1 /* 2 ** 2004 May 26 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement APIs that are part of the 14 ** VDBE. 15 */ 16 #include "sqliteInt.h" 17 #include "vdbeInt.h" 18 19 #ifndef SQLITE_OMIT_DEPRECATED 20 /* 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs 22 ** to be recompiled. A statement needs to be recompiled whenever the 23 ** execution environment changes in a way that would alter the program 24 ** that sqlite3_prepare() generates. For example, if new functions or 25 ** collating sequences are registered or if an authorizer function is 26 ** added or changed. 27 */ 28 int sqlite3_expired(sqlite3_stmt *pStmt){ 29 Vdbe *p = (Vdbe*)pStmt; 30 return p==0 || p->expired; 31 } 32 #endif 33 34 /* 35 ** Check on a Vdbe to make sure it has not been finalized. Log 36 ** an error and return true if it has been finalized (or is otherwise 37 ** invalid). Return false if it is ok. 38 */ 39 static int vdbeSafety(Vdbe *p){ 40 if( p->db==0 ){ 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); 42 return 1; 43 }else{ 44 return 0; 45 } 46 } 47 static int vdbeSafetyNotNull(Vdbe *p){ 48 if( p==0 ){ 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); 50 return 1; 51 }else{ 52 return vdbeSafety(p); 53 } 54 } 55 56 /* 57 ** The following routine destroys a virtual machine that is created by 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ 59 ** success/failure code that describes the result of executing the virtual 60 ** machine. 61 ** 62 ** This routine sets the error code and string returned by 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 64 */ 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ 66 int rc; 67 if( pStmt==0 ){ 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL 69 ** pointer is a harmless no-op. */ 70 rc = SQLITE_OK; 71 }else{ 72 Vdbe *v = (Vdbe*)pStmt; 73 sqlite3 *db = v->db; 74 #if SQLITE_THREADSAFE 75 sqlite3_mutex *mutex; 76 #endif 77 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; 78 #if SQLITE_THREADSAFE 79 mutex = v->db->mutex; 80 #endif 81 sqlite3_mutex_enter(mutex); 82 rc = sqlite3VdbeFinalize(v); 83 rc = sqlite3ApiExit(db, rc); 84 sqlite3_mutex_leave(mutex); 85 } 86 return rc; 87 } 88 89 /* 90 ** Terminate the current execution of an SQL statement and reset it 91 ** back to its starting state so that it can be reused. A success code from 92 ** the prior execution is returned. 93 ** 94 ** This routine sets the error code and string returned by 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). 96 */ 97 int sqlite3_reset(sqlite3_stmt *pStmt){ 98 int rc; 99 if( pStmt==0 ){ 100 rc = SQLITE_OK; 101 }else{ 102 Vdbe *v = (Vdbe*)pStmt; 103 sqlite3_mutex_enter(v->db->mutex); 104 rc = sqlite3VdbeReset(v); 105 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0); 106 assert( (rc & (v->db->errMask))==rc ); 107 rc = sqlite3ApiExit(v->db, rc); 108 sqlite3_mutex_leave(v->db->mutex); 109 } 110 return rc; 111 } 112 113 /* 114 ** Set all the parameters in the compiled SQL statement to NULL. 115 */ 116 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ 117 int i; 118 int rc = SQLITE_OK; 119 Vdbe *p = (Vdbe*)pStmt; 120 #if SQLITE_THREADSAFE 121 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; 122 #endif 123 sqlite3_mutex_enter(mutex); 124 for(i=0; i<p->nVar; i++){ 125 sqlite3VdbeMemRelease(&p->aVar[i]); 126 p->aVar[i].flags = MEM_Null; 127 } 128 if( p->isPrepareV2 && p->expmask ){ 129 p->expired = 1; 130 } 131 sqlite3_mutex_leave(mutex); 132 return rc; 133 } 134 135 136 /**************************** sqlite3_value_ ******************************* 137 ** The following routines extract information from a Mem or sqlite3_value 138 ** structure. 139 */ 140 const void *sqlite3_value_blob(sqlite3_value *pVal){ 141 Mem *p = (Mem*)pVal; 142 if( p->flags & (MEM_Blob|MEM_Str) ){ 143 sqlite3VdbeMemExpandBlob(p); 144 p->flags &= ~MEM_Str; 145 p->flags |= MEM_Blob; 146 return p->n ? p->z : 0; 147 }else{ 148 return sqlite3_value_text(pVal); 149 } 150 } 151 int sqlite3_value_bytes(sqlite3_value *pVal){ 152 return sqlite3ValueBytes(pVal, SQLITE_UTF8); 153 } 154 int sqlite3_value_bytes16(sqlite3_value *pVal){ 155 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); 156 } 157 double sqlite3_value_double(sqlite3_value *pVal){ 158 return sqlite3VdbeRealValue((Mem*)pVal); 159 } 160 int sqlite3_value_int(sqlite3_value *pVal){ 161 return (int)sqlite3VdbeIntValue((Mem*)pVal); 162 } 163 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ 164 return sqlite3VdbeIntValue((Mem*)pVal); 165 } 166 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ 167 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); 168 } 169 #ifndef SQLITE_OMIT_UTF16 170 const void *sqlite3_value_text16(sqlite3_value* pVal){ 171 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); 172 } 173 const void *sqlite3_value_text16be(sqlite3_value *pVal){ 174 return sqlite3ValueText(pVal, SQLITE_UTF16BE); 175 } 176 const void *sqlite3_value_text16le(sqlite3_value *pVal){ 177 return sqlite3ValueText(pVal, SQLITE_UTF16LE); 178 } 179 #endif /* SQLITE_OMIT_UTF16 */ 180 int sqlite3_value_type(sqlite3_value* pVal){ 181 return pVal->type; 182 } 183 184 /**************************** sqlite3_result_ ******************************* 185 ** The following routines are used by user-defined functions to specify 186 ** the function result. 187 ** 188 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the 189 ** result as a string or blob but if the string or blob is too large, it 190 ** then sets the error code to SQLITE_TOOBIG 191 */ 192 static void setResultStrOrError( 193 sqlite3_context *pCtx, /* Function context */ 194 const char *z, /* String pointer */ 195 int n, /* Bytes in string, or negative */ 196 u8 enc, /* Encoding of z. 0 for BLOBs */ 197 void (*xDel)(void*) /* Destructor function */ 198 ){ 199 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ 200 sqlite3_result_error_toobig(pCtx); 201 } 202 } 203 void sqlite3_result_blob( 204 sqlite3_context *pCtx, 205 const void *z, 206 int n, 207 void (*xDel)(void *) 208 ){ 209 assert( n>=0 ); 210 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 211 setResultStrOrError(pCtx, z, n, 0, xDel); 212 } 213 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ 214 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 215 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); 216 } 217 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 219 pCtx->isError = SQLITE_ERROR; 220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); 221 } 222 #ifndef SQLITE_OMIT_UTF16 223 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ 224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 225 pCtx->isError = SQLITE_ERROR; 226 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); 227 } 228 #endif 229 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ 230 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 231 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); 232 } 233 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ 234 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 235 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); 236 } 237 void sqlite3_result_null(sqlite3_context *pCtx){ 238 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 239 sqlite3VdbeMemSetNull(&pCtx->s); 240 } 241 void sqlite3_result_text( 242 sqlite3_context *pCtx, 243 const char *z, 244 int n, 245 void (*xDel)(void *) 246 ){ 247 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 248 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); 249 } 250 #ifndef SQLITE_OMIT_UTF16 251 void sqlite3_result_text16( 252 sqlite3_context *pCtx, 253 const void *z, 254 int n, 255 void (*xDel)(void *) 256 ){ 257 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 258 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); 259 } 260 void sqlite3_result_text16be( 261 sqlite3_context *pCtx, 262 const void *z, 263 int n, 264 void (*xDel)(void *) 265 ){ 266 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 267 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); 268 } 269 void sqlite3_result_text16le( 270 sqlite3_context *pCtx, 271 const void *z, 272 int n, 273 void (*xDel)(void *) 274 ){ 275 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 276 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); 277 } 278 #endif /* SQLITE_OMIT_UTF16 */ 279 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ 280 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 281 sqlite3VdbeMemCopy(&pCtx->s, pValue); 282 } 283 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ 284 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 285 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); 286 } 287 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ 288 pCtx->isError = errCode; 289 if( pCtx->s.flags & MEM_Null ){ 290 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, 291 SQLITE_UTF8, SQLITE_STATIC); 292 } 293 } 294 295 /* Force an SQLITE_TOOBIG error. */ 296 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ 297 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 298 pCtx->isError = SQLITE_TOOBIG; 299 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, 300 SQLITE_UTF8, SQLITE_STATIC); 301 } 302 303 /* An SQLITE_NOMEM error. */ 304 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ 305 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 306 sqlite3VdbeMemSetNull(&pCtx->s); 307 pCtx->isError = SQLITE_NOMEM; 308 pCtx->s.db->mallocFailed = 1; 309 } 310 311 /* 312 ** This function is called after a transaction has been committed. It 313 ** invokes callbacks registered with sqlite3_wal_hook() as required. 314 */ 315 static int doWalCallbacks(sqlite3 *db){ 316 int rc = SQLITE_OK; 317 #ifndef SQLITE_OMIT_WAL 318 int i; 319 for(i=0; i<db->nDb; i++){ 320 Btree *pBt = db->aDb[i].pBt; 321 if( pBt ){ 322 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); 323 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ 324 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); 325 } 326 } 327 } 328 #endif 329 return rc; 330 } 331 332 /* 333 ** Execute the statement pStmt, either until a row of data is ready, the 334 ** statement is completely executed or an error occurs. 335 ** 336 ** This routine implements the bulk of the logic behind the sqlite_step() 337 ** API. The only thing omitted is the automatic recompile if a 338 ** schema change has occurred. That detail is handled by the 339 ** outer sqlite3_step() wrapper procedure. 340 */ 341 static int sqlite3Step(Vdbe *p){ 342 sqlite3 *db; 343 int rc; 344 345 assert(p); 346 if( p->magic!=VDBE_MAGIC_RUN ){ 347 /* We used to require that sqlite3_reset() be called before retrying 348 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning 349 ** with version 3.7.0, we changed this so that sqlite3_reset() would 350 ** be called automatically instead of throwing the SQLITE_MISUSE error. 351 ** This "automatic-reset" change is not technically an incompatibility, 352 ** since any application that receives an SQLITE_MISUSE is broken by 353 ** definition. 354 ** 355 ** Nevertheless, some published applications that were originally written 356 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE 357 ** returns, and the so were broken by the automatic-reset change. As a 358 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the 359 ** legacy behavior of returning SQLITE_MISUSE for cases where the 360 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED 361 ** or SQLITE_BUSY error. 362 */ 363 #ifdef SQLITE_OMIT_AUTORESET 364 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ 365 sqlite3_reset((sqlite3_stmt*)p); 366 }else{ 367 return SQLITE_MISUSE_BKPT; 368 } 369 #else 370 sqlite3_reset((sqlite3_stmt*)p); 371 #endif 372 } 373 374 /* Check that malloc() has not failed. If it has, return early. */ 375 db = p->db; 376 if( db->mallocFailed ){ 377 p->rc = SQLITE_NOMEM; 378 return SQLITE_NOMEM; 379 } 380 381 if( p->pc<=0 && p->expired ){ 382 p->rc = SQLITE_SCHEMA; 383 rc = SQLITE_ERROR; 384 goto end_of_step; 385 } 386 if( p->pc<0 ){ 387 /* If there are no other statements currently running, then 388 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt 389 ** from interrupting a statement that has not yet started. 390 */ 391 if( db->activeVdbeCnt==0 ){ 392 db->u1.isInterrupted = 0; 393 } 394 395 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); 396 397 #ifndef SQLITE_OMIT_TRACE 398 if( db->xProfile && !db->init.busy ){ 399 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); 400 } 401 #endif 402 403 db->activeVdbeCnt++; 404 if( p->readOnly==0 ) db->writeVdbeCnt++; 405 p->pc = 0; 406 } 407 #ifndef SQLITE_OMIT_EXPLAIN 408 if( p->explain ){ 409 rc = sqlite3VdbeList(p); 410 }else 411 #endif /* SQLITE_OMIT_EXPLAIN */ 412 { 413 db->vdbeExecCnt++; 414 rc = sqlite3VdbeExec(p); 415 db->vdbeExecCnt--; 416 } 417 418 #ifndef SQLITE_OMIT_TRACE 419 /* Invoke the profile callback if there is one 420 */ 421 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ 422 sqlite3_int64 iNow; 423 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); 424 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); 425 } 426 #endif 427 428 if( rc==SQLITE_DONE ){ 429 assert( p->rc==SQLITE_OK ); 430 p->rc = doWalCallbacks(db); 431 if( p->rc!=SQLITE_OK ){ 432 rc = SQLITE_ERROR; 433 } 434 } 435 436 db->errCode = rc; 437 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ 438 p->rc = SQLITE_NOMEM; 439 } 440 end_of_step: 441 /* At this point local variable rc holds the value that should be 442 ** returned if this statement was compiled using the legacy 443 ** sqlite3_prepare() interface. According to the docs, this can only 444 ** be one of the values in the first assert() below. Variable p->rc 445 ** contains the value that would be returned if sqlite3_finalize() 446 ** were called on statement p. 447 */ 448 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR 449 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE 450 ); 451 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); 452 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ 453 /* If this statement was prepared using sqlite3_prepare_v2(), and an 454 ** error has occured, then return the error code in p->rc to the 455 ** caller. Set the error code in the database handle to the same value. 456 */ 457 rc = db->errCode = p->rc; 458 } 459 return (rc&db->errMask); 460 } 461 462 /* 463 ** This is the top-level implementation of sqlite3_step(). Call 464 ** sqlite3Step() to do most of the work. If a schema error occurs, 465 ** call sqlite3Reprepare() and try again. 466 */ 467 int sqlite3_step(sqlite3_stmt *pStmt){ 468 int rc = SQLITE_OK; /* Result from sqlite3Step() */ 469 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ 470 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ 471 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ 472 sqlite3 *db; /* The database connection */ 473 474 if( vdbeSafetyNotNull(v) ){ 475 return SQLITE_MISUSE_BKPT; 476 } 477 db = v->db; 478 sqlite3_mutex_enter(db->mutex); 479 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA 480 && cnt++ < 5 481 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ 482 sqlite3_reset(pStmt); 483 v->expired = 0; 484 } 485 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ 486 /* This case occurs after failing to recompile an sql statement. 487 ** The error message from the SQL compiler has already been loaded 488 ** into the database handle. This block copies the error message 489 ** from the database handle into the statement and sets the statement 490 ** program counter to 0 to ensure that when the statement is 491 ** finalized or reset the parser error message is available via 492 ** sqlite3_errmsg() and sqlite3_errcode(). 493 */ 494 const char *zErr = (const char *)sqlite3_value_text(db->pErr); 495 sqlite3DbFree(db, v->zErrMsg); 496 if( !db->mallocFailed ){ 497 v->zErrMsg = sqlite3DbStrDup(db, zErr); 498 v->rc = rc2; 499 } else { 500 v->zErrMsg = 0; 501 v->rc = rc = SQLITE_NOMEM; 502 } 503 } 504 rc = sqlite3ApiExit(db, rc); 505 sqlite3_mutex_leave(db->mutex); 506 return rc; 507 } 508 509 /* 510 ** Extract the user data from a sqlite3_context structure and return a 511 ** pointer to it. 512 */ 513 void *sqlite3_user_data(sqlite3_context *p){ 514 assert( p && p->pFunc ); 515 return p->pFunc->pUserData; 516 } 517 518 /* 519 ** Extract the user data from a sqlite3_context structure and return a 520 ** pointer to it. 521 ** 522 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface 523 ** returns a copy of the pointer to the database connection (the 1st 524 ** parameter) of the sqlite3_create_function() and 525 ** sqlite3_create_function16() routines that originally registered the 526 ** application defined function. 527 */ 528 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ 529 assert( p && p->pFunc ); 530 return p->s.db; 531 } 532 533 /* 534 ** The following is the implementation of an SQL function that always 535 ** fails with an error message stating that the function is used in the 536 ** wrong context. The sqlite3_overload_function() API might construct 537 ** SQL function that use this routine so that the functions will exist 538 ** for name resolution but are actually overloaded by the xFindFunction 539 ** method of virtual tables. 540 */ 541 void sqlite3InvalidFunction( 542 sqlite3_context *context, /* The function calling context */ 543 int NotUsed, /* Number of arguments to the function */ 544 sqlite3_value **NotUsed2 /* Value of each argument */ 545 ){ 546 const char *zName = context->pFunc->zName; 547 char *zErr; 548 UNUSED_PARAMETER2(NotUsed, NotUsed2); 549 zErr = sqlite3_mprintf( 550 "unable to use function %s in the requested context", zName); 551 sqlite3_result_error(context, zErr, -1); 552 sqlite3_free(zErr); 553 } 554 555 /* 556 ** Allocate or return the aggregate context for a user function. A new 557 ** context is allocated on the first call. Subsequent calls return the 558 ** same context that was returned on prior calls. 559 */ 560 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ 561 Mem *pMem; 562 assert( p && p->pFunc && p->pFunc->xStep ); 563 assert( sqlite3_mutex_held(p->s.db->mutex) ); 564 pMem = p->pMem; 565 testcase( nByte<0 ); 566 if( (pMem->flags & MEM_Agg)==0 ){ 567 if( nByte<=0 ){ 568 sqlite3VdbeMemReleaseExternal(pMem); 569 pMem->flags = MEM_Null; 570 pMem->z = 0; 571 }else{ 572 sqlite3VdbeMemGrow(pMem, nByte, 0); 573 pMem->flags = MEM_Agg; 574 pMem->u.pDef = p->pFunc; 575 if( pMem->z ){ 576 memset(pMem->z, 0, nByte); 577 } 578 } 579 } 580 return (void*)pMem->z; 581 } 582 583 /* 584 ** Return the auxilary data pointer, if any, for the iArg'th argument to 585 ** the user-function defined by pCtx. 586 */ 587 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ 588 VdbeFunc *pVdbeFunc; 589 590 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 591 pVdbeFunc = pCtx->pVdbeFunc; 592 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ 593 return 0; 594 } 595 return pVdbeFunc->apAux[iArg].pAux; 596 } 597 598 /* 599 ** Set the auxilary data pointer and delete function, for the iArg'th 600 ** argument to the user-function defined by pCtx. Any previous value is 601 ** deleted by calling the delete function specified when it was set. 602 */ 603 void sqlite3_set_auxdata( 604 sqlite3_context *pCtx, 605 int iArg, 606 void *pAux, 607 void (*xDelete)(void*) 608 ){ 609 struct AuxData *pAuxData; 610 VdbeFunc *pVdbeFunc; 611 if( iArg<0 ) goto failed; 612 613 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); 614 pVdbeFunc = pCtx->pVdbeFunc; 615 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ 616 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); 617 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; 618 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); 619 if( !pVdbeFunc ){ 620 goto failed; 621 } 622 pCtx->pVdbeFunc = pVdbeFunc; 623 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); 624 pVdbeFunc->nAux = iArg+1; 625 pVdbeFunc->pFunc = pCtx->pFunc; 626 } 627 628 pAuxData = &pVdbeFunc->apAux[iArg]; 629 if( pAuxData->pAux && pAuxData->xDelete ){ 630 pAuxData->xDelete(pAuxData->pAux); 631 } 632 pAuxData->pAux = pAux; 633 pAuxData->xDelete = xDelete; 634 return; 635 636 failed: 637 if( xDelete ){ 638 xDelete(pAux); 639 } 640 } 641 642 #ifndef SQLITE_OMIT_DEPRECATED 643 /* 644 ** Return the number of times the Step function of a aggregate has been 645 ** called. 646 ** 647 ** This function is deprecated. Do not use it for new code. It is 648 ** provide only to avoid breaking legacy code. New aggregate function 649 ** implementations should keep their own counts within their aggregate 650 ** context. 651 */ 652 int sqlite3_aggregate_count(sqlite3_context *p){ 653 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); 654 return p->pMem->n; 655 } 656 #endif 657 658 /* 659 ** Return the number of columns in the result set for the statement pStmt. 660 */ 661 int sqlite3_column_count(sqlite3_stmt *pStmt){ 662 Vdbe *pVm = (Vdbe *)pStmt; 663 return pVm ? pVm->nResColumn : 0; 664 } 665 666 /* 667 ** Return the number of values available from the current row of the 668 ** currently executing statement pStmt. 669 */ 670 int sqlite3_data_count(sqlite3_stmt *pStmt){ 671 Vdbe *pVm = (Vdbe *)pStmt; 672 if( pVm==0 || pVm->pResultSet==0 ) return 0; 673 return pVm->nResColumn; 674 } 675 676 677 /* 678 ** Check to see if column iCol of the given statement is valid. If 679 ** it is, return a pointer to the Mem for the value of that column. 680 ** If iCol is not valid, return a pointer to a Mem which has a value 681 ** of NULL. 682 */ 683 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ 684 Vdbe *pVm; 685 Mem *pOut; 686 687 pVm = (Vdbe *)pStmt; 688 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ 689 sqlite3_mutex_enter(pVm->db->mutex); 690 pOut = &pVm->pResultSet[i]; 691 }else{ 692 /* If the value passed as the second argument is out of range, return 693 ** a pointer to the following static Mem object which contains the 694 ** value SQL NULL. Even though the Mem structure contains an element 695 ** of type i64, on certain architecture (x86) with certain compiler 696 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary 697 ** instead of an 8-byte one. This all works fine, except that when 698 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s 699 ** that a Mem structure is located on an 8-byte boundary. To prevent 700 ** this assert() from failing, when building with SQLITE_DEBUG defined 701 ** using gcc, force nullMem to be 8-byte aligned using the magical 702 ** __attribute__((aligned(8))) macro. */ 703 static const Mem nullMem 704 #if defined(SQLITE_DEBUG) && defined(__GNUC__) 705 __attribute__((aligned(8))) 706 #endif 707 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, 708 #ifdef SQLITE_DEBUG 709 0, 0, /* pScopyFrom, pFiller */ 710 #endif 711 0, 0 }; 712 713 if( pVm && ALWAYS(pVm->db) ){ 714 sqlite3_mutex_enter(pVm->db->mutex); 715 sqlite3Error(pVm->db, SQLITE_RANGE, 0); 716 } 717 pOut = (Mem*)&nullMem; 718 } 719 return pOut; 720 } 721 722 /* 723 ** This function is called after invoking an sqlite3_value_XXX function on a 724 ** column value (i.e. a value returned by evaluating an SQL expression in the 725 ** select list of a SELECT statement) that may cause a malloc() failure. If 726 ** malloc() has failed, the threads mallocFailed flag is cleared and the result 727 ** code of statement pStmt set to SQLITE_NOMEM. 728 ** 729 ** Specifically, this is called from within: 730 ** 731 ** sqlite3_column_int() 732 ** sqlite3_column_int64() 733 ** sqlite3_column_text() 734 ** sqlite3_column_text16() 735 ** sqlite3_column_real() 736 ** sqlite3_column_bytes() 737 ** sqlite3_column_bytes16() 738 ** sqiite3_column_blob() 739 */ 740 static void columnMallocFailure(sqlite3_stmt *pStmt) 741 { 742 /* If malloc() failed during an encoding conversion within an 743 ** sqlite3_column_XXX API, then set the return code of the statement to 744 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR 745 ** and _finalize() will return NOMEM. 746 */ 747 Vdbe *p = (Vdbe *)pStmt; 748 if( p ){ 749 p->rc = sqlite3ApiExit(p->db, p->rc); 750 sqlite3_mutex_leave(p->db->mutex); 751 } 752 } 753 754 /**************************** sqlite3_column_ ******************************* 755 ** The following routines are used to access elements of the current row 756 ** in the result set. 757 */ 758 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ 759 const void *val; 760 val = sqlite3_value_blob( columnMem(pStmt,i) ); 761 /* Even though there is no encoding conversion, value_blob() might 762 ** need to call malloc() to expand the result of a zeroblob() 763 ** expression. 764 */ 765 columnMallocFailure(pStmt); 766 return val; 767 } 768 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ 769 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); 770 columnMallocFailure(pStmt); 771 return val; 772 } 773 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ 774 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); 775 columnMallocFailure(pStmt); 776 return val; 777 } 778 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ 779 double val = sqlite3_value_double( columnMem(pStmt,i) ); 780 columnMallocFailure(pStmt); 781 return val; 782 } 783 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ 784 int val = sqlite3_value_int( columnMem(pStmt,i) ); 785 columnMallocFailure(pStmt); 786 return val; 787 } 788 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ 789 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); 790 columnMallocFailure(pStmt); 791 return val; 792 } 793 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ 794 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); 795 columnMallocFailure(pStmt); 796 return val; 797 } 798 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ 799 Mem *pOut = columnMem(pStmt, i); 800 if( pOut->flags&MEM_Static ){ 801 pOut->flags &= ~MEM_Static; 802 pOut->flags |= MEM_Ephem; 803 } 804 columnMallocFailure(pStmt); 805 return (sqlite3_value *)pOut; 806 } 807 #ifndef SQLITE_OMIT_UTF16 808 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ 809 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); 810 columnMallocFailure(pStmt); 811 return val; 812 } 813 #endif /* SQLITE_OMIT_UTF16 */ 814 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ 815 int iType = sqlite3_value_type( columnMem(pStmt,i) ); 816 columnMallocFailure(pStmt); 817 return iType; 818 } 819 820 /* The following function is experimental and subject to change or 821 ** removal */ 822 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ 823 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); 824 **} 825 */ 826 827 /* 828 ** Convert the N-th element of pStmt->pColName[] into a string using 829 ** xFunc() then return that string. If N is out of range, return 0. 830 ** 831 ** There are up to 5 names for each column. useType determines which 832 ** name is returned. Here are the names: 833 ** 834 ** 0 The column name as it should be displayed for output 835 ** 1 The datatype name for the column 836 ** 2 The name of the database that the column derives from 837 ** 3 The name of the table that the column derives from 838 ** 4 The name of the table column that the result column derives from 839 ** 840 ** If the result is not a simple column reference (if it is an expression 841 ** or a constant) then useTypes 2, 3, and 4 return NULL. 842 */ 843 static const void *columnName( 844 sqlite3_stmt *pStmt, 845 int N, 846 const void *(*xFunc)(Mem*), 847 int useType 848 ){ 849 const void *ret = 0; 850 Vdbe *p = (Vdbe *)pStmt; 851 int n; 852 sqlite3 *db = p->db; 853 854 assert( db!=0 ); 855 n = sqlite3_column_count(pStmt); 856 if( N<n && N>=0 ){ 857 N += useType*n; 858 sqlite3_mutex_enter(db->mutex); 859 assert( db->mallocFailed==0 ); 860 ret = xFunc(&p->aColName[N]); 861 /* A malloc may have failed inside of the xFunc() call. If this 862 ** is the case, clear the mallocFailed flag and return NULL. 863 */ 864 if( db->mallocFailed ){ 865 db->mallocFailed = 0; 866 ret = 0; 867 } 868 sqlite3_mutex_leave(db->mutex); 869 } 870 return ret; 871 } 872 873 /* 874 ** Return the name of the Nth column of the result set returned by SQL 875 ** statement pStmt. 876 */ 877 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ 878 return columnName( 879 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); 880 } 881 #ifndef SQLITE_OMIT_UTF16 882 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ 883 return columnName( 884 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); 885 } 886 #endif 887 888 /* 889 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must 890 ** not define OMIT_DECLTYPE. 891 */ 892 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) 893 # error "Must not define both SQLITE_OMIT_DECLTYPE \ 894 and SQLITE_ENABLE_COLUMN_METADATA" 895 #endif 896 897 #ifndef SQLITE_OMIT_DECLTYPE 898 /* 899 ** Return the column declaration type (if applicable) of the 'i'th column 900 ** of the result set of SQL statement pStmt. 901 */ 902 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ 903 return columnName( 904 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); 905 } 906 #ifndef SQLITE_OMIT_UTF16 907 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ 908 return columnName( 909 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); 910 } 911 #endif /* SQLITE_OMIT_UTF16 */ 912 #endif /* SQLITE_OMIT_DECLTYPE */ 913 914 #ifdef SQLITE_ENABLE_COLUMN_METADATA 915 /* 916 ** Return the name of the database from which a result column derives. 917 ** NULL is returned if the result column is an expression or constant or 918 ** anything else which is not an unabiguous reference to a database column. 919 */ 920 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ 921 return columnName( 922 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); 923 } 924 #ifndef SQLITE_OMIT_UTF16 925 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ 926 return columnName( 927 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); 928 } 929 #endif /* SQLITE_OMIT_UTF16 */ 930 931 /* 932 ** Return the name of the table from which a result column derives. 933 ** NULL is returned if the result column is an expression or constant or 934 ** anything else which is not an unabiguous reference to a database column. 935 */ 936 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ 937 return columnName( 938 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); 939 } 940 #ifndef SQLITE_OMIT_UTF16 941 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ 942 return columnName( 943 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); 944 } 945 #endif /* SQLITE_OMIT_UTF16 */ 946 947 /* 948 ** Return the name of the table column from which a result column derives. 949 ** NULL is returned if the result column is an expression or constant or 950 ** anything else which is not an unabiguous reference to a database column. 951 */ 952 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ 953 return columnName( 954 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); 955 } 956 #ifndef SQLITE_OMIT_UTF16 957 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ 958 return columnName( 959 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); 960 } 961 #endif /* SQLITE_OMIT_UTF16 */ 962 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ 963 964 965 /******************************* sqlite3_bind_ *************************** 966 ** 967 ** Routines used to attach values to wildcards in a compiled SQL statement. 968 */ 969 /* 970 ** Unbind the value bound to variable i in virtual machine p. This is the 971 ** the same as binding a NULL value to the column. If the "i" parameter is 972 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. 973 ** 974 ** A successful evaluation of this routine acquires the mutex on p. 975 ** the mutex is released if any kind of error occurs. 976 ** 977 ** The error code stored in database p->db is overwritten with the return 978 ** value in any case. 979 */ 980 static int vdbeUnbind(Vdbe *p, int i){ 981 Mem *pVar; 982 if( vdbeSafetyNotNull(p) ){ 983 return SQLITE_MISUSE_BKPT; 984 } 985 sqlite3_mutex_enter(p->db->mutex); 986 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ 987 sqlite3Error(p->db, SQLITE_MISUSE, 0); 988 sqlite3_mutex_leave(p->db->mutex); 989 sqlite3_log(SQLITE_MISUSE, 990 "bind on a busy prepared statement: [%s]", p->zSql); 991 return SQLITE_MISUSE_BKPT; 992 } 993 if( i<1 || i>p->nVar ){ 994 sqlite3Error(p->db, SQLITE_RANGE, 0); 995 sqlite3_mutex_leave(p->db->mutex); 996 return SQLITE_RANGE; 997 } 998 i--; 999 pVar = &p->aVar[i]; 1000 sqlite3VdbeMemRelease(pVar); 1001 pVar->flags = MEM_Null; 1002 sqlite3Error(p->db, SQLITE_OK, 0); 1003 1004 /* If the bit corresponding to this variable in Vdbe.expmask is set, then 1005 ** binding a new value to this variable invalidates the current query plan. 1006 ** 1007 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host 1008 ** parameter in the WHERE clause might influence the choice of query plan 1009 ** for a statement, then the statement will be automatically recompiled, 1010 ** as if there had been a schema change, on the first sqlite3_step() call 1011 ** following any change to the bindings of that parameter. 1012 */ 1013 if( p->isPrepareV2 && 1014 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) 1015 ){ 1016 p->expired = 1; 1017 } 1018 return SQLITE_OK; 1019 } 1020 1021 /* 1022 ** Bind a text or BLOB value. 1023 */ 1024 static int bindText( 1025 sqlite3_stmt *pStmt, /* The statement to bind against */ 1026 int i, /* Index of the parameter to bind */ 1027 const void *zData, /* Pointer to the data to be bound */ 1028 int nData, /* Number of bytes of data to be bound */ 1029 void (*xDel)(void*), /* Destructor for the data */ 1030 u8 encoding /* Encoding for the data */ 1031 ){ 1032 Vdbe *p = (Vdbe *)pStmt; 1033 Mem *pVar; 1034 int rc; 1035 1036 rc = vdbeUnbind(p, i); 1037 if( rc==SQLITE_OK ){ 1038 if( zData!=0 ){ 1039 pVar = &p->aVar[i-1]; 1040 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); 1041 if( rc==SQLITE_OK && encoding!=0 ){ 1042 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); 1043 } 1044 sqlite3Error(p->db, rc, 0); 1045 rc = sqlite3ApiExit(p->db, rc); 1046 } 1047 sqlite3_mutex_leave(p->db->mutex); 1048 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ 1049 xDel((void*)zData); 1050 } 1051 return rc; 1052 } 1053 1054 1055 /* 1056 ** Bind a blob value to an SQL statement variable. 1057 */ 1058 int sqlite3_bind_blob( 1059 sqlite3_stmt *pStmt, 1060 int i, 1061 const void *zData, 1062 int nData, 1063 void (*xDel)(void*) 1064 ){ 1065 return bindText(pStmt, i, zData, nData, xDel, 0); 1066 } 1067 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ 1068 int rc; 1069 Vdbe *p = (Vdbe *)pStmt; 1070 rc = vdbeUnbind(p, i); 1071 if( rc==SQLITE_OK ){ 1072 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); 1073 sqlite3_mutex_leave(p->db->mutex); 1074 } 1075 return rc; 1076 } 1077 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ 1078 return sqlite3_bind_int64(p, i, (i64)iValue); 1079 } 1080 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ 1081 int rc; 1082 Vdbe *p = (Vdbe *)pStmt; 1083 rc = vdbeUnbind(p, i); 1084 if( rc==SQLITE_OK ){ 1085 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); 1086 sqlite3_mutex_leave(p->db->mutex); 1087 } 1088 return rc; 1089 } 1090 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ 1091 int rc; 1092 Vdbe *p = (Vdbe*)pStmt; 1093 rc = vdbeUnbind(p, i); 1094 if( rc==SQLITE_OK ){ 1095 sqlite3_mutex_leave(p->db->mutex); 1096 } 1097 return rc; 1098 } 1099 int sqlite3_bind_text( 1100 sqlite3_stmt *pStmt, 1101 int i, 1102 const char *zData, 1103 int nData, 1104 void (*xDel)(void*) 1105 ){ 1106 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); 1107 } 1108 #ifndef SQLITE_OMIT_UTF16 1109 int sqlite3_bind_text16( 1110 sqlite3_stmt *pStmt, 1111 int i, 1112 const void *zData, 1113 int nData, 1114 void (*xDel)(void*) 1115 ){ 1116 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); 1117 } 1118 #endif /* SQLITE_OMIT_UTF16 */ 1119 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ 1120 int rc; 1121 switch( pValue->type ){ 1122 case SQLITE_INTEGER: { 1123 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); 1124 break; 1125 } 1126 case SQLITE_FLOAT: { 1127 rc = sqlite3_bind_double(pStmt, i, pValue->r); 1128 break; 1129 } 1130 case SQLITE_BLOB: { 1131 if( pValue->flags & MEM_Zero ){ 1132 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); 1133 }else{ 1134 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); 1135 } 1136 break; 1137 } 1138 case SQLITE_TEXT: { 1139 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, 1140 pValue->enc); 1141 break; 1142 } 1143 default: { 1144 rc = sqlite3_bind_null(pStmt, i); 1145 break; 1146 } 1147 } 1148 return rc; 1149 } 1150 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ 1151 int rc; 1152 Vdbe *p = (Vdbe *)pStmt; 1153 rc = vdbeUnbind(p, i); 1154 if( rc==SQLITE_OK ){ 1155 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); 1156 sqlite3_mutex_leave(p->db->mutex); 1157 } 1158 return rc; 1159 } 1160 1161 /* 1162 ** Return the number of wildcards that can be potentially bound to. 1163 ** This routine is added to support DBD::SQLite. 1164 */ 1165 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ 1166 Vdbe *p = (Vdbe*)pStmt; 1167 return p ? p->nVar : 0; 1168 } 1169 1170 /* 1171 ** Create a mapping from variable numbers to variable names 1172 ** in the Vdbe.azVar[] array, if such a mapping does not already 1173 ** exist. 1174 */ 1175 static void createVarMap(Vdbe *p){ 1176 if( !p->okVar ){ 1177 int j; 1178 Op *pOp; 1179 sqlite3_mutex_enter(p->db->mutex); 1180 /* The race condition here is harmless. If two threads call this 1181 ** routine on the same Vdbe at the same time, they both might end 1182 ** up initializing the Vdbe.azVar[] array. That is a little extra 1183 ** work but it results in the same answer. 1184 */ 1185 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ 1186 if( pOp->opcode==OP_Variable ){ 1187 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 1188 p->azVar[pOp->p1-1] = pOp->p4.z; 1189 } 1190 } 1191 p->okVar = 1; 1192 sqlite3_mutex_leave(p->db->mutex); 1193 } 1194 } 1195 1196 /* 1197 ** Return the name of a wildcard parameter. Return NULL if the index 1198 ** is out of range or if the wildcard is unnamed. 1199 ** 1200 ** The result is always UTF-8. 1201 */ 1202 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ 1203 Vdbe *p = (Vdbe*)pStmt; 1204 if( p==0 || i<1 || i>p->nVar ){ 1205 return 0; 1206 } 1207 createVarMap(p); 1208 return p->azVar[i-1]; 1209 } 1210 1211 /* 1212 ** Given a wildcard parameter name, return the index of the variable 1213 ** with that name. If there is no variable with the given name, 1214 ** return 0. 1215 */ 1216 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ 1217 int i; 1218 if( p==0 ){ 1219 return 0; 1220 } 1221 createVarMap(p); 1222 if( zName ){ 1223 for(i=0; i<p->nVar; i++){ 1224 const char *z = p->azVar[i]; 1225 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){ 1226 return i+1; 1227 } 1228 } 1229 } 1230 return 0; 1231 } 1232 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ 1233 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); 1234 } 1235 1236 /* 1237 ** Transfer all bindings from the first statement over to the second. 1238 */ 1239 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1240 Vdbe *pFrom = (Vdbe*)pFromStmt; 1241 Vdbe *pTo = (Vdbe*)pToStmt; 1242 int i; 1243 assert( pTo->db==pFrom->db ); 1244 assert( pTo->nVar==pFrom->nVar ); 1245 sqlite3_mutex_enter(pTo->db->mutex); 1246 for(i=0; i<pFrom->nVar; i++){ 1247 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); 1248 } 1249 sqlite3_mutex_leave(pTo->db->mutex); 1250 return SQLITE_OK; 1251 } 1252 1253 #ifndef SQLITE_OMIT_DEPRECATED 1254 /* 1255 ** Deprecated external interface. Internal/core SQLite code 1256 ** should call sqlite3TransferBindings. 1257 ** 1258 ** Is is misuse to call this routine with statements from different 1259 ** database connections. But as this is a deprecated interface, we 1260 ** will not bother to check for that condition. 1261 ** 1262 ** If the two statements contain a different number of bindings, then 1263 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise 1264 ** SQLITE_OK is returned. 1265 */ 1266 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ 1267 Vdbe *pFrom = (Vdbe*)pFromStmt; 1268 Vdbe *pTo = (Vdbe*)pToStmt; 1269 if( pFrom->nVar!=pTo->nVar ){ 1270 return SQLITE_ERROR; 1271 } 1272 if( pTo->isPrepareV2 && pTo->expmask ){ 1273 pTo->expired = 1; 1274 } 1275 if( pFrom->isPrepareV2 && pFrom->expmask ){ 1276 pFrom->expired = 1; 1277 } 1278 return sqlite3TransferBindings(pFromStmt, pToStmt); 1279 } 1280 #endif 1281 1282 /* 1283 ** Return the sqlite3* database handle to which the prepared statement given 1284 ** in the argument belongs. This is the same database handle that was 1285 ** the first argument to the sqlite3_prepare() that was used to create 1286 ** the statement in the first place. 1287 */ 1288 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ 1289 return pStmt ? ((Vdbe*)pStmt)->db : 0; 1290 } 1291 1292 /* 1293 ** Return true if the prepared statement is guaranteed to not modify the 1294 ** database. 1295 */ 1296 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ 1297 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; 1298 } 1299 1300 /* 1301 ** Return a pointer to the next prepared statement after pStmt associated 1302 ** with database connection pDb. If pStmt is NULL, return the first 1303 ** prepared statement for the database connection. Return NULL if there 1304 ** are no more. 1305 */ 1306 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ 1307 sqlite3_stmt *pNext; 1308 sqlite3_mutex_enter(pDb->mutex); 1309 if( pStmt==0 ){ 1310 pNext = (sqlite3_stmt*)pDb->pVdbe; 1311 }else{ 1312 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; 1313 } 1314 sqlite3_mutex_leave(pDb->mutex); 1315 return pNext; 1316 } 1317 1318 /* 1319 ** Return the value of a status counter for a prepared statement 1320 */ 1321 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ 1322 Vdbe *pVdbe = (Vdbe*)pStmt; 1323 int v = pVdbe->aCounter[op-1]; 1324 if( resetFlag ) pVdbe->aCounter[op-1] = 0; 1325 return v; 1326 } 1327