Home | History | Annotate | Download | only in win
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "media/audio/win/audio_low_latency_input_win.h"
      6 
      7 #include "base/logging.h"
      8 #include "base/memory/scoped_ptr.h"
      9 #include "base/strings/utf_string_conversions.h"
     10 #include "media/audio/win/audio_manager_win.h"
     11 #include "media/audio/win/avrt_wrapper_win.h"
     12 #include "media/audio/win/core_audio_util_win.h"
     13 #include "media/base/audio_bus.h"
     14 
     15 using base::win::ScopedComPtr;
     16 using base::win::ScopedCOMInitializer;
     17 
     18 namespace media {
     19 namespace {
     20 
     21 // Returns true if |device| represents the default communication capture device.
     22 bool IsDefaultCommunicationDevice(IMMDeviceEnumerator* enumerator,
     23                                   IMMDevice* device) {
     24   ScopedComPtr<IMMDevice> communications;
     25   if (FAILED(enumerator->GetDefaultAudioEndpoint(eCapture, eCommunications,
     26                                                  communications.Receive()))) {
     27     return false;
     28   }
     29 
     30   base::win::ScopedCoMem<WCHAR> communications_id, device_id;
     31   device->GetId(&device_id);
     32   communications->GetId(&communications_id);
     33   return lstrcmpW(communications_id, device_id) == 0;
     34 }
     35 
     36 }  // namespace
     37 
     38 WASAPIAudioInputStream::WASAPIAudioInputStream(AudioManagerWin* manager,
     39                                                const AudioParameters& params,
     40                                                const std::string& device_id)
     41     : manager_(manager),
     42       capture_thread_(NULL),
     43       opened_(false),
     44       started_(false),
     45       frame_size_(0),
     46       packet_size_frames_(0),
     47       packet_size_bytes_(0),
     48       endpoint_buffer_size_frames_(0),
     49       effects_(params.effects()),
     50       device_id_(device_id),
     51       perf_count_to_100ns_units_(0.0),
     52       ms_to_frame_count_(0.0),
     53       sink_(NULL),
     54       audio_bus_(media::AudioBus::Create(params)) {
     55   DCHECK(manager_);
     56 
     57   // Load the Avrt DLL if not already loaded. Required to support MMCSS.
     58   bool avrt_init = avrt::Initialize();
     59   DCHECK(avrt_init) << "Failed to load the Avrt.dll";
     60 
     61   // Set up the desired capture format specified by the client.
     62   format_.nSamplesPerSec = params.sample_rate();
     63   format_.wFormatTag = WAVE_FORMAT_PCM;
     64   format_.wBitsPerSample = params.bits_per_sample();
     65   format_.nChannels = params.channels();
     66   format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels;
     67   format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign;
     68   format_.cbSize = 0;
     69 
     70   // Size in bytes of each audio frame.
     71   frame_size_ = format_.nBlockAlign;
     72   // Store size of audio packets which we expect to get from the audio
     73   // endpoint device in each capture event.
     74   packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign;
     75   packet_size_bytes_ = params.GetBytesPerBuffer();
     76   DVLOG(1) << "Number of bytes per audio frame  : " << frame_size_;
     77   DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
     78 
     79   // All events are auto-reset events and non-signaled initially.
     80 
     81   // Create the event which the audio engine will signal each time
     82   // a buffer becomes ready to be processed by the client.
     83   audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
     84   DCHECK(audio_samples_ready_event_.IsValid());
     85 
     86   // Create the event which will be set in Stop() when capturing shall stop.
     87   stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
     88   DCHECK(stop_capture_event_.IsValid());
     89 
     90   ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0;
     91 
     92   LARGE_INTEGER performance_frequency;
     93   if (QueryPerformanceFrequency(&performance_frequency)) {
     94     perf_count_to_100ns_units_ =
     95         (10000000.0 / static_cast<double>(performance_frequency.QuadPart));
     96   } else {
     97     DLOG(ERROR) << "High-resolution performance counters are not supported.";
     98   }
     99 }
    100 
    101 WASAPIAudioInputStream::~WASAPIAudioInputStream() {
    102   DCHECK(CalledOnValidThread());
    103 }
    104 
    105 bool WASAPIAudioInputStream::Open() {
    106   DCHECK(CalledOnValidThread());
    107   // Verify that we are not already opened.
    108   if (opened_)
    109     return false;
    110 
    111   // Obtain a reference to the IMMDevice interface of the capturing
    112   // device with the specified unique identifier or role which was
    113   // set at construction.
    114   HRESULT hr = SetCaptureDevice();
    115   if (FAILED(hr))
    116     return false;
    117 
    118   // Obtain an IAudioClient interface which enables us to create and initialize
    119   // an audio stream between an audio application and the audio engine.
    120   hr = ActivateCaptureDevice();
    121   if (FAILED(hr))
    122     return false;
    123 
    124   // Retrieve the stream format which the audio engine uses for its internal
    125   // processing/mixing of shared-mode streams. This function call is for
    126   // diagnostic purposes only and only in debug mode.
    127 #ifndef NDEBUG
    128   hr = GetAudioEngineStreamFormat();
    129 #endif
    130 
    131   // Verify that the selected audio endpoint supports the specified format
    132   // set during construction.
    133   if (!DesiredFormatIsSupported())
    134     return false;
    135 
    136   // Initialize the audio stream between the client and the device using
    137   // shared mode and a lowest possible glitch-free latency.
    138   hr = InitializeAudioEngine();
    139 
    140   opened_ = SUCCEEDED(hr);
    141   return opened_;
    142 }
    143 
    144 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
    145   DCHECK(CalledOnValidThread());
    146   DCHECK(callback);
    147   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    148   if (!opened_)
    149     return;
    150 
    151   if (started_)
    152     return;
    153 
    154   DCHECK(!sink_);
    155   sink_ = callback;
    156 
    157   // Starts periodic AGC microphone measurements if the AGC has been enabled
    158   // using SetAutomaticGainControl().
    159   StartAgc();
    160 
    161   // Create and start the thread that will drive the capturing by waiting for
    162   // capture events.
    163   capture_thread_ =
    164       new base::DelegateSimpleThread(this, "wasapi_capture_thread");
    165   capture_thread_->Start();
    166 
    167   // Start streaming data between the endpoint buffer and the audio engine.
    168   HRESULT hr = audio_client_->Start();
    169   DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming.";
    170 
    171   if (SUCCEEDED(hr) && audio_render_client_for_loopback_)
    172     hr = audio_render_client_for_loopback_->Start();
    173 
    174   started_ = SUCCEEDED(hr);
    175 }
    176 
    177 void WASAPIAudioInputStream::Stop() {
    178   DCHECK(CalledOnValidThread());
    179   DVLOG(1) << "WASAPIAudioInputStream::Stop()";
    180   if (!started_)
    181     return;
    182 
    183   // Stops periodic AGC microphone measurements.
    184   StopAgc();
    185 
    186   // Shut down the capture thread.
    187   if (stop_capture_event_.IsValid()) {
    188     SetEvent(stop_capture_event_.Get());
    189   }
    190 
    191   // Stop the input audio streaming.
    192   HRESULT hr = audio_client_->Stop();
    193   if (FAILED(hr)) {
    194     LOG(ERROR) << "Failed to stop input streaming.";
    195   }
    196 
    197   // Wait until the thread completes and perform cleanup.
    198   if (capture_thread_) {
    199     SetEvent(stop_capture_event_.Get());
    200     capture_thread_->Join();
    201     capture_thread_ = NULL;
    202   }
    203 
    204   started_ = false;
    205   sink_ = NULL;
    206 }
    207 
    208 void WASAPIAudioInputStream::Close() {
    209   DVLOG(1) << "WASAPIAudioInputStream::Close()";
    210   // It is valid to call Close() before calling open or Start().
    211   // It is also valid to call Close() after Start() has been called.
    212   Stop();
    213 
    214   // Inform the audio manager that we have been closed. This will cause our
    215   // destruction.
    216   manager_->ReleaseInputStream(this);
    217 }
    218 
    219 double WASAPIAudioInputStream::GetMaxVolume() {
    220   // Verify that Open() has been called succesfully, to ensure that an audio
    221   // session exists and that an ISimpleAudioVolume interface has been created.
    222   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    223   if (!opened_)
    224     return 0.0;
    225 
    226   // The effective volume value is always in the range 0.0 to 1.0, hence
    227   // we can return a fixed value (=1.0) here.
    228   return 1.0;
    229 }
    230 
    231 void WASAPIAudioInputStream::SetVolume(double volume) {
    232   DVLOG(1) << "SetVolume(volume=" << volume << ")";
    233   DCHECK(CalledOnValidThread());
    234   DCHECK_GE(volume, 0.0);
    235   DCHECK_LE(volume, 1.0);
    236 
    237   DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
    238   if (!opened_)
    239     return;
    240 
    241   // Set a new master volume level. Valid volume levels are in the range
    242   // 0.0 to 1.0. Ignore volume-change events.
    243   HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
    244       NULL);
    245   DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume.";
    246 
    247   // Update the AGC volume level based on the last setting above. Note that,
    248   // the volume-level resolution is not infinite and it is therefore not
    249   // possible to assume that the volume provided as input parameter can be
    250   // used directly. Instead, a new query to the audio hardware is required.
    251   // This method does nothing if AGC is disabled.
    252   UpdateAgcVolume();
    253 }
    254 
    255 double WASAPIAudioInputStream::GetVolume() {
    256   DCHECK(opened_) << "Open() has not been called successfully";
    257   if (!opened_)
    258     return 0.0;
    259 
    260   // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
    261   float level = 0.0f;
    262   HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
    263   DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
    264 
    265   return static_cast<double>(level);
    266 }
    267 
    268 bool WASAPIAudioInputStream::IsMuted() {
    269   DCHECK(opened_) << "Open() has not been called successfully";
    270   DCHECK(CalledOnValidThread());
    271   if (!opened_)
    272     return false;
    273 
    274   // Retrieves the current muting state for the audio session.
    275   BOOL is_muted = FALSE;
    276   HRESULT hr = simple_audio_volume_->GetMute(&is_muted);
    277   DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
    278 
    279   return is_muted != FALSE;
    280 }
    281 
    282 // static
    283 AudioParameters WASAPIAudioInputStream::GetInputStreamParameters(
    284     const std::string& device_id) {
    285   int sample_rate = 48000;
    286   ChannelLayout channel_layout = CHANNEL_LAYOUT_STEREO;
    287 
    288   base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
    289   int effects = AudioParameters::NO_EFFECTS;
    290   if (SUCCEEDED(GetMixFormat(device_id, &audio_engine_mix_format, &effects))) {
    291     sample_rate = static_cast<int>(audio_engine_mix_format->nSamplesPerSec);
    292     channel_layout = audio_engine_mix_format->nChannels == 1 ?
    293         CHANNEL_LAYOUT_MONO : CHANNEL_LAYOUT_STEREO;
    294   }
    295 
    296   // Use 10ms frame size as default.
    297   int frames_per_buffer = sample_rate / 100;
    298   return AudioParameters(
    299       AudioParameters::AUDIO_PCM_LOW_LATENCY, channel_layout, sample_rate,
    300       16, frames_per_buffer, effects);
    301 }
    302 
    303 // static
    304 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id,
    305                                              WAVEFORMATEX** device_format,
    306                                              int* effects) {
    307   DCHECK(effects);
    308 
    309   // It is assumed that this static method is called from a COM thread, i.e.,
    310   // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
    311   ScopedComPtr<IMMDeviceEnumerator> enumerator;
    312   HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), NULL,
    313                                          CLSCTX_INPROC_SERVER);
    314   if (FAILED(hr))
    315     return hr;
    316 
    317   ScopedComPtr<IMMDevice> endpoint_device;
    318   if (device_id == AudioManagerBase::kDefaultDeviceId) {
    319     // Retrieve the default capture audio endpoint.
    320     hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
    321                                              endpoint_device.Receive());
    322   } else if (device_id == AudioManagerBase::kLoopbackInputDeviceId) {
    323     // Get the mix format of the default playback stream.
    324     hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
    325                                              endpoint_device.Receive());
    326   } else {
    327     // Retrieve a capture endpoint device that is specified by an endpoint
    328     // device-identification string.
    329     hr = enumerator->GetDevice(base::UTF8ToUTF16(device_id).c_str(),
    330                                endpoint_device.Receive());
    331   }
    332 
    333   if (FAILED(hr))
    334     return hr;
    335 
    336   *effects = IsDefaultCommunicationDevice(enumerator, endpoint_device) ?
    337       AudioParameters::DUCKING : AudioParameters::NO_EFFECTS;
    338 
    339   ScopedComPtr<IAudioClient> audio_client;
    340   hr = endpoint_device->Activate(__uuidof(IAudioClient),
    341                                  CLSCTX_INPROC_SERVER,
    342                                  NULL,
    343                                  audio_client.ReceiveVoid());
    344   return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr;
    345 }
    346 
    347 void WASAPIAudioInputStream::Run() {
    348   ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
    349 
    350   // Increase the thread priority.
    351   capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
    352 
    353   // Enable MMCSS to ensure that this thread receives prioritized access to
    354   // CPU resources.
    355   DWORD task_index = 0;
    356   HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
    357                                                       &task_index);
    358   bool mmcss_is_ok =
    359       (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
    360   if (!mmcss_is_ok) {
    361     // Failed to enable MMCSS on this thread. It is not fatal but can lead
    362     // to reduced QoS at high load.
    363     DWORD err = GetLastError();
    364     LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
    365   }
    366 
    367   // Allocate a buffer with a size that enables us to take care of cases like:
    368   // 1) The recorded buffer size is smaller, or does not match exactly with,
    369   //    the selected packet size used in each callback.
    370   // 2) The selected buffer size is larger than the recorded buffer size in
    371   //    each event.
    372   size_t buffer_frame_index = 0;
    373   size_t capture_buffer_size = std::max(
    374       2 * endpoint_buffer_size_frames_ * frame_size_,
    375       2 * packet_size_frames_ * frame_size_);
    376   scoped_ptr<uint8[]> capture_buffer(new uint8[capture_buffer_size]);
    377 
    378   LARGE_INTEGER now_count;
    379   bool recording = true;
    380   bool error = false;
    381   double volume = GetVolume();
    382   HANDLE wait_array[2] =
    383       { stop_capture_event_.Get(), audio_samples_ready_event_.Get() };
    384 
    385   while (recording && !error) {
    386     HRESULT hr = S_FALSE;
    387 
    388     // Wait for a close-down event or a new capture event.
    389     DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
    390     switch (wait_result) {
    391       case WAIT_FAILED:
    392         error = true;
    393         break;
    394       case WAIT_OBJECT_0 + 0:
    395         // |stop_capture_event_| has been set.
    396         recording = false;
    397         break;
    398       case WAIT_OBJECT_0 + 1:
    399         {
    400           // |audio_samples_ready_event_| has been set.
    401           BYTE* data_ptr = NULL;
    402           UINT32 num_frames_to_read = 0;
    403           DWORD flags = 0;
    404           UINT64 device_position = 0;
    405           UINT64 first_audio_frame_timestamp = 0;
    406 
    407           // Retrieve the amount of data in the capture endpoint buffer,
    408           // replace it with silence if required, create callbacks for each
    409           // packet and store non-delivered data for the next event.
    410           hr = audio_capture_client_->GetBuffer(&data_ptr,
    411                                                 &num_frames_to_read,
    412                                                 &flags,
    413                                                 &device_position,
    414                                                 &first_audio_frame_timestamp);
    415           if (FAILED(hr)) {
    416             DLOG(ERROR) << "Failed to get data from the capture buffer";
    417             continue;
    418           }
    419 
    420           if (num_frames_to_read != 0) {
    421             size_t pos = buffer_frame_index * frame_size_;
    422             size_t num_bytes = num_frames_to_read * frame_size_;
    423             DCHECK_GE(capture_buffer_size, pos + num_bytes);
    424 
    425             if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
    426               // Clear out the local buffer since silence is reported.
    427               memset(&capture_buffer[pos], 0, num_bytes);
    428             } else {
    429               // Copy captured data from audio engine buffer to local buffer.
    430               memcpy(&capture_buffer[pos], data_ptr, num_bytes);
    431             }
    432 
    433             buffer_frame_index += num_frames_to_read;
    434           }
    435 
    436           hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
    437           DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
    438 
    439           // Derive a delay estimate for the captured audio packet.
    440           // The value contains two parts (A+B), where A is the delay of the
    441           // first audio frame in the packet and B is the extra delay
    442           // contained in any stored data. Unit is in audio frames.
    443           QueryPerformanceCounter(&now_count);
    444           double audio_delay_frames =
    445               ((perf_count_to_100ns_units_ * now_count.QuadPart -
    446                 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ +
    447                 buffer_frame_index - num_frames_to_read;
    448 
    449           // Get a cached AGC volume level which is updated once every second
    450           // on the audio manager thread. Note that, |volume| is also updated
    451           // each time SetVolume() is called through IPC by the render-side AGC.
    452           GetAgcVolume(&volume);
    453 
    454           // Deliver captured data to the registered consumer using a packet
    455           // size which was specified at construction.
    456           uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5);
    457           while (buffer_frame_index >= packet_size_frames_) {
    458             // Copy data to audio bus to match the OnData interface.
    459             uint8* audio_data = reinterpret_cast<uint8*>(capture_buffer.get());
    460             audio_bus_->FromInterleaved(
    461                 audio_data, audio_bus_->frames(), format_.wBitsPerSample / 8);
    462 
    463             // Deliver data packet, delay estimation and volume level to
    464             // the user.
    465             sink_->OnData(
    466                 this, audio_bus_.get(), delay_frames * frame_size_, volume);
    467 
    468             // Store parts of the recorded data which can't be delivered
    469             // using the current packet size. The stored section will be used
    470             // either in the next while-loop iteration or in the next
    471             // capture event.
    472             memmove(&capture_buffer[0],
    473                     &capture_buffer[packet_size_bytes_],
    474                     (buffer_frame_index - packet_size_frames_) * frame_size_);
    475 
    476             buffer_frame_index -= packet_size_frames_;
    477             delay_frames -= packet_size_frames_;
    478           }
    479         }
    480         break;
    481       default:
    482         error = true;
    483         break;
    484     }
    485   }
    486 
    487   if (recording && error) {
    488     // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
    489     // stopping the audio client, joining the thread etc.?
    490     NOTREACHED() << "WASAPI capturing failed with error code "
    491                  << GetLastError();
    492   }
    493 
    494   // Disable MMCSS.
    495   if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
    496     PLOG(WARNING) << "Failed to disable MMCSS";
    497   }
    498 }
    499 
    500 void WASAPIAudioInputStream::HandleError(HRESULT err) {
    501   NOTREACHED() << "Error code: " << err;
    502   if (sink_)
    503     sink_->OnError(this);
    504 }
    505 
    506 HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
    507   DCHECK(!endpoint_device_);
    508 
    509   ScopedComPtr<IMMDeviceEnumerator> enumerator;
    510   HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
    511                                          NULL, CLSCTX_INPROC_SERVER);
    512   if (FAILED(hr))
    513     return hr;
    514 
    515   // Retrieve the IMMDevice by using the specified role or the specified
    516   // unique endpoint device-identification string.
    517 
    518   if (effects_ & AudioParameters::DUCKING) {
    519     // Ducking has been requested and it is only supported for the default
    520     // communication device.  So, let's open up the communication device and
    521     // see if the ID of that device matches the requested ID.
    522     // We consider a kDefaultDeviceId as well as an explicit device id match,
    523     // to be valid matches.
    524     hr = enumerator->GetDefaultAudioEndpoint(eCapture, eCommunications,
    525                                              endpoint_device_.Receive());
    526     if (endpoint_device_ && device_id_ != AudioManagerBase::kDefaultDeviceId) {
    527       base::win::ScopedCoMem<WCHAR> communications_id;
    528       endpoint_device_->GetId(&communications_id);
    529       if (device_id_ !=
    530           base::WideToUTF8(static_cast<WCHAR*>(communications_id))) {
    531         DLOG(WARNING) << "Ducking has been requested for a non-default device."
    532                          "Not supported.";
    533         // We can't honor the requested effect flag, so turn it off and
    534         // continue.  We'll check this flag later to see if we've actually
    535         // opened up the communications device, so it's important that it
    536         // reflects the active state.
    537         effects_ &= ~AudioParameters::DUCKING;
    538         endpoint_device_.Release();  // Fall back on code below.
    539       }
    540     }
    541   }
    542 
    543   if (!endpoint_device_) {
    544     if (device_id_ == AudioManagerBase::kDefaultDeviceId) {
    545       // Retrieve the default capture audio endpoint for the specified role.
    546       // Note that, in Windows Vista, the MMDevice API supports device roles
    547       // but the system-supplied user interface programs do not.
    548       hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
    549                                                endpoint_device_.Receive());
    550     } else if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
    551       // Capture the default playback stream.
    552       hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
    553                                                endpoint_device_.Receive());
    554     } else {
    555       hr = enumerator->GetDevice(base::UTF8ToUTF16(device_id_).c_str(),
    556                                  endpoint_device_.Receive());
    557     }
    558   }
    559 
    560   if (FAILED(hr))
    561     return hr;
    562 
    563   // Verify that the audio endpoint device is active, i.e., the audio
    564   // adapter that connects to the endpoint device is present and enabled.
    565   DWORD state = DEVICE_STATE_DISABLED;
    566   hr = endpoint_device_->GetState(&state);
    567   if (FAILED(hr))
    568     return hr;
    569 
    570   if (!(state & DEVICE_STATE_ACTIVE)) {
    571     DLOG(ERROR) << "Selected capture device is not active.";
    572     hr = E_ACCESSDENIED;
    573   }
    574 
    575   return hr;
    576 }
    577 
    578 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() {
    579   // Creates and activates an IAudioClient COM object given the selected
    580   // capture endpoint device.
    581   HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient),
    582                                           CLSCTX_INPROC_SERVER,
    583                                           NULL,
    584                                           audio_client_.ReceiveVoid());
    585   return hr;
    586 }
    587 
    588 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
    589   HRESULT hr = S_OK;
    590 #ifndef NDEBUG
    591   // The GetMixFormat() method retrieves the stream format that the
    592   // audio engine uses for its internal processing of shared-mode streams.
    593   // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
    594   // of a stand-alone WAVEFORMATEX structure, to specify the format.
    595   // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
    596   // channels to speakers and the number of bits of precision in each sample.
    597   base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex;
    598   hr = audio_client_->GetMixFormat(
    599       reinterpret_cast<WAVEFORMATEX**>(&format_ex));
    600 
    601   // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
    602   // for details on the WAVE file format.
    603   WAVEFORMATEX format = format_ex->Format;
    604   DVLOG(2) << "WAVEFORMATEX:";
    605   DVLOG(2) << "  wFormatTags    : 0x" << std::hex << format.wFormatTag;
    606   DVLOG(2) << "  nChannels      : " << format.nChannels;
    607   DVLOG(2) << "  nSamplesPerSec : " << format.nSamplesPerSec;
    608   DVLOG(2) << "  nAvgBytesPerSec: " << format.nAvgBytesPerSec;
    609   DVLOG(2) << "  nBlockAlign    : " << format.nBlockAlign;
    610   DVLOG(2) << "  wBitsPerSample : " << format.wBitsPerSample;
    611   DVLOG(2) << "  cbSize         : " << format.cbSize;
    612 
    613   DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
    614   DVLOG(2) << " wValidBitsPerSample: " <<
    615       format_ex->Samples.wValidBitsPerSample;
    616   DVLOG(2) << " dwChannelMask      : 0x" << std::hex <<
    617       format_ex->dwChannelMask;
    618   if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM)
    619     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_PCM";
    620   else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)
    621     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
    622   else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX)
    623     DVLOG(2) << " SubFormat          : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
    624 #endif
    625   return hr;
    626 }
    627 
    628 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
    629   // An application that uses WASAPI to manage shared-mode streams can rely
    630   // on the audio engine to perform only limited format conversions. The audio
    631   // engine can convert between a standard PCM sample size used by the
    632   // application and the floating-point samples that the engine uses for its
    633   // internal processing. However, the format for an application stream
    634   // typically must have the same number of channels and the same sample
    635   // rate as the stream format used by the device.
    636   // Many audio devices support both PCM and non-PCM stream formats. However,
    637   // the audio engine can mix only PCM streams.
    638   base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
    639   HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED,
    640                                                 &format_,
    641                                                 &closest_match);
    642   DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
    643                                 << "but a closest match exists.";
    644   return (hr == S_OK);
    645 }
    646 
    647 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
    648   DWORD flags;
    649   // Use event-driven mode only fo regular input devices. For loopback the
    650   // EVENTCALLBACK flag is specified when intializing
    651   // |audio_render_client_for_loopback_|.
    652   if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
    653     flags = AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
    654   } else {
    655     flags =
    656       AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
    657   }
    658 
    659   // Initialize the audio stream between the client and the device.
    660   // We connect indirectly through the audio engine by using shared mode.
    661   // Note that, |hnsBufferDuration| is set of 0, which ensures that the
    662   // buffer is never smaller than the minimum buffer size needed to ensure
    663   // that glitches do not occur between the periodic processing passes.
    664   // This setting should lead to lowest possible latency.
    665   HRESULT hr = audio_client_->Initialize(
    666       AUDCLNT_SHAREMODE_SHARED,
    667       flags,
    668       0,  // hnsBufferDuration
    669       0,
    670       &format_,
    671       (effects_ & AudioParameters::DUCKING) ? &kCommunicationsSessionId : NULL);
    672 
    673   if (FAILED(hr))
    674     return hr;
    675 
    676   // Retrieve the length of the endpoint buffer shared between the client
    677   // and the audio engine. The buffer length determines the maximum amount
    678   // of capture data that the audio engine can read from the endpoint buffer
    679   // during a single processing pass.
    680   // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
    681   hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
    682   if (FAILED(hr))
    683     return hr;
    684 
    685   DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
    686            << " [frames]";
    687 
    688 #ifndef NDEBUG
    689   // The period between processing passes by the audio engine is fixed for a
    690   // particular audio endpoint device and represents the smallest processing
    691   // quantum for the audio engine. This period plus the stream latency between
    692   // the buffer and endpoint device represents the minimum possible latency
    693   // that an audio application can achieve.
    694   // TODO(henrika): possibly remove this section when all parts are ready.
    695   REFERENCE_TIME device_period_shared_mode = 0;
    696   REFERENCE_TIME device_period_exclusive_mode = 0;
    697   HRESULT hr_dbg = audio_client_->GetDevicePeriod(
    698       &device_period_shared_mode, &device_period_exclusive_mode);
    699   if (SUCCEEDED(hr_dbg)) {
    700     DVLOG(1) << "device period: "
    701              << static_cast<double>(device_period_shared_mode / 10000.0)
    702              << " [ms]";
    703   }
    704 
    705   REFERENCE_TIME latency = 0;
    706   hr_dbg = audio_client_->GetStreamLatency(&latency);
    707   if (SUCCEEDED(hr_dbg)) {
    708     DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0)
    709              << " [ms]";
    710   }
    711 #endif
    712 
    713   // Set the event handle that the audio engine will signal each time a buffer
    714   // becomes ready to be processed by the client.
    715   //
    716   // In loopback case the capture device doesn't receive any events, so we
    717   // need to create a separate playback client to get notifications. According
    718   // to MSDN:
    719   //
    720   //   A pull-mode capture client does not receive any events when a stream is
    721   //   initialized with event-driven buffering and is loopback-enabled. To
    722   //   work around this, initialize a render stream in event-driven mode. Each
    723   //   time the client receives an event for the render stream, it must signal
    724   //   the capture client to run the capture thread that reads the next set of
    725   //   samples from the capture endpoint buffer.
    726   //
    727   // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
    728   if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
    729     hr = endpoint_device_->Activate(
    730         __uuidof(IAudioClient), CLSCTX_INPROC_SERVER, NULL,
    731         audio_render_client_for_loopback_.ReceiveVoid());
    732     if (FAILED(hr))
    733       return hr;
    734 
    735     hr = audio_render_client_for_loopback_->Initialize(
    736         AUDCLNT_SHAREMODE_SHARED,
    737         AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST,
    738         0, 0, &format_, NULL);
    739     if (FAILED(hr))
    740       return hr;
    741 
    742     hr = audio_render_client_for_loopback_->SetEventHandle(
    743         audio_samples_ready_event_.Get());
    744   } else {
    745     hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
    746   }
    747 
    748   if (FAILED(hr))
    749     return hr;
    750 
    751   // Get access to the IAudioCaptureClient interface. This interface
    752   // enables us to read input data from the capture endpoint buffer.
    753   hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
    754                                  audio_capture_client_.ReceiveVoid());
    755   if (FAILED(hr))
    756     return hr;
    757 
    758   // Obtain a reference to the ISimpleAudioVolume interface which enables
    759   // us to control the master volume level of an audio session.
    760   hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume),
    761                                  simple_audio_volume_.ReceiveVoid());
    762   return hr;
    763 }
    764 
    765 }  // namespace media
    766