1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "large_object_space.h" 18 19 #include <memory> 20 21 #include "gc/accounting/space_bitmap-inl.h" 22 #include "base/logging.h" 23 #include "base/mutex-inl.h" 24 #include "base/stl_util.h" 25 #include "image.h" 26 #include "os.h" 27 #include "space-inl.h" 28 #include "thread-inl.h" 29 #include "utils.h" 30 31 namespace art { 32 namespace gc { 33 namespace space { 34 35 class ValgrindLargeObjectMapSpace FINAL : public LargeObjectMapSpace { 36 public: 37 explicit ValgrindLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) { 38 } 39 40 virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, 41 size_t* usable_size) OVERRIDE { 42 mirror::Object* obj = 43 LargeObjectMapSpace::Alloc(self, num_bytes + kValgrindRedZoneBytes * 2, bytes_allocated, 44 usable_size); 45 mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>( 46 reinterpret_cast<uintptr_t>(obj) + kValgrindRedZoneBytes); 47 VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<void*>(obj), kValgrindRedZoneBytes); 48 VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(object_without_rdz) + num_bytes, 49 kValgrindRedZoneBytes); 50 if (usable_size != nullptr) { 51 *usable_size = num_bytes; // Since we have redzones, shrink the usable size. 52 } 53 return object_without_rdz; 54 } 55 56 virtual size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE { 57 mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>( 58 reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes); 59 return LargeObjectMapSpace::AllocationSize(object_with_rdz, usable_size); 60 } 61 62 virtual size_t Free(Thread* self, mirror::Object* obj) OVERRIDE { 63 mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>( 64 reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes); 65 VALGRIND_MAKE_MEM_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr)); 66 return LargeObjectMapSpace::Free(self, object_with_rdz); 67 } 68 69 bool Contains(const mirror::Object* obj) const OVERRIDE { 70 mirror::Object* object_with_rdz = reinterpret_cast<mirror::Object*>( 71 reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes); 72 return LargeObjectMapSpace::Contains(object_with_rdz); 73 } 74 75 private: 76 static constexpr size_t kValgrindRedZoneBytes = kPageSize; 77 }; 78 79 void LargeObjectSpace::SwapBitmaps() { 80 live_bitmap_.swap(mark_bitmap_); 81 // Swap names to get more descriptive diagnostics. 82 std::string temp_name = live_bitmap_->GetName(); 83 live_bitmap_->SetName(mark_bitmap_->GetName()); 84 mark_bitmap_->SetName(temp_name); 85 } 86 87 LargeObjectSpace::LargeObjectSpace(const std::string& name, byte* begin, byte* end) 88 : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect), 89 num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0), 90 total_objects_allocated_(0), begin_(begin), end_(end) { 91 } 92 93 94 void LargeObjectSpace::CopyLiveToMarked() { 95 mark_bitmap_->CopyFrom(live_bitmap_.get()); 96 } 97 98 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name) 99 : LargeObjectSpace(name, nullptr, nullptr), 100 lock_("large object map space lock", kAllocSpaceLock) {} 101 102 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) { 103 if (Runtime::Current()->RunningOnValgrind()) { 104 return new ValgrindLargeObjectMapSpace(name); 105 } else { 106 return new LargeObjectMapSpace(name); 107 } 108 } 109 110 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes, 111 size_t* bytes_allocated, size_t* usable_size) { 112 std::string error_msg; 113 MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes, 114 PROT_READ | PROT_WRITE, true, &error_msg); 115 if (UNLIKELY(mem_map == NULL)) { 116 LOG(WARNING) << "Large object allocation failed: " << error_msg; 117 return NULL; 118 } 119 MutexLock mu(self, lock_); 120 mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin()); 121 large_objects_.push_back(obj); 122 mem_maps_.Put(obj, mem_map); 123 size_t allocation_size = mem_map->Size(); 124 DCHECK(bytes_allocated != nullptr); 125 begin_ = std::min(begin_, reinterpret_cast<byte*>(obj)); 126 byte* obj_end = reinterpret_cast<byte*>(obj) + allocation_size; 127 if (end_ == nullptr || obj_end > end_) { 128 end_ = obj_end; 129 } 130 *bytes_allocated = allocation_size; 131 if (usable_size != nullptr) { 132 *usable_size = allocation_size; 133 } 134 num_bytes_allocated_ += allocation_size; 135 total_bytes_allocated_ += allocation_size; 136 ++num_objects_allocated_; 137 ++total_objects_allocated_; 138 return obj; 139 } 140 141 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) { 142 MutexLock mu(self, lock_); 143 MemMaps::iterator found = mem_maps_.find(ptr); 144 if (UNLIKELY(found == mem_maps_.end())) { 145 Runtime::Current()->GetHeap()->DumpSpaces(LOG(ERROR)); 146 LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live"; 147 } 148 DCHECK_GE(num_bytes_allocated_, found->second->Size()); 149 size_t allocation_size = found->second->Size(); 150 num_bytes_allocated_ -= allocation_size; 151 --num_objects_allocated_; 152 delete found->second; 153 mem_maps_.erase(found); 154 return allocation_size; 155 } 156 157 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) { 158 MutexLock mu(Thread::Current(), lock_); 159 auto found = mem_maps_.find(obj); 160 CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live"; 161 return found->second->Size(); 162 } 163 164 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) { 165 size_t total = 0; 166 for (size_t i = 0; i < num_ptrs; ++i) { 167 if (kDebugSpaces) { 168 CHECK(Contains(ptrs[i])); 169 } 170 total += Free(self, ptrs[i]); 171 } 172 return total; 173 } 174 175 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { 176 MutexLock mu(Thread::Current(), lock_); 177 for (auto it = mem_maps_.begin(); it != mem_maps_.end(); ++it) { 178 MemMap* mem_map = it->second; 179 callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg); 180 callback(NULL, NULL, 0, arg); 181 } 182 } 183 184 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const { 185 Thread* self = Thread::Current(); 186 if (lock_.IsExclusiveHeld(self)) { 187 // We hold lock_ so do the check. 188 return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end(); 189 } else { 190 MutexLock mu(self, lock_); 191 return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end(); 192 } 193 } 194 195 // Keeps track of allocation sizes + whether or not the previous allocation is free. 196 // Used to coalesce free blocks and find the best fit block for an allocation. 197 class AllocationInfo { 198 public: 199 AllocationInfo() : prev_free_(0), alloc_size_(0) { 200 } 201 // Return the number of pages that the allocation info covers. 202 size_t AlignSize() const { 203 return alloc_size_ & ~kFlagFree; 204 } 205 // Returns the allocation size in bytes. 206 size_t ByteSize() const { 207 return AlignSize() * FreeListSpace::kAlignment; 208 } 209 // Updates the allocation size and whether or not it is free. 210 void SetByteSize(size_t size, bool free) { 211 DCHECK_ALIGNED(size, FreeListSpace::kAlignment); 212 alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0U); 213 } 214 bool IsFree() const { 215 return (alloc_size_ & kFlagFree) != 0; 216 } 217 // Finds and returns the next non free allocation info after ourself. 218 AllocationInfo* GetNextInfo() { 219 return this + AlignSize(); 220 } 221 const AllocationInfo* GetNextInfo() const { 222 return this + AlignSize(); 223 } 224 // Returns the previous free allocation info by using the prev_free_ member to figure out 225 // where it is. This is only used for coalescing so we only need to be able to do it if the 226 // previous allocation info is free. 227 AllocationInfo* GetPrevFreeInfo() { 228 DCHECK_NE(prev_free_, 0U); 229 return this - prev_free_; 230 } 231 // Returns the address of the object associated with this allocation info. 232 mirror::Object* GetObjectAddress() { 233 return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this)); 234 } 235 // Return how many kAlignment units there are before the free block. 236 size_t GetPrevFree() const { 237 return prev_free_; 238 } 239 // Returns how many free bytes there is before the block. 240 size_t GetPrevFreeBytes() const { 241 return GetPrevFree() * FreeListSpace::kAlignment; 242 } 243 // Update the size of the free block prior to the allocation. 244 void SetPrevFreeBytes(size_t bytes) { 245 DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment); 246 prev_free_ = bytes / FreeListSpace::kAlignment; 247 } 248 249 private: 250 // Used to implement best fit object allocation. Each allocation has an AllocationInfo which 251 // contains the size of the previous free block preceding it. Implemented in such a way that we 252 // can also find the iterator for any allocation info pointer. 253 static constexpr uint32_t kFlagFree = 0x8000000; 254 // Contains the size of the previous free block with kAlignment as the unit. If 0 then the 255 // allocation before us is not free. 256 // These variables are undefined in the middle of allocations / free blocks. 257 uint32_t prev_free_; 258 // Allocation size of this object in kAlignment as the unit. 259 uint32_t alloc_size_; 260 }; 261 262 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const { 263 DCHECK_GE(info, allocation_info_); 264 DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End())); 265 return info - allocation_info_; 266 } 267 268 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) { 269 return &allocation_info_[GetSlotIndexForAddress(address)]; 270 } 271 272 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const { 273 return &allocation_info_[GetSlotIndexForAddress(address)]; 274 } 275 276 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a, 277 const AllocationInfo* b) const { 278 if (a->GetPrevFree() < b->GetPrevFree()) return true; 279 if (a->GetPrevFree() > b->GetPrevFree()) return false; 280 if (a->AlignSize() < b->AlignSize()) return true; 281 if (a->AlignSize() > b->AlignSize()) return false; 282 return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b); 283 } 284 285 FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) { 286 CHECK_EQ(size % kAlignment, 0U); 287 std::string error_msg; 288 MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size, 289 PROT_READ | PROT_WRITE, true, &error_msg); 290 CHECK(mem_map != NULL) << "Failed to allocate large object space mem map: " << error_msg; 291 return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End()); 292 } 293 294 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end) 295 : LargeObjectSpace(name, begin, end), 296 mem_map_(mem_map), 297 lock_("free list space lock", kAllocSpaceLock) { 298 const size_t space_capacity = end - begin; 299 free_end_ = space_capacity; 300 CHECK_ALIGNED(space_capacity, kAlignment); 301 const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment); 302 std::string error_msg; 303 allocation_info_map_.reset(MemMap::MapAnonymous("large object free list space allocation info map", 304 nullptr, alloc_info_size, PROT_READ | PROT_WRITE, 305 false, &error_msg)); 306 CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map" 307 << error_msg; 308 allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin()); 309 } 310 311 FreeListSpace::~FreeListSpace() {} 312 313 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { 314 MutexLock mu(Thread::Current(), lock_); 315 const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 316 AllocationInfo* cur_info = &allocation_info_[0]; 317 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start); 318 while (cur_info < end_info) { 319 if (!cur_info->IsFree()) { 320 size_t alloc_size = cur_info->ByteSize(); 321 byte* byte_start = reinterpret_cast<byte*>(GetAddressForAllocationInfo(cur_info)); 322 byte* byte_end = byte_start + alloc_size; 323 callback(byte_start, byte_end, alloc_size, arg); 324 callback(nullptr, nullptr, 0, arg); 325 } 326 cur_info = cur_info->GetNextInfo(); 327 } 328 CHECK_EQ(cur_info, end_info); 329 } 330 331 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) { 332 CHECK_GT(info->GetPrevFree(), 0U); 333 auto it = free_blocks_.lower_bound(info); 334 CHECK(it != free_blocks_.end()); 335 CHECK_EQ(*it, info); 336 free_blocks_.erase(it); 337 } 338 339 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) { 340 MutexLock mu(self, lock_); 341 DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " " 342 << reinterpret_cast<void*>(End()); 343 DCHECK_ALIGNED(obj, kAlignment); 344 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); 345 DCHECK(!info->IsFree()); 346 const size_t allocation_size = info->ByteSize(); 347 DCHECK_GT(allocation_size, 0U); 348 DCHECK_ALIGNED(allocation_size, kAlignment); 349 info->SetByteSize(allocation_size, true); // Mark as free. 350 // Look at the next chunk. 351 AllocationInfo* next_info = info->GetNextInfo(); 352 // Calculate the start of the end free block. 353 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 354 size_t prev_free_bytes = info->GetPrevFreeBytes(); 355 size_t new_free_size = allocation_size; 356 if (prev_free_bytes != 0) { 357 // Coalesce with previous free chunk. 358 new_free_size += prev_free_bytes; 359 RemoveFreePrev(info); 360 info = info->GetPrevFreeInfo(); 361 // The previous allocation info must not be free since we are supposed to always coalesce. 362 DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free"; 363 } 364 uintptr_t next_addr = GetAddressForAllocationInfo(next_info); 365 if (next_addr >= free_end_start) { 366 // Easy case, the next chunk is the end free region. 367 CHECK_EQ(next_addr, free_end_start); 368 free_end_ += new_free_size; 369 } else { 370 AllocationInfo* new_free_info; 371 if (next_info->IsFree()) { 372 AllocationInfo* next_next_info = next_info->GetNextInfo(); 373 // Next next info can't be free since we always coalesce. 374 DCHECK(!next_next_info->IsFree()); 375 DCHECK(IsAligned<kAlignment>(next_next_info->ByteSize())); 376 new_free_info = next_next_info; 377 new_free_size += next_next_info->GetPrevFreeBytes(); 378 RemoveFreePrev(next_next_info); 379 } else { 380 new_free_info = next_info; 381 } 382 new_free_info->SetPrevFreeBytes(new_free_size); 383 free_blocks_.insert(new_free_info); 384 info->SetByteSize(new_free_size, true); 385 DCHECK_EQ(info->GetNextInfo(), new_free_info); 386 } 387 --num_objects_allocated_; 388 DCHECK_LE(allocation_size, num_bytes_allocated_); 389 num_bytes_allocated_ -= allocation_size; 390 madvise(obj, allocation_size, MADV_DONTNEED); 391 if (kIsDebugBuild) { 392 // Can't disallow reads since we use them to find next chunks during coalescing. 393 mprotect(obj, allocation_size, PROT_READ); 394 } 395 return allocation_size; 396 } 397 398 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) { 399 DCHECK(Contains(obj)); 400 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); 401 DCHECK(!info->IsFree()); 402 size_t alloc_size = info->ByteSize(); 403 if (usable_size != nullptr) { 404 *usable_size = alloc_size; 405 } 406 return alloc_size; 407 } 408 409 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, 410 size_t* usable_size) { 411 MutexLock mu(self, lock_); 412 const size_t allocation_size = RoundUp(num_bytes, kAlignment); 413 AllocationInfo temp_info; 414 temp_info.SetPrevFreeBytes(allocation_size); 415 temp_info.SetByteSize(0, false); 416 AllocationInfo* new_info; 417 // Find the smallest chunk at least num_bytes in size. 418 auto it = free_blocks_.lower_bound(&temp_info); 419 if (it != free_blocks_.end()) { 420 AllocationInfo* info = *it; 421 free_blocks_.erase(it); 422 // Fit our object in the previous allocation info free space. 423 new_info = info->GetPrevFreeInfo(); 424 // Remove the newly allocated block from the info and update the prev_free_. 425 info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size); 426 if (info->GetPrevFreeBytes() > 0) { 427 AllocationInfo* new_free = info - info->GetPrevFree(); 428 new_free->SetPrevFreeBytes(0); 429 new_free->SetByteSize(info->GetPrevFreeBytes(), true); 430 // If there is remaining space, insert back into the free set. 431 free_blocks_.insert(info); 432 } 433 } else { 434 // Try to steal some memory from the free space at the end of the space. 435 if (LIKELY(free_end_ >= allocation_size)) { 436 // Fit our object at the start of the end free block. 437 new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_); 438 free_end_ -= allocation_size; 439 } else { 440 return nullptr; 441 } 442 } 443 DCHECK(bytes_allocated != nullptr); 444 *bytes_allocated = allocation_size; 445 if (usable_size != nullptr) { 446 *usable_size = allocation_size; 447 } 448 // Need to do these inside of the lock. 449 ++num_objects_allocated_; 450 ++total_objects_allocated_; 451 num_bytes_allocated_ += allocation_size; 452 total_bytes_allocated_ += allocation_size; 453 mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info)); 454 // We always put our object at the start of the free block, there can not be another free block 455 // before it. 456 if (kIsDebugBuild) { 457 mprotect(obj, allocation_size, PROT_READ | PROT_WRITE); 458 } 459 new_info->SetPrevFreeBytes(0); 460 new_info->SetByteSize(allocation_size, false); 461 return obj; 462 } 463 464 void FreeListSpace::Dump(std::ostream& os) const { 465 MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_)); 466 os << GetName() << " -" 467 << " begin: " << reinterpret_cast<void*>(Begin()) 468 << " end: " << reinterpret_cast<void*>(End()) << "\n"; 469 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 470 const AllocationInfo* cur_info = 471 GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())); 472 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start); 473 while (cur_info < end_info) { 474 size_t size = cur_info->ByteSize(); 475 uintptr_t address = GetAddressForAllocationInfo(cur_info); 476 if (cur_info->IsFree()) { 477 os << "Free block at address: " << reinterpret_cast<const void*>(address) 478 << " of length " << size << " bytes\n"; 479 } else { 480 os << "Large object at address: " << reinterpret_cast<const void*>(address) 481 << " of length " << size << " bytes\n"; 482 } 483 cur_info = cur_info->GetNextInfo(); 484 } 485 if (free_end_) { 486 os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start) 487 << " of length " << free_end_ << " bytes\n"; 488 } 489 } 490 491 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) { 492 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); 493 space::LargeObjectSpace* space = context->space->AsLargeObjectSpace(); 494 Thread* self = context->self; 495 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self); 496 // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap 497 // the bitmaps as an optimization. 498 if (!context->swap_bitmaps) { 499 accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap(); 500 for (size_t i = 0; i < num_ptrs; ++i) { 501 bitmap->Clear(ptrs[i]); 502 } 503 } 504 context->freed.objects += num_ptrs; 505 context->freed.bytes += space->FreeList(self, num_ptrs, ptrs); 506 } 507 508 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) { 509 if (Begin() >= End()) { 510 return collector::ObjectBytePair(0, 0); 511 } 512 accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap(); 513 accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap(); 514 if (swap_bitmaps) { 515 std::swap(live_bitmap, mark_bitmap); 516 } 517 AllocSpace::SweepCallbackContext scc(swap_bitmaps, this); 518 accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap, 519 reinterpret_cast<uintptr_t>(Begin()), 520 reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc); 521 return scc.freed; 522 } 523 524 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/, 525 size_t /*failed_alloc_bytes*/) { 526 UNIMPLEMENTED(FATAL); 527 } 528 529 } // namespace space 530 } // namespace gc 531 } // namespace art 532