNull is non-zero, that means that the operation is an IN
   1556 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
   1557 ** Furthermore, the IN is in a WHERE clause and that we really want
   1558 ** to iterate over the RHS of the IN operator in order to quickly locate
   1559 ** all corresponding LHS elements.  All this routine does is initialize
   1560 ** the register given by rMayHaveNull to NULL.  Calling routines will take
   1561 ** care of changing this register value to non-NULL if the RHS is NULL-free.
   1562 **
   1563 ** If rMayHaveNull is zero, that means that the subquery is being used
   1564 ** for membership testing only.  There is no need to initialize any
   1565 ** registers to indicate the presense or absence of NULLs on the RHS.
   1566 **
   1567 ** For a SELECT or EXISTS operator, return the register that holds the
   1568 ** result.  For IN operators or if an error occurs, the return value is 0.
   1569 */
   1570 #ifndef SQLITE_OMIT_SUBQUERY
   1571 int sqlite3CodeSubselect(
   1572   Parse *pParse,          /* Parsing context */
   1573   Expr *pExpr,            /* The IN, SELECT, or EXISTS operator */
   1574   int rMayHaveNull,       /* Register that records whether NULLs exist in RHS */
   1575   int isRowid             /* If true, LHS of IN operator is a rowid */
   1576 ){
   1577   int testAddr = 0;                       /* One-time test address */
   1578   int rReg = 0;                           /* Register storing resulting */
   1579   Vdbe *v = sqlite3GetVdbe(pParse);
   1580   if( NEVER(v==0) ) return 0;
   1581   sqlite3ExprCachePush(pParse);
   1582 
   1583   /* This code must be run in its entirety every time it is encountered
   1584   ** if any of the following is true:
   1585   **
   1586   **    *  The right-hand side is a correlated subquery
   1587   **    *  The right-hand side is an expression list containing variables
   1588   **    *  We are inside a trigger
   1589   **
   1590   ** If all of the above are false, then we can run this code just once
   1591   ** save the results, and reuse the same result on subsequent invocations.
   1592   */
   1593   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
   1594     int mem = ++pParse->nMem;
   1595     sqlite3VdbeAddOp1(v, OP_If, mem);
   1596     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
   1597     assert( testAddr>0 || pParse->db->mallocFailed );
   1598   }
   1599 
   1600 #ifndef SQLITE_OMIT_EXPLAIN
   1601   if( pParse->explain==2 ){
   1602     char *zMsg = sqlite3MPrintf(
   1603         pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
   1604         pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
   1605     );
   1606     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
   1607   }
   1608 #endif
   1609 
   1610   switch( pExpr->op ){
   1611     case TK_IN: {
   1612       char affinity;              /* Affinity of the LHS of the IN */
   1613       KeyInfo keyInfo;            /* Keyinfo for the generated table */
   1614       int addr;                   /* Address of OP_OpenEphemeral instruction */
   1615       Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
   1616 
   1617       if( rMayHaveNull ){
   1618         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
   1619       }
   1620 
   1621       affinity = sqlite3ExprAffinity(pLeft);
   1622 
   1623       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
   1624       ** expression it is handled the same way.  An ephemeral table is
   1625       ** filled with single-field index keys representing the results
   1626       ** from the SELECT or the <exprlist>.
   1627       **
   1628       ** If the 'x' expression is a column value, or the SELECT...
   1629       ** statement returns a column value, then the affinity of that
   1630       ** column is used to build the index keys. If both 'x' and the
   1631       ** SELECT... statement are columns, then numeric affinity is used
   1632       ** if either column has NUMERIC or INTEGER affinity. If neither
   1633       ** 'x' nor the SELECT... statement are columns, then numeric affinity
   1634       ** is used.
   1635       */
   1636       pExpr->iTable = pParse->nTab++;
   1637       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
   1638       if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
   1639       memset(&keyInfo, 0, sizeof(keyInfo));
   1640       keyInfo.nField = 1;
   1641 
   1642       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
   1643         /* Case 1:     expr IN (SELECT ...)
   1644         **
   1645         ** Generate code to write the results of the select into the temporary
   1646         ** table allocated and opened above.
   1647         */
   1648         SelectDest dest;
   1649         ExprList *pEList;
   1650 
   1651         assert( !isRowid );
   1652         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
   1653         dest.affinity = (u8)affinity;
   1654         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
   1655         pExpr->x.pSelect->iLimit = 0;
   1656         if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
   1657           return 0;
   1658         }
   1659         pEList = pExpr->x.pSelect->pEList;
   1660         if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
   1661           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
   1662               pEList->a[0].pExpr);
   1663         }
   1664       }else if( ALWAYS(pExpr->x.pList!=0) ){
   1665         /* Case 2:     expr IN (exprlist)
   1666         **
   1667         ** For each expression, build an index key from the evaluation and
   1668         ** store it in the temporary table. If <expr> is a column, then use
   1669         ** that columns affinity when building index keys. If <expr> is not
   1670         ** a column, use numeric affinity.
   1671         */
   1672         int i;
   1673         ExprList *pList = pExpr->x.pList;
   1674         struct ExprList_item *pItem;
   1675         int r1, r2, r3;
   1676 
   1677         if( !affinity ){
   1678           affinity = SQLITE_AFF_NONE;
   1679         }
   1680         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
   1681 
   1682         /* Loop through each expression in <exprlist>. */
   1683         r1 = sqlite3GetTempReg(pParse);
   1684         r2 = sqlite3GetTempReg(pParse);
   1685         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
   1686         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
   1687           Expr *pE2 = pItem->pExpr;
   1688           int iValToIns;
   1689 
   1690           /* If the expression is not constant then we will need to
   1691           ** disable the test that was generated above that makes sure
   1692           ** this code only executes once.  Because for a non-constant
   1693           ** expression we need to rerun this code each time.
   1694           */
   1695           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
   1696             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
   1697             testAddr = 0;
   1698           }
   1699 
   1700           /* Evaluate the expression and insert it into the temp table */
   1701           if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
   1702             sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
   1703           }else{
   1704             r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
   1705             if( isRowid ){
   1706               sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
   1707                                 sqlite3VdbeCurrentAddr(v)+2);
   1708               sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
   1709             }else{
   1710               sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
   1711               sqlite3ExprCacheAffinityChange(pParse, r3, 1);
   1712               sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
   1713             }
   1714           }
   1715         }
   1716         sqlite3ReleaseTempReg(pParse, r1);
   1717         sqlite3ReleaseTempReg(pParse, r2);
   1718       }
   1719       if( !isRowid ){
   1720         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
   1721       }
   1722       break;
   1723     }
   1724 
   1725     case TK_EXISTS:
   1726     case TK_SELECT:
   1727     default: {
   1728       /* If this has to be a scalar SELECT.  Generate code to put the
   1729       ** value of this select in a memory cell and record the number
   1730       ** of the memory cell in iColumn.  If this is an EXISTS, write
   1731       ** an integer 0 (not exists) or 1 (exists) into a memory cell
   1732       ** and record that memory cell in iColumn.
   1733       */
   1734       Select *pSel;                         /* SELECT statement to encode */
   1735       SelectDest dest;                      /* How to deal with SELECt result */
   1736 
   1737       testcase( pExpr->op==TK_EXISTS );
   1738       testcase( pExpr->op==TK_SELECT );
   1739       assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
   1740 
   1741       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
   1742       pSel = pExpr->x.pSelect;
   1743       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
   1744       if( pExpr->op==TK_SELECT ){
   1745         dest.eDest = SRT_Mem;
   1746         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
   1747         VdbeComment((v, "Init subquery result"));
   1748       }else{
   1749         dest.eDest = SRT_Exists;
   1750         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
   1751         VdbeComment((v, "Init EXISTS result"));
   1752       }
   1753       sqlite3ExprDelete(pParse->db, pSel->pLimit);
   1754       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
   1755                                   &sqlite3IntTokens[1]);
   1756       pSel->iLimit = 0;
   1757       if( sqlite3Select(pParse, pSel, &dest) ){
   1758         return 0;
   1759       }
   1760       rReg = dest.iParm;
   1761       ExprSetIrreducible(pExpr);
   1762       break;
   1763     }
   1764   }
   1765 
   1766   if( testAddr ){
   1767     sqlite3VdbeJumpHere(v, testAddr-1);
   1768   }
   1769   sqlite3ExprCachePop(pParse, 1);
   1770 
   1771   return rReg;
   1772 }
   1773 #endif /* SQLITE_OMIT_SUBQUERY */
   1774 
   1775 #ifndef SQLITE_OMIT_SUBQUERY
   1776 /*
   1777 ** Generate code for an IN expression.
   1778 **
   1779 **      x IN (SELECT ...)
   1780 **      x IN (value, value, ...)
   1781 **
   1782 ** The left-hand side (LHS) is a scalar expression.  The right-hand side (RHS)
   1783 ** is an array of zero or more values.  The expression is true if the LHS is
   1784 ** contained within the RHS.  The value of the expression is unknown (NULL)
   1785 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
   1786 ** RHS contains one or more NULL values.
   1787 **
   1788 ** This routine generates code will jump to destIfFalse if the LHS is not
   1789 ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
   1790 ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
   1791 ** within the RHS then fall through.
   1792 */
   1793 static void sqlite3ExprCodeIN(
   1794   Parse *pParse,        /* Parsing and code generating context */
   1795   Expr *pExpr,          /* The IN expression */
   1796   int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
   1797   int destIfNull        /* Jump here if the results are unknown due to NULLs */
   1798 ){
   1799   int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
   1800   char affinity;        /* Comparison affinity to use */
   1801   int eType;            /* Type of the RHS */
   1802   int r1;               /* Temporary use register */
   1803   Vdbe *v;              /* Statement under construction */
   1804 
   1805   /* Compute the RHS.   After this step, the table with cursor
   1806   ** pExpr->iTable will contains the values that make up the RHS.
   1807   */
   1808   v = pParse->pVdbe;
   1809   assert( v!=0 );       /* OOM detected prior to this routine */
   1810   VdbeNoopComment((v, "begin IN expr"));
   1811   eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
   1812 
   1813   /* Figure out the affinity to use to create a key from the results
   1814   ** of the expression. affinityStr stores a static string suitable for
   1815   ** P4 of OP_MakeRecord.
   1816   */
   1817   affinity = comparisonAffinity(pExpr);
   1818 
   1819   /* Code the LHS, the <expr> from "<expr> IN (...)".
   1820   */
   1821   sqlite3ExprCachePush(pParse);
   1822   r1 = sqlite3GetTempReg(pParse);
   1823   sqlite3ExprCode(pParse, pExpr->pLeft, r1);
   1824 
   1825   /* If the LHS is NULL, then the result is either false or NULL depending
   1826   ** on whether the RHS is empty or not, respectively.
   1827   */
   1828   if( destIfNull==destIfFalse ){
   1829     /* Shortcut for the common case where the false and NULL outcomes are
   1830     ** the same. */
   1831     sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
   1832   }else{
   1833     int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
   1834     sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
   1835     sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
   1836     sqlite3VdbeJumpHere(v, addr1);
   1837   }
   1838 
   1839   if( eType==IN_INDEX_ROWID ){
   1840     /* In this case, the RHS is the ROWID of table b-tree
   1841     */
   1842     sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
   1843     sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
   1844   }else{
   1845     /* In this case, the RHS is an index b-tree.
   1846     */
   1847     sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
   1848 
   1849     /* If the set membership test fails, then the result of the
   1850     ** "x IN (...)" expression must be either 0 or NULL. If the set
   1851     ** contains no NULL values, then the result is 0. If the set
   1852     ** contains one or more NULL values, then the result of the
   1853     ** expression is also NULL.
   1854     */
   1855     if( rRhsHasNull==0 || destIfFalse==destIfNull ){
   1856       /* This branch runs if it is known at compile time that the RHS
   1857       ** cannot contain NULL values. This happens as the result
   1858       ** of a "NOT NULL" constraint in the database schema.
   1859       **
   1860       ** Also run this branch if NULL is equivalent to FALSE
   1861       ** for this particular IN operator.
   1862       */
   1863       sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
   1864 
   1865     }else{
   1866       /* In this branch, the RHS of the IN might contain a NULL and
   1867       ** the presence of a NULL on the RHS makes a difference in the
   1868       ** outcome.
   1869       */
   1870       int j1, j2, j3;
   1871 
   1872       /* First check to see if the LHS is contained in the RHS.  If so,
   1873       ** then the presence of NULLs in the RHS does not matter, so jump
   1874       ** over all of the code that follows.
   1875       */
   1876       j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
   1877 
   1878       /* Here we begin generating code that runs if the LHS is not
   1879       ** contained within the RHS.  Generate additional code that
   1880       ** tests the RHS for NULLs.  If the RHS contains a NULL then
   1881       ** jump to destIfNull.  If there are no NULLs in the RHS then
   1882       ** jump to destIfFalse.
   1883       */
   1884       j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
   1885       j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
   1886       sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
   1887       sqlite3VdbeJumpHere(v, j3);
   1888       sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
   1889       sqlite3VdbeJumpHere(v, j2);
   1890 
   1891       /* Jump to the appropriate target depending on whether or not
   1892       ** the RHS contains a NULL
   1893       */
   1894       sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
   1895       sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
   1896 
   1897       /* The OP_Found at the top of this branch jumps here when true,
   1898       ** causing the overall IN expression evaluation to fall through.
   1899       */
   1900       sqlite3VdbeJumpHere(v, j1);
   1901     }
   1902   }
   1903   sqlite3ReleaseTempReg(pParse, r1);
   1904   sqlite3ExprCachePop(pParse, 1);
   1905   VdbeComment((v, "end IN expr"));
   1906 }
   1907 #endif /* SQLITE_OMIT_SUBQUERY */
   1908 
   1909 /*
   1910 ** Duplicate an 8-byte value
   1911 */
   1912 static char *dup8bytes(Vdbe *v, const char *in){
   1913   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
   1914   if( out ){
   1915     memcpy(out, in, 8);
   1916   }
   1917   return out;
   1918 }
   1919 
   1920 #ifndef SQLITE_OMIT_FLOATING_POINT
   1921 /*
   1922 ** Generate an instruction that will put the floating point
   1923 ** value described by z[0..n-1] into register iMem.
   1924 **
   1925 ** The z[] string will probably not be zero-terminated.  But the
   1926 ** z[n] character is guaranteed to be something that does not look
   1927 ** like the continuation of the number.
   1928 */
   1929 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
   1930   if( ALWAYS(z!=0) ){
   1931     double value;
   1932     char *zV;
   1933     sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
   1934     assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
   1935     if( negateFlag ) value = -value;
   1936     zV = dup8bytes(v, (char*)&value);
   1937     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
   1938   }
   1939 }
   1940 #endif
   1941 
   1942 
   1943 /*
   1944 ** Generate an instruction that will put the integer describe by
   1945 ** text z[0..n-1] into register iMem.
   1946 **
   1947 ** Expr.u.zToken is always UTF8 and zero-terminated.
   1948 */
   1949 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
   1950   Vdbe *v = pParse->pVdbe;
   1951   if( pExpr->flags & EP_IntValue ){
   1952     int i = pExpr->u.iValue;
   1953     assert( i>=0 );
   1954     if( negFlag ) i = -i;
   1955     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
   1956   }else{
   1957     int c;
   1958     i64 value;
   1959     const char *z = pExpr->u.zToken;
   1960     assert( z!=0 );
   1961     c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
   1962     if( c==0 || (c==2 && negFlag) ){
   1963       char *zV;
   1964       if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
   1965       zV = dup8bytes(v, (char*)&value);
   1966       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
   1967     }else{
   1968 #ifdef SQLITE_OMIT_FLOATING_POINT
   1969       sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
   1970 #else
   1971       codeReal(v, z, negFlag, iMem);
   1972 #endif
   1973     }
   1974   }
   1975 }
   1976 
   1977 /*
   1978 ** Clear a cache entry.
   1979 */
   1980 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
   1981   if( p->tempReg ){
   1982     if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
   1983       pParse->aTempReg[pParse->nTempReg++] = p->iReg;
   1984     }
   1985     p->tempReg = 0;
   1986   }
   1987 }
   1988 
   1989 
   1990 /*
   1991 ** Record in the column cache that a particular column from a
   1992 ** particular table is stored in a particular register.
   1993 */
   1994 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
   1995   int i;
   1996   int minLru;
   1997   int idxLru;
   1998   struct yColCache *p;
   1999 
   2000   assert( iReg>0 );  /* Register numbers are always positive */
   2001   assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */
   2002 
   2003   /* The SQLITE_ColumnCache flag disables the column cache.  This is used
   2004   ** for testing only - to verify that SQLite always gets the same answer
   2005   ** with and without the column cache.
   2006   */
   2007   if( pParse->db->flags & SQLITE_ColumnCache ) return;
   2008 
   2009   /* First replace any existing entry.
   2010   **
   2011   ** Actually, the way the column cache is currently used, we are guaranteed
   2012   ** that the object will never already be in cache.  Verify this guarantee.
   2013   */
   2014 #ifndef NDEBUG
   2015   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2016 #if 0 /* This code wold remove the entry from the cache if it existed */
   2017     if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
   2018       cacheEntryClear(pParse, p);
   2019       p->iLevel = pParse->iCacheLevel;
   2020       p->iReg = iReg;
   2021       p->lru = pParse->iCacheCnt++;
   2022       return;
   2023     }
   2024 #endif
   2025     assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
   2026   }
   2027 #endif
   2028 
   2029   /* Find an empty slot and replace it */
   2030   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2031     if( p->iReg==0 ){
   2032       p->iLevel = pParse->iCacheLevel;
   2033       p->iTable = iTab;
   2034       p->iColumn = iCol;
   2035       p->iReg = iReg;
   2036       p->tempReg = 0;
   2037       p->lru = pParse->iCacheCnt++;
   2038       return;
   2039     }
   2040   }
   2041 
   2042   /* Replace the last recently used */
   2043   minLru = 0x7fffffff;
   2044   idxLru = -1;
   2045   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2046     if( p->lru<minLru ){
   2047       idxLru = i;
   2048       minLru = p->lru;
   2049     }
   2050   }
   2051   if( ALWAYS(idxLru>=0) ){
   2052     p = &pParse->aColCache[idxLru];
   2053     p->iLevel = pParse->iCacheLevel;
   2054     p->iTable = iTab;
   2055     p->iColumn = iCol;
   2056     p->iReg = iReg;
   2057     p->tempReg = 0;
   2058     p->lru = pParse->iCacheCnt++;
   2059     return;
   2060   }
   2061 }
   2062 
   2063 /*
   2064 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
   2065 ** Purge the range of registers from the column cache.
   2066 */
   2067 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
   2068   int i;
   2069   int iLast = iReg + nReg - 1;
   2070   struct yColCache *p;
   2071   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2072     int r = p->iReg;
   2073     if( r>=iReg && r<=iLast ){
   2074       cacheEntryClear(pParse, p);
   2075       p->iReg = 0;
   2076     }
   2077   }
   2078 }
   2079 
   2080 /*
   2081 ** Remember the current column cache context.  Any new entries added
   2082 ** added to the column cache after this call are removed when the
   2083 ** corresponding pop occurs.
   2084 */
   2085 void sqlite3ExprCachePush(Parse *pParse){
   2086   pParse->iCacheLevel++;
   2087 }
   2088 
   2089 /*
   2090 ** Remove from the column cache any entries that were added since the
   2091 ** the previous N Push operations.  In other words, restore the cache
   2092 ** to the state it was in N Pushes ago.
   2093 */
   2094 void sqlite3ExprCachePop(Parse *pParse, int N){
   2095   int i;
   2096   struct yColCache *p;
   2097   assert( N>0 );
   2098   assert( pParse->iCacheLevel>=N );
   2099   pParse->iCacheLevel -= N;
   2100   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2101     if( p->iReg && p->iLevel>pParse->iCacheLevel ){
   2102       cacheEntryClear(pParse, p);
   2103       p->iReg = 0;
   2104     }
   2105   }
   2106 }
   2107 
   2108 /*
   2109 ** When a cached column is reused, make sure that its register is
   2110 ** no longer available as a temp register.  ticket #3879:  that same
   2111 ** register might be in the cache in multiple places, so be sure to
   2112 ** get them all.
   2113 */
   2114 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
   2115   int i;
   2116   struct yColCache *p;
   2117   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2118     if( p->iReg==iReg ){
   2119       p->tempReg = 0;
   2120     }
   2121   }
   2122 }
   2123 
   2124 /*
   2125 ** Generate code to extract the value of the iCol-th column of a table.
   2126 */
   2127 void sqlite3ExprCodeGetColumnOfTable(
   2128   Vdbe *v,        /* The VDBE under construction */
   2129   Table *pTab,    /* The table containing the value */
   2130   int iTabCur,    /* The cursor for this table */
   2131   int iCol,       /* Index of the column to extract */
   2132   int regOut      /* Extract the valud into this register */
   2133 ){
   2134   if( iCol<0 || iCol==pTab->iPKey ){
   2135     sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
   2136   }else{
   2137     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
   2138     sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
   2139   }
   2140   if( iCol>=0 ){
   2141     sqlite3ColumnDefault(v, pTab, iCol, regOut);
   2142   }
   2143 }
   2144 
   2145 /*
   2146 ** Generate code that will extract the iColumn-th column from
   2147 ** table pTab and store the column value in a register.  An effort
   2148 ** is made to store the column value in register iReg, but this is
   2149 ** not guaranteed.  The location of the column value is returned.
   2150 **
   2151 ** There must be an open cursor to pTab in iTable when this routine
   2152 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
   2153 */
   2154 int sqlite3ExprCodeGetColumn(
   2155   Parse *pParse,   /* Parsing and code generating context */
   2156   Table *pTab,     /* Description of the table we are reading from */
   2157   int iColumn,     /* Index of the table column */
   2158   int iTable,      /* The cursor pointing to the table */
   2159   int iReg         /* Store results here */
   2160 ){
   2161   Vdbe *v = pParse->pVdbe;
   2162   int i;
   2163   struct yColCache *p;
   2164 
   2165   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2166     if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
   2167       p->lru = pParse->iCacheCnt++;
   2168       sqlite3ExprCachePinRegister(pParse, p->iReg);
   2169       return p->iReg;
   2170     }
   2171   }
   2172   assert( v!=0 );
   2173   sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
   2174   sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
   2175   return iReg;
   2176 }
   2177 
   2178 /*
   2179 ** Clear all column cache entries.
   2180 */
   2181 void sqlite3ExprCacheClear(Parse *pParse){
   2182   int i;
   2183   struct yColCache *p;
   2184 
   2185   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2186     if( p->iReg ){
   2187       cacheEntryClear(pParse, p);
   2188       p->iReg = 0;
   2189     }
   2190   }
   2191 }
   2192 
   2193 /*
   2194 ** Record the fact that an affinity change has occurred on iCount
   2195 ** registers starting with iStart.
   2196 */
   2197 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
   2198   sqlite3ExprCacheRemove(pParse, iStart, iCount);
   2199 }
   2200 
   2201 /*
   2202 ** Generate code to move content from registers iFrom...iFrom+nReg-1
   2203 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
   2204 */
   2205 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
   2206   int i;
   2207   struct yColCache *p;
   2208   if( NEVER(iFrom==iTo) ) return;
   2209   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
   2210   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2211     int x = p->iReg;
   2212     if( x>=iFrom && x<iFrom+nReg ){
   2213       p->iReg += iTo-iFrom;
   2214     }
   2215   }
   2216 }
   2217 
   2218 /*
   2219 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
   2220 ** over to iTo..iTo+nReg-1.
   2221 */
   2222 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
   2223   int i;
   2224   if( NEVER(iFrom==iTo) ) return;
   2225   for(i=0; i<nReg; i++){
   2226     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
   2227   }
   2228 }
   2229 
   2230 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
   2231 /*
   2232 ** Return true if any register in the range iFrom..iTo (inclusive)
   2233 ** is used as part of the column cache.
   2234 **
   2235 ** This routine is used within assert() and testcase() macros only
   2236 ** and does not appear in a normal build.
   2237 */
   2238 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
   2239   int i;
   2240   struct yColCache *p;
   2241   for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   2242     int r = p->iReg;
   2243     if( r>=iFrom && r<=iTo ) return 1;    /*NO_TEST*/
   2244   }
   2245   return 0;
   2246 }
   2247 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
   2248 
   2249 /*
   2250 ** Generate code into the current Vdbe to evaluate the given
   2251 ** expression.  Attempt to store the results in register "target".
   2252 ** Return the register where results are stored.
   2253 **
   2254 ** With this routine, there is no guarantee that results will
   2255 ** be stored in target.  The result might be stored in some other
   2256 ** register if it is convenient to do so.  The calling function
   2257 ** must check the return code and move the results to the desired
   2258 ** register.
   2259 */
   2260 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
   2261   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
   2262   int op;                   /* The opcode being coded */
   2263   int inReg = target;       /* Results stored in register inReg */
   2264   int regFree1 = 0;         /* If non-zero free this temporary register */
   2265   int regFree2 = 0;         /* If non-zero free this temporary register */
   2266   int r1, r2, r3, r4;       /* Various register numbers */
   2267   sqlite3 *db = pParse->db; /* The database connection */
   2268 
   2269   assert( target>0 && target<=pParse->nMem );
   2270   if( v==0 ){
   2271     assert( pParse->db->mallocFailed );
   2272     return 0;
   2273   }
   2274 
   2275   if( pExpr==0 ){
   2276     op = TK_NULL;
   2277   }else{
   2278     op = pExpr->op;
   2279   }
   2280   switch( op ){
   2281     case TK_AGG_COLUMN: {
   2282       AggInfo *pAggInfo = pExpr->pAggInfo;
   2283       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
   2284       if( !pAggInfo->directMode ){
   2285         assert( pCol->iMem>0 );
   2286         inReg = pCol->iMem;
   2287         break;
   2288       }else if( pAggInfo->useSortingIdx ){
   2289         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
   2290                               pCol->iSorterColumn, target);
   2291         break;
   2292       }
   2293       /* Otherwise, fall thru into the TK_COLUMN case */
   2294     }
   2295     case TK_COLUMN: {
   2296       if( pExpr->iTable<0 ){
   2297         /* This only happens when coding check constraints */
   2298         assert( pParse->ckBase>0 );
   2299         inReg = pExpr->iColumn + pParse->ckBase;
   2300       }else{
   2301         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
   2302                                  pExpr->iColumn, pExpr->iTable, target);
   2303       }
   2304       break;
   2305     }
   2306     case TK_INTEGER: {
   2307       codeInteger(pParse, pExpr, 0, target);
   2308       break;
   2309     }
   2310 #ifndef SQLITE_OMIT_FLOATING_POINT
   2311     case TK_FLOAT: {
   2312       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2313       codeReal(v, pExpr->u.zToken, 0, target);
   2314       break;
   2315     }
   2316 #endif
   2317     case TK_STRING: {
   2318       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2319       sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
   2320       break;
   2321     }
   2322     case TK_NULL: {
   2323       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
   2324       break;
   2325     }
   2326 #ifndef SQLITE_OMIT_BLOB_LITERAL
   2327     case TK_BLOB: {
   2328       int n;
   2329       const char *z;
   2330       char *zBlob;
   2331       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2332       assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
   2333       assert( pExpr->u.zToken[1]=='\'' );
   2334       z = &pExpr->u.zToken[2];
   2335       n = sqlite3Strlen30(z) - 1;
   2336       assert( z[n]=='\'' );
   2337       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
   2338       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
   2339       break;
   2340     }
   2341 #endif
   2342     case TK_VARIABLE: {
   2343       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2344       assert( pExpr->u.zToken!=0 );
   2345       assert( pExpr->u.zToken[0]!=0 );
   2346       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
   2347       if( pExpr->u.zToken[1]!=0 ){
   2348         sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
   2349       }
   2350       break;
   2351     }
   2352     case TK_REGISTER: {
   2353       inReg = pExpr->iTable;
   2354       break;
   2355     }
   2356     case TK_AS: {
   2357       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
   2358       break;
   2359     }
   2360 #ifndef SQLITE_OMIT_CAST
   2361     case TK_CAST: {
   2362       /* Expressions of the form:   CAST(pLeft AS token) */
   2363       int aff, to_op;
   2364       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
   2365       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2366       aff = sqlite3AffinityType(pExpr->u.zToken);
   2367       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
   2368       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
   2369       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
   2370       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
   2371       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
   2372       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
   2373       testcase( to_op==OP_ToText );
   2374       testcase( to_op==OP_ToBlob );
   2375       testcase( to_op==OP_ToNumeric );
   2376       testcase( to_op==OP_ToInt );
   2377       testcase( to_op==OP_ToReal );
   2378       if( inReg!=target ){
   2379         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
   2380         inReg = target;
   2381       }
   2382       sqlite3VdbeAddOp1(v, to_op, inReg);
   2383       testcase( usedAsColumnCache(pParse, inReg, inReg) );
   2384       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
   2385       break;
   2386     }
   2387 #endif /* SQLITE_OMIT_CAST */
   2388     case TK_LT:
   2389     case TK_LE:
   2390     case TK_GT:
   2391     case TK_GE:
   2392     case TK_NE:
   2393     case TK_EQ: {
   2394       assert( TK_LT==OP_Lt );
   2395       assert( TK_LE==OP_Le );
   2396       assert( TK_GT==OP_Gt );
   2397       assert( TK_GE==OP_Ge );
   2398       assert( TK_EQ==OP_Eq );
   2399       assert( TK_NE==OP_Ne );
   2400       testcase( op==TK_LT );
   2401       testcase( op==TK_LE );
   2402       testcase( op==TK_GT );
   2403       testcase( op==TK_GE );
   2404       testcase( op==TK_EQ );
   2405       testcase( op==TK_NE );
   2406       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   2407       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   2408       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
   2409                   r1, r2, inReg, SQLITE_STOREP2);
   2410       testcase( regFree1==0 );
   2411       testcase( regFree2==0 );
   2412       break;
   2413     }
   2414     case TK_IS:
   2415     case TK_ISNOT: {
   2416       testcase( op==TK_IS );
   2417       testcase( op==TK_ISNOT );
   2418       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   2419       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   2420       op = (op==TK_IS) ? TK_EQ : TK_NE;
   2421       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
   2422                   r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
   2423       testcase( regFree1==0 );
   2424       testcase( regFree2==0 );
   2425       break;
   2426     }
   2427     case TK_AND:
   2428     case TK_OR:
   2429     case TK_PLUS:
   2430     case TK_STAR:
   2431     case TK_MINUS:
   2432     case TK_REM:
   2433     case TK_BITAND:
   2434     case TK_BITOR:
   2435     case TK_SLASH:
   2436     case TK_LSHIFT:
   2437     case TK_RSHIFT:
   2438     case TK_CONCAT: {
   2439       assert( TK_AND==OP_And );
   2440       assert( TK_OR==OP_Or );
   2441       assert( TK_PLUS==OP_Add );
   2442       assert( TK_MINUS==OP_Subtract );
   2443       assert( TK_REM==OP_Remainder );
   2444       assert( TK_BITAND==OP_BitAnd );
   2445       assert( TK_BITOR==OP_BitOr );
   2446       assert( TK_SLASH==OP_Divide );
   2447       assert( TK_LSHIFT==OP_ShiftLeft );
   2448       assert( TK_RSHIFT==OP_ShiftRight );
   2449       assert( TK_CONCAT==OP_Concat );
   2450       testcase( op==TK_AND );
   2451       testcase( op==TK_OR );
   2452       testcase( op==TK_PLUS );
   2453       testcase( op==TK_MINUS );
   2454       testcase( op==TK_REM );
   2455       testcase( op==TK_BITAND );
   2456       testcase( op==TK_BITOR );
   2457       testcase( op==TK_SLASH );
   2458       testcase( op==TK_LSHIFT );
   2459       testcase( op==TK_RSHIFT );
   2460       testcase( op==TK_CONCAT );
   2461       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   2462       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   2463       sqlite3VdbeAddOp3(v, op, r2, r1, target);
   2464       testcase( regFree1==0 );
   2465       testcase( regFree2==0 );
   2466       break;
   2467     }
   2468     case TK_UMINUS: {
   2469       Expr *pLeft = pExpr->pLeft;
   2470       assert( pLeft );
   2471       if( pLeft->op==TK_INTEGER ){
   2472         codeInteger(pParse, pLeft, 1, target);
   2473 #ifndef SQLITE_OMIT_FLOATING_POINT
   2474       }else if( pLeft->op==TK_FLOAT ){
   2475         assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2476         codeReal(v, pLeft->u.zToken, 1, target);
   2477 #endif
   2478       }else{
   2479         regFree1 = r1 = sqlite3GetTempReg(pParse);
   2480         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
   2481         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
   2482         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
   2483         testcase( regFree2==0 );
   2484       }
   2485       inReg = target;
   2486       break;
   2487     }
   2488     case TK_BITNOT:
   2489     case TK_NOT: {
   2490       assert( TK_BITNOT==OP_BitNot );
   2491       assert( TK_NOT==OP_Not );
   2492       testcase( op==TK_BITNOT );
   2493       testcase( op==TK_NOT );
   2494       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   2495       testcase( regFree1==0 );
   2496       inReg = target;
   2497       sqlite3VdbeAddOp2(v, op, r1, inReg);
   2498       break;
   2499     }
   2500     case TK_ISNULL:
   2501     case TK_NOTNULL: {
   2502       int addr;
   2503       assert( TK_ISNULL==OP_IsNull );
   2504       assert( TK_NOTNULL==OP_NotNull );
   2505       testcase( op==TK_ISNULL );
   2506       testcase( op==TK_NOTNULL );
   2507       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
   2508       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   2509       testcase( regFree1==0 );
   2510       addr = sqlite3VdbeAddOp1(v, op, r1);
   2511       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
   2512       sqlite3VdbeJumpHere(v, addr);
   2513       break;
   2514     }
   2515     case TK_AGG_FUNCTION: {
   2516       AggInfo *pInfo = pExpr->pAggInfo;
   2517       if( pInfo==0 ){
   2518         assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2519         sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
   2520       }else{
   2521         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
   2522       }
   2523       break;
   2524     }
   2525     case TK_CONST_FUNC:
   2526     case TK_FUNCTION: {
   2527       ExprList *pFarg;       /* List of function arguments */
   2528       int nFarg;             /* Number of function arguments */
   2529       FuncDef *pDef;         /* The function definition object */
   2530       int nId;               /* Length of the function name in bytes */
   2531       const char *zId;       /* The function name */
   2532       int constMask = 0;     /* Mask of function arguments that are constant */
   2533       int i;                 /* Loop counter */
   2534       u8 enc = ENC(db);      /* The text encoding used by this database */
   2535       CollSeq *pColl = 0;    /* A collating sequence */
   2536 
   2537       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
   2538       testcase( op==TK_CONST_FUNC );
   2539       testcase( op==TK_FUNCTION );
   2540       if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
   2541         pFarg = 0;
   2542       }else{
   2543         pFarg = pExpr->x.pList;
   2544       }
   2545       nFarg = pFarg ? pFarg->nExpr : 0;
   2546       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2547       zId = pExpr->u.zToken;
   2548       nId = sqlite3Strlen30(zId);
   2549       pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
   2550       if( pDef==0 ){
   2551         sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
   2552         break;
   2553       }
   2554 
   2555       /* Attempt a direct implementation of the built-in COALESCE() and
   2556       ** IFNULL() functions.  This avoids unnecessary evalation of
   2557       ** arguments past the first non-NULL argument.
   2558       */
   2559       if( pDef->flags & SQLITE_FUNC_COALESCE ){
   2560         int endCoalesce = sqlite3VdbeMakeLabel(v);
   2561         assert( nFarg>=2 );
   2562         sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
   2563         for(i=1; i<nFarg; i++){
   2564           sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
   2565           sqlite3ExprCacheRemove(pParse, target, 1);
   2566           sqlite3ExprCachePush(pParse);
   2567           sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
   2568           sqlite3ExprCachePop(pParse, 1);
   2569         }
   2570         sqlite3VdbeResolveLabel(v, endCoalesce);
   2571         break;
   2572       }
   2573 
   2574 
   2575       if( pFarg ){
   2576         r1 = sqlite3GetTempRange(pParse, nFarg);
   2577         sqlite3ExprCachePush(pParse);     /* Ticket 2ea2425d34be */
   2578         sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
   2579         sqlite3ExprCachePop(pParse, 1);   /* Ticket 2ea2425d34be */
   2580       }else{
   2581         r1 = 0;
   2582       }
   2583 #ifndef SQLITE_OMIT_VIRTUALTABLE
   2584       /* Possibly overload the function if the first argument is
   2585       ** a virtual table column.
   2586       **
   2587       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
   2588       ** second argument, not the first, as the argument to test to
   2589       ** see if it is a column in a virtual table.  This is done because
   2590       ** the left operand of infix functions (the operand we want to
   2591       ** control overloading) ends up as the second argument to the
   2592       ** function.  The expression "A glob B" is equivalent to
   2593       ** "glob(B,A).  We want to use the A in "A glob B" to test
   2594       ** for function overloading.  But we use the B term in "glob(B,A)".
   2595       */
   2596       if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
   2597         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
   2598       }else if( nFarg>0 ){
   2599         pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
   2600       }
   2601 #endif
   2602       for(i=0; i<nFarg; i++){
   2603         if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
   2604           constMask |= (1<<i);
   2605         }
   2606         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
   2607           pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
   2608         }
   2609       }
   2610       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
   2611         if( !pColl ) pColl = db->pDfltColl;
   2612         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
   2613       }
   2614       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
   2615                         (char*)pDef, P4_FUNCDEF);
   2616       sqlite3VdbeChangeP5(v, (u8)nFarg);
   2617       if( nFarg ){
   2618         sqlite3ReleaseTempRange(pParse, r1, nFarg);
   2619       }
   2620       break;
   2621     }
   2622 #ifndef SQLITE_OMIT_SUBQUERY
   2623     case TK_EXISTS:
   2624     case TK_SELECT: {
   2625       testcase( op==TK_EXISTS );
   2626       testcase( op==TK_SELECT );
   2627       inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
   2628       break;
   2629     }
   2630     case TK_IN: {
   2631       int destIfFalse = sqlite3VdbeMakeLabel(v);
   2632       int destIfNull = sqlite3VdbeMakeLabel(v);
   2633       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
   2634       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
   2635       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
   2636       sqlite3VdbeResolveLabel(v, destIfFalse);
   2637       sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
   2638       sqlite3VdbeResolveLabel(v, destIfNull);
   2639       break;
   2640     }
   2641 #endif /* SQLITE_OMIT_SUBQUERY */
   2642 
   2643 
   2644     /*
   2645     **    x BETWEEN y AND z
   2646     **
   2647     ** This is equivalent to
   2648     **
   2649     **    x>=y AND x<=z
   2650     **
   2651     ** X is stored in pExpr->pLeft.
   2652     ** Y is stored in pExpr->pList->a[0].pExpr.
   2653     ** Z is stored in pExpr->pList->a[1].pExpr.
   2654     */
   2655     case TK_BETWEEN: {
   2656       Expr *pLeft = pExpr->pLeft;
   2657       struct ExprList_item *pLItem = pExpr->x.pList->a;
   2658       Expr *pRight = pLItem->pExpr;
   2659 
   2660       r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
   2661       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
   2662       testcase( regFree1==0 );
   2663       testcase( regFree2==0 );
   2664       r3 = sqlite3GetTempReg(pParse);
   2665       r4 = sqlite3GetTempReg(pParse);
   2666       codeCompare(pParse, pLeft, pRight, OP_Ge,
   2667                   r1, r2, r3, SQLITE_STOREP2);
   2668       pLItem++;
   2669       pRight = pLItem->pExpr;
   2670       sqlite3ReleaseTempReg(pParse, regFree2);
   2671       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
   2672       testcase( regFree2==0 );
   2673       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
   2674       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
   2675       sqlite3ReleaseTempReg(pParse, r3);
   2676       sqlite3ReleaseTempReg(pParse, r4);
   2677       break;
   2678     }
   2679     case TK_UPLUS: {
   2680       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
   2681       break;
   2682     }
   2683 
   2684     case TK_TRIGGER: {
   2685       /* If the opcode is TK_TRIGGER, then the expression is a reference
   2686       ** to a column in the new.* or old.* pseudo-tables available to
   2687       ** trigger programs. In this case Expr.iTable is set to 1 for the
   2688       ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
   2689       ** is set to the column of the pseudo-table to read, or to -1 to
   2690       ** read the rowid field.
   2691       **
   2692       ** The expression is implemented using an OP_Param opcode. The p1
   2693       ** parameter is set to 0 for an old.rowid reference, or to (i+1)
   2694       ** to reference another column of the old.* pseudo-table, where
   2695       ** i is the index of the column. For a new.rowid reference, p1 is
   2696       ** set to (n+1), where n is the number of columns in each pseudo-table.
   2697       ** For a reference to any other column in the new.* pseudo-table, p1
   2698       ** is set to (n+2+i), where n and i are as defined previously. For
   2699       ** example, if the table on which triggers are being fired is
   2700       ** declared as:
   2701       **
   2702       **   CREATE TABLE t1(a, b);
   2703       **
   2704       ** Then p1 is interpreted as follows:
   2705       **
   2706       **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
   2707       **   p1==1   ->    old.a         p1==4   ->    new.a
   2708       **   p1==2   ->    old.b         p1==5   ->    new.b
   2709       */
   2710       Table *pTab = pExpr->pTab;
   2711       int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
   2712 
   2713       assert( pExpr->iTable==0 || pExpr->iTable==1 );
   2714       assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
   2715       assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
   2716       assert( p1>=0 && p1<(pTab->nCol*2+2) );
   2717 
   2718       sqlite3VdbeAddOp2(v, OP_Param, p1, target);
   2719       VdbeComment((v, "%s.%s -> $%d",
   2720         (pExpr->iTable ? "new" : "old"),
   2721         (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
   2722         target
   2723       ));
   2724 
   2725 #ifndef SQLITE_OMIT_FLOATING_POINT
   2726       /* If the column has REAL affinity, it may currently be stored as an
   2727       ** integer. Use OP_RealAffinity to make sure it is really real.  */
   2728       if( pExpr->iColumn>=0
   2729        && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
   2730       ){
   2731         sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
   2732       }
   2733 #endif
   2734       break;
   2735     }
   2736 
   2737 
   2738     /*
   2739     ** Form A:
   2740     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
   2741     **
   2742     ** Form B:
   2743     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
   2744     **
   2745     ** Form A is can be transformed into the equivalent form B as follows:
   2746     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
   2747     **        WHEN x=eN THEN rN ELSE y END
   2748     **
   2749     ** X (if it exists) is in pExpr->pLeft.
   2750     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
   2751     ** ELSE clause and no other term matches, then the result of the
   2752     ** exprssion is NULL.
   2753     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
   2754     **
   2755     ** The result of the expression is the Ri for the first matching Ei,
   2756     ** or if there is no matching Ei, the ELSE term Y, or if there is
   2757     ** no ELSE term, NULL.
   2758     */
   2759     default: assert( op==TK_CASE ); {
   2760       int endLabel;                     /* GOTO label for end of CASE stmt */
   2761       int nextCase;                     /* GOTO label for next WHEN clause */
   2762       int nExpr;                        /* 2x number of WHEN terms */
   2763       int i;                            /* Loop counter */
   2764       ExprList *pEList;                 /* List of WHEN terms */
   2765       struct ExprList_item *aListelem;  /* Array of WHEN terms */
   2766       Expr opCompare;                   /* The X==Ei expression */
   2767       Expr cacheX;                      /* Cached expression X */
   2768       Expr *pX;                         /* The X expression */
   2769       Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
   2770       VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
   2771 
   2772       assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
   2773       assert((pExpr->x.pList->nExpr % 2) == 0);
   2774       assert(pExpr->x.pList->nExpr > 0);
   2775       pEList = pExpr->x.pList;
   2776       aListelem = pEList->a;
   2777       nExpr = pEList->nExpr;
   2778       endLabel = sqlite3VdbeMakeLabel(v);
   2779       if( (pX = pExpr->pLeft)!=0 ){
   2780         cacheX = *pX;
   2781         testcase( pX->op==TK_COLUMN );
   2782         testcase( pX->op==TK_REGISTER );
   2783         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
   2784         testcase( regFree1==0 );
   2785         cacheX.op = TK_REGISTER;
   2786         opCompare.op = TK_EQ;
   2787         opCompare.pLeft = &cacheX;
   2788         pTest = &opCompare;
   2789         /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
   2790         ** The value in regFree1 might get SCopy-ed into the file result.
   2791         ** So make sure that the regFree1 register is not reused for other
   2792         ** purposes and possibly overwritten.  */
   2793         regFree1 = 0;
   2794       }
   2795       for(i=0; i<nExpr; i=i+2){
   2796         sqlite3ExprCachePush(pParse);
   2797         if( pX ){
   2798           assert( pTest!=0 );
   2799           opCompare.pRight = aListelem[i].pExpr;
   2800         }else{
   2801           pTest = aListelem[i].pExpr;
   2802         }
   2803         nextCase = sqlite3VdbeMakeLabel(v);
   2804         testcase( pTest->op==TK_COLUMN );
   2805         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
   2806         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
   2807         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
   2808         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
   2809         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
   2810         sqlite3ExprCachePop(pParse, 1);
   2811         sqlite3VdbeResolveLabel(v, nextCase);
   2812       }
   2813       if( pExpr->pRight ){
   2814         sqlite3ExprCachePush(pParse);
   2815         sqlite3ExprCode(pParse, pExpr->pRight, target);
   2816         sqlite3ExprCachePop(pParse, 1);
   2817       }else{
   2818         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
   2819       }
   2820       assert( db->mallocFailed || pParse->nErr>0
   2821            || pParse->iCacheLevel==iCacheLevel );
   2822       sqlite3VdbeResolveLabel(v, endLabel);
   2823       break;
   2824     }
   2825 #ifndef SQLITE_OMIT_TRIGGER
   2826     case TK_RAISE: {
   2827       assert( pExpr->affinity==OE_Rollback
   2828            || pExpr->affinity==OE_Abort
   2829            || pExpr->affinity==OE_Fail
   2830            || pExpr->affinity==OE_Ignore
   2831       );
   2832       if( !pParse->pTriggerTab ){
   2833         sqlite3ErrorMsg(pParse,
   2834                        "RAISE() may only be used within a trigger-program");
   2835         return 0;
   2836       }
   2837       if( pExpr->affinity==OE_Abort ){
   2838         sqlite3MayAbort(pParse);
   2839       }
   2840       assert( !ExprHasProperty(pExpr, EP_IntValue) );
   2841       if( pExpr->affinity==OE_Ignore ){
   2842         sqlite3VdbeAddOp4(
   2843             v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
   2844       }else{
   2845         sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
   2846       }
   2847 
   2848       break;
   2849     }
   2850 #endif
   2851   }
   2852   sqlite3ReleaseTempReg(pParse, regFree1);
   2853   sqlite3ReleaseTempReg(pParse, regFree2);
   2854   return inReg;
   2855 }
   2856 
   2857 /*
   2858 ** Generate code to evaluate an expression and store the results
   2859 ** into a register.  Return the register number where the results
   2860 ** are stored.
   2861 **
   2862 ** If the register is a temporary register that can be deallocated,
   2863 ** then write its number into *pReg.  If the result register is not
   2864 ** a temporary, then set *pReg to zero.
   2865 */
   2866 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
   2867   int r1 = sqlite3GetTempReg(pParse);
   2868   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
   2869   if( r2==r1 ){
   2870     *pReg = r1;
   2871   }else{
   2872     sqlite3ReleaseTempReg(pParse, r1);
   2873     *pReg = 0;
   2874   }
   2875   return r2;
   2876 }
   2877 
   2878 /*
   2879 ** Generate code that will evaluate expression pExpr and store the
   2880 ** results in register target.  The results are guaranteed to appear
   2881 ** in register target.
   2882 */
   2883 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
   2884   int inReg;
   2885 
   2886   assert( target>0 && target<=pParse->nMem );
   2887   if( pExpr && pExpr->op==TK_REGISTER ){
   2888     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
   2889   }else{
   2890     inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
   2891     assert( pParse->pVdbe || pParse->db->mallocFailed );
   2892     if( inReg!=target && pParse->pVdbe ){
   2893       sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
   2894     }
   2895   }
   2896   return target;
   2897 }
   2898 
   2899 /*
   2900 ** Generate code that evalutes the given expression and puts the result
   2901 ** in register target.
   2902 **
   2903 ** Also make a copy of the expression results into another "cache" register
   2904 ** and modify the expression so that the next time it is evaluated,
   2905 ** the result is a copy of the cache register.
   2906 **
   2907 ** This routine is used for expressions that are used multiple
   2908 ** times.  They are evaluated once and the results of the expression
   2909 ** are reused.
   2910 */
   2911 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
   2912   Vdbe *v = pParse->pVdbe;
   2913   int inReg;
   2914   inReg = sqlite3ExprCode(pParse, pExpr, target);
   2915   assert( target>0 );
   2916   /* This routine is called for terms to INSERT or UPDATE.  And the only
   2917   ** other place where expressions can be converted into TK_REGISTER is
   2918   ** in WHERE clause processing.  So as currently implemented, there is
   2919   ** no way for a TK_REGISTER to exist here.  But it seems prudent to
   2920   ** keep the ALWAYS() in case the conditions above change with future
   2921   ** modifications or enhancements. */
   2922   if( ALWAYS(pExpr->op!=TK_REGISTER) ){
   2923     int iMem;
   2924     iMem = ++pParse->nMem;
   2925     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
   2926     pExpr->iTable = iMem;
   2927     pExpr->op2 = pExpr->op;
   2928     pExpr->op = TK_REGISTER;
   2929   }
   2930   return inReg;
   2931 }
   2932 
   2933 /*
   2934 ** Return TRUE if pExpr is an constant expression that is appropriate
   2935 ** for factoring out of a loop.  Appropriate expressions are:
   2936 **
   2937 **    *  Any expression that evaluates to two or more opcodes.
   2938 **
   2939 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
   2940 **       or OP_Variable that does not need to be placed in a
   2941 **       specific register.
   2942 **
   2943 ** There is no point in factoring out single-instruction constant
   2944 ** expressions that need to be placed in a particular register.
   2945 ** We could factor them out, but then we would end up adding an
   2946 ** OP_SCopy instruction to move the value into the correct register
   2947 ** later.  We might as well just use the original instruction and
   2948 ** avoid the OP_SCopy.
   2949 */
   2950 static int isAppropriateForFactoring(Expr *p){
   2951   if( !sqlite3ExprIsConstantNotJoin(p) ){
   2952     return 0;  /* Only constant expressions are appropriate for factoring */
   2953   }
   2954   if( (p->flags & EP_FixedDest)==0 ){
   2955     return 1;  /* Any constant without a fixed destination is appropriate */
   2956   }
   2957   while( p->op==TK_UPLUS ) p = p->pLeft;
   2958   switch( p->op ){
   2959 #ifndef SQLITE_OMIT_BLOB_LITERAL
   2960     case TK_BLOB:
   2961 #endif
   2962     case TK_VARIABLE:
   2963     case TK_INTEGER:
   2964     case TK_FLOAT:
   2965     case TK_NULL:
   2966     case TK_STRING: {
   2967       testcase( p->op==TK_BLOB );
   2968       testcase( p->op==TK_VARIABLE );
   2969       testcase( p->op==TK_INTEGER );
   2970       testcase( p->op==TK_FLOAT );
   2971       testcase( p->op==TK_NULL );
   2972       testcase( p->op==TK_STRING );
   2973       /* Single-instruction constants with a fixed destination are
   2974       ** better done in-line.  If we factor them, they will just end
   2975       ** up generating an OP_SCopy to move the value to the destination
   2976       ** register. */
   2977       return 0;
   2978     }
   2979     case TK_UMINUS: {
   2980       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
   2981         return 0;
   2982       }
   2983       break;
   2984     }
   2985     default: {
   2986       break;
   2987     }
   2988   }
   2989   return 1;
   2990 }
   2991 
   2992 /*
   2993 ** If pExpr is a constant expression that is appropriate for
   2994 ** factoring out of a loop, then evaluate the expression
   2995 ** into a register and convert the expression into a TK_REGISTER
   2996 ** expression.
   2997 */
   2998 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
   2999   Parse *pParse = pWalker->pParse;
   3000   switch( pExpr->op ){
   3001     case TK_IN:
   3002     case TK_REGISTER: {
   3003       return WRC_Prune;
   3004     }
   3005     case TK_FUNCTION:
   3006     case TK_AGG_FUNCTION:
   3007     case TK_CONST_FUNC: {
   3008       /* The arguments to a function have a fixed destination.
   3009       ** Mark them this way to avoid generated unneeded OP_SCopy
   3010       ** instructions.
   3011       */
   3012       ExprList *pList = pExpr->x.pList;
   3013       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
   3014       if( pList ){
   3015         int i = pList->nExpr;
   3016         struct ExprList_item *pItem = pList->a;
   3017         for(; i>0; i--, pItem++){
   3018           if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
   3019         }
   3020       }
   3021       break;
   3022     }
   3023   }
   3024   if( isAppropriateForFactoring(pExpr) ){
   3025     int r1 = ++pParse->nMem;
   3026     int r2;
   3027     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
   3028     if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
   3029     pExpr->op2 = pExpr->op;
   3030     pExpr->op = TK_REGISTER;
   3031     pExpr->iTable = r2;
   3032     return WRC_Prune;
   3033   }
   3034   return WRC_Continue;
   3035 }
   3036 
   3037 /*
   3038 ** Preevaluate constant subexpressions within pExpr and store the
   3039 ** results in registers.  Modify pExpr so that the constant subexpresions
   3040 ** are TK_REGISTER opcodes that refer to the precomputed values.
   3041 **
   3042 ** This routine is a no-op if the jump to the cookie-check code has
   3043 ** already occur.  Since the cookie-check jump is generated prior to
   3044 ** any other serious processing, this check ensures that there is no
   3045 ** way to accidently bypass the constant initializations.
   3046 **
   3047 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
   3048 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
   3049 ** interface.  This allows test logic to verify that the same answer is
   3050 ** obtained for queries regardless of whether or not constants are
   3051 ** precomputed into registers or if they are inserted in-line.
   3052 */
   3053 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
   3054   Walker w;
   3055   if( pParse->cookieGoto ) return;
   3056   if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
   3057   w.xExprCallback = evalConstExpr;
   3058   w.xSelectCallback = 0;
   3059   w.pParse = pParse;
   3060   sqlite3WalkExpr(&w, pExpr);
   3061 }
   3062 
   3063 
   3064 /*
   3065 ** Generate code that pushes the value of every element of the given
   3066 ** expression list into a sequence of registers beginning at target.
   3067 **
   3068 ** Return the number of elements evaluated.
   3069 */
   3070 int sqlite3ExprCodeExprList(
   3071   Parse *pParse,     /* Parsing context */
   3072   ExprList *pList,   /* The expression list to be coded */
   3073   int target,        /* Where to write results */
   3074   int doHardCopy     /* Make a hard copy of every element */
   3075 ){
   3076   struct ExprList_item *pItem;
   3077   int i, n;
   3078   assert( pList!=0 );
   3079   assert( target>0 );
   3080   assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
   3081   n = pList->nExpr;
   3082   for(pItem=pList->a, i=0; i<n; i++, pItem++){
   3083     Expr *pExpr = pItem->pExpr;
   3084     int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
   3085     if( inReg!=target+i ){
   3086       sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
   3087                         inReg, target+i);
   3088     }
   3089   }
   3090   return n;
   3091 }
   3092 
   3093 /*
   3094 ** Generate code for a BETWEEN operator.
   3095 **
   3096 **    x BETWEEN y AND z
   3097 **
   3098 ** The above is equivalent to
   3099 **
   3100 **    x>=y AND x<=z
   3101 **
   3102 ** Code it as such, taking care to do the common subexpression
   3103 ** elementation of x.
   3104 */
   3105 static void exprCodeBetween(
   3106   Parse *pParse,    /* Parsing and code generating context */
   3107   Expr *pExpr,      /* The BETWEEN expression */
   3108   int dest,         /* Jump here if the jump is taken */
   3109   int jumpIfTrue,   /* Take the jump if the BETWEEN is true */
   3110   int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
   3111 ){
   3112   Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
   3113   Expr compLeft;    /* The  x>=y  term */
   3114   Expr compRight;   /* The  x<=z  term */
   3115   Expr exprX;       /* The  x  subexpression */
   3116   int regFree1 = 0; /* Temporary use register */
   3117 
   3118   assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
   3119   exprX = *pExpr->pLeft;
   3120   exprAnd.op = TK_AND;
   3121   exprAnd.pLeft = &compLeft;
   3122   exprAnd.pRight = &compRight;
   3123   compLeft.op = TK_GE;
   3124   compLeft.pLeft = &exprX;
   3125   compLeft.pRight = pExpr->x.pList->a[0].pExpr;
   3126   compRight.op = TK_LE;
   3127   compRight.pLeft = &exprX;
   3128   compRight.pRight = pExpr->x.pList->a[1].pExpr;
   3129   exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
   3130   exprX.op = TK_REGISTER;
   3131   if( jumpIfTrue ){
   3132     sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
   3133   }else{
   3134     sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
   3135   }
   3136   sqlite3ReleaseTempReg(pParse, regFree1);
   3137 
   3138   /* Ensure adequate test coverage */
   3139   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
   3140   testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
   3141   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
   3142   testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
   3143   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
   3144   testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
   3145   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
   3146   testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
   3147 }
   3148 
   3149 /*
   3150 ** Generate code for a boolean expression such that a jump is made
   3151 ** to the label "dest" if the expression is true but execution
   3152 ** continues straight thru if the expression is false.
   3153 **
   3154 ** If the expression evaluates to NULL (neither true nor false), then
   3155 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
   3156 **
   3157 ** This code depends on the fact that certain token values (ex: TK_EQ)
   3158 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
   3159 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
   3160 ** the make process cause these values to align.  Assert()s in the code
   3161 ** below verify that the numbers are aligned correctly.
   3162 */
   3163 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
   3164   Vdbe *v = pParse->pVdbe;
   3165   int op = 0;
   3166   int regFree1 = 0;
   3167   int regFree2 = 0;
   3168   int r1, r2;
   3169 
   3170   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
   3171   if( NEVER(v==0) )     return;  /* Existance of VDBE checked by caller */
   3172   if( NEVER(pExpr==0) ) return;  /* No way this can happen */
   3173   op = pExpr->op;
   3174   switch( op ){
   3175     case TK_AND: {
   3176       int d2 = sqlite3VdbeMakeLabel(v);
   3177       testcase( jumpIfNull==0 );
   3178       sqlite3ExprCachePush(pParse);
   3179       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
   3180       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
   3181       sqlite3VdbeResolveLabel(v, d2);
   3182       sqlite3ExprCachePop(pParse, 1);
   3183       break;
   3184     }
   3185     case TK_OR: {
   3186       testcase( jumpIfNull==0 );
   3187       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
   3188       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
   3189       break;
   3190     }
   3191     case TK_NOT: {
   3192       testcase( jumpIfNull==0 );
   3193       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
   3194       break;
   3195     }
   3196     case TK_LT:
   3197     case TK_LE:
   3198     case TK_GT:
   3199     case TK_GE:
   3200     case TK_NE:
   3201     case TK_EQ: {
   3202       assert( TK_LT==OP_Lt );
   3203       assert( TK_LE==OP_Le );
   3204       assert( TK_GT==OP_Gt );
   3205       assert( TK_GE==OP_Ge );
   3206       assert( TK_EQ==OP_Eq );
   3207       assert( TK_NE==OP_Ne );
   3208       testcase( op==TK_LT );
   3209       testcase( op==TK_LE );
   3210       testcase( op==TK_GT );
   3211       testcase( op==TK_GE );
   3212       testcase( op==TK_EQ );
   3213       testcase( op==TK_NE );
   3214       testcase( jumpIfNull==0 );
   3215       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   3216       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   3217       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
   3218                   r1, r2, dest, jumpIfNull);
   3219       testcase( regFree1==0 );
   3220       testcase( regFree2==0 );
   3221       break;
   3222     }
   3223     case TK_IS:
   3224     case TK_ISNOT: {
   3225       testcase( op==TK_IS );
   3226       testcase( op==TK_ISNOT );
   3227       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   3228       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   3229       op = (op==TK_IS) ? TK_EQ : TK_NE;
   3230       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
   3231                   r1, r2, dest, SQLITE_NULLEQ);
   3232       testcase( regFree1==0 );
   3233       testcase( regFree2==0 );
   3234       break;
   3235     }
   3236     case TK_ISNULL:
   3237     case TK_NOTNULL: {
   3238       assert( TK_ISNULL==OP_IsNull );
   3239       assert( TK_NOTNULL==OP_NotNull );
   3240       testcase( op==TK_ISNULL );
   3241       testcase( op==TK_NOTNULL );
   3242       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   3243       sqlite3VdbeAddOp2(v, op, r1, dest);
   3244       testcase( regFree1==0 );
   3245       break;
   3246     }
   3247     case TK_BETWEEN: {
   3248       testcase( jumpIfNull==0 );
   3249       exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
   3250       break;
   3251     }
   3252 #ifndef SQLITE_OMIT_SUBQUERY
   3253     case TK_IN: {
   3254       int destIfFalse = sqlite3VdbeMakeLabel(v);
   3255       int destIfNull = jumpIfNull ? dest : destIfFalse;
   3256       sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
   3257       sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
   3258       sqlite3VdbeResolveLabel(v, destIfFalse);
   3259       break;
   3260     }
   3261 #endif
   3262     default: {
   3263       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
   3264       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
   3265       testcase( regFree1==0 );
   3266       testcase( jumpIfNull==0 );
   3267       break;
   3268     }
   3269   }
   3270   sqlite3ReleaseTempReg(pParse, regFree1);
   3271   sqlite3ReleaseTempReg(pParse, regFree2);
   3272 }
   3273 
   3274 /*
   3275 ** Generate code for a boolean expression such that a jump is made
   3276 ** to the label "dest" if the expression is false but execution
   3277 ** continues straight thru if the expression is true.
   3278 **
   3279 ** If the expression evaluates to NULL (neither true nor false) then
   3280 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
   3281 ** is 0.
   3282 */
   3283 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
   3284   Vdbe *v = pParse->pVdbe;
   3285   int op = 0;
   3286   int regFree1 = 0;
   3287   int regFree2 = 0;
   3288   int r1, r2;
   3289 
   3290   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
   3291   if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
   3292   if( pExpr==0 )    return;
   3293 
   3294   /* The value of pExpr->op and op are related as follows:
   3295   **
   3296   **       pExpr->op            op
   3297   **       ---------          ----------
   3298   **       TK_ISNULL          OP_NotNull
   3299   **       TK_NOTNULL         OP_IsNull
   3300   **       TK_NE              OP_Eq
   3301   **       TK_EQ              OP_Ne
   3302   **       TK_GT              OP_Le
   3303   **       TK_LE              OP_Gt
   3304   **       TK_GE              OP_Lt
   3305   **       TK_LT              OP_Ge
   3306   **
   3307   ** For other values of pExpr->op, op is undefined and unused.
   3308   ** The value of TK_ and OP_ constants are arranged such that we
   3309   ** can compute the mapping above using the following expression.
   3310   ** Assert()s verify that the computation is correct.
   3311   */
   3312   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
   3313 
   3314   /* Verify correct alignment of TK_ and OP_ constants
   3315   */
   3316   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
   3317   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
   3318   assert( pExpr->op!=TK_NE || op==OP_Eq );
   3319   assert( pExpr->op!=TK_EQ || op==OP_Ne );
   3320   assert( pExpr->op!=TK_LT || op==OP_Ge );
   3321   assert( pExpr->op!=TK_LE || op==OP_Gt );
   3322   assert( pExpr->op!=TK_GT || op==OP_Le );
   3323   assert( pExpr->op!=TK_GE || op==OP_Lt );
   3324 
   3325   switch( pExpr->op ){
   3326     case TK_AND: {
   3327       testcase( jumpIfNull==0 );
   3328       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
   3329       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
   3330       break;
   3331     }
   3332     case TK_OR: {
   3333       int d2 = sqlite3VdbeMakeLabel(v);
   3334       testcase( jumpIfNull==0 );
   3335       sqlite3ExprCachePush(pParse);
   3336       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
   3337       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
   3338       sqlite3VdbeResolveLabel(v, d2);
   3339       sqlite3ExprCachePop(pParse, 1);
   3340       break;
   3341     }
   3342     case TK_NOT: {
   3343       testcase( jumpIfNull==0 );
   3344       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
   3345       break;
   3346     }
   3347     case TK_LT:
   3348     case TK_LE:
   3349     case TK_GT:
   3350     case TK_GE:
   3351     case TK_NE:
   3352     case TK_EQ: {
   3353       testcase( op==TK_LT );
   3354       testcase( op==TK_LE );
   3355       testcase( op==TK_GT );
   3356       testcase( op==TK_GE );
   3357       testcase( op==TK_EQ );
   3358       testcase( op==TK_NE );
   3359       testcase( jumpIfNull==0 );
   3360       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   3361       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   3362       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
   3363                   r1, r2, dest, jumpIfNull);
   3364       testcase( regFree1==0 );
   3365       testcase( regFree2==0 );
   3366       break;
   3367     }
   3368     case TK_IS:
   3369     case TK_ISNOT: {
   3370       testcase( pExpr->op==TK_IS );
   3371       testcase( pExpr->op==TK_ISNOT );
   3372       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   3373       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
   3374       op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
   3375       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
   3376                   r1, r2, dest, SQLITE_NULLEQ);
   3377       testcase( regFree1==0 );
   3378       testcase( regFree2==0 );
   3379       break;
   3380     }
   3381     case TK_ISNULL:
   3382     case TK_NOTNULL: {
   3383       testcase( op==TK_ISNULL );
   3384       testcase( op==TK_NOTNULL );
   3385       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
   3386       sqlite3VdbeAddOp2(v, op, r1, dest);
   3387       testcase( regFree1==0 );
   3388       break;
   3389     }
   3390     case TK_BETWEEN: {
   3391       testcase( jumpIfNull==0 );
   3392       exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
   3393       break;
   3394     }
   3395 #ifndef SQLITE_OMIT_SUBQUERY
   3396     case TK_IN: {
   3397       if( jumpIfNull ){
   3398         sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
   3399       }else{
   3400         int destIfNull = sqlite3VdbeMakeLabel(v);
   3401         sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
   3402         sqlite3VdbeResolveLabel(v, destIfNull);
   3403       }
   3404       break;
   3405     }
   3406 #endif
   3407     default: {
   3408       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
   3409       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
   3410       testcase( regFree1==0 );
   3411       testcase( jumpIfNull==0 );
   3412       break;
   3413     }
   3414   }
   3415   sqlite3ReleaseTempReg(pParse, regFree1);
   3416   sqlite3ReleaseTempReg(pParse, regFree2);
   3417 }
   3418 
   3419 /*
   3420 ** Do a deep comparison of two expression trees.  Return 0 if the two
   3421 ** expressions are completely identical.  Return 1 if they differ only
   3422 ** by a COLLATE operator at the top level.  Return 2 if there are differences
   3423 ** other than the top-level COLLATE operator.
   3424 **
   3425 ** Sometimes this routine will return 2 even if the two expressions
   3426 ** really are equivalent.  If we cannot prove that the expressions are
   3427 ** identical, we return 2 just to be safe.  So if this routine
   3428 ** returns 2, then you do not really know for certain if the two
   3429 ** expressions are the same.  But if you get a 0 or 1 return, then you
   3430 ** can be sure the expressions are the same.  In the places where
   3431 ** this routine is used, it does not hurt to get an extra 2 - that
   3432 ** just might result in some slightly slower code.  But returning
   3433 ** an incorrect 0 or 1 could lead to a malfunction.
   3434 */
   3435 int sqlite3ExprCompare(Expr *pA, Expr *pB){
   3436   if( pA==0||pB==0 ){
   3437     return pB==pA ? 0 : 2;
   3438   }
   3439   assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
   3440   assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
   3441   if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
   3442     return 2;
   3443   }
   3444   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
   3445   if( pA->op!=pB->op ) return 2;
   3446   if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
   3447   if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
   3448   if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
   3449   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
   3450   if( ExprHasProperty(pA, EP_IntValue) ){
   3451     if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
   3452       return 2;
   3453     }
   3454   }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
   3455     if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
   3456     if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
   3457       return 2;
   3458     }
   3459   }
   3460   if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
   3461   if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
   3462   return 0;
   3463 }
   3464 
   3465 /*
   3466 ** Compare two ExprList objects.  Return 0 if they are identical and
   3467 ** non-zero if they differ in any way.
   3468 **
   3469 ** This routine might return non-zero for equivalent ExprLists.  The
   3470 ** only consequence will be disabled optimizations.  But this routine
   3471 ** must never return 0 if the two ExprList objects are different, or
   3472 ** a malfunction will result.
   3473 **
   3474 ** Two NULL pointers are considered to be the same.  But a NULL pointer
   3475 ** always differs from a non-NULL pointer.
   3476 */
   3477 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
   3478   int i;
   3479   if( pA==0 && pB==0 ) return 0;
   3480   if( pA==0 || pB==0 ) return 1;
   3481   if( pA->nExpr!=pB->nExpr ) return 1;
   3482   for(i=0; i<pA->nExpr; i++){
   3483     Expr *pExprA = pA->a[i].pExpr;
   3484     Expr *pExprB = pB->a[i].pExpr;
   3485     if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
   3486     if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
   3487   }
   3488   return 0;
   3489 }
   3490 
   3491 /*
   3492 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
   3493 ** the new element.  Return a negative number if malloc fails.
   3494 */
   3495 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
   3496   int i;
   3497   pInfo->aCol = sqlite3ArrayAllocate(
   3498        db,
   3499        pInfo->aCol,
   3500        sizeof(pInfo->aCol[0]),
   3501        3,
   3502        &pInfo->nColumn,
   3503        &pInfo->nColumnAlloc,
   3504        &i
   3505   );
   3506   return i;
   3507 }
   3508 
   3509 /*
   3510 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
   3511 ** the new element.  Return a negative number if malloc fails.
   3512 */
   3513 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
   3514   int i;
   3515   pInfo->aFunc = sqlite3ArrayAllocate(
   3516        db,
   3517        pInfo->aFunc,
   3518        sizeof(pInfo->aFunc[0]),
   3519        3,
   3520        &pInfo->nFunc,
   3521        &pInfo->nFuncAlloc,
   3522        &i
   3523   );
   3524   return i;
   3525 }
   3526 
   3527 /*
   3528 ** This is the xExprCallback for a tree walker.  It is used to
   3529 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
   3530 ** for additional information.
   3531 */
   3532 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
   3533   int i;
   3534   NameContext *pNC = pWalker->u.pNC;
   3535   Parse *pParse = pNC->pParse;
   3536   SrcList *pSrcList = pNC->pSrcList;
   3537   AggInfo *pAggInfo = pNC->pAggInfo;
   3538 
   3539   switch( pExpr->op ){
   3540     case TK_AGG_COLUMN:
   3541     case TK_COLUMN: {
   3542       testcase( pExpr->op==TK_AGG_COLUMN );
   3543       testcase( pExpr->op==TK_COLUMN );
   3544       /* Check to see if the column is in one of the tables in the FROM
   3545       ** clause of the aggregate query */
   3546       if( ALWAYS(pSrcList!=0) ){
   3547         struct SrcList_item *pItem = pSrcList->a;
   3548         for(i=0; i<pSrcList->nSrc; i++, pItem++){
   3549           struct AggInfo_col *pCol;
   3550           assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
   3551           if( pExpr->iTable==pItem->iCursor ){
   3552             /* If we reach this point, it means that pExpr refers to a table
   3553             ** that is in the FROM clause of the aggregate query.
   3554             **
   3555             ** Make an entry for the column in pAggInfo->aCol[] if there
   3556             ** is not an entry there already.
   3557             */
   3558             int k;
   3559             pCol = pAggInfo->aCol;
   3560             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
   3561               if( pCol->iTable==pExpr->iTable &&
   3562                   pCol->iColumn==pExpr->iColumn ){
   3563                 break;
   3564               }
   3565             }
   3566             if( (k>=pAggInfo->nColumn)
   3567              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
   3568             ){
   3569               pCol = &pAggInfo->aCol[k];
   3570               pCol->pTab = pExpr->pTab;
   3571               pCol->iTable = pExpr->iTable;
   3572               pCol->iColumn = pExpr->iColumn;
   3573               pCol->iMem = ++pParse->nMem;
   3574               pCol->iSorterColumn = -1;
   3575               pCol->pExpr = pExpr;
   3576               if( pAggInfo->pGroupBy ){
   3577                 int j, n;
   3578                 ExprList *pGB = pAggInfo->pGroupBy;
   3579                 struct ExprList_item *pTerm = pGB->a;
   3580                 n = pGB->nExpr;
   3581                 for(j=0; j<n; j++, pTerm++){
   3582                   Expr *pE = pTerm->pExpr;
   3583                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
   3584                       pE->iColumn==pExpr->iColumn ){
   3585                     pCol->iSorterColumn = j;
   3586                     break;
   3587                   }
   3588                 }
   3589               }
   3590               if( pCol->iSorterColumn<0 ){
   3591                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
   3592               }
   3593             }
   3594             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
   3595             ** because it was there before or because we just created it).
   3596             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
   3597             ** pAggInfo->aCol[] entry.
   3598             */
   3599             ExprSetIrreducible(pExpr);
   3600             pExpr->pAggInfo = pAggInfo;
   3601             pExpr->op = TK_AGG_COLUMN;
   3602             pExpr->iAgg = (i16)k;
   3603             break;
   3604           } /* endif pExpr->iTable==pItem->iCursor */
   3605         } /* end loop over pSrcList */
   3606       }
   3607       return WRC_Prune;
   3608     }
   3609     case TK_AGG_FUNCTION: {
   3610       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
   3611       ** to be ignored */
   3612       if( pNC->nDepth==0 ){
   3613         /* Check to see if pExpr is a duplicate of another aggregate
   3614         ** function that is already in the pAggInfo structure
   3615         */
   3616         struct AggInfo_func *pItem = pAggInfo->aFunc;
   3617         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
   3618           if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
   3619             break;
   3620           }
   3621         }
   3622         if( i>=pAggInfo->nFunc ){
   3623           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
   3624           */
   3625           u8 enc = ENC(pParse->db);
   3626           i = addAggInfoFunc(pParse->db, pAggInfo);
   3627           if( i>=0 ){
   3628             assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
   3629             pItem = &pAggInfo->aFunc[i];
   3630             pItem->pExpr = pExpr;
   3631             pItem->iMem = ++pParse->nMem;
   3632             assert( !ExprHasProperty(pExpr, EP_IntValue) );
   3633             pItem->pFunc = sqlite3FindFunction(pParse->db,
   3634                    pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
   3635                    pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
   3636             if( pExpr->flags & EP_Distinct ){
   3637               pItem->iDistinct = pParse->nTab++;
   3638             }else{
   3639               pItem->iDistinct = -1;
   3640             }
   3641           }
   3642         }
   3643         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
   3644         */
   3645         assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
   3646         ExprSetIrreducible(pExpr);
   3647         pExpr->iAgg = (i16)i;
   3648         pExpr->pAggInfo = pAggInfo;
   3649         return WRC_Prune;
   3650       }
   3651     }
   3652   }
   3653   return WRC_Continue;
   3654 }
   3655 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
   3656   NameContext *pNC = pWalker->u.pNC;
   3657   if( pNC->nDepth==0 ){
   3658     pNC->nDepth++;
   3659     sqlite3WalkSelect(pWalker, pSelect);
   3660     pNC->nDepth--;
   3661     return WRC_Prune;
   3662   }else{
   3663     return WRC_Continue;
   3664   }
   3665 }
   3666 
   3667 /*
   3668 ** Analyze the given expression looking for aggregate functions and
   3669 ** for variables that need to be added to the pParse->aAgg[] array.
   3670 ** Make additional entries to the pParse->aAgg[] array as necessary.
   3671 **
   3672 ** This routine should only be called after the expression has been
   3673 ** analyzed by sqlite3ResolveExprNames().
   3674 */
   3675 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
   3676   Walker w;
   3677   w.xExprCallback = analyzeAggregate;
   3678   w.xSelectCallback = analyzeAggregatesInSelect;
   3679   w.u.pNC = pNC;
   3680   assert( pNC->pSrcList!=0 );
   3681   sqlite3WalkExpr(&w, pExpr);
   3682 }
   3683 
   3684 /*
   3685 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
   3686 ** expression list.  Return the number of errors.
   3687 **
   3688 ** If an error is found, the analysis is cut short.
   3689 */
   3690 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
   3691   struct ExprList_item *pItem;
   3692   int i;
   3693   if( pList ){
   3694     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
   3695       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
   3696     }
   3697   }
   3698 }
   3699 
   3700 /*
   3701 ** Allocate a single new register for use to hold some intermediate result.
   3702 */
   3703 int sqlite3GetTempReg(Parse *pParse){
   3704   if( pParse->nTempReg==0 ){
   3705     return ++pParse->nMem;
   3706   }
   3707   return pParse->aTempReg[--pParse->nTempReg];
   3708 }
   3709 
   3710 /*
   3711 ** Deallocate a register, making available for reuse for some other
   3712 ** purpose.
   3713 **
   3714 ** If a register is currently being used by the column cache, then
   3715 ** the dallocation is deferred until the column cache line that uses
   3716 ** the register becomes stale.
   3717 */
   3718 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
   3719   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
   3720     int i;
   3721     struct yColCache *p;
   3722     for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
   3723       if( p->iReg==iReg ){
   3724         p->tempReg = 1;
   3725         return;
   3726       }
   3727     }
   3728     pParse->aTempReg[pParse->nTempReg++] = iReg;
   3729   }
   3730 }
   3731 
   3732 /*
   3733 ** Allocate or deallocate a block of nReg consecutive registers
   3734 */
   3735 int sqlite3GetTempRange(Parse *pParse, int nReg){
   3736   int i, n;
   3737   i = pParse->iRangeReg;
   3738   n = pParse->nRangeReg;
   3739   if( nReg<=n ){
   3740     assert( !usedAsColumnCache(pParse, i, i+n-1) );
   3741     pParse->iRangeReg += nReg;
   3742     pParse->nRangeReg -= nReg;
   3743   }else{
   3744     i = pParse->nMem+1;
   3745     pParse->nMem += nReg;
   3746   }
   3747   return i;
   3748 }
   3749 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
   3750   sqlite3ExprCacheRemove(pParse, iReg, nReg);
   3751   if( nReg>pParse->nRangeReg ){
   3752     pParse->nRangeReg = nReg;
   3753     pParse->iRangeReg = iReg;
   3754   }
   3755 }
   3756