Home | History | Annotate | Download | only in src
      1 // Copyright 2007, 2008 Google Inc.
      2 // Authors: Jeff Dean, Sanjay Ghemawat, Lincoln Smith
      3 //
      4 // Licensed under the Apache License, Version 2.0 (the "License");
      5 // you may not use this file except in compliance with the License.
      6 // You may obtain a copy of the License at
      7 //
      8 //      http://www.apache.org/licenses/LICENSE-2.0
      9 //
     10 // Unless required by applicable law or agreed to in writing, software
     11 // distributed under the License is distributed on an "AS IS" BASIS,
     12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13 // See the License for the specific language governing permissions and
     14 // limitations under the License.
     15 
     16 #ifndef OPEN_VCDIFF_ROLLING_HASH_H_
     17 #define OPEN_VCDIFF_ROLLING_HASH_H_
     18 
     19 #include <config.h>
     20 #include <stdint.h>  // uint32_t
     21 #include "compile_assert.h"
     22 #include "logging.h"
     23 
     24 namespace open_vcdiff {
     25 
     26 // Rabin-Karp hasher module -- this is a faster version with different
     27 // constants, so it's not quite Rabin-Karp fingerprinting, but its behavior is
     28 // close enough for most applications.
     29 
     30 // Definitions common to all hash window sizes.
     31 class RollingHashUtil {
     32  public:
     33   // Multiplier for incremental hashing.  The compiler should be smart enough to
     34   // convert (val * kMult) into ((val << 8) + val).
     35   static const uint32_t kMult = 257;
     36 
     37   // All hashes are returned modulo "kBase".  Current implementation requires
     38   // kBase <= 2^32/kMult to avoid overflow.  Also, kBase must be a power of two
     39   // so that we can compute modulus efficiently.
     40   static const uint32_t kBase = (1 << 23);
     41 
     42   // Returns operand % kBase, assuming that kBase is a power of two.
     43   static inline uint32_t ModBase(uint32_t operand) {
     44     return operand & (kBase - 1);
     45   }
     46 
     47   // Given an unsigned integer "operand", returns an unsigned integer "result"
     48   // such that
     49   //     result < kBase
     50   // and
     51   //     ModBase(operand + result) == 0
     52   static inline uint32_t FindModBaseInverse(uint32_t operand) {
     53     // The subtraction (0 - operand) produces an unsigned underflow for any
     54     // operand except 0.  The underflow results in a (very large) unsigned
     55     // number.  Binary subtraction is used instead of unary negation because
     56     // some compilers (e.g. Visual Studio 7+) produce a warning if an unsigned
     57     // value is negated.
     58     //
     59     // The C++ mod operation (operand % kBase) may produce different results for
     60     // different compilers if operand is negative.  That is not a problem in
     61     // this case, since all numbers used are unsigned, and ModBase does its work
     62     // using bitwise arithmetic rather than the % operator.
     63     return ModBase(uint32_t(0) - operand);
     64   }
     65 
     66   // Here's the heart of the hash algorithm.  Start with a partial_hash value of
     67   // 0, and run this HashStep once against each byte in the data window to be
     68   // hashed.  The result will be the hash value for the entire data window.  The
     69   // Hash() function, below, does exactly this, albeit with some refinements.
     70   static inline uint32_t HashStep(uint32_t partial_hash,
     71                                   unsigned char next_byte) {
     72     return ModBase((partial_hash * kMult) + next_byte);
     73   }
     74 
     75   // Use this function to start computing a new hash value based on the first
     76   // two bytes in the window.  It is equivalent to calling
     77   //     HashStep(HashStep(0, ptr[0]), ptr[1])
     78   // but takes advantage of the fact that the maximum value of
     79   // (ptr[0] * kMult) + ptr[1] is not large enough to exceed kBase, thus
     80   // avoiding an unnecessary ModBase operation.
     81   static inline uint32_t HashFirstTwoBytes(const char* ptr) {
     82     return (static_cast<unsigned char>(ptr[0]) * kMult)
     83         + static_cast<unsigned char>(ptr[1]);
     84   }
     85  private:
     86   // Making these private avoids copy constructor and assignment operator.
     87   // No objects of this type should be constructed.
     88   RollingHashUtil();
     89   RollingHashUtil(const RollingHashUtil&);  // NOLINT
     90   void operator=(const RollingHashUtil&);
     91 };
     92 
     93 // window_size must be >= 2.
     94 template<int window_size>
     95 class RollingHash {
     96  public:
     97   // Perform global initialization that is required in order to instantiate a
     98   // RollingHash.  This function *must* be called (preferably on startup) by any
     99   // program that uses a RollingHash.  It is harmless to call this function more
    100   // than once.  It is not thread-safe, but calling it from two different
    101   // threads at the same time can only cause a memory leak, not incorrect
    102   // behavior.  Make sure to call it before spawning any threads that could use
    103   // RollingHash.
    104   static void Init();
    105 
    106   // Initialize hasher to maintain a window of the specified size.  You need an
    107   // instance of this type to use UpdateHash(), but Hash() does not depend on
    108   // remove_table_, so it is static.
    109   RollingHash() {
    110     if (!remove_table_) {
    111       VCD_DFATAL << "RollingHash object instantiated"
    112                     " before calling RollingHash::Init()" << VCD_ENDL;
    113     }
    114   }
    115 
    116   // Compute a hash of the window "ptr[0, window_size - 1]".
    117   static uint32_t Hash(const char* ptr) {
    118     uint32_t h = RollingHashUtil::HashFirstTwoBytes(ptr);
    119     for (int i = 2; i < window_size; ++i) {
    120       h = RollingHashUtil::HashStep(h, ptr[i]);
    121     }
    122     return h;
    123   }
    124 
    125   // Update a hash by removing the oldest byte and adding a new byte.
    126   //
    127   // UpdateHash takes the hash value of buffer[0] ... buffer[window_size -1]
    128   // along with the value of buffer[0] (the "old_first_byte" argument)
    129   // and the value of buffer[window_size] (the "new_last_byte" argument).
    130   // It quickly computes the hash value of buffer[1] ... buffer[window_size]
    131   // without having to run Hash() on the entire window.
    132   //
    133   // The larger the window, the more advantage comes from using UpdateHash()
    134   // (which runs in time independent of window_size) instead of Hash().
    135   // Each time window_size doubles, the time to execute Hash() also doubles,
    136   // while the time to execute UpdateHash() remains constant.  Empirical tests
    137   // have borne out this statement.
    138   uint32_t UpdateHash(uint32_t old_hash,
    139                       const char old_first_byte,
    140                       const char new_last_byte) const {
    141     uint32_t partial_hash = RemoveFirstByteFromHash(old_hash, old_first_byte);
    142     return RollingHashUtil::HashStep(partial_hash, new_last_byte);
    143   }
    144 
    145  protected:
    146   // Given a full hash value for buffer[0] ... buffer[window_size -1], plus the
    147   // value of the first byte buffer[0], this function returns a *partial* hash
    148   // value for buffer[1] ... buffer[window_size -1].  See the comments in
    149   // Init(), below, for a description of how the contents of remove_table_ are
    150   // computed.
    151   static uint32_t RemoveFirstByteFromHash(uint32_t full_hash,
    152                                           unsigned char first_byte) {
    153     return RollingHashUtil::ModBase(full_hash + remove_table_[first_byte]);
    154   }
    155 
    156  private:
    157   // We keep a table that maps from any byte "b" to
    158   //    (- b * pow(kMult, window_size - 1)) % kBase
    159   static const uint32_t* remove_table_;
    160 };
    161 
    162 // For each window_size, fill a 256-entry table such that
    163 //        the hash value of buffer[0] ... buffer[window_size - 1]
    164 //      + remove_table_[buffer[0]]
    165 //     == the hash value of buffer[1] ... buffer[window_size - 1]
    166 // See the comments in Init(), below, for a description of how the contents of
    167 // remove_table_ are computed.
    168 template<int window_size>
    169 const uint32_t* RollingHash<window_size>::remove_table_ = NULL;
    170 
    171 // Init() checks to make sure that the static object remove_table_ has been
    172 // initialized; if not, it does the considerable work of populating it.  Once
    173 // it's ready, the table can be used for any number of RollingHash objects of
    174 // the same window_size.
    175 //
    176 template<int window_size>
    177 void RollingHash<window_size>::Init() {
    178   VCD_COMPILE_ASSERT(window_size >= 2,
    179                      RollingHash_window_size_must_be_at_least_2);
    180   if (remove_table_ == NULL) {
    181     // The new object is placed into a local pointer instead of directly into
    182     // remove_table_, for two reasons:
    183     //   1. remove_table_ is a pointer to const.  The table is populated using
    184     //      the non-const local pointer and then assigned to the global const
    185     //      pointer once it's ready.
    186     //   2. No other thread will ever see remove_table_ pointing to a
    187     //      partially-initialized table.  If two threads happen to call Init()
    188     //      at the same time, two tables with the same contents may be created
    189     //      (causing a memory leak), but the results will be consistent
    190     //      no matter which of the two tables is used.
    191     uint32_t* new_remove_table = new uint32_t[256];
    192     // Compute multiplier.  Concisely, it is:
    193     //     pow(kMult, (window_size - 1)) % kBase,
    194     // but we compute the power in integer form.
    195     uint32_t multiplier = 1;
    196     for (int i = 0; i < window_size - 1; ++i) {
    197       multiplier =
    198           RollingHashUtil::ModBase(multiplier * RollingHashUtil::kMult);
    199     }
    200     // For each character removed_byte, compute
    201     //     remove_table_[removed_byte] ==
    202     //         (- (removed_byte * pow(kMult, (window_size - 1)))) % kBase
    203     // where the power operator "pow" is taken in integer form.
    204     //
    205     // If you take a hash value fp representing the hash of
    206     //     buffer[0] ... buffer[window_size - 1]
    207     // and add the value of remove_table_[buffer[0]] to it, the result will be
    208     // a partial hash value for
    209     //     buffer[1] ... buffer[window_size - 1]
    210     // that is to say, it no longer includes buffer[0].
    211     //
    212     // The following byte at buffer[window_size] can then be merged with this
    213     // partial hash value to arrive quickly at the hash value for a window that
    214     // has advanced by one byte, to
    215     //     buffer[1] ... buffer[window_size]
    216     // In fact, that is precisely what happens in UpdateHash, above.
    217     uint32_t byte_times_multiplier = 0;
    218     for (int removed_byte = 0; removed_byte < 256; ++removed_byte) {
    219       new_remove_table[removed_byte] =
    220           RollingHashUtil::FindModBaseInverse(byte_times_multiplier);
    221       // Iteratively adding the multiplier in this loop is equivalent to
    222       // computing (removed_byte * multiplier), and is faster
    223       byte_times_multiplier =
    224           RollingHashUtil::ModBase(byte_times_multiplier + multiplier);
    225     }
    226     remove_table_ = new_remove_table;
    227   }
    228 }
    229 
    230 }  // namespace open_vcdiff
    231 
    232 #endif  // OPEN_VCDIFF_ROLLING_HASH_H_
    233