Home | History | Annotate | Download | only in examples
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // An example of solving a dynamically sized problem with various
     32 // solvers and loss functions.
     33 //
     34 // For a simpler bare bones example of doing bundle adjustment with
     35 // Ceres, please see simple_bundle_adjuster.cc.
     36 //
     37 // NOTE: This example will not compile without gflags and SuiteSparse.
     38 //
     39 // The problem being solved here is known as a Bundle Adjustment
     40 // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
     41 // a set of cameras P_1, ..., P_m. If the point X_i is visible in
     42 // image j, then there is a 2D observation u_ij that is the expected
     43 // projection of X_i using P_j. The aim of this optimization is to
     44 // find values of X_i and P_j such that the reprojection error
     45 //
     46 //    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
     47 //
     48 // is minimized.
     49 //
     50 // The problem used here comes from a collection of bundle adjustment
     51 // problems published at University of Washington.
     52 // http://grail.cs.washington.edu/projects/bal
     53 
     54 #include <algorithm>
     55 #include <cmath>
     56 #include <cstdio>
     57 #include <cstdlib>
     58 #include <string>
     59 #include <vector>
     60 
     61 #include "bal_problem.h"
     62 #include "ceres/ceres.h"
     63 #include "gflags/gflags.h"
     64 #include "glog/logging.h"
     65 #include "snavely_reprojection_error.h"
     66 
     67 DEFINE_string(input, "", "Input File name");
     68 DEFINE_string(trust_region_strategy, "levenberg_marquardt",
     69               "Options are: levenberg_marquardt, dogleg.");
     70 DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
     71               "subspace_dogleg.");
     72 
     73 DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
     74             "refine each successful trust region step.");
     75 
     76 DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
     77             "automatic, cameras, points, cameras,points, points,cameras");
     78 
     79 DEFINE_string(linear_solver, "sparse_schur", "Options are: "
     80               "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
     81               "dense_qr, dense_normal_cholesky and cgnr.");
     82 DEFINE_string(preconditioner, "jacobi", "Options are: "
     83               "identity, jacobi, schur_jacobi, cluster_jacobi, "
     84               "cluster_tridiagonal.");
     85 DEFINE_string(visibility_clustering, "canonical_views",
     86               "single_linkage, canonical_views");
     87 
     88 DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
     89               "Options are: suite_sparse and cx_sparse.");
     90 DEFINE_string(dense_linear_algebra_library, "eigen",
     91               "Options are: eigen and lapack.");
     92 DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
     93 
     94 DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
     95             "rotations. If false, angle axis is used.");
     96 DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
     97             "parameterization.");
     98 DEFINE_bool(robustify, false, "Use a robust loss function.");
     99 
    100 DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
    101              "accuracy of each linear solve of the truncated newton step. "
    102              "Changing this parameter can affect solve performance.");
    103 
    104 DEFINE_int32(num_threads, 1, "Number of threads.");
    105 DEFINE_int32(num_iterations, 5, "Number of iterations.");
    106 DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
    107 DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
    108             " nonmonotic steps.");
    109 
    110 DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
    111               "perturbation.");
    112 DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
    113               "translation perturbation.");
    114 DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
    115               "perturbation.");
    116 DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
    117              "of the pseudo random number generator used to generate "
    118              "the pertubations.");
    119 DEFINE_bool(line_search, false, "Use a line search instead of trust region "
    120             "algorithm.");
    121 
    122 namespace ceres {
    123 namespace examples {
    124 
    125 void SetLinearSolver(Solver::Options* options) {
    126   CHECK(StringToLinearSolverType(FLAGS_linear_solver,
    127                                  &options->linear_solver_type));
    128   CHECK(StringToPreconditionerType(FLAGS_preconditioner,
    129                                    &options->preconditioner_type));
    130   CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering,
    131                                          &options->visibility_clustering_type));
    132   CHECK(StringToSparseLinearAlgebraLibraryType(
    133             FLAGS_sparse_linear_algebra_library,
    134             &options->sparse_linear_algebra_library_type));
    135   CHECK(StringToDenseLinearAlgebraLibraryType(
    136             FLAGS_dense_linear_algebra_library,
    137             &options->dense_linear_algebra_library_type));
    138   options->num_linear_solver_threads = FLAGS_num_threads;
    139 }
    140 
    141 void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
    142   const int num_points = bal_problem->num_points();
    143   const int point_block_size = bal_problem->point_block_size();
    144   double* points = bal_problem->mutable_points();
    145 
    146   const int num_cameras = bal_problem->num_cameras();
    147   const int camera_block_size = bal_problem->camera_block_size();
    148   double* cameras = bal_problem->mutable_cameras();
    149 
    150   if (options->use_inner_iterations) {
    151     if (FLAGS_blocks_for_inner_iterations == "cameras") {
    152       LOG(INFO) << "Camera blocks for inner iterations";
    153       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
    154       for (int i = 0; i < num_cameras; ++i) {
    155         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
    156       }
    157     } else if (FLAGS_blocks_for_inner_iterations == "points") {
    158       LOG(INFO) << "Point blocks for inner iterations";
    159       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
    160       for (int i = 0; i < num_points; ++i) {
    161         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
    162       }
    163     } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
    164       LOG(INFO) << "Camera followed by point blocks for inner iterations";
    165       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
    166       for (int i = 0; i < num_cameras; ++i) {
    167         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
    168       }
    169       for (int i = 0; i < num_points; ++i) {
    170         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
    171       }
    172     } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
    173       LOG(INFO) << "Point followed by camera blocks for inner iterations";
    174       options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
    175       for (int i = 0; i < num_cameras; ++i) {
    176         options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
    177       }
    178       for (int i = 0; i < num_points; ++i) {
    179         options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
    180       }
    181     } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
    182       LOG(INFO) << "Choosing automatic blocks for inner iterations";
    183     } else {
    184       LOG(FATAL) << "Unknown block type for inner iterations: "
    185                  << FLAGS_blocks_for_inner_iterations;
    186     }
    187   }
    188 
    189   // Bundle adjustment problems have a sparsity structure that makes
    190   // them amenable to more specialized and much more efficient
    191   // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
    192   // ITERATIVE_SCHUR solvers make use of this specialized
    193   // structure.
    194   //
    195   // This can either be done by specifying Options::ordering_type =
    196   // ceres::SCHUR, in which case Ceres will automatically determine
    197   // the right ParameterBlock ordering, or by manually specifying a
    198   // suitable ordering vector and defining
    199   // Options::num_eliminate_blocks.
    200   if (FLAGS_ordering == "automatic") {
    201     return;
    202   }
    203 
    204   ceres::ParameterBlockOrdering* ordering =
    205       new ceres::ParameterBlockOrdering;
    206 
    207   // The points come before the cameras.
    208   for (int i = 0; i < num_points; ++i) {
    209     ordering->AddElementToGroup(points + point_block_size * i, 0);
    210   }
    211 
    212   for (int i = 0; i < num_cameras; ++i) {
    213     // When using axis-angle, there is a single parameter block for
    214     // the entire camera.
    215     ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
    216     // If quaternions are used, there are two blocks, so add the
    217     // second block to the ordering.
    218     if (FLAGS_use_quaternions) {
    219       ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
    220     }
    221   }
    222 
    223   options->linear_solver_ordering.reset(ordering);
    224 }
    225 
    226 void SetMinimizerOptions(Solver::Options* options) {
    227   options->max_num_iterations = FLAGS_num_iterations;
    228   options->minimizer_progress_to_stdout = true;
    229   options->num_threads = FLAGS_num_threads;
    230   options->eta = FLAGS_eta;
    231   options->max_solver_time_in_seconds = FLAGS_max_solver_time;
    232   options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
    233   if (FLAGS_line_search) {
    234     options->minimizer_type = ceres::LINE_SEARCH;
    235   }
    236 
    237   CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
    238                                         &options->trust_region_strategy_type));
    239   CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
    240   options->use_inner_iterations = FLAGS_inner_iterations;
    241 }
    242 
    243 void SetSolverOptionsFromFlags(BALProblem* bal_problem,
    244                                Solver::Options* options) {
    245   SetMinimizerOptions(options);
    246   SetLinearSolver(options);
    247   SetOrdering(bal_problem, options);
    248 }
    249 
    250 void BuildProblem(BALProblem* bal_problem, Problem* problem) {
    251   const int point_block_size = bal_problem->point_block_size();
    252   const int camera_block_size = bal_problem->camera_block_size();
    253   double* points = bal_problem->mutable_points();
    254   double* cameras = bal_problem->mutable_cameras();
    255 
    256   // Observations is 2*num_observations long array observations =
    257   // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
    258   // and y positions of the observation.
    259   const double* observations = bal_problem->observations();
    260 
    261   for (int i = 0; i < bal_problem->num_observations(); ++i) {
    262     CostFunction* cost_function;
    263     // Each Residual block takes a point and a camera as input and
    264     // outputs a 2 dimensional residual.
    265     cost_function =
    266         (FLAGS_use_quaternions)
    267         ? SnavelyReprojectionErrorWithQuaternions::Create(
    268             observations[2 * i + 0],
    269             observations[2 * i + 1])
    270         : SnavelyReprojectionError::Create(
    271             observations[2 * i + 0],
    272             observations[2 * i + 1]);
    273 
    274     // If enabled use Huber's loss function.
    275     LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
    276 
    277     // Each observation correponds to a pair of a camera and a point
    278     // which are identified by camera_index()[i] and point_index()[i]
    279     // respectively.
    280     double* camera =
    281         cameras + camera_block_size * bal_problem->camera_index()[i];
    282     double* point = points + point_block_size * bal_problem->point_index()[i];
    283 
    284     if (FLAGS_use_quaternions) {
    285       // When using quaternions, we split the camera into two
    286       // parameter blocks. One of size 4 for the quaternion and the
    287       // other of size 6 containing the translation, focal length and
    288       // the radial distortion parameters.
    289       problem->AddResidualBlock(cost_function,
    290                                 loss_function,
    291                                 camera,
    292                                 camera + 4,
    293                                 point);
    294     } else {
    295       problem->AddResidualBlock(cost_function, loss_function, camera, point);
    296     }
    297   }
    298 
    299   if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
    300     LocalParameterization* quaternion_parameterization =
    301          new QuaternionParameterization;
    302     for (int i = 0; i < bal_problem->num_cameras(); ++i) {
    303       problem->SetParameterization(cameras + camera_block_size * i,
    304                                    quaternion_parameterization);
    305     }
    306   }
    307 }
    308 
    309 void SolveProblem(const char* filename) {
    310   BALProblem bal_problem(filename, FLAGS_use_quaternions);
    311   Problem problem;
    312 
    313   srand(FLAGS_random_seed);
    314   bal_problem.Normalize();
    315   bal_problem.Perturb(FLAGS_rotation_sigma,
    316                       FLAGS_translation_sigma,
    317                       FLAGS_point_sigma);
    318 
    319   BuildProblem(&bal_problem, &problem);
    320   Solver::Options options;
    321   SetSolverOptionsFromFlags(&bal_problem, &options);
    322   options.gradient_tolerance = 1e-16;
    323   options.function_tolerance = 1e-16;
    324   Solver::Summary summary;
    325   Solve(options, &problem, &summary);
    326   std::cout << summary.FullReport() << "\n";
    327 }
    328 
    329 }  // namespace examples
    330 }  // namespace ceres
    331 
    332 int main(int argc, char** argv) {
    333   google::ParseCommandLineFlags(&argc, &argv, true);
    334   google::InitGoogleLogging(argv[0]);
    335   if (FLAGS_input.empty()) {
    336     LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
    337     return 1;
    338   }
    339 
    340   CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
    341       << "--use_local_parameterization can only be used with "
    342       << "--use_quaternions.";
    343   ceres::examples::SolveProblem(FLAGS_input.c_str());
    344   return 0;
    345 }
    346