Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2013 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #ifndef CERES_PUBLIC_COVARIANCE_H_
     32 #define CERES_PUBLIC_COVARIANCE_H_
     33 
     34 #include <utility>
     35 #include <vector>
     36 #include "ceres/internal/port.h"
     37 #include "ceres/internal/scoped_ptr.h"
     38 #include "ceres/types.h"
     39 #include "ceres/internal/disable_warnings.h"
     40 
     41 namespace ceres {
     42 
     43 class Problem;
     44 
     45 namespace internal {
     46 class CovarianceImpl;
     47 }  // namespace internal
     48 
     49 // WARNING
     50 // =======
     51 // It is very easy to use this class incorrectly without understanding
     52 // the underlying mathematics. Please read and understand the
     53 // documentation completely before attempting to use this class.
     54 //
     55 //
     56 // This class allows the user to evaluate the covariance for a
     57 // non-linear least squares problem and provides random access to its
     58 // blocks
     59 //
     60 // Background
     61 // ==========
     62 // One way to assess the quality of the solution returned by a
     63 // non-linear least squares solve is to analyze the covariance of the
     64 // solution.
     65 //
     66 // Let us consider the non-linear regression problem
     67 //
     68 //   y = f(x) + N(0, I)
     69 //
     70 // i.e., the observation y is a random non-linear function of the
     71 // independent variable x with mean f(x) and identity covariance. Then
     72 // the maximum likelihood estimate of x given observations y is the
     73 // solution to the non-linear least squares problem:
     74 //
     75 //  x* = arg min_x |f(x)|^2
     76 //
     77 // And the covariance of x* is given by
     78 //
     79 //  C(x*) = inverse[J'(x*)J(x*)]
     80 //
     81 // Here J(x*) is the Jacobian of f at x*. The above formula assumes
     82 // that J(x*) has full column rank.
     83 //
     84 // If J(x*) is rank deficient, then the covariance matrix C(x*) is
     85 // also rank deficient and is given by
     86 //
     87 //  C(x*) =  pseudoinverse[J'(x*)J(x*)]
     88 //
     89 // Note that in the above, we assumed that the covariance
     90 // matrix for y was identity. This is an important assumption. If this
     91 // is not the case and we have
     92 //
     93 //  y = f(x) + N(0, S)
     94 //
     95 // Where S is a positive semi-definite matrix denoting the covariance
     96 // of y, then the maximum likelihood problem to be solved is
     97 //
     98 //  x* = arg min_x f'(x) inverse[S] f(x)
     99 //
    100 // and the corresponding covariance estimate of x* is given by
    101 //
    102 //  C(x*) = inverse[J'(x*) inverse[S] J(x*)]
    103 //
    104 // So, if it is the case that the observations being fitted to have a
    105 // covariance matrix not equal to identity, then it is the user's
    106 // responsibility that the corresponding cost functions are correctly
    107 // scaled, e.g. in the above case the cost function for this problem
    108 // should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
    109 // is the inverse square root of the covariance matrix S.
    110 //
    111 // This class allows the user to evaluate the covariance for a
    112 // non-linear least squares problem and provides random access to its
    113 // blocks. The computation assumes that the CostFunctions compute
    114 // residuals such that their covariance is identity.
    115 //
    116 // Since the computation of the covariance matrix requires computing
    117 // the inverse of a potentially large matrix, this can involve a
    118 // rather large amount of time and memory. However, it is usually the
    119 // case that the user is only interested in a small part of the
    120 // covariance matrix. Quite often just the block diagonal. This class
    121 // allows the user to specify the parts of the covariance matrix that
    122 // she is interested in and then uses this information to only compute
    123 // and store those parts of the covariance matrix.
    124 //
    125 // Rank of the Jacobian
    126 // --------------------
    127 // As we noted above, if the jacobian is rank deficient, then the
    128 // inverse of J'J is not defined and instead a pseudo inverse needs to
    129 // be computed.
    130 //
    131 // The rank deficiency in J can be structural -- columns which are
    132 // always known to be zero or numerical -- depending on the exact
    133 // values in the Jacobian.
    134 //
    135 // Structural rank deficiency occurs when the problem contains
    136 // parameter blocks that are constant. This class correctly handles
    137 // structural rank deficiency like that.
    138 //
    139 // Numerical rank deficiency, where the rank of the matrix cannot be
    140 // predicted by its sparsity structure and requires looking at its
    141 // numerical values is more complicated. Here again there are two
    142 // cases.
    143 //
    144 //   a. The rank deficiency arises from overparameterization. e.g., a
    145 //   four dimensional quaternion used to parameterize SO(3), which is
    146 //   a three dimensional manifold. In cases like this, the user should
    147 //   use an appropriate LocalParameterization. Not only will this lead
    148 //   to better numerical behaviour of the Solver, it will also expose
    149 //   the rank deficiency to the Covariance object so that it can
    150 //   handle it correctly.
    151 //
    152 //   b. More general numerical rank deficiency in the Jacobian
    153 //   requires the computation of the so called Singular Value
    154 //   Decomposition (SVD) of J'J. We do not know how to do this for
    155 //   large sparse matrices efficiently. For small and moderate sized
    156 //   problems this is done using dense linear algebra.
    157 //
    158 // Gauge Invariance
    159 // ----------------
    160 // In structure from motion (3D reconstruction) problems, the
    161 // reconstruction is ambiguous upto a similarity transform. This is
    162 // known as a Gauge Ambiguity. Handling Gauges correctly requires the
    163 // use of SVD or custom inversion algorithms. For small problems the
    164 // user can use the dense algorithm. For more details see
    165 //
    166 // Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
    167 // transformations for uncertainty description of geometric structure
    168 // with indeterminacy. IEEE Transactions on Information Theory 47(5):
    169 // 2017-2028 (2001)
    170 //
    171 // Example Usage
    172 // =============
    173 //
    174 //  double x[3];
    175 //  double y[2];
    176 //
    177 //  Problem problem;
    178 //  problem.AddParameterBlock(x, 3);
    179 //  problem.AddParameterBlock(y, 2);
    180 //  <Build Problem>
    181 //  <Solve Problem>
    182 //
    183 //  Covariance::Options options;
    184 //  Covariance covariance(options);
    185 //
    186 //  vector<pair<const double*, const double*> > covariance_blocks;
    187 //  covariance_blocks.push_back(make_pair(x, x));
    188 //  covariance_blocks.push_back(make_pair(y, y));
    189 //  covariance_blocks.push_back(make_pair(x, y));
    190 //
    191 //  CHECK(covariance.Compute(covariance_blocks, &problem));
    192 //
    193 //  double covariance_xx[3 * 3];
    194 //  double covariance_yy[2 * 2];
    195 //  double covariance_xy[3 * 2];
    196 //  covariance.GetCovarianceBlock(x, x, covariance_xx)
    197 //  covariance.GetCovarianceBlock(y, y, covariance_yy)
    198 //  covariance.GetCovarianceBlock(x, y, covariance_xy)
    199 //
    200 class CERES_EXPORT Covariance {
    201  public:
    202   struct CERES_EXPORT Options {
    203     Options()
    204 #ifndef CERES_NO_SUITESPARSE
    205         : algorithm_type(SUITE_SPARSE_QR),
    206 #else
    207         : algorithm_type(EIGEN_SPARSE_QR),
    208 #endif
    209           min_reciprocal_condition_number(1e-14),
    210           null_space_rank(0),
    211           num_threads(1),
    212           apply_loss_function(true) {
    213     }
    214 
    215     // Ceres supports three different algorithms for covariance
    216     // estimation, which represent different tradeoffs in speed,
    217     // accuracy and reliability.
    218     //
    219     // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
    220     //    computations. It computes the singular value decomposition
    221     //
    222     //      U * S * V' = J
    223     //
    224     //    and then uses it to compute the pseudo inverse of J'J as
    225     //
    226     //      pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
    227     //
    228     //    It is an accurate but slow method and should only be used
    229     //    for small to moderate sized problems. It can handle
    230     //    full-rank as well as rank deficient Jacobians.
    231     //
    232     // 2. EIGEN_SPARSE_QR uses the sparse QR factorization algorithm
    233     //    in Eigen to compute the decomposition
    234     //
    235     //      Q * R = J
    236     //
    237     //    [J'J]^-1 = [R*R']^-1
    238     //
    239     //    It is a moderately fast algorithm for sparse matrices.
    240     //
    241     // 3. SUITE_SPARSE_QR uses the SuiteSparseQR sparse QR
    242     //    factorization algorithm. It uses dense linear algebra and is
    243     //    multi threaded, so for large sparse sparse matrices it is
    244     //    significantly faster than EIGEN_SPARSE_QR.
    245     //
    246     // Neither EIGEN_SPARSE_QR not SUITE_SPARSE_QR are capable of
    247     // computing the covariance if the Jacobian is rank deficient.
    248     CovarianceAlgorithmType algorithm_type;
    249 
    250     // If the Jacobian matrix is near singular, then inverting J'J
    251     // will result in unreliable results, e.g, if
    252     //
    253     //   J = [1.0 1.0         ]
    254     //       [1.0 1.0000001   ]
    255     //
    256     // which is essentially a rank deficient matrix, we have
    257     //
    258     //   inv(J'J) = [ 2.0471e+14  -2.0471e+14]
    259     //              [-2.0471e+14   2.0471e+14]
    260     //
    261     // This is not a useful result. Therefore, by default
    262     // Covariance::Compute will return false if a rank deficient
    263     // Jacobian is encountered. How rank deficiency is detected
    264     // depends on the algorithm being used.
    265     //
    266     // 1. DENSE_SVD
    267     //
    268     //      min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
    269     //
    270     //    where min_sigma and max_sigma are the minimum and maxiumum
    271     //    singular values of J respectively.
    272     //
    273     // 2. SUITE_SPARSE_QR and EIGEN_SPARSE_QR
    274     //
    275     //      rank(J) < num_col(J)
    276     //
    277     //   Here rank(J) is the estimate of the rank of J returned by the
    278     //   sparse QR factorization algorithm. It is a fairly reliable
    279     //   indication of rank deficiency.
    280     //
    281     double min_reciprocal_condition_number;
    282 
    283     // When using DENSE_SVD, the user has more control in dealing with
    284     // singular and near singular covariance matrices.
    285     //
    286     // As mentioned above, when the covariance matrix is near
    287     // singular, instead of computing the inverse of J'J, the
    288     // Moore-Penrose pseudoinverse of J'J should be computed.
    289     //
    290     // If J'J has the eigen decomposition (lambda_i, e_i), where
    291     // lambda_i is the i^th eigenvalue and e_i is the corresponding
    292     // eigenvector, then the inverse of J'J is
    293     //
    294     //   inverse[J'J] = sum_i e_i e_i' / lambda_i
    295     //
    296     // and computing the pseudo inverse involves dropping terms from
    297     // this sum that correspond to small eigenvalues.
    298     //
    299     // How terms are dropped is controlled by
    300     // min_reciprocal_condition_number and null_space_rank.
    301     //
    302     // If null_space_rank is non-negative, then the smallest
    303     // null_space_rank eigenvalue/eigenvectors are dropped
    304     // irrespective of the magnitude of lambda_i. If the ratio of the
    305     // smallest non-zero eigenvalue to the largest eigenvalue in the
    306     // truncated matrix is still below
    307     // min_reciprocal_condition_number, then the Covariance::Compute()
    308     // will fail and return false.
    309     //
    310     // Setting null_space_rank = -1 drops all terms for which
    311     //
    312     //   lambda_i / lambda_max < min_reciprocal_condition_number.
    313     //
    314     // This option has no effect on the SUITE_SPARSE_QR and
    315     // EIGEN_SPARSE_QR algorithms.
    316     int null_space_rank;
    317 
    318     int num_threads;
    319 
    320     // Even though the residual blocks in the problem may contain loss
    321     // functions, setting apply_loss_function to false will turn off
    322     // the application of the loss function to the output of the cost
    323     // function and in turn its effect on the covariance.
    324     //
    325     // TODO(sameergaarwal): Expand this based on Jim's experiments.
    326     bool apply_loss_function;
    327   };
    328 
    329   explicit Covariance(const Options& options);
    330   ~Covariance();
    331 
    332   // Compute a part of the covariance matrix.
    333   //
    334   // The vector covariance_blocks, indexes into the covariance matrix
    335   // block-wise using pairs of parameter blocks. This allows the
    336   // covariance estimation algorithm to only compute and store these
    337   // blocks.
    338   //
    339   // Since the covariance matrix is symmetric, if the user passes
    340   // (block1, block2), then GetCovarianceBlock can be called with
    341   // block1, block2 as well as block2, block1.
    342   //
    343   // covariance_blocks cannot contain duplicates. Bad things will
    344   // happen if they do.
    345   //
    346   // Note that the list of covariance_blocks is only used to determine
    347   // what parts of the covariance matrix are computed. The full
    348   // Jacobian is used to do the computation, i.e. they do not have an
    349   // impact on what part of the Jacobian is used for computation.
    350   //
    351   // The return value indicates the success or failure of the
    352   // covariance computation. Please see the documentation for
    353   // Covariance::Options for more on the conditions under which this
    354   // function returns false.
    355   bool Compute(
    356       const vector<pair<const double*, const double*> >& covariance_blocks,
    357       Problem* problem);
    358 
    359   // Return the block of the covariance matrix corresponding to
    360   // parameter_block1 and parameter_block2.
    361   //
    362   // Compute must be called before the first call to
    363   // GetCovarianceBlock and the pair <parameter_block1,
    364   // parameter_block2> OR the pair <parameter_block2,
    365   // parameter_block1> must have been present in the vector
    366   // covariance_blocks when Compute was called. Otherwise
    367   // GetCovarianceBlock will return false.
    368   //
    369   // covariance_block must point to a memory location that can store a
    370   // parameter_block1_size x parameter_block2_size matrix. The
    371   // returned covariance will be a row-major matrix.
    372   bool GetCovarianceBlock(const double* parameter_block1,
    373                           const double* parameter_block2,
    374                           double* covariance_block) const;
    375 
    376  private:
    377   internal::scoped_ptr<internal::CovarianceImpl> impl_;
    378 };
    379 
    380 }  // namespace ceres
    381 
    382 #include "ceres/internal/reenable_warnings.h"
    383 
    384 #endif  // CERES_PUBLIC_COVARIANCE_H_
    385