/external/eigen/doc/snippets/ |
MatrixBase_asDiagonal.cpp | 1 cout << Matrix3i(Vector3i(2,5,6).asDiagonal()) << endl;
|
MatrixBase_fixedBlock_int_int.cpp | 1 Matrix4d m = Vector4d(1,2,3,4).asDiagonal();
|
ComplexEigenSolver_compute.cpp | 16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
|
EigenSolver_EigenSolver_MatrixType.cpp | 14 MatrixXcd D = es.eigenvalues().asDiagonal();
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 15 MatrixXd D = es.eigenvalues().asDiagonal();
|
/external/eigen/test/ |
diagonalmatrices.cpp | 37 SquareMatrixType sq_m1 (v1.asDiagonal()); 38 VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); 39 sq_m1 = v1.asDiagonal(); 40 VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix()); 41 SquareMatrixType sq_m2 = v1.asDiagonal(); 44 ldm1 = v1.asDiagonal(); 47 LeftDiagonalMatrix ldm4 = v1.asDiagonal(); 61 VERIFY_IS_APPROX( ((v1.asDiagonal() * m1)(i,j)) , v1(i) * m1(i,j) ); 62 VERIFY_IS_APPROX( ((m1 * rv1.asDiagonal())(i,j)) , rv1(j) * m1(i,j) ); 63 VERIFY_IS_APPROX( (((v1+v2).asDiagonal() * m1)(i,j)) , (v1+v2)(i) * m1(i,j) ) [all...] |
mixingtypes.cpp | 74 VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf); 75 VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >()); 76 VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal()); 77 VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal()); 78 // vd.asDiagonal() * mf; // does not even compile 79 // vcd.asDiagonal() * mf; // does not even compil [all...] |
eigensolver_selfadjoint.cpp | 47 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 52 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps)); 63 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 69 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 75 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
sparse_product.cpp | 161 VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal()); 162 VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal()); 163 VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2); 164 VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose()); 166 VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal()) [all...] |
miscmatrices.cpp | 30 square(v1.asDiagonal());
|
eigensolver_complex.cpp | 50 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); 54 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
eigensolver_generic.cpp | 37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); 43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
product_large.cpp | 28 m = (v+v).asDiagonal() * m;
|
/external/eigen/doc/examples/ |
function_taking_eigenbase.cpp | 16 // v.asDiagonal() returns a 3x3 diagonal matrix pseudo-expression 17 print_size(v.asDiagonal());
|
/external/eigen/test/eigen2/ |
eigen2_eigensolver.cpp | 63 VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); 74 VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); 77 MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); 89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); 93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); 123 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); 128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
eigen2_miscmatrices.cpp | 31 square = v1.asDiagonal();
|
eigen2_product_large.cpp | 28 m = (v+v).asDiagonal() * m;
|
eigen2_svd.cpp | 36 sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
|
/external/eigen/Eigen/src/Eigen2Support/Geometry/ |
Scaling.h | 90 { return coeffs().asDiagonal() * other; } 95 { return other * s.coeffs().asDiagonal(); } 103 { return coeffs().asDiagonal() * other; }
|
/external/eigen/unsupported/test/ |
matrix_functions.h | 29 result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
|
mpreal_support.cpp | 48 VERIFY( (S.selfadjointView<Lower>() * eig.eigenvectors()).isApprox(eig.eigenvectors() * eig.eigenvalues().asDiagonal(), NumTraits<mpreal>::dummy_precision()*1e3) );
|
/external/ceres-solver/internal/ceres/ |
dense_sparse_matrix.cc | 101 m_ *= ConstVectorRef(scale, num_cols()).asDiagonal(); 119 ConstVectorRef(d, m_.cols()).asDiagonal();
|
dense_normal_cholesky_solver.cc | 92 lhs += D.array().square().matrix().asDiagonal();
|
dogleg_strategy_test.cc | 76 Matrix sqrtD = Ddiag.array().sqrt().matrix().asDiagonal(); 105 Matrix jacobian = Ddiag.asDiagonal();
|
/external/eigen/Eigen/src/Geometry/ |
Umeyama.h | 149 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); 153 Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
|