1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/tracked_objects.h" 6 7 #include <limits.h> 8 #include <stdlib.h> 9 10 #include "base/atomicops.h" 11 #include "base/base_switches.h" 12 #include "base/command_line.h" 13 #include "base/compiler_specific.h" 14 #include "base/debug/leak_annotations.h" 15 #include "base/logging.h" 16 #include "base/process/process_handle.h" 17 #include "base/profiler/alternate_timer.h" 18 #include "base/strings/stringprintf.h" 19 #include "base/third_party/valgrind/memcheck.h" 20 #include "base/tracking_info.h" 21 22 using base::TimeDelta; 23 24 namespace base { 25 class TimeDelta; 26 } 27 28 namespace tracked_objects { 29 30 namespace { 31 // Flag to compile out almost all of the task tracking code. 32 const bool kTrackAllTaskObjects = true; 33 34 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is 35 // negligible, enable by default. 36 // Flag to compile out parent-child link recording. 37 const bool kTrackParentChildLinks = false; 38 39 // When ThreadData is first initialized, should we start in an ACTIVE state to 40 // record all of the startup-time tasks, or should we start up DEACTIVATED, so 41 // that we only record after parsing the command line flag --enable-tracking. 42 // Note that the flag may force either state, so this really controls only the 43 // period of time up until that flag is parsed. If there is no flag seen, then 44 // this state may prevail for much or all of the process lifetime. 45 const ThreadData::Status kInitialStartupState = 46 ThreadData::PROFILING_CHILDREN_ACTIVE; 47 48 // Control whether an alternate time source (Now() function) is supported by 49 // the ThreadData class. This compile time flag should be set to true if we 50 // want other modules (such as a memory allocator, or a thread-specific CPU time 51 // clock) to be able to provide a thread-specific Now() function. Without this 52 // compile-time flag, the code will only support the wall-clock time. This flag 53 // can be flipped to efficiently disable this path (if there is a performance 54 // problem with its presence). 55 static const bool kAllowAlternateTimeSourceHandling = true; 56 57 inline bool IsProfilerTimingEnabled() { 58 enum { 59 UNDEFINED_TIMING, 60 ENABLED_TIMING, 61 DISABLED_TIMING, 62 }; 63 static base::subtle::Atomic32 timing_enabled = UNDEFINED_TIMING; 64 // Reading |timing_enabled| is done without barrier because multiple 65 // initialization is not an issue while the barrier can be relatively costly 66 // given that this method is sometimes called in a tight loop. 67 base::subtle::Atomic32 current_timing_enabled = 68 base::subtle::NoBarrier_Load(&timing_enabled); 69 if (current_timing_enabled == UNDEFINED_TIMING) { 70 if (!CommandLine::InitializedForCurrentProcess()) 71 return true; 72 current_timing_enabled = 73 (CommandLine::ForCurrentProcess()->GetSwitchValueASCII( 74 switches::kProfilerTiming) == 75 switches::kProfilerTimingDisabledValue) 76 ? DISABLED_TIMING 77 : ENABLED_TIMING; 78 base::subtle::NoBarrier_Store(&timing_enabled, current_timing_enabled); 79 } 80 return current_timing_enabled == ENABLED_TIMING; 81 } 82 83 } // namespace 84 85 //------------------------------------------------------------------------------ 86 // DeathData tallies durations when a death takes place. 87 88 DeathData::DeathData() { 89 Clear(); 90 } 91 92 DeathData::DeathData(int count) { 93 Clear(); 94 count_ = count; 95 } 96 97 // TODO(jar): I need to see if this macro to optimize branching is worth using. 98 // 99 // This macro has no branching, so it is surely fast, and is equivalent to: 100 // if (assign_it) 101 // target = source; 102 // We use a macro rather than a template to force this to inline. 103 // Related code for calculating max is discussed on the web. 104 #define CONDITIONAL_ASSIGN(assign_it, target, source) \ 105 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it)) 106 107 void DeathData::RecordDeath(const int32 queue_duration, 108 const int32 run_duration, 109 int32 random_number) { 110 // We'll just clamp at INT_MAX, but we should note this in the UI as such. 111 if (count_ < INT_MAX) 112 ++count_; 113 queue_duration_sum_ += queue_duration; 114 run_duration_sum_ += run_duration; 115 116 if (queue_duration_max_ < queue_duration) 117 queue_duration_max_ = queue_duration; 118 if (run_duration_max_ < run_duration) 119 run_duration_max_ = run_duration; 120 121 // Take a uniformly distributed sample over all durations ever supplied. 122 // The probability that we (instead) use this new sample is 1/count_. This 123 // results in a completely uniform selection of the sample (at least when we 124 // don't clamp count_... but that should be inconsequentially likely). 125 // We ignore the fact that we correlated our selection of a sample to the run 126 // and queue times (i.e., we used them to generate random_number). 127 CHECK_GT(count_, 0); 128 if (0 == (random_number % count_)) { 129 queue_duration_sample_ = queue_duration; 130 run_duration_sample_ = run_duration; 131 } 132 } 133 134 int DeathData::count() const { return count_; } 135 136 int32 DeathData::run_duration_sum() const { return run_duration_sum_; } 137 138 int32 DeathData::run_duration_max() const { return run_duration_max_; } 139 140 int32 DeathData::run_duration_sample() const { 141 return run_duration_sample_; 142 } 143 144 int32 DeathData::queue_duration_sum() const { 145 return queue_duration_sum_; 146 } 147 148 int32 DeathData::queue_duration_max() const { 149 return queue_duration_max_; 150 } 151 152 int32 DeathData::queue_duration_sample() const { 153 return queue_duration_sample_; 154 } 155 156 void DeathData::ResetMax() { 157 run_duration_max_ = 0; 158 queue_duration_max_ = 0; 159 } 160 161 void DeathData::Clear() { 162 count_ = 0; 163 run_duration_sum_ = 0; 164 run_duration_max_ = 0; 165 run_duration_sample_ = 0; 166 queue_duration_sum_ = 0; 167 queue_duration_max_ = 0; 168 queue_duration_sample_ = 0; 169 } 170 171 //------------------------------------------------------------------------------ 172 DeathDataSnapshot::DeathDataSnapshot() 173 : count(-1), 174 run_duration_sum(-1), 175 run_duration_max(-1), 176 run_duration_sample(-1), 177 queue_duration_sum(-1), 178 queue_duration_max(-1), 179 queue_duration_sample(-1) { 180 } 181 182 DeathDataSnapshot::DeathDataSnapshot( 183 const tracked_objects::DeathData& death_data) 184 : count(death_data.count()), 185 run_duration_sum(death_data.run_duration_sum()), 186 run_duration_max(death_data.run_duration_max()), 187 run_duration_sample(death_data.run_duration_sample()), 188 queue_duration_sum(death_data.queue_duration_sum()), 189 queue_duration_max(death_data.queue_duration_max()), 190 queue_duration_sample(death_data.queue_duration_sample()) { 191 } 192 193 DeathDataSnapshot::~DeathDataSnapshot() { 194 } 195 196 //------------------------------------------------------------------------------ 197 BirthOnThread::BirthOnThread(const Location& location, 198 const ThreadData& current) 199 : location_(location), 200 birth_thread_(¤t) { 201 } 202 203 //------------------------------------------------------------------------------ 204 BirthOnThreadSnapshot::BirthOnThreadSnapshot() { 205 } 206 207 BirthOnThreadSnapshot::BirthOnThreadSnapshot( 208 const tracked_objects::BirthOnThread& birth) 209 : location(birth.location()), 210 thread_name(birth.birth_thread()->thread_name()) { 211 } 212 213 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() { 214 } 215 216 //------------------------------------------------------------------------------ 217 Births::Births(const Location& location, const ThreadData& current) 218 : BirthOnThread(location, current), 219 birth_count_(1) { } 220 221 int Births::birth_count() const { return birth_count_; } 222 223 void Births::RecordBirth() { ++birth_count_; } 224 225 void Births::ForgetBirth() { --birth_count_; } 226 227 void Births::Clear() { birth_count_ = 0; } 228 229 //------------------------------------------------------------------------------ 230 // ThreadData maintains the central data for all births and deaths on a single 231 // thread. 232 233 // TODO(jar): We should pull all these static vars together, into a struct, and 234 // optimize layout so that we benefit from locality of reference during accesses 235 // to them. 236 237 // static 238 NowFunction* ThreadData::now_function_ = NULL; 239 240 // static 241 bool ThreadData::now_function_is_time_ = false; 242 243 // A TLS slot which points to the ThreadData instance for the current thread. We 244 // do a fake initialization here (zeroing out data), and then the real in-place 245 // construction happens when we call tls_index_.Initialize(). 246 // static 247 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER; 248 249 // static 250 int ThreadData::worker_thread_data_creation_count_ = 0; 251 252 // static 253 int ThreadData::cleanup_count_ = 0; 254 255 // static 256 int ThreadData::incarnation_counter_ = 0; 257 258 // static 259 ThreadData* ThreadData::all_thread_data_list_head_ = NULL; 260 261 // static 262 ThreadData* ThreadData::first_retired_worker_ = NULL; 263 264 // static 265 base::LazyInstance<base::Lock>::Leaky 266 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER; 267 268 // static 269 ThreadData::Status ThreadData::status_ = ThreadData::UNINITIALIZED; 270 271 ThreadData::ThreadData(const std::string& suggested_name) 272 : next_(NULL), 273 next_retired_worker_(NULL), 274 worker_thread_number_(0), 275 incarnation_count_for_pool_(-1), 276 current_stopwatch_(NULL) { 277 DCHECK_GE(suggested_name.size(), 0u); 278 thread_name_ = suggested_name; 279 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_. 280 } 281 282 ThreadData::ThreadData(int thread_number) 283 : next_(NULL), 284 next_retired_worker_(NULL), 285 worker_thread_number_(thread_number), 286 incarnation_count_for_pool_(-1), 287 current_stopwatch_(NULL) { 288 CHECK_GT(thread_number, 0); 289 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number); 290 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_. 291 } 292 293 ThreadData::~ThreadData() {} 294 295 void ThreadData::PushToHeadOfList() { 296 // Toss in a hint of randomness (atop the uniniitalized value). 297 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_, 298 sizeof(random_number_)); 299 MSAN_UNPOISON(&random_number_, sizeof(random_number_)); 300 random_number_ += static_cast<int32>(this - static_cast<ThreadData*>(0)); 301 random_number_ ^= (Now() - TrackedTime()).InMilliseconds(); 302 303 DCHECK(!next_); 304 base::AutoLock lock(*list_lock_.Pointer()); 305 incarnation_count_for_pool_ = incarnation_counter_; 306 next_ = all_thread_data_list_head_; 307 all_thread_data_list_head_ = this; 308 } 309 310 // static 311 ThreadData* ThreadData::first() { 312 base::AutoLock lock(*list_lock_.Pointer()); 313 return all_thread_data_list_head_; 314 } 315 316 ThreadData* ThreadData::next() const { return next_; } 317 318 // static 319 void ThreadData::InitializeThreadContext(const std::string& suggested_name) { 320 if (!Initialize()) // Always initialize if needed. 321 return; 322 ThreadData* current_thread_data = 323 reinterpret_cast<ThreadData*>(tls_index_.Get()); 324 if (current_thread_data) 325 return; // Browser tests instigate this. 326 current_thread_data = new ThreadData(suggested_name); 327 tls_index_.Set(current_thread_data); 328 } 329 330 // static 331 ThreadData* ThreadData::Get() { 332 if (!tls_index_.initialized()) 333 return NULL; // For unittests only. 334 ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get()); 335 if (registered) 336 return registered; 337 338 // We must be a worker thread, since we didn't pre-register. 339 ThreadData* worker_thread_data = NULL; 340 int worker_thread_number = 0; 341 { 342 base::AutoLock lock(*list_lock_.Pointer()); 343 if (first_retired_worker_) { 344 worker_thread_data = first_retired_worker_; 345 first_retired_worker_ = first_retired_worker_->next_retired_worker_; 346 worker_thread_data->next_retired_worker_ = NULL; 347 } else { 348 worker_thread_number = ++worker_thread_data_creation_count_; 349 } 350 } 351 352 // If we can't find a previously used instance, then we have to create one. 353 if (!worker_thread_data) { 354 DCHECK_GT(worker_thread_number, 0); 355 worker_thread_data = new ThreadData(worker_thread_number); 356 } 357 DCHECK_GT(worker_thread_data->worker_thread_number_, 0); 358 359 tls_index_.Set(worker_thread_data); 360 return worker_thread_data; 361 } 362 363 // static 364 void ThreadData::OnThreadTermination(void* thread_data) { 365 DCHECK(thread_data); // TLS should *never* call us with a NULL. 366 // We must NOT do any allocations during this callback. There is a chance 367 // that the allocator is no longer active on this thread. 368 if (!kTrackAllTaskObjects) 369 return; // Not compiled in. 370 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup(); 371 } 372 373 void ThreadData::OnThreadTerminationCleanup() { 374 // The list_lock_ was created when we registered the callback, so it won't be 375 // allocated here despite the lazy reference. 376 base::AutoLock lock(*list_lock_.Pointer()); 377 if (incarnation_counter_ != incarnation_count_for_pool_) 378 return; // ThreadData was constructed in an earlier unit test. 379 ++cleanup_count_; 380 // Only worker threads need to be retired and reused. 381 if (!worker_thread_number_) { 382 return; 383 } 384 // We must NOT do any allocations during this callback. 385 // Using the simple linked lists avoids all allocations. 386 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL)); 387 this->next_retired_worker_ = first_retired_worker_; 388 first_retired_worker_ = this; 389 } 390 391 // static 392 void ThreadData::Snapshot(bool reset_max, ProcessDataSnapshot* process_data) { 393 // Add births that have run to completion to |collected_data|. 394 // |birth_counts| tracks the total number of births recorded at each location 395 // for which we have not seen a death count. 396 BirthCountMap birth_counts; 397 ThreadData::SnapshotAllExecutedTasks(reset_max, process_data, &birth_counts); 398 399 // Add births that are still active -- i.e. objects that have tallied a birth, 400 // but have not yet tallied a matching death, and hence must be either 401 // running, queued up, or being held in limbo for future posting. 402 for (BirthCountMap::const_iterator it = birth_counts.begin(); 403 it != birth_counts.end(); ++it) { 404 if (it->second > 0) { 405 process_data->tasks.push_back( 406 TaskSnapshot(*it->first, DeathData(it->second), "Still_Alive")); 407 } 408 } 409 } 410 411 Births* ThreadData::TallyABirth(const Location& location) { 412 BirthMap::iterator it = birth_map_.find(location); 413 Births* child; 414 if (it != birth_map_.end()) { 415 child = it->second; 416 child->RecordBirth(); 417 } else { 418 child = new Births(location, *this); // Leak this. 419 // Lock since the map may get relocated now, and other threads sometimes 420 // snapshot it (but they lock before copying it). 421 base::AutoLock lock(map_lock_); 422 birth_map_[location] = child; 423 } 424 425 if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE && 426 !parent_stack_.empty()) { 427 const Births* parent = parent_stack_.top(); 428 ParentChildPair pair(parent, child); 429 if (parent_child_set_.find(pair) == parent_child_set_.end()) { 430 // Lock since the map may get relocated now, and other threads sometimes 431 // snapshot it (but they lock before copying it). 432 base::AutoLock lock(map_lock_); 433 parent_child_set_.insert(pair); 434 } 435 } 436 437 return child; 438 } 439 440 void ThreadData::TallyADeath(const Births& birth, 441 int32 queue_duration, 442 const TaskStopwatch& stopwatch) { 443 int32 run_duration = stopwatch.RunDurationMs(); 444 445 // Stir in some randomness, plus add constant in case durations are zero. 446 const int32 kSomePrimeNumber = 2147483647; 447 random_number_ += queue_duration + run_duration + kSomePrimeNumber; 448 // An address is going to have some randomness to it as well ;-). 449 random_number_ ^= static_cast<int32>(&birth - reinterpret_cast<Births*>(0)); 450 451 // We don't have queue durations without OS timer. OS timer is automatically 452 // used for task-post-timing, so the use of an alternate timer implies all 453 // queue times are invalid, unless it was explicitly said that we can trust 454 // the alternate timer. 455 if (kAllowAlternateTimeSourceHandling && 456 now_function_ && 457 !now_function_is_time_) { 458 queue_duration = 0; 459 } 460 461 DeathMap::iterator it = death_map_.find(&birth); 462 DeathData* death_data; 463 if (it != death_map_.end()) { 464 death_data = &it->second; 465 } else { 466 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now. 467 death_data = &death_map_[&birth]; 468 } // Release lock ASAP. 469 death_data->RecordDeath(queue_duration, run_duration, random_number_); 470 471 if (!kTrackParentChildLinks) 472 return; 473 if (!parent_stack_.empty()) { // We might get turned off. 474 DCHECK_EQ(parent_stack_.top(), &birth); 475 parent_stack_.pop(); 476 } 477 } 478 479 // static 480 Births* ThreadData::TallyABirthIfActive(const Location& location) { 481 if (!kTrackAllTaskObjects) 482 return NULL; // Not compiled in. 483 484 if (!TrackingStatus()) 485 return NULL; 486 ThreadData* current_thread_data = Get(); 487 if (!current_thread_data) 488 return NULL; 489 return current_thread_data->TallyABirth(location); 490 } 491 492 // static 493 void ThreadData::TallyRunOnNamedThreadIfTracking( 494 const base::TrackingInfo& completed_task, 495 const TaskStopwatch& stopwatch) { 496 if (!kTrackAllTaskObjects) 497 return; // Not compiled in. 498 499 // Even if we have been DEACTIVATED, we will process any pending births so 500 // that our data structures (which counted the outstanding births) remain 501 // consistent. 502 const Births* birth = completed_task.birth_tally; 503 if (!birth) 504 return; 505 ThreadData* current_thread_data = stopwatch.GetThreadData(); 506 if (!current_thread_data) 507 return; 508 509 // Watch out for a race where status_ is changing, and hence one or both 510 // of start_of_run or end_of_run is zero. In that case, we didn't bother to 511 // get a time value since we "weren't tracking" and we were trying to be 512 // efficient by not calling for a genuine time value. For simplicity, we'll 513 // use a default zero duration when we can't calculate a true value. 514 TrackedTime start_of_run = stopwatch.StartTime(); 515 int32 queue_duration = 0; 516 if (!start_of_run.is_null()) { 517 queue_duration = (start_of_run - completed_task.EffectiveTimePosted()) 518 .InMilliseconds(); 519 } 520 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 521 } 522 523 // static 524 void ThreadData::TallyRunOnWorkerThreadIfTracking( 525 const Births* birth, 526 const TrackedTime& time_posted, 527 const TaskStopwatch& stopwatch) { 528 if (!kTrackAllTaskObjects) 529 return; // Not compiled in. 530 531 // Even if we have been DEACTIVATED, we will process any pending births so 532 // that our data structures (which counted the outstanding births) remain 533 // consistent. 534 if (!birth) 535 return; 536 537 // TODO(jar): Support the option to coalesce all worker-thread activity under 538 // one ThreadData instance that uses locks to protect *all* access. This will 539 // reduce memory (making it provably bounded), but run incrementally slower 540 // (since we'll use locks on TallyABirth and TallyADeath). The good news is 541 // that the locks on TallyADeath will be *after* the worker thread has run, 542 // and hence nothing will be waiting for the completion (... besides some 543 // other thread that might like to run). Also, the worker threads tasks are 544 // generally longer, and hence the cost of the lock may perchance be amortized 545 // over the long task's lifetime. 546 ThreadData* current_thread_data = stopwatch.GetThreadData(); 547 if (!current_thread_data) 548 return; 549 550 TrackedTime start_of_run = stopwatch.StartTime(); 551 int32 queue_duration = 0; 552 if (!start_of_run.is_null()) { 553 queue_duration = (start_of_run - time_posted).InMilliseconds(); 554 } 555 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 556 } 557 558 // static 559 void ThreadData::TallyRunInAScopedRegionIfTracking( 560 const Births* birth, 561 const TaskStopwatch& stopwatch) { 562 if (!kTrackAllTaskObjects) 563 return; // Not compiled in. 564 565 // Even if we have been DEACTIVATED, we will process any pending births so 566 // that our data structures (which counted the outstanding births) remain 567 // consistent. 568 if (!birth) 569 return; 570 571 ThreadData* current_thread_data = stopwatch.GetThreadData(); 572 if (!current_thread_data) 573 return; 574 575 int32 queue_duration = 0; 576 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 577 } 578 579 // static 580 void ThreadData::SnapshotAllExecutedTasks(bool reset_max, 581 ProcessDataSnapshot* process_data, 582 BirthCountMap* birth_counts) { 583 if (!kTrackAllTaskObjects) 584 return; // Not compiled in. 585 586 // Get an unchanging copy of a ThreadData list. 587 ThreadData* my_list = ThreadData::first(); 588 589 // Gather data serially. 590 // This hackish approach *can* get some slighly corrupt tallies, as we are 591 // grabbing values without the protection of a lock, but it has the advantage 592 // of working even with threads that don't have message loops. If a user 593 // sees any strangeness, they can always just run their stats gathering a 594 // second time. 595 for (ThreadData* thread_data = my_list; 596 thread_data; 597 thread_data = thread_data->next()) { 598 thread_data->SnapshotExecutedTasks(reset_max, process_data, birth_counts); 599 } 600 } 601 602 void ThreadData::SnapshotExecutedTasks(bool reset_max, 603 ProcessDataSnapshot* process_data, 604 BirthCountMap* birth_counts) { 605 // Get copy of data, so that the data will not change during the iterations 606 // and processing. 607 ThreadData::BirthMap birth_map; 608 ThreadData::DeathMap death_map; 609 ThreadData::ParentChildSet parent_child_set; 610 SnapshotMaps(reset_max, &birth_map, &death_map, &parent_child_set); 611 612 for (ThreadData::DeathMap::const_iterator it = death_map.begin(); 613 it != death_map.end(); ++it) { 614 process_data->tasks.push_back( 615 TaskSnapshot(*it->first, it->second, thread_name())); 616 (*birth_counts)[it->first] -= it->first->birth_count(); 617 } 618 619 for (ThreadData::BirthMap::const_iterator it = birth_map.begin(); 620 it != birth_map.end(); ++it) { 621 (*birth_counts)[it->second] += it->second->birth_count(); 622 } 623 624 if (!kTrackParentChildLinks) 625 return; 626 627 for (ThreadData::ParentChildSet::const_iterator it = parent_child_set.begin(); 628 it != parent_child_set.end(); ++it) { 629 process_data->descendants.push_back(ParentChildPairSnapshot(*it)); 630 } 631 } 632 633 // This may be called from another thread. 634 void ThreadData::SnapshotMaps(bool reset_max, 635 BirthMap* birth_map, 636 DeathMap* death_map, 637 ParentChildSet* parent_child_set) { 638 base::AutoLock lock(map_lock_); 639 for (BirthMap::const_iterator it = birth_map_.begin(); 640 it != birth_map_.end(); ++it) 641 (*birth_map)[it->first] = it->second; 642 for (DeathMap::iterator it = death_map_.begin(); 643 it != death_map_.end(); ++it) { 644 (*death_map)[it->first] = it->second; 645 if (reset_max) 646 it->second.ResetMax(); 647 } 648 649 if (!kTrackParentChildLinks) 650 return; 651 652 for (ParentChildSet::iterator it = parent_child_set_.begin(); 653 it != parent_child_set_.end(); ++it) 654 parent_child_set->insert(*it); 655 } 656 657 // static 658 void ThreadData::ResetAllThreadData() { 659 ThreadData* my_list = first(); 660 661 for (ThreadData* thread_data = my_list; 662 thread_data; 663 thread_data = thread_data->next()) 664 thread_data->Reset(); 665 } 666 667 void ThreadData::Reset() { 668 base::AutoLock lock(map_lock_); 669 for (DeathMap::iterator it = death_map_.begin(); 670 it != death_map_.end(); ++it) 671 it->second.Clear(); 672 for (BirthMap::iterator it = birth_map_.begin(); 673 it != birth_map_.end(); ++it) 674 it->second->Clear(); 675 } 676 677 static void OptionallyInitializeAlternateTimer() { 678 NowFunction* alternate_time_source = GetAlternateTimeSource(); 679 if (alternate_time_source) 680 ThreadData::SetAlternateTimeSource(alternate_time_source); 681 } 682 683 bool ThreadData::Initialize() { 684 if (!kTrackAllTaskObjects) 685 return false; // Not compiled in. 686 if (status_ >= DEACTIVATED) 687 return true; // Someone else did the initialization. 688 // Due to racy lazy initialization in tests, we'll need to recheck status_ 689 // after we acquire the lock. 690 691 // Ensure that we don't double initialize tls. We are called when single 692 // threaded in the product, but some tests may be racy and lazy about our 693 // initialization. 694 base::AutoLock lock(*list_lock_.Pointer()); 695 if (status_ >= DEACTIVATED) 696 return true; // Someone raced in here and beat us. 697 698 // Put an alternate timer in place if the environment calls for it, such as 699 // for tracking TCMalloc allocations. This insertion is idempotent, so we 700 // don't mind if there is a race, and we'd prefer not to be in a lock while 701 // doing this work. 702 if (kAllowAlternateTimeSourceHandling) 703 OptionallyInitializeAlternateTimer(); 704 705 // Perform the "real" TLS initialization now, and leave it intact through 706 // process termination. 707 if (!tls_index_.initialized()) { // Testing may have initialized this. 708 DCHECK_EQ(status_, UNINITIALIZED); 709 tls_index_.Initialize(&ThreadData::OnThreadTermination); 710 if (!tls_index_.initialized()) 711 return false; 712 } else { 713 // TLS was initialzed for us earlier. 714 DCHECK_EQ(status_, DORMANT_DURING_TESTS); 715 } 716 717 // Incarnation counter is only significant to testing, as it otherwise will 718 // never again change in this process. 719 ++incarnation_counter_; 720 721 // The lock is not critical for setting status_, but it doesn't hurt. It also 722 // ensures that if we have a racy initialization, that we'll bail as soon as 723 // we get the lock earlier in this method. 724 status_ = kInitialStartupState; 725 if (!kTrackParentChildLinks && 726 kInitialStartupState == PROFILING_CHILDREN_ACTIVE) 727 status_ = PROFILING_ACTIVE; 728 DCHECK(status_ != UNINITIALIZED); 729 return true; 730 } 731 732 // static 733 bool ThreadData::InitializeAndSetTrackingStatus(Status status) { 734 DCHECK_GE(status, DEACTIVATED); 735 DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE); 736 737 if (!Initialize()) // No-op if already initialized. 738 return false; // Not compiled in. 739 740 if (!kTrackParentChildLinks && status > DEACTIVATED) 741 status = PROFILING_ACTIVE; 742 status_ = status; 743 return true; 744 } 745 746 // static 747 ThreadData::Status ThreadData::status() { 748 return status_; 749 } 750 751 // static 752 bool ThreadData::TrackingStatus() { 753 return status_ > DEACTIVATED; 754 } 755 756 // static 757 bool ThreadData::TrackingParentChildStatus() { 758 return status_ >= PROFILING_CHILDREN_ACTIVE; 759 } 760 761 // static 762 void ThreadData::PrepareForStartOfRun(const Births* parent) { 763 if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) { 764 ThreadData* current_thread_data = Get(); 765 if (current_thread_data) 766 current_thread_data->parent_stack_.push(parent); 767 } 768 } 769 770 // static 771 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) { 772 DCHECK(now_function); 773 if (kAllowAlternateTimeSourceHandling) 774 now_function_ = now_function; 775 } 776 777 // static 778 TrackedTime ThreadData::Now() { 779 if (kAllowAlternateTimeSourceHandling && now_function_) 780 return TrackedTime::FromMilliseconds((*now_function_)()); 781 if (kTrackAllTaskObjects && IsProfilerTimingEnabled() && TrackingStatus()) 782 return TrackedTime::Now(); 783 return TrackedTime(); // Super fast when disabled, or not compiled. 784 } 785 786 // static 787 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) { 788 base::AutoLock lock(*list_lock_.Pointer()); 789 if (worker_thread_data_creation_count_ == 0) 790 return; // We haven't really run much, and couldn't have leaked. 791 792 // TODO(jar): until this is working on XP, don't run the real test. 793 #if 0 794 // Verify that we've at least shutdown/cleanup the major namesd threads. The 795 // caller should tell us how many thread shutdowns should have taken place by 796 // now. 797 CHECK_GT(cleanup_count_, major_threads_shutdown_count); 798 #endif 799 } 800 801 // static 802 void ThreadData::ShutdownSingleThreadedCleanup(bool leak) { 803 // This is only called from test code, where we need to cleanup so that 804 // additional tests can be run. 805 // We must be single threaded... but be careful anyway. 806 if (!InitializeAndSetTrackingStatus(DEACTIVATED)) 807 return; 808 ThreadData* thread_data_list; 809 { 810 base::AutoLock lock(*list_lock_.Pointer()); 811 thread_data_list = all_thread_data_list_head_; 812 all_thread_data_list_head_ = NULL; 813 ++incarnation_counter_; 814 // To be clean, break apart the retired worker list (though we leak them). 815 while (first_retired_worker_) { 816 ThreadData* worker = first_retired_worker_; 817 CHECK_GT(worker->worker_thread_number_, 0); 818 first_retired_worker_ = worker->next_retired_worker_; 819 worker->next_retired_worker_ = NULL; 820 } 821 } 822 823 // Put most global static back in pristine shape. 824 worker_thread_data_creation_count_ = 0; 825 cleanup_count_ = 0; 826 tls_index_.Set(NULL); 827 status_ = DORMANT_DURING_TESTS; // Almost UNINITIALIZED. 828 829 // To avoid any chance of racing in unit tests, which is the only place we 830 // call this function, we may sometimes leak all the data structures we 831 // recovered, as they may still be in use on threads from prior tests! 832 if (leak) { 833 ThreadData* thread_data = thread_data_list; 834 while (thread_data) { 835 ANNOTATE_LEAKING_OBJECT_PTR(thread_data); 836 thread_data = thread_data->next(); 837 } 838 return; 839 } 840 841 // When we want to cleanup (on a single thread), here is what we do. 842 843 // Do actual recursive delete in all ThreadData instances. 844 while (thread_data_list) { 845 ThreadData* next_thread_data = thread_data_list; 846 thread_data_list = thread_data_list->next(); 847 848 for (BirthMap::iterator it = next_thread_data->birth_map_.begin(); 849 next_thread_data->birth_map_.end() != it; ++it) 850 delete it->second; // Delete the Birth Records. 851 delete next_thread_data; // Includes all Death Records. 852 } 853 } 854 855 //------------------------------------------------------------------------------ 856 TaskStopwatch::TaskStopwatch() 857 : start_time_(ThreadData::Now()), 858 current_thread_data_(ThreadData::Get()), 859 excluded_duration_ms_(0), 860 parent_(NULL) { 861 #if DCHECK_IS_ON 862 state_ = RUNNING; 863 child_ = NULL; 864 #endif 865 866 wallclock_duration_ms_ = 0; 867 if (!current_thread_data_) 868 return; 869 870 parent_ = current_thread_data_->current_stopwatch_; 871 #if DCHECK_IS_ON 872 if (parent_) { 873 DCHECK(parent_->state_ == RUNNING); 874 DCHECK(parent_->child_ == NULL); 875 parent_->child_ = this; 876 } 877 #endif 878 current_thread_data_->current_stopwatch_ = this; 879 } 880 881 TaskStopwatch::~TaskStopwatch() { 882 #if DCHECK_IS_ON 883 DCHECK(state_ != RUNNING); 884 DCHECK(child_ == NULL); 885 #endif 886 } 887 888 void TaskStopwatch::Stop() { 889 const TrackedTime end_time = ThreadData::Now(); 890 #if DCHECK_IS_ON 891 DCHECK(state_ == RUNNING); 892 state_ = STOPPED; 893 DCHECK(child_ == NULL); 894 #endif 895 896 if (!start_time_.is_null() && !end_time.is_null()) { 897 wallclock_duration_ms_ = (end_time - start_time_).InMilliseconds(); 898 } 899 900 if (!current_thread_data_) 901 return; 902 903 DCHECK(current_thread_data_->current_stopwatch_ == this); 904 current_thread_data_->current_stopwatch_ = parent_; 905 if (!parent_) 906 return; 907 908 #if DCHECK_IS_ON 909 DCHECK(parent_->state_ == RUNNING); 910 DCHECK(parent_->child_ == this); 911 parent_->child_ = NULL; 912 #endif 913 parent_->excluded_duration_ms_ += 914 wallclock_duration_ms_; 915 parent_ = NULL; 916 } 917 918 TrackedTime TaskStopwatch::StartTime() const { 919 return start_time_; 920 } 921 922 int32 TaskStopwatch::RunDurationMs() const { 923 #if DCHECK_IS_ON 924 DCHECK(state_ == STOPPED); 925 #endif 926 927 return wallclock_duration_ms_ - excluded_duration_ms_; 928 } 929 930 ThreadData* TaskStopwatch::GetThreadData() const { 931 return current_thread_data_; 932 } 933 934 //------------------------------------------------------------------------------ 935 TaskSnapshot::TaskSnapshot() { 936 } 937 938 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth, 939 const DeathData& death_data, 940 const std::string& death_thread_name) 941 : birth(birth), 942 death_data(death_data), 943 death_thread_name(death_thread_name) { 944 } 945 946 TaskSnapshot::~TaskSnapshot() { 947 } 948 949 //------------------------------------------------------------------------------ 950 // ParentChildPairSnapshot 951 952 ParentChildPairSnapshot::ParentChildPairSnapshot() { 953 } 954 955 ParentChildPairSnapshot::ParentChildPairSnapshot( 956 const ThreadData::ParentChildPair& parent_child) 957 : parent(*parent_child.first), 958 child(*parent_child.second) { 959 } 960 961 ParentChildPairSnapshot::~ParentChildPairSnapshot() { 962 } 963 964 //------------------------------------------------------------------------------ 965 // ProcessDataSnapshot 966 967 ProcessDataSnapshot::ProcessDataSnapshot() 968 #if !defined(OS_NACL) 969 : process_id(base::GetCurrentProcId()) { 970 #else 971 : process_id(0) { 972 #endif 973 } 974 975 ProcessDataSnapshot::~ProcessDataSnapshot() { 976 } 977 978 } // namespace tracked_objects 979