Home | History | Annotate | Download | only in src
      1 /* s_erff.c -- float version of s_erf.c.
      2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian (at) cygnus.com.
      3  */
      4 
      5 /*
      6  * ====================================================
      7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      8  *
      9  * Developed at SunPro, a Sun Microsystems, Inc. business.
     10  * Permission to use, copy, modify, and distribute this
     11  * software is freely granted, provided that this notice
     12  * is preserved.
     13  * ====================================================
     14  */
     15 
     16 #include <sys/cdefs.h>
     17 __FBSDID("$FreeBSD$");
     18 
     19 #include "math.h"
     20 #include "math_private.h"
     21 
     22 static const float
     23 tiny	    = 1e-30,
     24 half=  5.0000000000e-01, /* 0x3F000000 */
     25 one =  1.0000000000e+00, /* 0x3F800000 */
     26 two =  2.0000000000e+00, /* 0x40000000 */
     27 /*
     28  * Coefficients for approximation to  erf on [0,0.84375]
     29  */
     30 efx =  1.2837916613e-01, /* 0x3e0375d4 */
     31 efx8=  1.0270333290e+00, /* 0x3f8375d4 */
     32 /*
     33  *  Domain [0, 0.84375], range ~[-5.4446e-10,5.5197e-10]:
     34  *  |(erf(x) - x)/x - p(x)/q(x)| < 2**-31.
     35  */
     36 pp0  =  1.28379166e-01F, /*  0x1.06eba8p-3 */
     37 pp1  = -3.36030394e-01F, /* -0x1.58185ap-2 */
     38 pp2  = -1.86260219e-03F, /* -0x1.e8451ep-10 */
     39 qq1  =  3.12324286e-01F, /*  0x1.3fd1f0p-2 */
     40 qq2  =  2.16070302e-02F, /*  0x1.620274p-6 */
     41 qq3  = -1.98859419e-03F, /* -0x1.04a626p-9 */
     42 /*
     43  * Domain [0.84375, 1.25], range ~[-1.953e-11,1.940e-11]:
     44  * |(erf(x) - erx) - p(x)/q(x)| < 2**-36.
     45  */
     46 erx  =  8.42697144e-01F, /*  0x1.af7600p-1.  erf(1) rounded to 16 bits. */
     47 pa0  =  3.64939137e-06F, /*  0x1.e9d022p-19 */
     48 pa1  =  4.15109694e-01F, /*  0x1.a91284p-2 */
     49 pa2  = -1.65179938e-01F, /* -0x1.5249dcp-3 */
     50 pa3  =  1.10914491e-01F, /*  0x1.c64e46p-4 */
     51 qa1  =  6.02074385e-01F, /*  0x1.344318p-1 */
     52 qa2  =  5.35934687e-01F, /*  0x1.126608p-1 */
     53 qa3  =  1.68576106e-01F, /*  0x1.593e6ep-3 */
     54 qa4  =  5.62181212e-02F, /*  0x1.cc89f2p-5 */
     55 /*
     56  * Domain [1.25,1/0.35], range ~[-7.043e-10,7.457e-10]:
     57  * |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-30
     58  */
     59 ra0  = -9.87132732e-03F, /* -0x1.4376b2p-7 */
     60 ra1  = -5.53605914e-01F, /* -0x1.1b723cp-1 */
     61 ra2  = -2.17589188e+00F, /* -0x1.1683a0p+1 */
     62 ra3  = -1.43268085e+00F, /* -0x1.6ec42cp+0 */
     63 sa1  =  5.45995426e+00F, /*  0x1.5d6fe4p+2 */
     64 sa2  =  6.69798088e+00F, /*  0x1.acabb8p+2 */
     65 sa3  =  1.43113089e+00F, /*  0x1.6e5e98p+0 */
     66 sa4  = -5.77397496e-02F, /* -0x1.d90108p-5 */
     67 /*
     68  * Domain [1/0.35, 11], range ~[-2.264e-13,2.336e-13]:
     69  * |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-42
     70  */
     71 rb0  = -9.86494310e-03F, /* -0x1.434124p-7 */
     72 rb1  = -6.25171244e-01F, /* -0x1.401672p-1 */
     73 rb2  = -6.16498327e+00F, /* -0x1.8a8f16p+2 */
     74 rb3  = -1.66696873e+01F, /* -0x1.0ab70ap+4 */
     75 rb4  = -9.53764343e+00F, /* -0x1.313460p+3 */
     76 sb1  =  1.26884899e+01F, /*  0x1.96081cp+3 */
     77 sb2  =  4.51839523e+01F, /*  0x1.6978bcp+5 */
     78 sb3  =  4.72810211e+01F, /*  0x1.7a3f88p+5 */
     79 sb4  =  8.93033314e+00F; /*  0x1.1dc54ap+3 */
     80 
     81 float
     82 erff(float x)
     83 {
     84 	int32_t hx,ix,i;
     85 	float R,S,P,Q,s,y,z,r;
     86 	GET_FLOAT_WORD(hx,x);
     87 	ix = hx&0x7fffffff;
     88 	if(ix>=0x7f800000) {		/* erf(nan)=nan */
     89 	    i = ((u_int32_t)hx>>31)<<1;
     90 	    return (float)(1-i)+one/x;	/* erf(+-inf)=+-1 */
     91 	}
     92 
     93 	if(ix < 0x3f580000) {		/* |x|<0.84375 */
     94 	    if(ix < 0x38800000) { 	/* |x|<2**-14 */
     95 	        if (ix < 0x04000000)	/* |x|<0x1p-119 */
     96 		    return (8*x+efx8*x)/8;	/* avoid spurious underflow */
     97 		return x + efx*x;
     98 	    }
     99 	    z = x*x;
    100 	    r = pp0+z*(pp1+z*pp2);
    101 	    s = one+z*(qq1+z*(qq2+z*qq3));
    102 	    y = r/s;
    103 	    return x + x*y;
    104 	}
    105 	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
    106 	    s = fabsf(x)-one;
    107 	    P = pa0+s*(pa1+s*(pa2+s*pa3));
    108 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*qa4)));
    109 	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
    110 	}
    111 	if (ix >= 0x40800000) {		/* inf>|x|>=4 */
    112 	    if(hx>=0) return one-tiny; else return tiny-one;
    113 	}
    114 	x = fabsf(x);
    115  	s = one/(x*x);
    116 	if(ix< 0x4036DB6E) {	/* |x| < 1/0.35 */
    117 	    R=ra0+s*(ra1+s*(ra2+s*ra3));
    118 	    S=one+s*(sa1+s*(sa2+s*(sa3+s*sa4)));
    119 	} else {	/* |x| >= 1/0.35 */
    120 	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*rb4)));
    121 	    S=one+s*(sb1+s*(sb2+s*(sb3+s*sb4)));
    122 	}
    123 	SET_FLOAT_WORD(z,hx&0xffffe000);
    124 	r  = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
    125 	if(hx>=0) return one-r/x; else return  r/x-one;
    126 }
    127 
    128 float
    129 erfcf(float x)
    130 {
    131 	int32_t hx,ix;
    132 	float R,S,P,Q,s,y,z,r;
    133 	GET_FLOAT_WORD(hx,x);
    134 	ix = hx&0x7fffffff;
    135 	if(ix>=0x7f800000) {			/* erfc(nan)=nan */
    136 						/* erfc(+-inf)=0,2 */
    137 	    return (float)(((u_int32_t)hx>>31)<<1)+one/x;
    138 	}
    139 
    140 	if(ix < 0x3f580000) {		/* |x|<0.84375 */
    141 	    if(ix < 0x33800000)  	/* |x|<2**-24 */
    142 		return one-x;
    143 	    z = x*x;
    144 	    r = pp0+z*(pp1+z*pp2);
    145 	    s = one+z*(qq1+z*(qq2+z*qq3));
    146 	    y = r/s;
    147 	    if(hx < 0x3e800000) {  	/* x<1/4 */
    148 		return one-(x+x*y);
    149 	    } else {
    150 		r = x*y;
    151 		r += (x-half);
    152 	        return half - r ;
    153 	    }
    154 	}
    155 	if(ix < 0x3fa00000) {		/* 0.84375 <= |x| < 1.25 */
    156 	    s = fabsf(x)-one;
    157 	    P = pa0+s*(pa1+s*(pa2+s*pa3));
    158 	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*qa4)));
    159 	    if(hx>=0) {
    160 	        z  = one-erx; return z - P/Q;
    161 	    } else {
    162 		z = erx+P/Q; return one+z;
    163 	    }
    164 	}
    165 	if (ix < 0x41300000) {		/* |x|<11 */
    166 	    x = fabsf(x);
    167  	    s = one/(x*x);
    168 	    if(ix< 0x4036DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
    169 	        R=ra0+s*(ra1+s*(ra2+s*ra3));
    170 	        S=one+s*(sa1+s*(sa2+s*(sa3+s*sa4)));
    171 	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
    172 		if(hx<0&&ix>=0x40a00000) return two-tiny;/* x < -5 */
    173 	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*rb4)));
    174 		S=one+s*(sb1+s*(sb2+s*(sb3+s*sb4)));
    175 	    }
    176 	    SET_FLOAT_WORD(z,hx&0xffffe000);
    177 	    r  = expf(-z*z-0.5625F)*expf((z-x)*(z+x)+R/S);
    178 	    if(hx>0) return r/x; else return two-r/x;
    179 	} else {
    180 	    if(hx>0) return tiny*tiny; else return two-tiny;
    181 	}
    182 }
    183