1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This webpage shows layout of YV12 and other YUV formats 6 // http://www.fourcc.org/yuv.php 7 // The actual conversion is best described here 8 // http://en.wikipedia.org/wiki/YUV 9 // An article on optimizing YUV conversion using tables instead of multiplies 10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf 11 // 12 // YV12 is a full plane of Y and a half height, half width chroma planes 13 // YV16 is a full plane of Y and a full height, half width chroma planes 14 // 15 // ARGB pixel format is output, which on little endian is stored as BGRA. 16 // The alpha is set to 255, allowing the application to use RGBA or RGB32. 17 18 #include "media/base/yuv_convert.h" 19 20 #include "base/cpu.h" 21 #include "base/logging.h" 22 #include "base/memory/scoped_ptr.h" 23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h" 24 #include "build/build_config.h" 25 #include "media/base/simd/convert_rgb_to_yuv.h" 26 #include "media/base/simd/convert_yuv_to_rgb.h" 27 #include "media/base/simd/filter_yuv.h" 28 #include "media/base/simd/yuv_to_rgb_table.h" 29 30 #if defined(ARCH_CPU_X86_FAMILY) 31 #if defined(COMPILER_MSVC) 32 #include <intrin.h> 33 #else 34 #include <mmintrin.h> 35 #endif 36 #endif 37 38 // Assembly functions are declared without namespace. 39 extern "C" { void EmptyRegisterState_MMX(); } // extern "C" 40 41 namespace media { 42 43 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int); 44 45 typedef void (*ConvertRGBToYUVProc)(const uint8*, 46 uint8*, 47 uint8*, 48 uint8*, 49 int, 50 int, 51 int, 52 int, 53 int); 54 55 typedef void (*ConvertYUVToRGB32Proc)(const uint8*, 56 const uint8*, 57 const uint8*, 58 uint8*, 59 int, 60 int, 61 int, 62 int, 63 int, 64 YUVType); 65 66 typedef void (*ConvertYUVAToARGBProc)(const uint8*, 67 const uint8*, 68 const uint8*, 69 const uint8*, 70 uint8*, 71 int, 72 int, 73 int, 74 int, 75 int, 76 int, 77 YUVType); 78 79 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*, 80 const uint8*, 81 const uint8*, 82 uint8*, 83 ptrdiff_t, 84 const int16[1024][4]); 85 86 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*, 87 const uint8*, 88 const uint8*, 89 const uint8*, 90 uint8*, 91 ptrdiff_t, 92 const int16[1024][4]); 93 94 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*, 95 const uint8*, 96 const uint8*, 97 uint8*, 98 ptrdiff_t, 99 ptrdiff_t, 100 const int16[1024][4]); 101 102 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL; 103 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL; 104 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL; 105 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL; 106 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL; 107 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL; 108 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL; 109 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL; 110 111 // Empty SIMD registers state after using them. 112 void EmptyRegisterStateStub() {} 113 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) 114 void EmptyRegisterStateIntrinsic() { _mm_empty(); } 115 #endif 116 typedef void (*EmptyRegisterStateProc)(); 117 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL; 118 119 // Get the appropriate value to bitshift by for vertical indices. 120 int GetVerticalShift(YUVType type) { 121 switch (type) { 122 case YV16: 123 return 0; 124 case YV12: 125 case YV12J: 126 return 1; 127 } 128 NOTREACHED(); 129 return 0; 130 } 131 132 const int16 (&GetLookupTable(YUVType type))[1024][4] { 133 switch (type) { 134 case YV12: 135 case YV16: 136 return kCoefficientsRgbY; 137 case YV12J: 138 return kCoefficientsRgbY_JPEG; 139 } 140 NOTREACHED(); 141 return kCoefficientsRgbY; 142 } 143 144 void InitializeCPUSpecificYUVConversions() { 145 CHECK(!g_filter_yuv_rows_proc_); 146 CHECK(!g_convert_yuv_to_rgb32_row_proc_); 147 CHECK(!g_scale_yuv_to_rgb32_row_proc_); 148 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_); 149 CHECK(!g_convert_rgb32_to_yuv_proc_); 150 CHECK(!g_convert_rgb24_to_yuv_proc_); 151 CHECK(!g_convert_yuv_to_rgb32_proc_); 152 CHECK(!g_convert_yuva_to_argb_proc_); 153 CHECK(!g_empty_register_state_proc_); 154 155 g_filter_yuv_rows_proc_ = FilterYUVRows_C; 156 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C; 157 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C; 158 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C; 159 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C; 160 g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C; 161 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C; 162 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C; 163 g_empty_register_state_proc_ = EmptyRegisterStateStub; 164 165 // Assembly code confuses MemorySanitizer. 166 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER) 167 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX; 168 169 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE) 170 g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic; 171 #else 172 g_empty_register_state_proc_ = EmptyRegisterState_MMX; 173 #endif 174 175 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE; 176 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE; 177 178 g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2; 179 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2; 180 181 #if defined(ARCH_CPU_X86_64) 182 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64; 183 184 // Technically this should be in the MMX section, but MSVC will optimize out 185 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit 186 // tests, if that decision can be made at compile time. Since all X64 CPUs 187 // have SSE2, we can hack around this by making the selection here. 188 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64; 189 #else 190 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE; 191 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE; 192 #endif 193 194 base::CPU cpu; 195 if (cpu.has_ssse3()) { 196 g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3; 197 198 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved. 199 // See: crbug.com/100462 200 } 201 #endif 202 } 203 204 // Empty SIMD registers state after using them. 205 void EmptyRegisterState() { g_empty_register_state_proc_(); } 206 207 // 16.16 fixed point arithmetic 208 const int kFractionBits = 16; 209 const int kFractionMax = 1 << kFractionBits; 210 const int kFractionMask = ((1 << kFractionBits) - 1); 211 212 // Scale a frame of YUV to 32 bit ARGB. 213 void ScaleYUVToRGB32(const uint8* y_buf, 214 const uint8* u_buf, 215 const uint8* v_buf, 216 uint8* rgb_buf, 217 int source_width, 218 int source_height, 219 int width, 220 int height, 221 int y_pitch, 222 int uv_pitch, 223 int rgb_pitch, 224 YUVType yuv_type, 225 Rotate view_rotate, 226 ScaleFilter filter) { 227 // Handle zero sized sources and destinations. 228 if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) || 229 (yuv_type == YV16 && (source_width < 2 || source_height < 1)) || 230 width == 0 || height == 0) 231 return; 232 233 // 4096 allows 3 buffers to fit in 12k. 234 // Helps performance on CPU with 16K L1 cache. 235 // Large enough for 3830x2160 and 30" displays which are 2560x1600. 236 const int kFilterBufferSize = 4096; 237 // Disable filtering if the screen is too big (to avoid buffer overflows). 238 // This should never happen to regular users: they don't have monitors 239 // wider than 4096 pixels. 240 // TODO(fbarchard): Allow rotated videos to filter. 241 if (source_width > kFilterBufferSize || view_rotate) 242 filter = FILTER_NONE; 243 244 unsigned int y_shift = GetVerticalShift(yuv_type); 245 // Diagram showing origin and direction of source sampling. 246 // ->0 4<- 247 // 7 3 248 // 249 // 6 5 250 // ->1 2<- 251 // Rotations that start at right side of image. 252 if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || 253 (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { 254 y_buf += source_width - 1; 255 u_buf += source_width / 2 - 1; 256 v_buf += source_width / 2 - 1; 257 source_width = -source_width; 258 } 259 // Rotations that start at bottom of image. 260 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || 261 (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { 262 y_buf += (source_height - 1) * y_pitch; 263 u_buf += ((source_height >> y_shift) - 1) * uv_pitch; 264 v_buf += ((source_height >> y_shift) - 1) * uv_pitch; 265 source_height = -source_height; 266 } 267 268 int source_dx = source_width * kFractionMax / width; 269 270 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { 271 int tmp = height; 272 height = width; 273 width = tmp; 274 tmp = source_height; 275 source_height = source_width; 276 source_width = tmp; 277 int source_dy = source_height * kFractionMax / height; 278 source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits; 279 if (view_rotate == ROTATE_90) { 280 y_pitch = -1; 281 uv_pitch = -1; 282 source_height = -source_height; 283 } else { 284 y_pitch = 1; 285 uv_pitch = 1; 286 } 287 } 288 289 // Need padding because FilterRows() will write 1 to 16 extra pixels 290 // after the end for SSE2 version. 291 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; 292 uint8* ybuf = 293 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15); 294 uint8* ubuf = ybuf + kFilterBufferSize; 295 uint8* vbuf = ubuf + kFilterBufferSize; 296 297 // TODO(fbarchard): Fixed point math is off by 1 on negatives. 298 299 // We take a y-coordinate in [0,1] space in the source image space, and 300 // transform to a y-coordinate in [0,1] space in the destination image space. 301 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel 302 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and 303 // 0.75. The formula is as follows (in fixed-point arithmetic): 304 // y_dst = dst_height * ((y_src + 0.5) / src_height) 305 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5)) 306 // Implement this here as an accumulator + delta, to avoid expensive math 307 // in the loop. 308 int source_y_subpixel_accum = 309 ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2); 310 int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height; 311 312 // TODO(fbarchard): Split this into separate function for better efficiency. 313 for (int y = 0; y < height; ++y) { 314 uint8* dest_pixel = rgb_buf + y * rgb_pitch; 315 int source_y_subpixel = source_y_subpixel_accum; 316 source_y_subpixel_accum += source_y_subpixel_delta; 317 if (source_y_subpixel < 0) 318 source_y_subpixel = 0; 319 else if (source_y_subpixel > ((source_height - 1) << kFractionBits)) 320 source_y_subpixel = (source_height - 1) << kFractionBits; 321 322 const uint8* y_ptr = NULL; 323 const uint8* u_ptr = NULL; 324 const uint8* v_ptr = NULL; 325 // Apply vertical filtering if necessary. 326 // TODO(fbarchard): Remove memcpy when not necessary. 327 if (filter & media::FILTER_BILINEAR_V) { 328 int source_y = source_y_subpixel >> kFractionBits; 329 y_ptr = y_buf + source_y * y_pitch; 330 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; 331 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; 332 333 // Vertical scaler uses 16.8 fixed point. 334 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; 335 if (source_y_fraction != 0) { 336 g_filter_yuv_rows_proc_( 337 ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction); 338 } else { 339 memcpy(ybuf, y_ptr, source_width); 340 } 341 y_ptr = ybuf; 342 ybuf[source_width] = ybuf[source_width - 1]; 343 344 int uv_source_width = (source_width + 1) / 2; 345 int source_uv_fraction; 346 347 // For formats with half-height UV planes, each even-numbered pixel row 348 // should not interpolate, since the next row to interpolate from should 349 // be a duplicate of the current row. 350 if (y_shift && (source_y & 0x1) == 0) 351 source_uv_fraction = 0; 352 else 353 source_uv_fraction = source_y_fraction; 354 355 if (source_uv_fraction != 0) { 356 g_filter_yuv_rows_proc_( 357 ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction); 358 g_filter_yuv_rows_proc_( 359 vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction); 360 } else { 361 memcpy(ubuf, u_ptr, uv_source_width); 362 memcpy(vbuf, v_ptr, uv_source_width); 363 } 364 u_ptr = ubuf; 365 v_ptr = vbuf; 366 ubuf[uv_source_width] = ubuf[uv_source_width - 1]; 367 vbuf[uv_source_width] = vbuf[uv_source_width - 1]; 368 } else { 369 // Offset by 1/2 pixel for center sampling. 370 int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits; 371 y_ptr = y_buf + source_y * y_pitch; 372 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch; 373 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch; 374 } 375 if (source_dx == kFractionMax) { // Not scaled 376 g_convert_yuv_to_rgb32_row_proc_( 377 y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY); 378 } else { 379 if (filter & FILTER_BILINEAR_H) { 380 g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr, 381 u_ptr, 382 v_ptr, 383 dest_pixel, 384 width, 385 source_dx, 386 kCoefficientsRgbY); 387 } else { 388 g_scale_yuv_to_rgb32_row_proc_(y_ptr, 389 u_ptr, 390 v_ptr, 391 dest_pixel, 392 width, 393 source_dx, 394 kCoefficientsRgbY); 395 } 396 } 397 } 398 399 g_empty_register_state_proc_(); 400 } 401 402 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle. 403 void ScaleYUVToRGB32WithRect(const uint8* y_buf, 404 const uint8* u_buf, 405 const uint8* v_buf, 406 uint8* rgb_buf, 407 int source_width, 408 int source_height, 409 int dest_width, 410 int dest_height, 411 int dest_rect_left, 412 int dest_rect_top, 413 int dest_rect_right, 414 int dest_rect_bottom, 415 int y_pitch, 416 int uv_pitch, 417 int rgb_pitch) { 418 // This routine doesn't currently support up-scaling. 419 CHECK_LE(dest_width, source_width); 420 CHECK_LE(dest_height, source_height); 421 422 // Sanity-check the destination rectangle. 423 DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width); 424 DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height); 425 DCHECK(dest_rect_right > dest_rect_left); 426 DCHECK(dest_rect_bottom > dest_rect_top); 427 428 // Fixed-point value of vertical and horizontal scale down factor. 429 // Values are in the format 16.16. 430 int y_step = kFractionMax * source_height / dest_height; 431 int x_step = kFractionMax * source_width / dest_width; 432 433 // Determine the coordinates of the rectangle in 16.16 coords. 434 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left. 435 // If we're down-scaling by more than a factor of two, we start with a 50% 436 // fraction to avoid degenerating to point-sampling - we should really just 437 // fix the fraction at 50% for all pixels in that case. 438 int source_left = dest_rect_left * x_step; 439 int source_right = (dest_rect_right - 1) * x_step; 440 if (x_step < kFractionMax * 2) { 441 source_left += ((x_step - kFractionMax) / 2); 442 source_right += ((x_step - kFractionMax) / 2); 443 } else { 444 source_left += kFractionMax / 2; 445 source_right += kFractionMax / 2; 446 } 447 int source_top = dest_rect_top * y_step; 448 if (y_step < kFractionMax * 2) { 449 source_top += ((y_step - kFractionMax) / 2); 450 } else { 451 source_top += kFractionMax / 2; 452 } 453 454 // Determine the parts of the Y, U and V buffers to interpolate. 455 int source_y_left = source_left >> kFractionBits; 456 int source_y_right = 457 std::min((source_right >> kFractionBits) + 2, source_width + 1); 458 459 int source_uv_left = source_y_left / 2; 460 int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2, 461 (source_width + 1) / 2); 462 463 int source_y_width = source_y_right - source_y_left; 464 int source_uv_width = source_uv_right - source_uv_left; 465 466 // Determine number of pixels in each output row. 467 int dest_rect_width = dest_rect_right - dest_rect_left; 468 469 // Intermediate buffer for vertical interpolation. 470 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache, 471 // and is bigger than most users will generally need. 472 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the 473 // FilterYUVRowProcs have alignment requirements, and the SSE version can 474 // write up to 16 bytes past the end of the buffer. 475 const int kFilterBufferSize = 4096; 476 const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize; 477 uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16]; 478 // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind. 479 if (RunningOnValgrind()) 480 memset(yuv_temp, 0, sizeof(yuv_temp)); 481 uint8* y_temp = reinterpret_cast<uint8*>( 482 reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15); 483 uint8* u_temp = y_temp + kFilterBufferSize; 484 uint8* v_temp = u_temp + kFilterBufferSize; 485 486 // Move to the top-left pixel of output. 487 rgb_buf += dest_rect_top * rgb_pitch; 488 rgb_buf += dest_rect_left * 4; 489 490 // For each destination row perform interpolation and color space 491 // conversion to produce the output. 492 for (int row = dest_rect_top; row < dest_rect_bottom; ++row) { 493 // Round the fixed-point y position to get the current row. 494 int source_row = source_top >> kFractionBits; 495 int source_uv_row = source_row / 2; 496 DCHECK(source_row < source_height); 497 498 // Locate the first row for each plane for interpolation. 499 const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left; 500 const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left; 501 const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left; 502 const uint8* y1_ptr = NULL; 503 const uint8* u1_ptr = NULL; 504 const uint8* v1_ptr = NULL; 505 506 // Locate the second row for interpolation, being careful not to overrun. 507 if (source_row + 1 >= source_height) { 508 y1_ptr = y0_ptr; 509 } else { 510 y1_ptr = y0_ptr + y_pitch; 511 } 512 if (source_uv_row + 1 >= (source_height + 1) / 2) { 513 u1_ptr = u0_ptr; 514 v1_ptr = v0_ptr; 515 } else { 516 u1_ptr = u0_ptr + uv_pitch; 517 v1_ptr = v0_ptr + uv_pitch; 518 } 519 520 if (!kAvoidUsingOptimizedFilter) { 521 // Vertical scaler uses 16.8 fixed point. 522 int fraction = (source_top & kFractionMask) >> 8; 523 g_filter_yuv_rows_proc_( 524 y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction); 525 g_filter_yuv_rows_proc_( 526 u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction); 527 g_filter_yuv_rows_proc_( 528 v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction); 529 530 // Perform horizontal interpolation and color space conversion. 531 // TODO(hclam): Use the MMX version after more testing. 532 LinearScaleYUVToRGB32RowWithRange_C(y_temp, 533 u_temp, 534 v_temp, 535 rgb_buf, 536 dest_rect_width, 537 source_left, 538 x_step, 539 kCoefficientsRgbY); 540 } else { 541 // If the frame is too large then we linear scale a single row. 542 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, 543 u0_ptr, 544 v0_ptr, 545 rgb_buf, 546 dest_rect_width, 547 source_left, 548 x_step, 549 kCoefficientsRgbY); 550 } 551 552 // Advance vertically in the source and destination image. 553 source_top += y_step; 554 rgb_buf += rgb_pitch; 555 } 556 557 g_empty_register_state_proc_(); 558 } 559 560 void ConvertRGB32ToYUV(const uint8* rgbframe, 561 uint8* yplane, 562 uint8* uplane, 563 uint8* vplane, 564 int width, 565 int height, 566 int rgbstride, 567 int ystride, 568 int uvstride) { 569 g_convert_rgb32_to_yuv_proc_(rgbframe, 570 yplane, 571 uplane, 572 vplane, 573 width, 574 height, 575 rgbstride, 576 ystride, 577 uvstride); 578 } 579 580 void ConvertRGB24ToYUV(const uint8* rgbframe, 581 uint8* yplane, 582 uint8* uplane, 583 uint8* vplane, 584 int width, 585 int height, 586 int rgbstride, 587 int ystride, 588 int uvstride) { 589 g_convert_rgb24_to_yuv_proc_(rgbframe, 590 yplane, 591 uplane, 592 vplane, 593 width, 594 height, 595 rgbstride, 596 ystride, 597 uvstride); 598 } 599 600 void ConvertYUY2ToYUV(const uint8* src, 601 uint8* yplane, 602 uint8* uplane, 603 uint8* vplane, 604 int width, 605 int height) { 606 for (int i = 0; i < height / 2; ++i) { 607 for (int j = 0; j < (width / 2); ++j) { 608 yplane[0] = src[0]; 609 *uplane = src[1]; 610 yplane[1] = src[2]; 611 *vplane = src[3]; 612 src += 4; 613 yplane += 2; 614 uplane++; 615 vplane++; 616 } 617 for (int j = 0; j < (width / 2); ++j) { 618 yplane[0] = src[0]; 619 yplane[1] = src[2]; 620 src += 4; 621 yplane += 2; 622 } 623 } 624 } 625 626 void ConvertNV21ToYUV(const uint8* src, 627 uint8* yplane, 628 uint8* uplane, 629 uint8* vplane, 630 int width, 631 int height) { 632 int y_plane_size = width * height; 633 memcpy(yplane, src, y_plane_size); 634 635 src += y_plane_size; 636 int u_plane_size = y_plane_size >> 2; 637 for (int i = 0; i < u_plane_size; ++i) { 638 *vplane++ = *src++; 639 *uplane++ = *src++; 640 } 641 } 642 643 void ConvertYUVToRGB32(const uint8* yplane, 644 const uint8* uplane, 645 const uint8* vplane, 646 uint8* rgbframe, 647 int width, 648 int height, 649 int ystride, 650 int uvstride, 651 int rgbstride, 652 YUVType yuv_type) { 653 g_convert_yuv_to_rgb32_proc_(yplane, 654 uplane, 655 vplane, 656 rgbframe, 657 width, 658 height, 659 ystride, 660 uvstride, 661 rgbstride, 662 yuv_type); 663 } 664 665 void ConvertYUVAToARGB(const uint8* yplane, 666 const uint8* uplane, 667 const uint8* vplane, 668 const uint8* aplane, 669 uint8* rgbframe, 670 int width, 671 int height, 672 int ystride, 673 int uvstride, 674 int astride, 675 int rgbstride, 676 YUVType yuv_type) { 677 g_convert_yuva_to_argb_proc_(yplane, 678 uplane, 679 vplane, 680 aplane, 681 rgbframe, 682 width, 683 height, 684 ystride, 685 uvstride, 686 astride, 687 rgbstride, 688 yuv_type); 689 } 690 691 } // namespace media 692