Home | History | Annotate | Download | only in wtf
      1 /****************************************************************
      2  *
      3  * The author of this software is David M. Gay.
      4  *
      5  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
      6  * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
      7  *
      8  * Permission to use, copy, modify, and distribute this software for any
      9  * purpose without fee is hereby granted, provided that this entire notice
     10  * is included in all copies of any software which is or includes a copy
     11  * or modification of this software and in all copies of the supporting
     12  * documentation for such software.
     13  *
     14  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
     15  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
     16  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
     17  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
     18  *
     19  ***************************************************************/
     20 
     21 /* Please send bug reports to David M. Gay (dmg at acm dot org,
     22  * with " at " changed at "@" and " dot " changed to ".").    */
     23 
     24 /* On a machine with IEEE extended-precision registers, it is
     25  * necessary to specify double-precision (53-bit) rounding precision
     26  * before invoking strtod or dtoa.  If the machine uses (the equivalent
     27  * of) Intel 80x87 arithmetic, the call
     28  *    _control87(PC_53, MCW_PC);
     29  * does this with many compilers.  Whether this or another call is
     30  * appropriate depends on the compiler; for this to work, it may be
     31  * necessary to #include "float.h" or another system-dependent header
     32  * file.
     33  */
     34 
     35 #include "config.h"
     36 #include "dtoa.h"
     37 
     38 #include "wtf/CPU.h"
     39 #include "wtf/MathExtras.h"
     40 #include "wtf/ThreadingPrimitives.h"
     41 #include "wtf/Vector.h"
     42 
     43 #if COMPILER(MSVC)
     44 #pragma warning(disable: 4244)
     45 #pragma warning(disable: 4245)
     46 #pragma warning(disable: 4554)
     47 #endif
     48 
     49 namespace WTF {
     50 
     51 Mutex* s_dtoaP5Mutex;
     52 
     53 typedef union {
     54     double d;
     55     uint32_t L[2];
     56 } U;
     57 
     58 #if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
     59 #define word0(x) (x)->L[0]
     60 #define word1(x) (x)->L[1]
     61 #else
     62 #define word0(x) (x)->L[1]
     63 #define word1(x) (x)->L[0]
     64 #endif
     65 #define dval(x) (x)->d
     66 
     67 #define Exp_shift  20
     68 #define Exp_shift1 20
     69 #define Exp_msk1    0x100000
     70 #define Exp_msk11   0x100000
     71 #define Exp_mask  0x7ff00000
     72 #define P 53
     73 #define Bias 1023
     74 #define Emin (-1022)
     75 #define Exp_1  0x3ff00000
     76 #define Exp_11 0x3ff00000
     77 #define Ebits 11
     78 #define Frac_mask  0xfffff
     79 #define Frac_mask1 0xfffff
     80 #define Ten_pmax 22
     81 #define Bletch 0x10
     82 #define Bndry_mask  0xfffff
     83 #define Bndry_mask1 0xfffff
     84 #define LSB 1
     85 #define Sign_bit 0x80000000
     86 #define Log2P 1
     87 #define Tiny0 0
     88 #define Tiny1 1
     89 #define Quick_max 14
     90 #define Int_max 14
     91 
     92 #define rounded_product(a, b) a *= b
     93 #define rounded_quotient(a, b) a /= b
     94 
     95 #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
     96 #define Big1 0xffffffff
     97 
     98 #if CPU(X86_64)
     99 // FIXME: should we enable this on all 64-bit CPUs?
    100 // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
    101 #define USE_LONG_LONG
    102 #endif
    103 
    104 #ifndef USE_LONG_LONG
    105 /* The following definition of Storeinc is appropriate for MIPS processors.
    106  * An alternative that might be better on some machines is
    107  *  *p++ = high << 16 | low & 0xffff;
    108  */
    109 static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
    110 {
    111     uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
    112 #if CPU(BIG_ENDIAN)
    113     p16[0] = high;
    114     p16[1] = low;
    115 #else
    116     p16[1] = high;
    117     p16[0] = low;
    118 #endif
    119     return p + 1;
    120 }
    121 #endif
    122 
    123 struct BigInt {
    124     BigInt() : sign(0) { }
    125     int sign;
    126 
    127     void clear()
    128     {
    129         sign = 0;
    130         m_words.clear();
    131     }
    132 
    133     size_t size() const
    134     {
    135         return m_words.size();
    136     }
    137 
    138     void resize(size_t s)
    139     {
    140         m_words.resize(s);
    141     }
    142 
    143     uint32_t* words()
    144     {
    145         return m_words.data();
    146     }
    147 
    148     const uint32_t* words() const
    149     {
    150         return m_words.data();
    151     }
    152 
    153     void append(uint32_t w)
    154     {
    155         m_words.append(w);
    156     }
    157 
    158     Vector<uint32_t, 16> m_words;
    159 };
    160 
    161 static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
    162 {
    163 #ifdef USE_LONG_LONG
    164     unsigned long long carry;
    165 #else
    166     uint32_t carry;
    167 #endif
    168 
    169     int wds = b.size();
    170     uint32_t* x = b.words();
    171     int i = 0;
    172     carry = a;
    173     do {
    174 #ifdef USE_LONG_LONG
    175         unsigned long long y = *x * (unsigned long long)m + carry;
    176         carry = y >> 32;
    177         *x++ = (uint32_t)y & 0xffffffffUL;
    178 #else
    179         uint32_t xi = *x;
    180         uint32_t y = (xi & 0xffff) * m + carry;
    181         uint32_t z = (xi >> 16) * m + (y >> 16);
    182         carry = z >> 16;
    183         *x++ = (z << 16) + (y & 0xffff);
    184 #endif
    185     } while (++i < wds);
    186 
    187     if (carry)
    188         b.append((uint32_t)carry);
    189 }
    190 
    191 static int hi0bits(uint32_t x)
    192 {
    193     int k = 0;
    194 
    195     if (!(x & 0xffff0000)) {
    196         k = 16;
    197         x <<= 16;
    198     }
    199     if (!(x & 0xff000000)) {
    200         k += 8;
    201         x <<= 8;
    202     }
    203     if (!(x & 0xf0000000)) {
    204         k += 4;
    205         x <<= 4;
    206     }
    207     if (!(x & 0xc0000000)) {
    208         k += 2;
    209         x <<= 2;
    210     }
    211     if (!(x & 0x80000000)) {
    212         k++;
    213         if (!(x & 0x40000000))
    214             return 32;
    215     }
    216     return k;
    217 }
    218 
    219 static int lo0bits(uint32_t* y)
    220 {
    221     int k;
    222     uint32_t x = *y;
    223 
    224     if (x & 7) {
    225         if (x & 1)
    226             return 0;
    227         if (x & 2) {
    228             *y = x >> 1;
    229             return 1;
    230         }
    231         *y = x >> 2;
    232         return 2;
    233     }
    234     k = 0;
    235     if (!(x & 0xffff)) {
    236         k = 16;
    237         x >>= 16;
    238     }
    239     if (!(x & 0xff)) {
    240         k += 8;
    241         x >>= 8;
    242     }
    243     if (!(x & 0xf)) {
    244         k += 4;
    245         x >>= 4;
    246     }
    247     if (!(x & 0x3)) {
    248         k += 2;
    249         x >>= 2;
    250     }
    251     if (!(x & 1)) {
    252         k++;
    253         x >>= 1;
    254         if (!x)
    255             return 32;
    256     }
    257     *y = x;
    258     return k;
    259 }
    260 
    261 static void i2b(BigInt& b, int i)
    262 {
    263     b.sign = 0;
    264     b.resize(1);
    265     b.words()[0] = i;
    266 }
    267 
    268 static void mult(BigInt& aRef, const BigInt& bRef)
    269 {
    270     const BigInt* a = &aRef;
    271     const BigInt* b = &bRef;
    272     BigInt c;
    273     int wa, wb, wc;
    274     const uint32_t* x = 0;
    275     const uint32_t* xa;
    276     const uint32_t* xb;
    277     const uint32_t* xae;
    278     const uint32_t* xbe;
    279     uint32_t* xc;
    280     uint32_t* xc0;
    281     uint32_t y;
    282 #ifdef USE_LONG_LONG
    283     unsigned long long carry, z;
    284 #else
    285     uint32_t carry, z;
    286 #endif
    287 
    288     if (a->size() < b->size()) {
    289         const BigInt* tmp = a;
    290         a = b;
    291         b = tmp;
    292     }
    293 
    294     wa = a->size();
    295     wb = b->size();
    296     wc = wa + wb;
    297     c.resize(wc);
    298 
    299     for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
    300         *xc = 0;
    301     xa = a->words();
    302     xae = xa + wa;
    303     xb = b->words();
    304     xbe = xb + wb;
    305     xc0 = c.words();
    306 #ifdef USE_LONG_LONG
    307     for (; xb < xbe; xc0++) {
    308         if ((y = *xb++)) {
    309             x = xa;
    310             xc = xc0;
    311             carry = 0;
    312             do {
    313                 z = *x++ * (unsigned long long)y + *xc + carry;
    314                 carry = z >> 32;
    315                 *xc++ = (uint32_t)z & 0xffffffffUL;
    316             } while (x < xae);
    317             *xc = (uint32_t)carry;
    318         }
    319     }
    320 #else
    321     for (; xb < xbe; xb++, xc0++) {
    322         if ((y = *xb & 0xffff)) {
    323             x = xa;
    324             xc = xc0;
    325             carry = 0;
    326             do {
    327                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
    328                 carry = z >> 16;
    329                 uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
    330                 carry = z2 >> 16;
    331                 xc = storeInc(xc, z2, z);
    332             } while (x < xae);
    333             *xc = carry;
    334         }
    335         if ((y = *xb >> 16)) {
    336             x = xa;
    337             xc = xc0;
    338             carry = 0;
    339             uint32_t z2 = *xc;
    340             do {
    341                 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
    342                 carry = z >> 16;
    343                 xc = storeInc(xc, z, z2);
    344                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
    345                 carry = z2 >> 16;
    346             } while (x < xae);
    347             *xc = z2;
    348         }
    349     }
    350 #endif
    351     for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
    352     c.resize(wc);
    353     aRef = c;
    354 }
    355 
    356 struct P5Node {
    357     WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
    358 public:
    359     P5Node() { }
    360     BigInt val;
    361     P5Node* next;
    362 };
    363 
    364 static P5Node* p5s;
    365 static int p5sCount;
    366 
    367 static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
    368 {
    369     static int p05[3] = { 5, 25, 125 };
    370 
    371     if (int i = k & 3)
    372         multadd(b, p05[i - 1], 0);
    373 
    374     if (!(k >>= 2))
    375         return;
    376 
    377     s_dtoaP5Mutex->lock();
    378     P5Node* p5 = p5s;
    379 
    380     if (!p5) {
    381         /* first time */
    382         p5 = new P5Node;
    383         i2b(p5->val, 625);
    384         p5->next = 0;
    385         p5s = p5;
    386         p5sCount = 1;
    387     }
    388 
    389     int p5sCountLocal = p5sCount;
    390     s_dtoaP5Mutex->unlock();
    391     int p5sUsed = 0;
    392 
    393     for (;;) {
    394         if (k & 1)
    395             mult(b, p5->val);
    396 
    397         if (!(k >>= 1))
    398             break;
    399 
    400         if (++p5sUsed == p5sCountLocal) {
    401             s_dtoaP5Mutex->lock();
    402             if (p5sUsed == p5sCount) {
    403                 ASSERT(!p5->next);
    404                 p5->next = new P5Node;
    405                 p5->next->next = 0;
    406                 p5->next->val = p5->val;
    407                 mult(p5->next->val, p5->next->val);
    408                 ++p5sCount;
    409             }
    410 
    411             p5sCountLocal = p5sCount;
    412             s_dtoaP5Mutex->unlock();
    413         }
    414         p5 = p5->next;
    415     }
    416 }
    417 
    418 static ALWAYS_INLINE void lshift(BigInt& b, int k)
    419 {
    420     int n = k >> 5;
    421 
    422     int origSize = b.size();
    423     int n1 = n + origSize + 1;
    424 
    425     if (k &= 0x1f)
    426         b.resize(b.size() + n + 1);
    427     else
    428         b.resize(b.size() + n);
    429 
    430     const uint32_t* srcStart = b.words();
    431     uint32_t* dstStart = b.words();
    432     const uint32_t* src = srcStart + origSize - 1;
    433     uint32_t* dst = dstStart + n1 - 1;
    434     if (k) {
    435         uint32_t hiSubword = 0;
    436         int s = 32 - k;
    437         for (; src >= srcStart; --src) {
    438             *dst-- = hiSubword | *src >> s;
    439             hiSubword = *src << k;
    440         }
    441         *dst = hiSubword;
    442         ASSERT(dst == dstStart + n);
    443 
    444         b.resize(origSize + n + !!b.words()[n1 - 1]);
    445     }
    446     else {
    447         do {
    448             *--dst = *src--;
    449         } while (src >= srcStart);
    450     }
    451     for (dst = dstStart + n; dst != dstStart; )
    452         *--dst = 0;
    453 
    454     ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
    455 }
    456 
    457 static int cmp(const BigInt& a, const BigInt& b)
    458 {
    459     const uint32_t *xa, *xa0, *xb, *xb0;
    460     int i, j;
    461 
    462     i = a.size();
    463     j = b.size();
    464     ASSERT(i <= 1 || a.words()[i - 1]);
    465     ASSERT(j <= 1 || b.words()[j - 1]);
    466     if (i -= j)
    467         return i;
    468     xa0 = a.words();
    469     xa = xa0 + j;
    470     xb0 = b.words();
    471     xb = xb0 + j;
    472     for (;;) {
    473         if (*--xa != *--xb)
    474             return *xa < *xb ? -1 : 1;
    475         if (xa <= xa0)
    476             break;
    477     }
    478     return 0;
    479 }
    480 
    481 static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
    482 {
    483     const BigInt* a = &aRef;
    484     const BigInt* b = &bRef;
    485     int i, wa, wb;
    486     uint32_t* xc;
    487 
    488     i = cmp(*a, *b);
    489     if (!i) {
    490         c.sign = 0;
    491         c.resize(1);
    492         c.words()[0] = 0;
    493         return;
    494     }
    495     if (i < 0) {
    496         const BigInt* tmp = a;
    497         a = b;
    498         b = tmp;
    499         i = 1;
    500     } else
    501         i = 0;
    502 
    503     wa = a->size();
    504     const uint32_t* xa = a->words();
    505     const uint32_t* xae = xa + wa;
    506     wb = b->size();
    507     const uint32_t* xb = b->words();
    508     const uint32_t* xbe = xb + wb;
    509 
    510     c.resize(wa);
    511     c.sign = i;
    512     xc = c.words();
    513 #ifdef USE_LONG_LONG
    514     unsigned long long borrow = 0;
    515     do {
    516         unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
    517         borrow = y >> 32 & (uint32_t)1;
    518         *xc++ = (uint32_t)y & 0xffffffffUL;
    519     } while (xb < xbe);
    520     while (xa < xae) {
    521         unsigned long long y = *xa++ - borrow;
    522         borrow = y >> 32 & (uint32_t)1;
    523         *xc++ = (uint32_t)y & 0xffffffffUL;
    524     }
    525 #else
    526     uint32_t borrow = 0;
    527     do {
    528         uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
    529         borrow = (y & 0x10000) >> 16;
    530         uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
    531         borrow = (z & 0x10000) >> 16;
    532         xc = storeInc(xc, z, y);
    533     } while (xb < xbe);
    534     while (xa < xae) {
    535         uint32_t y = (*xa & 0xffff) - borrow;
    536         borrow = (y & 0x10000) >> 16;
    537         uint32_t z = (*xa++ >> 16) - borrow;
    538         borrow = (z & 0x10000) >> 16;
    539         xc = storeInc(xc, z, y);
    540     }
    541 #endif
    542     while (!*--xc)
    543         wa--;
    544     c.resize(wa);
    545 }
    546 
    547 static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
    548 {
    549     int de, k;
    550     uint32_t* x;
    551     uint32_t y, z;
    552     int i;
    553 #define d0 word0(d)
    554 #define d1 word1(d)
    555 
    556     b.sign = 0;
    557     b.resize(1);
    558     x = b.words();
    559 
    560     z = d0 & Frac_mask;
    561     d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
    562     if ((de = (int)(d0 >> Exp_shift)))
    563         z |= Exp_msk1;
    564     if ((y = d1)) {
    565         if ((k = lo0bits(&y))) {
    566             x[0] = y | (z << (32 - k));
    567             z >>= k;
    568         } else
    569             x[0] = y;
    570         if (z) {
    571             b.resize(2);
    572             x[1] = z;
    573         }
    574 
    575         i = b.size();
    576     } else {
    577         k = lo0bits(&z);
    578         x[0] = z;
    579         i = 1;
    580         b.resize(1);
    581         k += 32;
    582     }
    583     if (de) {
    584         *e = de - Bias - (P - 1) + k;
    585         *bits = P - k;
    586     } else {
    587         *e = 0 - Bias - (P - 1) + 1 + k;
    588         *bits = (32 * i) - hi0bits(x[i - 1]);
    589     }
    590 }
    591 #undef d0
    592 #undef d1
    593 
    594 static const double tens[] = {
    595     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
    596     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
    597     1e20, 1e21, 1e22
    598 };
    599 
    600 static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
    601 
    602 #define Scale_Bit 0x10
    603 #define n_bigtens 5
    604 
    605 static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
    606 {
    607     size_t n;
    608     uint32_t* bx;
    609     uint32_t* bxe;
    610     uint32_t q;
    611     uint32_t* sx;
    612     uint32_t* sxe;
    613 #ifdef USE_LONG_LONG
    614     unsigned long long borrow, carry, y, ys;
    615 #else
    616     uint32_t borrow, carry, y, ys;
    617     uint32_t si, z, zs;
    618 #endif
    619     ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
    620     ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
    621 
    622     n = S.size();
    623     ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
    624     if (b.size() < n)
    625         return 0;
    626     sx = S.words();
    627     sxe = sx + --n;
    628     bx = b.words();
    629     bxe = bx + n;
    630     q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
    631     ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
    632     if (q) {
    633         borrow = 0;
    634         carry = 0;
    635         do {
    636 #ifdef USE_LONG_LONG
    637             ys = *sx++ * (unsigned long long)q + carry;
    638             carry = ys >> 32;
    639             y = *bx - (ys & 0xffffffffUL) - borrow;
    640             borrow = y >> 32 & (uint32_t)1;
    641             *bx++ = (uint32_t)y & 0xffffffffUL;
    642 #else
    643             si = *sx++;
    644             ys = (si & 0xffff) * q + carry;
    645             zs = (si >> 16) * q + (ys >> 16);
    646             carry = zs >> 16;
    647             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
    648             borrow = (y & 0x10000) >> 16;
    649             z = (*bx >> 16) - (zs & 0xffff) - borrow;
    650             borrow = (z & 0x10000) >> 16;
    651             bx = storeInc(bx, z, y);
    652 #endif
    653         } while (sx <= sxe);
    654         if (!*bxe) {
    655             bx = b.words();
    656             while (--bxe > bx && !*bxe)
    657                 --n;
    658             b.resize(n);
    659         }
    660     }
    661     if (cmp(b, S) >= 0) {
    662         q++;
    663         borrow = 0;
    664         carry = 0;
    665         bx = b.words();
    666         sx = S.words();
    667         do {
    668 #ifdef USE_LONG_LONG
    669             ys = *sx++ + carry;
    670             carry = ys >> 32;
    671             y = *bx - (ys & 0xffffffffUL) - borrow;
    672             borrow = y >> 32 & (uint32_t)1;
    673             *bx++ = (uint32_t)y & 0xffffffffUL;
    674 #else
    675             si = *sx++;
    676             ys = (si & 0xffff) + carry;
    677             zs = (si >> 16) + (ys >> 16);
    678             carry = zs >> 16;
    679             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
    680             borrow = (y & 0x10000) >> 16;
    681             z = (*bx >> 16) - (zs & 0xffff) - borrow;
    682             borrow = (z & 0x10000) >> 16;
    683             bx = storeInc(bx, z, y);
    684 #endif
    685         } while (sx <= sxe);
    686         bx = b.words();
    687         bxe = bx + n;
    688         if (!*bxe) {
    689             while (--bxe > bx && !*bxe)
    690                 --n;
    691             b.resize(n);
    692         }
    693     }
    694     return q;
    695 }
    696 
    697 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
    698  *
    699  * Inspired by "How to Print Floating-Point Numbers Accurately" by
    700  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
    701  *
    702  * Modifications:
    703  *    1. Rather than iterating, we use a simple numeric overestimate
    704  *       to determine k = floor(log10(d)).  We scale relevant
    705  *       quantities using O(log2(k)) rather than O(k) multiplications.
    706  *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
    707  *       try to generate digits strictly left to right.  Instead, we
    708  *       compute with fewer bits and propagate the carry if necessary
    709  *       when rounding the final digit up.  This is often faster.
    710  *    3. Under the assumption that input will be rounded nearest,
    711  *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
    712  *       That is, we allow equality in stopping tests when the
    713  *       round-nearest rule will give the same floating-point value
    714  *       as would satisfaction of the stopping test with strict
    715  *       inequality.
    716  *    4. We remove common factors of powers of 2 from relevant
    717  *       quantities.
    718  *    5. When converting floating-point integers less than 1e16,
    719  *       we use floating-point arithmetic rather than resorting
    720  *       to multiple-precision integers.
    721  *    6. When asked to produce fewer than 15 digits, we first try
    722  *       to get by with floating-point arithmetic; we resort to
    723  *       multiple-precision integer arithmetic only if we cannot
    724  *       guarantee that the floating-point calculation has given
    725  *       the correctly rounded result.  For k requested digits and
    726  *       "uniformly" distributed input, the probability is
    727  *       something like 10^(k-15) that we must resort to the int32_t
    728  *       calculation.
    729  *
    730  * Note: 'leftright' translates to 'generate shortest possible string'.
    731  */
    732 template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
    733 void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
    734 {
    735     // Exactly one rounding mode must be specified.
    736     ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
    737     // roundingNone only allowed (only sensible?) with leftright set.
    738     ASSERT(!roundingNone || leftright);
    739 
    740     ASSERT(std::isfinite(dd));
    741 
    742     int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
    743         j, j1, k, k0, k_check, m2, m5, s2, s5,
    744         spec_case;
    745     int32_t L;
    746     int denorm;
    747     uint32_t x;
    748     BigInt b, delta, mlo, mhi, S;
    749     U d2, eps, u;
    750     double ds;
    751     char* s;
    752     char* s0;
    753 
    754     u.d = dd;
    755 
    756     /* Infinity or NaN */
    757     ASSERT((word0(&u) & Exp_mask) != Exp_mask);
    758 
    759     // JavaScript toString conversion treats -0 as 0.
    760     if (!dval(&u)) {
    761         signOut = false;
    762         exponentOut = 0;
    763         precisionOut = 1;
    764         result[0] = '0';
    765         result[1] = '\0';
    766         return;
    767     }
    768 
    769     if (word0(&u) & Sign_bit) {
    770         signOut = true;
    771         word0(&u) &= ~Sign_bit; // clear sign bit
    772     } else
    773         signOut = false;
    774 
    775     d2b(b, &u, &be, &bbits);
    776     if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
    777         dval(&d2) = dval(&u);
    778         word0(&d2) &= Frac_mask1;
    779         word0(&d2) |= Exp_11;
    780 
    781         /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
    782          * log10(x)     =  log(x) / log(10)
    783          *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
    784          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
    785          *
    786          * This suggests computing an approximation k to log10(d) by
    787          *
    788          * k = (i - Bias)*0.301029995663981
    789          *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
    790          *
    791          * We want k to be too large rather than too small.
    792          * The error in the first-order Taylor series approximation
    793          * is in our favor, so we just round up the constant enough
    794          * to compensate for any error in the multiplication of
    795          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
    796          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
    797          * adding 1e-13 to the constant term more than suffices.
    798          * Hence we adjust the constant term to 0.1760912590558.
    799          * (We could get a more accurate k by invoking log10,
    800          *  but this is probably not worthwhile.)
    801          */
    802 
    803         i -= Bias;
    804         denorm = 0;
    805     } else {
    806         /* d is denormalized */
    807 
    808         i = bbits + be + (Bias + (P - 1) - 1);
    809         x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
    810                 : word1(&u) << (32 - i);
    811         dval(&d2) = x;
    812         word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
    813         i -= (Bias + (P - 1) - 1) + 1;
    814         denorm = 1;
    815     }
    816     ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
    817     k = (int)ds;
    818     if (ds < 0. && ds != k)
    819         k--;    /* want k = floor(ds) */
    820     k_check = 1;
    821     if (k >= 0 && k <= Ten_pmax) {
    822         if (dval(&u) < tens[k])
    823             k--;
    824         k_check = 0;
    825     }
    826     j = bbits - i - 1;
    827     if (j >= 0) {
    828         b2 = 0;
    829         s2 = j;
    830     } else {
    831         b2 = -j;
    832         s2 = 0;
    833     }
    834     if (k >= 0) {
    835         b5 = 0;
    836         s5 = k;
    837         s2 += k;
    838     } else {
    839         b2 -= k;
    840         b5 = -k;
    841         s5 = 0;
    842     }
    843 
    844     if (roundingNone) {
    845         ilim = ilim1 = -1;
    846         i = 18;
    847         ndigits = 0;
    848     }
    849     if (roundingSignificantFigures) {
    850         if (ndigits <= 0)
    851             ndigits = 1;
    852         ilim = ilim1 = i = ndigits;
    853     }
    854     if (roundingDecimalPlaces) {
    855         i = ndigits + k + 1;
    856         ilim = i;
    857         ilim1 = i - 1;
    858         if (i <= 0)
    859             i = 1;
    860     }
    861 
    862     s = s0 = result;
    863 
    864     if (ilim >= 0 && ilim <= Quick_max) {
    865         /* Try to get by with floating-point arithmetic. */
    866 
    867         i = 0;
    868         dval(&d2) = dval(&u);
    869         k0 = k;
    870         ilim0 = ilim;
    871         ieps = 2; /* conservative */
    872         if (k > 0) {
    873             ds = tens[k & 0xf];
    874             j = k >> 4;
    875             if (j & Bletch) {
    876                 /* prevent overflows */
    877                 j &= Bletch - 1;
    878                 dval(&u) /= bigtens[n_bigtens - 1];
    879                 ieps++;
    880             }
    881             for (; j; j >>= 1, i++) {
    882                 if (j & 1) {
    883                     ieps++;
    884                     ds *= bigtens[i];
    885                 }
    886             }
    887             dval(&u) /= ds;
    888         } else if ((j1 = -k)) {
    889             dval(&u) *= tens[j1 & 0xf];
    890             for (j = j1 >> 4; j; j >>= 1, i++) {
    891                 if (j & 1) {
    892                     ieps++;
    893                     dval(&u) *= bigtens[i];
    894                 }
    895             }
    896         }
    897         if (k_check && dval(&u) < 1. && ilim > 0) {
    898             if (ilim1 <= 0)
    899                 goto fastFailed;
    900             ilim = ilim1;
    901             k--;
    902             dval(&u) *= 10.;
    903             ieps++;
    904         }
    905         dval(&eps) = (ieps * dval(&u)) + 7.;
    906         word0(&eps) -= (P - 1) * Exp_msk1;
    907         if (!ilim) {
    908             S.clear();
    909             mhi.clear();
    910             dval(&u) -= 5.;
    911             if (dval(&u) > dval(&eps))
    912                 goto oneDigit;
    913             if (dval(&u) < -dval(&eps))
    914                 goto noDigits;
    915             goto fastFailed;
    916         }
    917         if (leftright) {
    918             /* Use Steele & White method of only
    919              * generating digits needed.
    920              */
    921             dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
    922             for (i = 0;;) {
    923                 L = (long int)dval(&u);
    924                 dval(&u) -= L;
    925                 *s++ = '0' + (int)L;
    926                 if (dval(&u) < dval(&eps))
    927                     goto ret;
    928                 if (1. - dval(&u) < dval(&eps))
    929                     goto bumpUp;
    930                 if (++i >= ilim)
    931                     break;
    932                 dval(&eps) *= 10.;
    933                 dval(&u) *= 10.;
    934             }
    935         } else {
    936             /* Generate ilim digits, then fix them up. */
    937             dval(&eps) *= tens[ilim - 1];
    938             for (i = 1;; i++, dval(&u) *= 10.) {
    939                 L = (int32_t)(dval(&u));
    940                 if (!(dval(&u) -= L))
    941                     ilim = i;
    942                 *s++ = '0' + (int)L;
    943                 if (i == ilim) {
    944                     if (dval(&u) > 0.5 + dval(&eps))
    945                         goto bumpUp;
    946                     if (dval(&u) < 0.5 - dval(&eps)) {
    947                         while (*--s == '0') { }
    948                         s++;
    949                         goto ret;
    950                     }
    951                     break;
    952                 }
    953             }
    954         }
    955 fastFailed:
    956         s = s0;
    957         dval(&u) = dval(&d2);
    958         k = k0;
    959         ilim = ilim0;
    960     }
    961 
    962     /* Do we have a "small" integer? */
    963 
    964     if (be >= 0 && k <= Int_max) {
    965         /* Yes. */
    966         ds = tens[k];
    967         if (ndigits < 0 && ilim <= 0) {
    968             S.clear();
    969             mhi.clear();
    970             if (ilim < 0 || dval(&u) <= 5 * ds)
    971                 goto noDigits;
    972             goto oneDigit;
    973         }
    974         for (i = 1;; i++, dval(&u) *= 10.) {
    975             L = (int32_t)(dval(&u) / ds);
    976             dval(&u) -= L * ds;
    977             *s++ = '0' + (int)L;
    978             if (!dval(&u)) {
    979                 break;
    980             }
    981             if (i == ilim) {
    982                 dval(&u) += dval(&u);
    983                 if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
    984 bumpUp:
    985                     while (*--s == '9')
    986                         if (s == s0) {
    987                             k++;
    988                             *s = '0';
    989                             break;
    990                         }
    991                     ++*s++;
    992                 }
    993                 break;
    994             }
    995         }
    996         goto ret;
    997     }
    998 
    999     m2 = b2;
   1000     m5 = b5;
   1001     mhi.clear();
   1002     mlo.clear();
   1003     if (leftright) {
   1004         i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
   1005         b2 += i;
   1006         s2 += i;
   1007         i2b(mhi, 1);
   1008     }
   1009     if (m2 > 0 && s2 > 0) {
   1010         i = m2 < s2 ? m2 : s2;
   1011         b2 -= i;
   1012         m2 -= i;
   1013         s2 -= i;
   1014     }
   1015     if (b5 > 0) {
   1016         if (leftright) {
   1017             if (m5 > 0) {
   1018                 pow5mult(mhi, m5);
   1019                 mult(b, mhi);
   1020             }
   1021             if ((j = b5 - m5))
   1022                 pow5mult(b, j);
   1023         } else
   1024             pow5mult(b, b5);
   1025     }
   1026     i2b(S, 1);
   1027     if (s5 > 0)
   1028         pow5mult(S, s5);
   1029 
   1030     /* Check for special case that d is a normalized power of 2. */
   1031 
   1032     spec_case = 0;
   1033     if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
   1034         /* The special case */
   1035         b2 += Log2P;
   1036         s2 += Log2P;
   1037         spec_case = 1;
   1038     }
   1039 
   1040     /* Arrange for convenient computation of quotients:
   1041      * shift left if necessary so divisor has 4 leading 0 bits.
   1042      *
   1043      * Perhaps we should just compute leading 28 bits of S once
   1044      * and for all and pass them and a shift to quorem, so it
   1045      * can do shifts and ors to compute the numerator for q.
   1046      */
   1047     if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
   1048         i = 32 - i;
   1049     if (i > 4) {
   1050         i -= 4;
   1051         b2 += i;
   1052         m2 += i;
   1053         s2 += i;
   1054     } else if (i < 4) {
   1055         i += 28;
   1056         b2 += i;
   1057         m2 += i;
   1058         s2 += i;
   1059     }
   1060     if (b2 > 0)
   1061         lshift(b, b2);
   1062     if (s2 > 0)
   1063         lshift(S, s2);
   1064     if (k_check) {
   1065         if (cmp(b, S) < 0) {
   1066             k--;
   1067             multadd(b, 10, 0);    /* we botched the k estimate */
   1068             if (leftright)
   1069                 multadd(mhi, 10, 0);
   1070             ilim = ilim1;
   1071         }
   1072     }
   1073     if (ilim <= 0 && roundingDecimalPlaces) {
   1074         if (ilim < 0)
   1075             goto noDigits;
   1076         multadd(S, 5, 0);
   1077         // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
   1078         if (cmp(b, S) < 0)
   1079             goto noDigits;
   1080         goto oneDigit;
   1081     }
   1082     if (leftright) {
   1083         if (m2 > 0)
   1084             lshift(mhi, m2);
   1085 
   1086         /* Compute mlo -- check for special case
   1087          * that d is a normalized power of 2.
   1088          */
   1089 
   1090         mlo = mhi;
   1091         if (spec_case)
   1092             lshift(mhi, Log2P);
   1093 
   1094         for (i = 1;;i++) {
   1095             dig = quorem(b, S) + '0';
   1096             /* Do we yet have the shortest decimal string
   1097              * that will round to d?
   1098              */
   1099             j = cmp(b, mlo);
   1100             diff(delta, S, mhi);
   1101             j1 = delta.sign ? 1 : cmp(b, delta);
   1102 #ifdef DTOA_ROUND_BIASED
   1103             if (j < 0 || !j) {
   1104 #else
   1105             // FIXME: ECMA-262 specifies that equidistant results round away from
   1106             // zero, which probably means we shouldn't be on the unbiased code path
   1107             // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
   1108             // yet understood this code well enough to make the call, but we should
   1109             // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
   1110             // case to understand is probably "Math.pow(0.5, 24).toString()".
   1111             // I believe this value is interesting because I think it is precisely
   1112             // representable in binary floating point, and its decimal representation
   1113             // has a single digit that Steele & White reduction can remove, with the
   1114             // value 5 (thus equidistant from the next numbers above and below).
   1115             // We produce the correct answer using either codepath, and I don't as
   1116             // yet understand why. :-)
   1117             if (!j1 && !(word1(&u) & 1)) {
   1118                 if (dig == '9')
   1119                     goto round9up;
   1120                 if (j > 0)
   1121                     dig++;
   1122                 *s++ = dig;
   1123                 goto ret;
   1124             }
   1125             if (j < 0 || (!j && !(word1(&u) & 1))) {
   1126 #endif
   1127                 if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
   1128                     lshift(b, 1);
   1129                     j1 = cmp(b, S);
   1130                     // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
   1131                     // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
   1132                     // be rounded away from zero.
   1133                     if (j1 >= 0) {
   1134                         if (dig == '9')
   1135                             goto round9up;
   1136                         dig++;
   1137                     }
   1138                 }
   1139                 *s++ = dig;
   1140                 goto ret;
   1141             }
   1142             if (j1 > 0) {
   1143                 if (dig == '9') { /* possible if i == 1 */
   1144 round9up:
   1145                     *s++ = '9';
   1146                     goto roundoff;
   1147                 }
   1148                 *s++ = dig + 1;
   1149                 goto ret;
   1150             }
   1151             *s++ = dig;
   1152             if (i == ilim)
   1153                 break;
   1154             multadd(b, 10, 0);
   1155             multadd(mlo, 10, 0);
   1156             multadd(mhi, 10, 0);
   1157         }
   1158     } else {
   1159         for (i = 1;; i++) {
   1160             *s++ = dig = quorem(b, S) + '0';
   1161             if (!b.words()[0] && b.size() <= 1)
   1162                 goto ret;
   1163             if (i >= ilim)
   1164                 break;
   1165             multadd(b, 10, 0);
   1166         }
   1167     }
   1168 
   1169     /* Round off last digit */
   1170 
   1171     lshift(b, 1);
   1172     j = cmp(b, S);
   1173     // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
   1174     // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
   1175     // be rounded away from zero.
   1176     if (j >= 0) {
   1177 roundoff:
   1178         while (*--s == '9')
   1179             if (s == s0) {
   1180                 k++;
   1181                 *s++ = '1';
   1182                 goto ret;
   1183             }
   1184         ++*s++;
   1185     } else {
   1186         while (*--s == '0') { }
   1187         s++;
   1188     }
   1189     goto ret;
   1190 noDigits:
   1191     exponentOut = 0;
   1192     precisionOut = 1;
   1193     result[0] = '0';
   1194     result[1] = '\0';
   1195     return;
   1196 oneDigit:
   1197     *s++ = '1';
   1198     k++;
   1199     goto ret;
   1200 ret:
   1201     ASSERT(s > result);
   1202     *s = 0;
   1203     exponentOut = k;
   1204     precisionOut = s - result;
   1205 }
   1206 
   1207 void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
   1208 {
   1209     // flags are roundingNone, leftright.
   1210     dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
   1211 }
   1212 
   1213 void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
   1214 {
   1215     // flag is roundingSignificantFigures.
   1216     dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
   1217 }
   1218 
   1219 void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
   1220 {
   1221     // flag is roundingDecimalPlaces.
   1222     dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
   1223 }
   1224 
   1225 const char* numberToString(double d, NumberToStringBuffer buffer)
   1226 {
   1227     double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
   1228     const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
   1229     converter.ToShortest(d, &builder);
   1230     return builder.Finalize();
   1231 }
   1232 
   1233 static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
   1234 {
   1235     size_t length = builder.position();
   1236     size_t decimalPointPosition = 0;
   1237     for (; decimalPointPosition < length; ++decimalPointPosition) {
   1238         if (buffer[decimalPointPosition] == '.')
   1239             break;
   1240     }
   1241 
   1242     // No decimal seperator found, early exit.
   1243     if (decimalPointPosition == length)
   1244         return builder.Finalize();
   1245 
   1246     size_t truncatedLength = length - 1;
   1247     for (; truncatedLength > decimalPointPosition; --truncatedLength) {
   1248         if (buffer[truncatedLength] != '0')
   1249             break;
   1250     }
   1251 
   1252     // No trailing zeros found to strip.
   1253     if (truncatedLength == length - 1)
   1254         return builder.Finalize();
   1255 
   1256     // If we removed all trailing zeros, remove the decimal point as well.
   1257     if (truncatedLength == decimalPointPosition) {
   1258         ASSERT(truncatedLength > 0);
   1259         --truncatedLength;
   1260     }
   1261 
   1262     // Truncate the StringBuilder, and return the final result.
   1263     builder.SetPosition(truncatedLength + 1);
   1264     return builder.Finalize();
   1265 }
   1266 
   1267 const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
   1268 {
   1269     // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
   1270     // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
   1271     // The e format is used only when the exponent of the value is less than 4 or greater than or equal to the
   1272     // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
   1273     // "precision": The precision specifies the maximum number of significant digits printed.
   1274     double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
   1275     const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
   1276     converter.ToPrecision(d, significantFigures, &builder);
   1277     if (!truncateTrailingZeros)
   1278         return builder.Finalize();
   1279     return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
   1280 }
   1281 
   1282 const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
   1283 {
   1284     // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
   1285     // "f": Signed value having the form [  ]dddd.dddd, where dddd is one or more decimal digits.
   1286     // The number of digits before the decimal point depends on the magnitude of the number, and
   1287     // the number of digits after the decimal point depends on the requested precision.
   1288     // "precision": The precision value specifies the number of digits after the decimal point.
   1289     // If a decimal point appears, at least one digit appears before it.
   1290     // The value is rounded to the appropriate number of digits.
   1291     double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
   1292     const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
   1293     converter.ToFixed(d, decimalPlaces, &builder);
   1294     return builder.Finalize();
   1295 }
   1296 
   1297 namespace Internal {
   1298 
   1299 double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
   1300 {
   1301     Vector<LChar> conversionBuffer(length);
   1302     for (size_t i = 0; i < length; ++i)
   1303         conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
   1304     return parseDouble(conversionBuffer.data(), length, parsedLength);
   1305 }
   1306 
   1307 } // namespace Internal
   1308 
   1309 } // namespace WTF
   1310