Home | History | Annotate | Download | only in src
      1 /*-
      2  * ====================================================
      3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      4  * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
      5  *
      6  * Developed at SunPro, a Sun Microsystems, Inc. business.
      7  * Permission to use, copy, modify, and distribute this
      8  * software is freely granted, provided that this notice
      9  * is preserved.
     10  * ====================================================
     11  *
     12  * The argument reduction and testing for exceptional cases was
     13  * written by Steven G. Kargl with input from Bruce D. Evans
     14  * and David A. Schultz.
     15  */
     16 
     17 #include <sys/cdefs.h>
     18 __FBSDID("$FreeBSD$");
     19 
     20 #include <float.h>
     21 #ifdef __i386__
     22 #include <ieeefp.h>
     23 #endif
     24 
     25 #include "fpmath.h"
     26 #include "math.h"
     27 #include "math_private.h"
     28 
     29 #define	BIAS	(LDBL_MAX_EXP - 1)
     30 
     31 static const unsigned
     32     B1 = 709958130;	/* B1 = (127-127.0/3-0.03306235651)*2**23 */
     33 
     34 long double
     35 cbrtl(long double x)
     36 {
     37 	union IEEEl2bits u, v;
     38 	long double r, s, t, w;
     39 	double dr, dt, dx;
     40 	float ft, fx;
     41 	uint32_t hx;
     42 	uint16_t expsign;
     43 	int k;
     44 
     45 	u.e = x;
     46 	expsign = u.xbits.expsign;
     47 	k = expsign & 0x7fff;
     48 
     49 	/*
     50 	 * If x = +-Inf, then cbrt(x) = +-Inf.
     51 	 * If x = NaN, then cbrt(x) = NaN.
     52 	 */
     53 	if (k == BIAS + LDBL_MAX_EXP)
     54 		return (x + x);
     55 
     56 	ENTERI();
     57 	if (k == 0) {
     58 		/* If x = +-0, then cbrt(x) = +-0. */
     59 		if ((u.bits.manh | u.bits.manl) == 0)
     60 			RETURNI(x);
     61 		/* Adjust subnormal numbers. */
     62 		u.e *= 0x1.0p514;
     63 		k = u.bits.exp;
     64 		k -= BIAS + 514;
     65  	} else
     66 		k -= BIAS;
     67 	u.xbits.expsign = BIAS;
     68 	v.e = 1;
     69 
     70 	x = u.e;
     71 	switch (k % 3) {
     72 	case 1:
     73 	case -2:
     74 		x = 2*x;
     75 		k--;
     76 		break;
     77 	case 2:
     78 	case -1:
     79 		x = 4*x;
     80 		k -= 2;
     81 		break;
     82 	}
     83 	v.xbits.expsign = (expsign & 0x8000) | (BIAS + k / 3);
     84 
     85 	/*
     86 	 * The following is the guts of s_cbrtf, with the handling of
     87 	 * special values removed and extra care for accuracy not taken,
     88 	 * but with most of the extra accuracy not discarded.
     89 	 */
     90 
     91 	/* ~5-bit estimate: */
     92 	fx = x;
     93 	GET_FLOAT_WORD(hx, fx);
     94 	SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1));
     95 
     96 	/* ~16-bit estimate: */
     97 	dx = x;
     98 	dt = ft;
     99 	dr = dt * dt * dt;
    100 	dt = dt * (dx + dx + dr) / (dx + dr + dr);
    101 
    102 	/* ~47-bit estimate: */
    103 	dr = dt * dt * dt;
    104 	dt = dt * (dx + dx + dr) / (dx + dr + dr);
    105 
    106 #if LDBL_MANT_DIG == 64
    107 	/*
    108 	 * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
    109 	 * Round it away from zero to 32 bits (32 so that t*t is exact, and
    110 	 * away from zero for technical reasons).
    111 	 */
    112 	volatile double vd2 = 0x1.0p32;
    113 	volatile double vd1 = 0x1.0p-31;
    114 	#define vd ((long double)vd2 + vd1)
    115 
    116 	t = dt + vd - 0x1.0p32;
    117 #elif LDBL_MANT_DIG == 113
    118 	/*
    119 	 * Round dt away from zero to 47 bits.  Since we don't trust the 47,
    120 	 * add 2 47-bit ulps instead of 1 to round up.  Rounding is slow and
    121 	 * might be avoidable in this case, since on most machines dt will
    122 	 * have been evaluated in 53-bit precision and the technical reasons
    123 	 * for rounding up might not apply to either case in cbrtl() since
    124 	 * dt is much more accurate than needed.
    125 	 */
    126 	t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
    127 #else
    128 #error "Unsupported long double format"
    129 #endif
    130 
    131 	/*
    132      	 * Final step Newton iteration to 64 or 113 bits with
    133 	 * error < 0.667 ulps
    134 	 */
    135 	s=t*t;				/* t*t is exact */
    136 	r=x/s;				/* error <= 0.5 ulps; |r| < |t| */
    137 	w=t+t;				/* t+t is exact */
    138 	r=(r-t)/(w+r);			/* r-t is exact; w+r ~= 3*t */
    139 	t=t+t*r;			/* error <= 0.5 + 0.5/3 + epsilon */
    140 
    141 	t *= v.e;
    142 	RETURNI(t);
    143 }
    144