Home | History | Annotate | Download | only in eigen2
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/SVD>
     12 
     13 template<typename MatrixType> void svd(const MatrixType& m)
     14 {
     15   /* this test covers the following files:
     16      SVD.h
     17   */
     18   int rows = m.rows();
     19   int cols = m.cols();
     20 
     21   typedef typename MatrixType::Scalar Scalar;
     22   typedef typename NumTraits<Scalar>::Real RealScalar;
     23   MatrixType a = MatrixType::Random(rows,cols);
     24   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
     25     Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
     26   Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
     27 
     28   RealScalar largerEps = test_precision<RealScalar>();
     29   if (ei_is_same_type<RealScalar,float>::ret)
     30     largerEps = 1e-3f;
     31 
     32   {
     33     SVD<MatrixType> svd(a);
     34     MatrixType sigma = MatrixType::Zero(rows,cols);
     35     MatrixType matU  = MatrixType::Zero(rows,rows);
     36     sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
     37     matU.block(0,0,rows,cols) = svd.matrixU();
     38     VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
     39   }
     40 
     41 
     42   if (rows==cols)
     43   {
     44     if (ei_is_same_type<RealScalar,float>::ret)
     45     {
     46       MatrixType a1 = MatrixType::Random(rows,cols);
     47       a += a * a.adjoint() + a1 * a1.adjoint();
     48     }
     49     SVD<MatrixType> svd(a);
     50     svd.solve(b, &x);
     51     VERIFY_IS_APPROX(a * x,b);
     52   }
     53 
     54 
     55   if(rows==cols)
     56   {
     57     SVD<MatrixType> svd(a);
     58     MatrixType unitary, positive;
     59     svd.computeUnitaryPositive(&unitary, &positive);
     60     VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
     61     VERIFY_IS_APPROX(positive, positive.adjoint());
     62     for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
     63     VERIFY_IS_APPROX(unitary*positive, a);
     64 
     65     svd.computePositiveUnitary(&positive, &unitary);
     66     VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
     67     VERIFY_IS_APPROX(positive, positive.adjoint());
     68     for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
     69     VERIFY_IS_APPROX(positive*unitary, a);
     70   }
     71 }
     72 
     73 void test_eigen2_svd()
     74 {
     75   for(int i = 0; i < g_repeat; i++) {
     76     CALL_SUBTEST_1( svd(Matrix3f()) );
     77     CALL_SUBTEST_2( svd(Matrix4d()) );
     78     CALL_SUBTEST_3( svd(MatrixXf(7,7)) );
     79     CALL_SUBTEST_4( svd(MatrixXd(14,7)) );
     80     // complex are not implemented yet
     81 //     CALL_SUBTEST( svd(MatrixXcd(6,6)) );
     82 //     CALL_SUBTEST( svd(MatrixXcf(3,3)) );
     83     SVD<MatrixXf> s;
     84     MatrixXf m = MatrixXf::Random(10,1);
     85     s.compute(m);
     86   }
     87 }
     88