Home | History | Annotate | Download | only in devices
      1 page.title=Audio Debugging
      2 @jd:body
      3 
      4 <!--
      5     Copyright 2013 The Android Open Source Project
      6 
      7     Licensed under the Apache License, Version 2.0 (the "License");
      8     you may not use this file except in compliance with the License.
      9     You may obtain a copy of the License at
     10 
     11         http://www.apache.org/licenses/LICENSE-2.0
     12 
     13     Unless required by applicable law or agreed to in writing, software
     14     distributed under the License is distributed on an "AS IS" BASIS,
     15     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16     See the License for the specific language governing permissions and
     17     limitations under the License.
     18 -->
     19 <div id="qv-wrapper">
     20   <div id="qv">
     21     <h2>In this document</h2>
     22     <ol id="auto-toc">
     23     </ol>
     24   </div>
     25 </div>
     26 
     27 <p>
     28 This article describes some tips and tricks for debugging Android audio.
     29 </p>
     30 
     31 <h2 id="teeSink">Tee Sink</h2>
     32 
     33 <p>
     34 The "tee sink" is
     35 an AudioFlinger debugging feature, available in custom builds only,
     36 for retaining a short fragment of recent audio for later analysis.
     37 This permits comparison between what was actually played or recorded
     38 vs. what was expected.
     39 </p>
     40 
     41 <p>
     42 For privacy the tee sink is disabled by default, at both compile-time and
     43 run-time.  To use the tee sink, you will need to enable it by re-compiling,
     44 and also by setting a property.  Be sure to disable this feature after you are
     45 done debugging; the tee sink should not be left enabled in production builds.
     46 </p>
     47 
     48 <p>
     49 The instructions in the remainder of this section are for Android 4.4,
     50 and may require changes for other versions.
     51 </p>
     52 
     53 <h3>Compile-time setup</h3>
     54 
     55 <ol>
     56 <li><code>cd frameworks/av/services/audioflinger</code></li>
     57 <li>Edit <code>Configuration.h</code>.</li>
     58 <li>Uncomment <code>#define TEE_SINK</code>.</li>
     59 <li>Re-build <code>libaudioflinger.so</code>.</li>
     60 <li><code>adb root</code></li>
     61 <li><code>adb remount</code></li>
     62 <li>Push or sync the new <code>libaudioflinger.so</code> to the device's <code>/system/lib</code>.</li>
     63 </ol>
     64 
     65 <h3>Run-time setup</h3>
     66 
     67 <ol>
     68 <li><code>adb shell getprop | grep ro.debuggable</code>
     69 <br />Confirm that the output is: <code>[ro.debuggable]: [1]</code>
     70 </li>
     71 <li><code>adb shell</code></li>
     72 <li><code>ls -ld /data/misc/media</code>
     73 <br />
     74 <p>
     75 Confirm that the output is:
     76 </p>
     77 <pre>
     78 drwx------ media media ... media
     79 </pre>
     80 <br />
     81 <p>
     82 If the directory does not exist, create it as follows:
     83 </p>
     84 <code>
     85 mkdir /data/misc/media
     86 chown media:media /data/misc/media
     87 </code>
     88 </li>
     89 <li><code>echo af.tee=# &gt; /data/local.prop</code>
     90 <br />Where the <code>af.tee</code> value is a number described below.
     91 </li>
     92 <li><code>chmod 644 /data/local.prop</code></li>
     93 <li><code>reboot</code></li>
     94 </ol>
     95 
     96 <h4>Values for <code>af.tee</code> property</h4>
     97 
     98 <p>
     99 The value of <code>af.tee</code> is a number between 0 and 7, expressing
    100 the sum of several bits, one per feature.
    101 See the code at <code>AudioFlinger::AudioFlinger()</code> in <code>AudioFlinger.cpp</code>
    102 for an explanation of each bit, but briefly:
    103 </p>
    104 <ul>
    105 <li>1 = input</li>
    106 <li>2 = FastMixer output</li>
    107 <li>4 = per-track AudioRecord and AudioTrack</li>
    108 </ul>
    109 
    110 <p>
    111 There is no bit for deep buffer or normal mixer yet,
    112 but you can get similar results using "4."
    113 </p>
    114 
    115 <h3>Test and acquire data</h3>
    116 
    117 <ol>
    118 <li>Run your audio test.</li>
    119 <li><code>adb shell dumpsys media.audio_flinger</code></li>
    120 <li>Look for a line in dumpsys output such as this:<br />
    121 <code>tee copied to /data/misc/media/20131010101147_2.wav</code>
    122 <br />This is a PCM .wav file.</br>
    123 </li>
    124 <li><code>adb pull</code> any <code>/data/misc/media/*.wav</code> files of interest;
    125 note that track-specific dump filenames do not appear in the dumpsys output,
    126 but are still saved to <code>/data/misc/media</code> upon track closure.
    127 </li>
    128 <li>Review the dump files for privacy concerns before sharing with others.</li>
    129 </ol>
    130 
    131 <h4>Suggestions</h4>
    132 
    133 <p>Try these ideas for more useful results:</p>
    134 
    135 <ul>
    136 <li>Disable touch sounds and key clicks.</li>
    137 <li>Maximize all volumes.</li>
    138 <li>Disable apps that make sound or record from microphone,
    139 if they are not of interest to your test.
    140 </li>
    141 <li>Track-specific dumps are only saved when the track is closed;
    142 you may need to force close an app in order to dump its track-specific data
    143 <li>Do the <code>dumpsys</code> immediately after test;
    144 there is a limited amount of recording space available.</li>
    145 <li>To make sure you don't lose your dump files,
    146 upload them to your host periodically.
    147 Only a limited number of dump files are preserved;
    148 older dumps are removed after that limit is reached.</li>
    149 </ul>
    150 
    151 <h3>Restore</h3>
    152 
    153 <p>
    154 As noted above, the tee sink feature should not be left enabled.
    155 Restore your build and device as follows:
    156 </p>
    157 <ol>
    158 <li>Revert the source code changes to <code>Configuration.h</code>.</li>
    159 <li>Re-build <code>libaudioflinger.so</code>.</li>
    160 <li>Push or sync the restored <code>libaudioflinger.so</code>
    161 to the device's <code>/system/lib</code>.
    162 </li>
    163 <li><code>adb shell</code></li>
    164 <li><code>rm /data/local.prop</code></li>
    165 <li><code>rm /data/misc/media/*.wav</code></li>
    166 <li><code>reboot</code></li>
    167 </ol>
    168 
    169 <h2 id="mediaLog">media.log</h2>
    170 
    171 <h3>ALOGx macros</h3>
    172 
    173 <p>
    174 The standard Java language logging API in Android SDK is
    175 <a href="http://developer.android.com/reference/android/util/Log.html">android.util.Log</a>.
    176 </p>
    177 
    178 <p>
    179 The corresponding C language API in Android NDK is
    180 <code>__android_log_print</code>
    181 declared in <code>&lt;android/log.h&gt;</code>.
    182 </p>
    183 
    184 <p>
    185 Within the native portion of Android framework, we
    186 prefer macros named <code>ALOGE</code>, <code>ALOGW</code>,
    187 <code>ALOGI</code>, <code>ALOGV</code>, etc.  They are declared in
    188 <code>&lt;utils/Log.h&gt;</code>, and for the purposes of this article
    189 we'll collectively refer to them as <code>ALOGx</code>.
    190 </p>
    191 
    192 <p>
    193 All of these APIs are easy-to-use and well-understood, so they are pervasive
    194 throughout the Android platform.  In particular the <code>mediaserver</code>
    195 process, which includes the AudioFlinger sound server, uses
    196 <code>ALOGx</code> extensively.
    197 </p>
    198 
    199 <p>
    200 Nevertheless, there are some limitations to <code>ALOGx</code> and friends:
    201 </p>
    202 
    203 <ul>
    204 <li>
    205 They are suspectible to "log spam": the log buffer is a shared resource
    206 so it can easily overflow due to unrelated log entries, resulting in
    207 missed information.  The <code>ALOGV</code> variant is disabled at
    208 compile-time by default.  But of course even it can result in log spam
    209 if it is enabled.
    210 </li>
    211 <li>
    212 The underlying kernel system calls could block, possibly resulting in
    213 priority inversion and consequently measurement disturbances and
    214 inaccuracies.  This is of
    215 special concern to time-critical threads such as <code>FastMixer</code>.
    216 </li>
    217 <li>
    218 If a particular log is disabled to reduce log spam,
    219 then any information that would have been captured by that log is lost.
    220 It is not possible to enable a specific log retroactively,
    221 <i>after</i> it becomes clear that the log would have been interesting.
    222 </li>
    223 </ul>
    224 
    225 <h3>NBLOG, media.log, and MediaLogService</h3>
    226 
    227 <p>
    228 The <code>NBLOG</code> APIs and associated <code>media.log</code>
    229 process and <code>MediaLogService</code>
    230 service together form a newer logging system for media, and are specifically
    231 designed to address the issues above.  We will loosely use the term
    232 "media.log" to refer to all three, but strictly speaking <code>NBLOG</code> is the
    233 C++ logging API, <code>media.log</code> is a Linux process name, and <code>MediaLogService</code>
    234 is an Android binder service for examining the logs.
    235 </p>
    236 
    237 <p>
    238 A <code>media.log</code> "timeline" is a series
    239 of log entries whose relative ordering is preserved.
    240 By convention, each thread should use it's own timeline.
    241 </p>
    242 
    243 <h3>Benefits</h3>
    244 
    245 <p>
    246 The benefits of the <code>media.log</code> system are that it:
    247 </p>
    248 <ul>
    249 <li>Doesn't spam the main log unless and until it is needed.</li>
    250 <li>Can be examined even when <code>mediaserver</code> crashes or hangs.</li>
    251 <li>Is non-blocking per timeline.</li>
    252 <li>Offers less disturbance to performance.
    253 (Of course no form of logging is completely non-intrusive.)
    254 </li>
    255 </ul>
    256 
    257 <h3>Architecture</h3>
    258 
    259 <p>
    260 The diagram below shows the relationship of the <code>mediaserver</code> process
    261 and the <code>init</code> process, before <code>media.log</code> is introduced:
    262 </p>
    263 <img src="audio/images/medialog_before.png" alt="Architecture before media.log" />
    264 <p>
    265 Notable points:
    266 </p>
    267 <ul>
    268 <li><code>init</code> forks and execs <code>mediaserver</code>.</li>
    269 <li><code>init</code> detects the death of <code>mediaserver</code>, and re-forks as necessary.</li>
    270 <li><code>ALOGx</code> logging is not shown.
    271 </ul>
    272 
    273 <p>
    274 The diagram below shows the new relationship of the components,
    275 after <code>media.log</code> is added to the architecture:
    276 </p>
    277 <img src="audio/images/medialog_after.png" alt="Architecture after media.log" />
    278 <p>
    279 Important changes:
    280 </p>
    281 
    282 <ul>
    283 
    284 <li>
    285 Clients use <code>NBLOG</code> API to construct log entries and append them to
    286 a circular buffer in shared memory.
    287 </li>
    288 
    289 <li>
    290 <code>MediaLogService</code> can dump the contents of the circular buffer at any time.
    291 </li>
    292 
    293 <li>
    294 The circular buffer is designed in such a way that any corruption of the
    295 shared memory will not crash <code>MediaLogService</code>, and it will still be able
    296 to dump as much of the buffer that is not affected by the corruption.
    297 </li>
    298 
    299 <li>
    300 The circular buffer is non-blocking and lock-free for both writing
    301 new entries and reading existing entries.
    302 </li>
    303 
    304 <li>
    305 No kernel system calls are required to write to or read from the circular buffer
    306 (other than optional timestamps).
    307 </li>
    308 
    309 </ul>
    310 
    311 <h4>Where to use</h4>
    312 
    313 <p>
    314 As of Android 4.4, there are only a few log points in AudioFlinger
    315 that use the <code>media.log</code> system.  Though the new APIs are not as
    316 easy to use as <code>ALOGx</code>, they are not extremely difficult either.
    317 We encourage you to learn the new logging system for those
    318 occasions when it is indispensable.
    319 In particular, it is recommended for AudioFlinger threads that must
    320 run frequently, periodically, and without blocking such as the
    321 <code>FastMixer</code> thread.
    322 </p>
    323 
    324 <h3>How to use</h3>
    325 
    326 <h4>Add logs</h4>
    327 
    328 <p>
    329 First, you need to add logs to your code.
    330 </p>
    331 
    332 <p>
    333 In <code>FastMixer</code> thread, use code such as this:
    334 </p>
    335 <pre>
    336 logWriter->log("string");
    337 logWriter->logf("format", parameters);
    338 logWriter->logTimestamp();
    339 </pre>
    340 <p>
    341 As this <code>NBLog</code> timeline is used only by the <code>FastMixer</code> thread,
    342 there is no need for mutual exclusion.
    343 </p>
    344 
    345 <p>
    346 In other AudioFlinger threads, use <code>mNBLogWriter</code>:
    347 </p>
    348 <pre>
    349 mNBLogWriter->log("string");
    350 mNBLogWriter->logf("format", parameters);
    351 mNBLogWriter->logTimestamp();
    352 </pre>
    353 <p>
    354 For threads other than <code>FastMixer</code>,
    355 the thread's <code>NBLog</code> timeline can be used by both the thread itself, and
    356 by binder operations.  <code>NBLog::Writer</code> does not provide any
    357 implicit mutual exclusion per timeline, so be sure that all logs occur
    358 within a context where the thread's mutex <code>mLock</code> is held.
    359 </p>
    360 
    361 <p>
    362 After you have added the logs, re-build AudioFlinger.
    363 </p>
    364 
    365 <p class="caution"><strong>Caution:</strong>
    366 A separate <code>NBLog::Writer</code> timeline is required per thread,
    367 to ensure thread safety, since timelines omit mutexes by design.  If you
    368 want more than one thread to use the same timeline, you can protect with an
    369 existing mutex (as described above for <code>mLock</code>).  Or you can
    370 use the <code>NBLog::LockedWriter</code> wrapper instead of <code>NBLog::Writer</code>.
    371 However, this negates a prime benefit of this API: its non-blocking
    372 behavior.
    373 </p>
    374 
    375 <p>
    376 The full <code>NBLog</code> API is at <code>frameworks/av/include/media/nbaio/NBLog.h</code>.
    377 </p>
    378 
    379 <h4>Enable media.log</h4>
    380 
    381 <p>
    382 <code>media.log</code> is disabled by default. It is active only when property
    383 <code>ro.test_harness</code> is <code>1</code>.  You can enable it by:
    384 </p>
    385 
    386 <pre>
    387 adb root
    388 adb shell
    389 echo ro.test_harness=1 > /data/local.prop
    390 chmod 644 /data/local.prop
    391 reboot
    392 </pre>
    393 
    394 <p>
    395 The connection is lost during reboot, so:
    396 </p>
    397 <pre>
    398 adb shell
    399 </pre>
    400 
    401 The command <code>ps media</code> will now show two processes:
    402 <ul>
    403 <li>media.log</li>
    404 <li>mediaserver</li>
    405 </ul>
    406 <p>
    407 Note the process ID of <code>mediaserver</code> for later.
    408 </p>
    409 
    410 <h4>Displaying the timelines</h4>
    411 
    412 <p>
    413 You can manually request a log dump at any time.
    414 This command shows logs from all the active and recent timelines, and then clears them:
    415 </p>
    416 <pre>
    417 dumpsys media.log
    418 </pre>
    419 
    420 <p>
    421 Note that by design timelines are independent,
    422 and there is no facility for merging timelines.
    423 </p>
    424 
    425 <h4>Recovering logs after mediaserver death</h4>
    426 
    427 <p>
    428 Now try killing <code>mediaserver</code> process: <code>kill -9 #</code>, where # is
    429 the process ID you noted earlier.  You should see a dump from <code>media.log</code>
    430 in the main <code>logcat</code>, showing all the logs leading up to the crash.
    431 </p>
    432 <pre>
    433 dumpsys media.log
    434 </pre>
    435