Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # ====================================================================
      4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 #
     10 # March, May, June 2010
     11 #
     12 # The module implements "4-bit" GCM GHASH function and underlying
     13 # single multiplication operation in GF(2^128). "4-bit" means that it
     14 # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
     15 # code paths: vanilla x86 and vanilla SSE. Former will be executed on
     16 # 486 and Pentium, latter on all others. SSE GHASH features so called
     17 # "528B" variant of "4-bit" method utilizing additional 256+16 bytes
     18 # of per-key storage [+512 bytes shared table]. Performance results
     19 # are for streamed GHASH subroutine and are expressed in cycles per
     20 # processed byte, less is better:
     21 #
     22 #		gcc 2.95.3(*)	SSE assembler	x86 assembler
     23 #
     24 # Pentium	105/111(**)	-		50
     25 # PIII		68 /75		12.2		24
     26 # P4		125/125		17.8		84(***)
     27 # Opteron	66 /70		10.1		30
     28 # Core2		54 /67		8.4		18
     29 # Atom		105/105		16.8		53
     30 # VIA Nano	69 /71		13.0		27
     31 #
     32 # (*)	gcc 3.4.x was observed to generate few percent slower code,
     33 #	which is one of reasons why 2.95.3 results were chosen,
     34 #	another reason is lack of 3.4.x results for older CPUs;
     35 #	comparison with SSE results is not completely fair, because C
     36 #	results are for vanilla "256B" implementation, while
     37 #	assembler results are for "528B";-)
     38 # (**)	second number is result for code compiled with -fPIC flag,
     39 #	which is actually more relevant, because assembler code is
     40 #	position-independent;
     41 # (***)	see comment in non-MMX routine for further details;
     42 #
     43 # To summarize, it's >2-5 times faster than gcc-generated code. To
     44 # anchor it to something else SHA1 assembler processes one byte in
     45 # ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
     46 # in particular, see comment at the end of the file...
     47 
     48 # May 2010
     49 #
     50 # Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
     51 # The question is how close is it to theoretical limit? The pclmulqdq
     52 # instruction latency appears to be 14 cycles and there can't be more
     53 # than 2 of them executing at any given time. This means that single
     54 # Karatsuba multiplication would take 28 cycles *plus* few cycles for
     55 # pre- and post-processing. Then multiplication has to be followed by
     56 # modulo-reduction. Given that aggregated reduction method [see
     57 # "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
     58 # white paper by Intel] allows you to perform reduction only once in
     59 # a while we can assume that asymptotic performance can be estimated
     60 # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
     61 # and Naggr is the aggregation factor.
     62 #
     63 # Before we proceed to this implementation let's have closer look at
     64 # the best-performing code suggested by Intel in their white paper.
     65 # By tracing inter-register dependencies Tmod is estimated as ~19
     66 # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
     67 # processed byte. As implied, this is quite optimistic estimate,
     68 # because it does not account for Karatsuba pre- and post-processing,
     69 # which for a single multiplication is ~5 cycles. Unfortunately Intel
     70 # does not provide performance data for GHASH alone. But benchmarking
     71 # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
     72 # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
     73 # the result accounts even for pre-computing of degrees of the hash
     74 # key H, but its portion is negligible at 16KB buffer size.
     75 #
     76 # Moving on to the implementation in question. Tmod is estimated as
     77 # ~13 cycles and Naggr is 2, giving asymptotic performance of ...
     78 # 2.16. How is it possible that measured performance is better than
     79 # optimistic theoretical estimate? There is one thing Intel failed
     80 # to recognize. By serializing GHASH with CTR in same subroutine
     81 # former's performance is really limited to above (Tmul + Tmod/Naggr)
     82 # equation. But if GHASH procedure is detached, the modulo-reduction
     83 # can be interleaved with Naggr-1 multiplications at instruction level
     84 # and under ideal conditions even disappear from the equation. So that
     85 # optimistic theoretical estimate for this implementation is ...
     86 # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
     87 # at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
     88 # where Tproc is time required for Karatsuba pre- and post-processing,
     89 # is more realistic estimate. In this case it gives ... 1.91 cycles.
     90 # Or in other words, depending on how well we can interleave reduction
     91 # and one of the two multiplications the performance should be betwen
     92 # 1.91 and 2.16. As already mentioned, this implementation processes
     93 # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
     94 # - in 2.02. x86_64 performance is better, because larger register
     95 # bank allows to interleave reduction and multiplication better.
     96 #
     97 # Does it make sense to increase Naggr? To start with it's virtually
     98 # impossible in 32-bit mode, because of limited register bank
     99 # capacity. Otherwise improvement has to be weighed agiainst slower
    100 # setup, as well as code size and complexity increase. As even
    101 # optimistic estimate doesn't promise 30% performance improvement,
    102 # there are currently no plans to increase Naggr.
    103 #
    104 # Special thanks to David Woodhouse <dwmw2 (at] infradead.org> for
    105 # providing access to a Westmere-based system on behalf of Intel
    106 # Open Source Technology Centre.
    107 
    108 # January 2010
    109 #
    110 # Tweaked to optimize transitions between integer and FP operations
    111 # on same XMM register, PCLMULQDQ subroutine was measured to process
    112 # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
    113 # The minor regression on Westmere is outweighed by ~15% improvement
    114 # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
    115 # similar manner resulted in almost 20% degradation on Sandy Bridge,
    116 # where original 64-bit code processes one byte in 1.95 cycles.
    117 
    118 #####################################################################
    119 # For reference, AMD Bulldozer processes one byte in 1.98 cycles in
    120 # 32-bit mode and 1.89 in 64-bit.
    121 
    122 # February 2013
    123 #
    124 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
    125 # reduction_alg9. Resulting performance is 1.96 cycles per byte on
    126 # Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
    127 
    128 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    129 push(@INC,"${dir}","${dir}../../perlasm");
    130 require "x86asm.pl";
    131 
    132 &asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386");
    133 
    134 $sse2=1;
    135 #for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
    136 
    137 ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
    138 $inp  = "edi";
    139 $Htbl = "esi";
    140 
    142 $unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
    143 		# than unrolled, which has to be weighted against
    144 		# 2.5x x86-specific code size reduction.
    145 
    146 sub x86_loop {
    147     my $off = shift;
    148     my $rem = "eax";
    149 
    150 	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
    151 	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
    152 	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
    153 	&mov	($Zll,&DWP(8,$Htbl,$Zll));
    154 	&xor	($rem,$rem);	# avoid partial register stalls on PIII
    155 
    156 	# shrd practically kills P4, 2.5x deterioration, but P4 has
    157 	# MMX code-path to execute. shrd runs tad faster [than twice
    158 	# the shifts, move's and or's] on pre-MMX Pentium (as well as
    159 	# PIII and Core2), *but* minimizes code size, spares register
    160 	# and thus allows to fold the loop...
    161 	if (!$unroll) {
    162 	my $cnt = $inp;
    163 	&mov	($cnt,15);
    164 	&jmp	(&label("x86_loop"));
    165 	&set_label("x86_loop",16);
    166 	    for($i=1;$i<=2;$i++) {
    167 		&mov	(&LB($rem),&LB($Zll));
    168 		&shrd	($Zll,$Zlh,4);
    169 		&and	(&LB($rem),0xf);
    170 		&shrd	($Zlh,$Zhl,4);
    171 		&shrd	($Zhl,$Zhh,4);
    172 		&shr	($Zhh,4);
    173 		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
    174 
    175 		&mov	(&LB($rem),&BP($off,"esp",$cnt));
    176 		if ($i&1) {
    177 			&and	(&LB($rem),0xf0);
    178 		} else {
    179 			&shl	(&LB($rem),4);
    180 		}
    181 
    182 		&xor	($Zll,&DWP(8,$Htbl,$rem));
    183 		&xor	($Zlh,&DWP(12,$Htbl,$rem));
    184 		&xor	($Zhl,&DWP(0,$Htbl,$rem));
    185 		&xor	($Zhh,&DWP(4,$Htbl,$rem));
    186 
    187 		if ($i&1) {
    188 			&dec	($cnt);
    189 			&js	(&label("x86_break"));
    190 		} else {
    191 			&jmp	(&label("x86_loop"));
    192 		}
    193 	    }
    194 	&set_label("x86_break",16);
    195 	} else {
    196 	    for($i=1;$i<32;$i++) {
    197 		&comment($i);
    198 		&mov	(&LB($rem),&LB($Zll));
    199 		&shrd	($Zll,$Zlh,4);
    200 		&and	(&LB($rem),0xf);
    201 		&shrd	($Zlh,$Zhl,4);
    202 		&shrd	($Zhl,$Zhh,4);
    203 		&shr	($Zhh,4);
    204 		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
    205 
    206 		if ($i&1) {
    207 			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
    208 			&and	(&LB($rem),0xf0);
    209 		} else {
    210 			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
    211 			&shl	(&LB($rem),4);
    212 		}
    213 
    214 		&xor	($Zll,&DWP(8,$Htbl,$rem));
    215 		&xor	($Zlh,&DWP(12,$Htbl,$rem));
    216 		&xor	($Zhl,&DWP(0,$Htbl,$rem));
    217 		&xor	($Zhh,&DWP(4,$Htbl,$rem));
    218 	    }
    219 	}
    220 	&bswap	($Zll);
    221 	&bswap	($Zlh);
    222 	&bswap	($Zhl);
    223 	if (!$x86only) {
    224 		&bswap	($Zhh);
    225 	} else {
    226 		&mov	("eax",$Zhh);
    227 		&bswap	("eax");
    228 		&mov	($Zhh,"eax");
    229 	}
    230 }
    231 
    232 if ($unroll) {
    233     &function_begin_B("_x86_gmult_4bit_inner");
    234 	&x86_loop(4);
    235 	&ret	();
    236     &function_end_B("_x86_gmult_4bit_inner");
    237 }
    238 
    239 sub deposit_rem_4bit {
    240     my $bias = shift;
    241 
    242 	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
    243 	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
    244 	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
    245 	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
    246 	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
    247 	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
    248 	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
    249 	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
    250 	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
    251 	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
    252 	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
    253 	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
    254 	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
    255 	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
    256 	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
    257 	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
    258 }
    259 
    261 $suffix = $x86only ? "" : "_x86";
    262 
    263 &function_begin("gcm_gmult_4bit".$suffix);
    264 	&stack_push(16+4+1);			# +1 for stack alignment
    265 	&mov	($inp,&wparam(0));		# load Xi
    266 	&mov	($Htbl,&wparam(1));		# load Htable
    267 
    268 	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
    269 	&mov	($Zhl,&DWP(4,$inp));
    270 	&mov	($Zlh,&DWP(8,$inp));
    271 	&mov	($Zll,&DWP(12,$inp));
    272 
    273 	&deposit_rem_4bit(16);
    274 
    275 	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
    276 	&mov	(&DWP(4,"esp"),$Zhl);
    277 	&mov	(&DWP(8,"esp"),$Zlh);
    278 	&mov	(&DWP(12,"esp"),$Zll);
    279 	&shr	($Zll,20);
    280 	&and	($Zll,0xf0);
    281 
    282 	if ($unroll) {
    283 		&call	("_x86_gmult_4bit_inner");
    284 	} else {
    285 		&x86_loop(0);
    286 		&mov	($inp,&wparam(0));
    287 	}
    288 
    289 	&mov	(&DWP(12,$inp),$Zll);
    290 	&mov	(&DWP(8,$inp),$Zlh);
    291 	&mov	(&DWP(4,$inp),$Zhl);
    292 	&mov	(&DWP(0,$inp),$Zhh);
    293 	&stack_pop(16+4+1);
    294 &function_end("gcm_gmult_4bit".$suffix);
    295 
    296 &function_begin("gcm_ghash_4bit".$suffix);
    297 	&stack_push(16+4+1);			# +1 for 64-bit alignment
    298 	&mov	($Zll,&wparam(0));		# load Xi
    299 	&mov	($Htbl,&wparam(1));		# load Htable
    300 	&mov	($inp,&wparam(2));		# load in
    301 	&mov	("ecx",&wparam(3));		# load len
    302 	&add	("ecx",$inp);
    303 	&mov	(&wparam(3),"ecx");
    304 
    305 	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
    306 	&mov	($Zhl,&DWP(4,$Zll));
    307 	&mov	($Zlh,&DWP(8,$Zll));
    308 	&mov	($Zll,&DWP(12,$Zll));
    309 
    310 	&deposit_rem_4bit(16);
    311 
    312     &set_label("x86_outer_loop",16);
    313 	&xor	($Zll,&DWP(12,$inp));		# xor with input
    314 	&xor	($Zlh,&DWP(8,$inp));
    315 	&xor	($Zhl,&DWP(4,$inp));
    316 	&xor	($Zhh,&DWP(0,$inp));
    317 	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
    318 	&mov	(&DWP(8,"esp"),$Zlh);
    319 	&mov	(&DWP(4,"esp"),$Zhl);
    320 	&mov	(&DWP(0,"esp"),$Zhh);
    321 
    322 	&shr	($Zll,20);
    323 	&and	($Zll,0xf0);
    324 
    325 	if ($unroll) {
    326 		&call	("_x86_gmult_4bit_inner");
    327 	} else {
    328 		&x86_loop(0);
    329 		&mov	($inp,&wparam(2));
    330 	}
    331 	&lea	($inp,&DWP(16,$inp));
    332 	&cmp	($inp,&wparam(3));
    333 	&mov	(&wparam(2),$inp)	if (!$unroll);
    334 	&jb	(&label("x86_outer_loop"));
    335 
    336 	&mov	($inp,&wparam(0));	# load Xi
    337 	&mov	(&DWP(12,$inp),$Zll);
    338 	&mov	(&DWP(8,$inp),$Zlh);
    339 	&mov	(&DWP(4,$inp),$Zhl);
    340 	&mov	(&DWP(0,$inp),$Zhh);
    341 	&stack_pop(16+4+1);
    342 &function_end("gcm_ghash_4bit".$suffix);
    343 
    345 if (!$x86only) {{{
    346 
    347 &static_label("rem_4bit");
    348 
    349 if (!$sse2) {{	# pure-MMX "May" version...
    350 
    351 $S=12;		# shift factor for rem_4bit
    352 
    353 &function_begin_B("_mmx_gmult_4bit_inner");
    354 # MMX version performs 3.5 times better on P4 (see comment in non-MMX
    355 # routine for further details), 100% better on Opteron, ~70% better
    356 # on Core2 and PIII... In other words effort is considered to be well
    357 # spent... Since initial release the loop was unrolled in order to
    358 # "liberate" register previously used as loop counter. Instead it's
    359 # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
    360 # The path involves move of Z.lo from MMX to integer register,
    361 # effective address calculation and finally merge of value to Z.hi.
    362 # Reference to rem_4bit is scheduled so late that I had to >>4
    363 # rem_4bit elements. This resulted in 20-45% procent improvement
    364 # on contemporary -archs.
    365 {
    366     my $cnt;
    367     my $rem_4bit = "eax";
    368     my @rem = ($Zhh,$Zll);
    369     my $nhi = $Zhl;
    370     my $nlo = $Zlh;
    371 
    372     my ($Zlo,$Zhi) = ("mm0","mm1");
    373     my $tmp = "mm2";
    374 
    375 	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
    376 	&mov	($nhi,$Zll);
    377 	&mov	(&LB($nlo),&LB($nhi));
    378 	&shl	(&LB($nlo),4);
    379 	&and	($nhi,0xf0);
    380 	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
    381 	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
    382 	&movd	($rem[0],$Zlo);
    383 
    384 	for ($cnt=28;$cnt>=-2;$cnt--) {
    385 	    my $odd = $cnt&1;
    386 	    my $nix = $odd ? $nlo : $nhi;
    387 
    388 		&shl	(&LB($nlo),4)			if ($odd);
    389 		&psrlq	($Zlo,4);
    390 		&movq	($tmp,$Zhi);
    391 		&psrlq	($Zhi,4);
    392 		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
    393 		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
    394 		&psllq	($tmp,60);
    395 		&and	($nhi,0xf0)			if ($odd);
    396 		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
    397 		&and	($rem[0],0xf);
    398 		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
    399 		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
    400 		&movd	($rem[1],$Zlo);
    401 		&pxor	($Zlo,$tmp);
    402 
    403 		push	(@rem,shift(@rem));		# "rotate" registers
    404 	}
    405 
    406 	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]
    407 
    408 	&psrlq	($Zlo,32);	# lower part of Zlo is already there
    409 	&movd	($Zhl,$Zhi);
    410 	&psrlq	($Zhi,32);
    411 	&movd	($Zlh,$Zlo);
    412 	&movd	($Zhh,$Zhi);
    413 	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4
    414 
    415 	&bswap	($Zll);
    416 	&bswap	($Zhl);
    417 	&bswap	($Zlh);
    418 	&xor	($Zhh,$inp);
    419 	&bswap	($Zhh);
    420 
    421 	&ret	();
    422 }
    423 &function_end_B("_mmx_gmult_4bit_inner");
    424 
    425 &function_begin("gcm_gmult_4bit_mmx");
    426 	&mov	($inp,&wparam(0));	# load Xi
    427 	&mov	($Htbl,&wparam(1));	# load Htable
    428 
    429 	&call	(&label("pic_point"));
    430 	&set_label("pic_point");
    431 	&blindpop("eax");
    432 	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
    433 
    434 	&movz	($Zll,&BP(15,$inp));
    435 
    436 	&call	("_mmx_gmult_4bit_inner");
    437 
    438 	&mov	($inp,&wparam(0));	# load Xi
    439 	&emms	();
    440 	&mov	(&DWP(12,$inp),$Zll);
    441 	&mov	(&DWP(4,$inp),$Zhl);
    442 	&mov	(&DWP(8,$inp),$Zlh);
    443 	&mov	(&DWP(0,$inp),$Zhh);
    444 &function_end("gcm_gmult_4bit_mmx");
    445 
    447 # Streamed version performs 20% better on P4, 7% on Opteron,
    448 # 10% on Core2 and PIII...
    449 &function_begin("gcm_ghash_4bit_mmx");
    450 	&mov	($Zhh,&wparam(0));	# load Xi
    451 	&mov	($Htbl,&wparam(1));	# load Htable
    452 	&mov	($inp,&wparam(2));	# load in
    453 	&mov	($Zlh,&wparam(3));	# load len
    454 
    455 	&call	(&label("pic_point"));
    456 	&set_label("pic_point");
    457 	&blindpop("eax");
    458 	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
    459 
    460 	&add	($Zlh,$inp);
    461 	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
    462 	&stack_push(4+1);		# +1 for stack alignment
    463 
    464 	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
    465 	&mov	($Zhl,&DWP(4,$Zhh));
    466 	&mov	($Zlh,&DWP(8,$Zhh));
    467 	&mov	($Zhh,&DWP(0,$Zhh));
    468 	&jmp	(&label("mmx_outer_loop"));
    469 
    470     &set_label("mmx_outer_loop",16);
    471 	&xor	($Zll,&DWP(12,$inp));
    472 	&xor	($Zhl,&DWP(4,$inp));
    473 	&xor	($Zlh,&DWP(8,$inp));
    474 	&xor	($Zhh,&DWP(0,$inp));
    475 	&mov	(&wparam(2),$inp);
    476 	&mov	(&DWP(12,"esp"),$Zll);
    477 	&mov	(&DWP(4,"esp"),$Zhl);
    478 	&mov	(&DWP(8,"esp"),$Zlh);
    479 	&mov	(&DWP(0,"esp"),$Zhh);
    480 
    481 	&mov	($inp,"esp");
    482 	&shr	($Zll,24);
    483 
    484 	&call	("_mmx_gmult_4bit_inner");
    485 
    486 	&mov	($inp,&wparam(2));
    487 	&lea	($inp,&DWP(16,$inp));
    488 	&cmp	($inp,&wparam(3));
    489 	&jb	(&label("mmx_outer_loop"));
    490 
    491 	&mov	($inp,&wparam(0));	# load Xi
    492 	&emms	();
    493 	&mov	(&DWP(12,$inp),$Zll);
    494 	&mov	(&DWP(4,$inp),$Zhl);
    495 	&mov	(&DWP(8,$inp),$Zlh);
    496 	&mov	(&DWP(0,$inp),$Zhh);
    497 
    498 	&stack_pop(4+1);
    499 &function_end("gcm_ghash_4bit_mmx");
    500 
    502 }} else {{	# "June" MMX version...
    503 		# ... has slower "April" gcm_gmult_4bit_mmx with folded
    504 		# loop. This is done to conserve code size...
    505 $S=16;		# shift factor for rem_4bit
    506 
    507 sub mmx_loop() {
    508 # MMX version performs 2.8 times better on P4 (see comment in non-MMX
    509 # routine for further details), 40% better on Opteron and Core2, 50%
    510 # better on PIII... In other words effort is considered to be well
    511 # spent...
    512     my $inp = shift;
    513     my $rem_4bit = shift;
    514     my $cnt = $Zhh;
    515     my $nhi = $Zhl;
    516     my $nlo = $Zlh;
    517     my $rem = $Zll;
    518 
    519     my ($Zlo,$Zhi) = ("mm0","mm1");
    520     my $tmp = "mm2";
    521 
    522 	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
    523 	&mov	($nhi,$Zll);
    524 	&mov	(&LB($nlo),&LB($nhi));
    525 	&mov	($cnt,14);
    526 	&shl	(&LB($nlo),4);
    527 	&and	($nhi,0xf0);
    528 	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
    529 	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
    530 	&movd	($rem,$Zlo);
    531 	&jmp	(&label("mmx_loop"));
    532 
    533     &set_label("mmx_loop",16);
    534 	&psrlq	($Zlo,4);
    535 	&and	($rem,0xf);
    536 	&movq	($tmp,$Zhi);
    537 	&psrlq	($Zhi,4);
    538 	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
    539 	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
    540 	&psllq	($tmp,60);
    541 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
    542 	&dec	($cnt);
    543 	&movd	($rem,$Zlo);
    544 	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
    545 	&mov	($nhi,$nlo);
    546 	&pxor	($Zlo,$tmp);
    547 	&js	(&label("mmx_break"));
    548 
    549 	&shl	(&LB($nlo),4);
    550 	&and	($rem,0xf);
    551 	&psrlq	($Zlo,4);
    552 	&and	($nhi,0xf0);
    553 	&movq	($tmp,$Zhi);
    554 	&psrlq	($Zhi,4);
    555 	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
    556 	&psllq	($tmp,60);
    557 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
    558 	&movd	($rem,$Zlo);
    559 	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
    560 	&pxor	($Zlo,$tmp);
    561 	&jmp	(&label("mmx_loop"));
    562 
    563     &set_label("mmx_break",16);
    564 	&shl	(&LB($nlo),4);
    565 	&and	($rem,0xf);
    566 	&psrlq	($Zlo,4);
    567 	&and	($nhi,0xf0);
    568 	&movq	($tmp,$Zhi);
    569 	&psrlq	($Zhi,4);
    570 	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
    571 	&psllq	($tmp,60);
    572 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
    573 	&movd	($rem,$Zlo);
    574 	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
    575 	&pxor	($Zlo,$tmp);
    576 
    577 	&psrlq	($Zlo,4);
    578 	&and	($rem,0xf);
    579 	&movq	($tmp,$Zhi);
    580 	&psrlq	($Zhi,4);
    581 	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
    582 	&psllq	($tmp,60);
    583 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
    584 	&movd	($rem,$Zlo);
    585 	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
    586 	&pxor	($Zlo,$tmp);
    587 
    588 	&psrlq	($Zlo,32);	# lower part of Zlo is already there
    589 	&movd	($Zhl,$Zhi);
    590 	&psrlq	($Zhi,32);
    591 	&movd	($Zlh,$Zlo);
    592 	&movd	($Zhh,$Zhi);
    593 
    594 	&bswap	($Zll);
    595 	&bswap	($Zhl);
    596 	&bswap	($Zlh);
    597 	&bswap	($Zhh);
    598 }
    599 
    600 &function_begin("gcm_gmult_4bit_mmx");
    601 	&mov	($inp,&wparam(0));	# load Xi
    602 	&mov	($Htbl,&wparam(1));	# load Htable
    603 
    604 	&call	(&label("pic_point"));
    605 	&set_label("pic_point");
    606 	&blindpop("eax");
    607 	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
    608 
    609 	&movz	($Zll,&BP(15,$inp));
    610 
    611 	&mmx_loop($inp,"eax");
    612 
    613 	&emms	();
    614 	&mov	(&DWP(12,$inp),$Zll);
    615 	&mov	(&DWP(4,$inp),$Zhl);
    616 	&mov	(&DWP(8,$inp),$Zlh);
    617 	&mov	(&DWP(0,$inp),$Zhh);
    618 &function_end("gcm_gmult_4bit_mmx");
    619 
    621 ######################################################################
    622 # Below subroutine is "528B" variant of "4-bit" GCM GHASH function
    623 # (see gcm128.c for details). It provides further 20-40% performance
    624 # improvement over above mentioned "May" version.
    625 
    626 &static_label("rem_8bit");
    627 
    628 &function_begin("gcm_ghash_4bit_mmx");
    629 { my ($Zlo,$Zhi) = ("mm7","mm6");
    630   my $rem_8bit = "esi";
    631   my $Htbl = "ebx";
    632 
    633     # parameter block
    634     &mov	("eax",&wparam(0));		# Xi
    635     &mov	("ebx",&wparam(1));		# Htable
    636     &mov	("ecx",&wparam(2));		# inp
    637     &mov	("edx",&wparam(3));		# len
    638     &mov	("ebp","esp");			# original %esp
    639     &call	(&label("pic_point"));
    640     &set_label	("pic_point");
    641     &blindpop	($rem_8bit);
    642     &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
    643 
    644     &sub	("esp",512+16+16);		# allocate stack frame...
    645     &and	("esp",-64);			# ...and align it
    646     &sub	("esp",16);			# place for (u8)(H[]<<4)
    647 
    648     &add	("edx","ecx");			# pointer to the end of input
    649     &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
    650     &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
    651     &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
    652 
    653     { my @lo  = ("mm0","mm1","mm2");
    654       my @hi  = ("mm3","mm4","mm5");
    655       my @tmp = ("mm6","mm7");
    656       my ($off1,$off2,$i) = (0,0,);
    657 
    658       &add	($Htbl,128);			# optimize for size
    659       &lea	("edi",&DWP(16+128,"esp"));
    660       &lea	("ebp",&DWP(16+256+128,"esp"));
    661 
    662       # decompose Htable (low and high parts are kept separately),
    663       # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
    664       for ($i=0;$i<18;$i++) {
    665 
    666 	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
    667 	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
    668 	&psllq	($tmp[1],60)				if ($i>1);
    669 	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
    670 	&por	($lo[2],$tmp[1])			if ($i>1);
    671 	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
    672 	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
    673 	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
    674 	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
    675 	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
    676 	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
    677 	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
    678 	&shl	("edx",4)				if ($i<16);
    679 	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
    680 
    681 	unshift	(@lo,pop(@lo));			# "rotate" registers
    682 	unshift	(@hi,pop(@hi));
    683 	unshift	(@tmp,pop(@tmp));
    684 	$off1 += 8	if ($i>0);
    685 	$off2 += 8	if ($i>1);
    686       }
    687     }
    688 
    689     &movq	($Zhi,&QWP(0,"eax"));
    690     &mov	("ebx",&DWP(8,"eax"));
    691     &mov	("edx",&DWP(12,"eax"));		# load Xi
    692 
    693 &set_label("outer",16);
    694   { my $nlo = "eax";
    695     my $dat = "edx";
    696     my @nhi = ("edi","ebp");
    697     my @rem = ("ebx","ecx");
    698     my @red = ("mm0","mm1","mm2");
    699     my $tmp = "mm3";
    700 
    701     &xor	($dat,&DWP(12,"ecx"));		# merge input data
    702     &xor	("ebx",&DWP(8,"ecx"));
    703     &pxor	($Zhi,&QWP(0,"ecx"));
    704     &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
    705     #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
    706     &mov	(&DWP(528+8,"esp"),"ebx");
    707     &movq	(&QWP(528+0,"esp"),$Zhi);
    708     &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
    709 
    710     &xor	($nlo,$nlo);
    711     &rol	($dat,8);
    712     &mov	(&LB($nlo),&LB($dat));
    713     &mov	($nhi[1],$nlo);
    714     &and	(&LB($nlo),0x0f);
    715     &shr	($nhi[1],4);
    716     &pxor	($red[0],$red[0]);
    717     &rol	($dat,8);			# next byte
    718     &pxor	($red[1],$red[1]);
    719     &pxor	($red[2],$red[2]);
    720 
    721     # Just like in "May" verson modulo-schedule for critical path in
    722     # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
    723     # is scheduled so late that rem_8bit[] has to be shifted *right*
    724     # by 16, which is why last argument to pinsrw is 2, which
    725     # corresponds to <<32=<<48>>16...
    726     for ($j=11,$i=0;$i<15;$i++) {
    727 
    728       if ($i>0) {
    729 	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
    730 	&rol	($dat,8);				# next byte
    731 	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
    732 
    733 	&pxor	($Zlo,$tmp);
    734 	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
    735 	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
    736       } else {
    737 	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
    738 	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
    739       }
    740 
    741 	&mov	(&LB($nlo),&LB($dat));
    742 	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
    743 
    744 	&movd	($rem[0],$Zlo);
    745 	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
    746 	&psrlq	($Zlo,8);				# Z>>=8
    747 
    748 	&movq	($tmp,$Zhi);
    749 	&mov	($nhi[0],$nlo);
    750 	&psrlq	($Zhi,8);
    751 
    752 	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
    753 	&and	(&LB($nlo),0x0f);
    754 	&psllq	($tmp,56);
    755 
    756 	&pxor	($Zhi,$red[1])				if ($i>1);
    757 	&shr	($nhi[0],4);
    758 	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
    759 
    760 	unshift	(@red,pop(@red));			# "rotate" registers
    761 	unshift	(@rem,pop(@rem));
    762 	unshift	(@nhi,pop(@nhi));
    763     }
    764 
    765     &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
    766     &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
    767     &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
    768 
    769     &pxor	($Zlo,$tmp);
    770     &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
    771     &movz	($rem[1],&LB($rem[1]));
    772 
    773     &pxor	($red[2],$red[2]);			# clear 2nd word
    774     &psllq	($red[1],4);
    775 
    776     &movd	($rem[0],$Zlo);
    777     &psrlq	($Zlo,4);				# Z>>=4
    778 
    779     &movq	($tmp,$Zhi);
    780     &psrlq	($Zhi,4);
    781     &shl	($rem[0],4);				# rem<<4
    782 
    783     &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
    784     &psllq	($tmp,60);
    785     &movz	($rem[0],&LB($rem[0]));
    786 
    787     &pxor	($Zlo,$tmp);
    788     &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
    789 
    790     &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
    791     &pxor	($Zhi,$red[1]);
    792 
    793     &movd	($dat,$Zlo);
    794     &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
    795 
    796     &psllq	($red[0],12);				# correct by <<16>>4
    797     &pxor	($Zhi,$red[0]);
    798     &psrlq	($Zlo,32);
    799     &pxor	($Zhi,$red[2]);
    800 
    801     &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
    802     &movd	("ebx",$Zlo);
    803     &movq	($tmp,$Zhi);			# 01234567
    804     &psllw	($Zhi,8);			# 1.3.5.7.
    805     &psrlw	($tmp,8);			# .0.2.4.6
    806     &por	($Zhi,$tmp);			# 10325476
    807     &bswap	($dat);
    808     &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
    809     &bswap	("ebx");
    810     
    811     &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
    812     &jne	(&label("outer"));
    813   }
    814 
    815     &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
    816     &mov	(&DWP(12,"eax"),"edx");
    817     &mov	(&DWP(8,"eax"),"ebx");
    818     &movq	(&QWP(0,"eax"),$Zhi);
    819 
    820     &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
    821     &emms	();
    822 }
    823 &function_end("gcm_ghash_4bit_mmx");
    824 }}
    825 
    827 if ($sse2) {{
    828 ######################################################################
    829 # PCLMULQDQ version.
    830 
    831 $Xip="eax";
    832 $Htbl="edx";
    833 $const="ecx";
    834 $inp="esi";
    835 $len="ebx";
    836 
    837 ($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
    838 ($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
    839 ($Xn,$Xhn)=("xmm6","xmm7");
    840 
    841 &static_label("bswap");
    842 
    843 sub clmul64x64_T2 {	# minimal "register" pressure
    844 my ($Xhi,$Xi,$Hkey,$HK)=@_;
    845 
    846 	&movdqa		($Xhi,$Xi);		#
    847 	&pshufd		($T1,$Xi,0b01001110);
    848 	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
    849 	&pxor		($T1,$Xi);		#
    850 	&pxor		($T2,$Hkey)		if (!defined($HK));
    851 			$HK=$T2			if (!defined($HK));
    852 
    853 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
    854 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
    855 	&pclmulqdq	($T1,$HK,0x00);		#######
    856 	&xorps		($T1,$Xi);		#
    857 	&xorps		($T1,$Xhi);		#
    858 
    859 	&movdqa		($T2,$T1);		#
    860 	&psrldq		($T1,8);
    861 	&pslldq		($T2,8);		#
    862 	&pxor		($Xhi,$T1);
    863 	&pxor		($Xi,$T2);		#
    864 }
    865 
    866 sub clmul64x64_T3 {
    867 # Even though this subroutine offers visually better ILP, it
    868 # was empirically found to be a tad slower than above version.
    869 # At least in gcm_ghash_clmul context. But it's just as well,
    870 # because loop modulo-scheduling is possible only thanks to
    871 # minimized "register" pressure...
    872 my ($Xhi,$Xi,$Hkey)=@_;
    873 
    874 	&movdqa		($T1,$Xi);		#
    875 	&movdqa		($Xhi,$Xi);
    876 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
    877 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
    878 	&pshufd		($T2,$T1,0b01001110);	#
    879 	&pshufd		($T3,$Hkey,0b01001110);
    880 	&pxor		($T2,$T1);		#
    881 	&pxor		($T3,$Hkey);
    882 	&pclmulqdq	($T2,$T3,0x00);		#######
    883 	&pxor		($T2,$Xi);		#
    884 	&pxor		($T2,$Xhi);		#
    885 
    886 	&movdqa		($T3,$T2);		#
    887 	&psrldq		($T2,8);
    888 	&pslldq		($T3,8);		#
    889 	&pxor		($Xhi,$T2);
    890 	&pxor		($Xi,$T3);		#
    891 }
    892 
    894 if (1) {		# Algorithm 9 with <<1 twist.
    895 			# Reduction is shorter and uses only two
    896 			# temporary registers, which makes it better
    897 			# candidate for interleaving with 64x64
    898 			# multiplication. Pre-modulo-scheduled loop
    899 			# was found to be ~20% faster than Algorithm 5
    900 			# below. Algorithm 9 was therefore chosen for
    901 			# further optimization...
    902 
    903 sub reduction_alg9 {	# 17/11 times faster than Intel version
    904 my ($Xhi,$Xi) = @_;
    905 
    906 	# 1st phase
    907 	&movdqa		($T2,$Xi);		#
    908 	&movdqa		($T1,$Xi);
    909 	&psllq		($Xi,5);
    910 	&pxor		($T1,$Xi);		#
    911 	&psllq		($Xi,1);
    912 	&pxor		($Xi,$T1);		#
    913 	&psllq		($Xi,57);		#
    914 	&movdqa		($T1,$Xi);		#
    915 	&pslldq		($Xi,8);
    916 	&psrldq		($T1,8);		#	
    917 	&pxor		($Xi,$T2);
    918 	&pxor		($Xhi,$T1);		#
    919 
    920 	# 2nd phase
    921 	&movdqa		($T2,$Xi);
    922 	&psrlq		($Xi,1);
    923 	&pxor		($Xhi,$T2);		#
    924 	&pxor		($T2,$Xi);
    925 	&psrlq		($Xi,5);
    926 	&pxor		($Xi,$T2);		#
    927 	&psrlq		($Xi,1);		#
    928 	&pxor		($Xi,$Xhi)		#
    929 }
    930 
    931 &function_begin_B("gcm_init_clmul");
    932 	&mov		($Htbl,&wparam(0));
    933 	&mov		($Xip,&wparam(1));
    934 
    935 	&call		(&label("pic"));
    936 &set_label("pic");
    937 	&blindpop	($const);
    938 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
    939 
    940 	&movdqu		($Hkey,&QWP(0,$Xip));
    941 	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
    942 
    943 	# <<1 twist
    944 	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
    945 	&movdqa		($T1,$Hkey);
    946 	&psllq		($Hkey,1);
    947 	&pxor		($T3,$T3);		#
    948 	&psrlq		($T1,63);
    949 	&pcmpgtd	($T3,$T2);		# broadcast carry bit
    950 	&pslldq		($T1,8);
    951 	&por		($Hkey,$T1);		# H<<=1
    952 
    953 	# magic reduction
    954 	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
    955 	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
    956 
    957 	# calculate H^2
    958 	&movdqa		($Xi,$Hkey);
    959 	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
    960 	&reduction_alg9	($Xhi,$Xi);
    961 
    962 	&pshufd		($T1,$Hkey,0b01001110);
    963 	&pshufd		($T2,$Xi,0b01001110);
    964 	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
    965 	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
    966 	&pxor		($T2,$Xi);		# Karatsuba pre-processing
    967 	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
    968 	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
    969 	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
    970 
    971 	&ret		();
    972 &function_end_B("gcm_init_clmul");
    973 
    974 &function_begin_B("gcm_gmult_clmul");
    975 	&mov		($Xip,&wparam(0));
    976 	&mov		($Htbl,&wparam(1));
    977 
    978 	&call		(&label("pic"));
    979 &set_label("pic");
    980 	&blindpop	($const);
    981 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
    982 
    983 	&movdqu		($Xi,&QWP(0,$Xip));
    984 	&movdqa		($T3,&QWP(0,$const));
    985 	&movups		($Hkey,&QWP(0,$Htbl));
    986 	&pshufb		($Xi,$T3);
    987 	&movups		($T2,&QWP(32,$Htbl));
    988 
    989 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
    990 	&reduction_alg9	($Xhi,$Xi);
    991 
    992 	&pshufb		($Xi,$T3);
    993 	&movdqu		(&QWP(0,$Xip),$Xi);
    994 
    995 	&ret	();
    996 &function_end_B("gcm_gmult_clmul");
    997 
    998 &function_begin("gcm_ghash_clmul");
    999 	&mov		($Xip,&wparam(0));
   1000 	&mov		($Htbl,&wparam(1));
   1001 	&mov		($inp,&wparam(2));
   1002 	&mov		($len,&wparam(3));
   1003 
   1004 	&call		(&label("pic"));
   1005 &set_label("pic");
   1006 	&blindpop	($const);
   1007 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
   1008 
   1009 	&movdqu		($Xi,&QWP(0,$Xip));
   1010 	&movdqa		($T3,&QWP(0,$const));
   1011 	&movdqu		($Hkey,&QWP(0,$Htbl));
   1012 	&pshufb		($Xi,$T3);
   1013 
   1014 	&sub		($len,0x10);
   1015 	&jz		(&label("odd_tail"));
   1016 
   1017 	#######
   1018 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
   1019 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
   1020 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
   1021 	#
   1022 	&movdqu		($T1,&QWP(0,$inp));	# Ii
   1023 	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
   1024 	&pshufb		($T1,$T3);
   1025 	&pshufb		($Xn,$T3);
   1026 	&movdqu		($T3,&QWP(32,$Htbl));
   1027 	&pxor		($Xi,$T1);		# Ii+Xi
   1028 
   1029 	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
   1030 	&movdqa		($Xhn,$Xn);
   1031 	&pxor		($T1,$Xn);		#
   1032 	&lea		($inp,&DWP(32,$inp));	# i+=2
   1033 
   1034 	&pclmulqdq	($Xn,$Hkey,0x00);	#######
   1035 	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
   1036 	&pclmulqdq	($T1,$T3,0x00);		#######
   1037 	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
   1038 	&nop		();
   1039 
   1040 	&sub		($len,0x20);
   1041 	&jbe		(&label("even_tail"));
   1042 	&jmp		(&label("mod_loop"));
   1043 
   1044 &set_label("mod_loop",32);
   1045 	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
   1046 	&movdqa		($Xhi,$Xi);
   1047 	&pxor		($T2,$Xi);		#
   1048 	&nop		();
   1049 
   1050 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
   1051 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
   1052 	&pclmulqdq	($T2,$T3,0x10);		#######
   1053 	&movups		($Hkey,&QWP(0,$Htbl));	# load H
   1054 
   1055 	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
   1056 	&movdqa		($T3,&QWP(0,$const));
   1057 	&xorps		($Xhi,$Xhn);
   1058 	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
   1059 	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
   1060 	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
   1061 	&pxor		($T1,$Xhi);		#
   1062 
   1063 	 &pshufb	($Xhn,$T3);
   1064 	&pxor		($T2,$T1);		#
   1065 
   1066 	&movdqa		($T1,$T2);		#
   1067 	&psrldq		($T2,8);
   1068 	&pslldq		($T1,8);		#
   1069 	&pxor		($Xhi,$T2);
   1070 	&pxor		($Xi,$T1);		#
   1071 	 &pshufb	($Xn,$T3);
   1072 	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
   1073 
   1074 	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
   1075 	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
   1076 	  &movdqa	($T1,$Xi);
   1077 	  &psllq	($Xi,5);
   1078 	  &pxor		($T1,$Xi);		#
   1079 	  &psllq	($Xi,1);
   1080 	  &pxor		($Xi,$T1);		#
   1081 	&pclmulqdq	($Xn,$Hkey,0x00);	#######
   1082 	&movups		($T3,&QWP(32,$Htbl));
   1083 	  &psllq	($Xi,57);		#
   1084 	  &movdqa	($T1,$Xi);		#
   1085 	  &pslldq	($Xi,8);
   1086 	  &psrldq	($T1,8);		#	
   1087 	  &pxor		($Xi,$T2);
   1088 	  &pxor		($Xhi,$T1);		#
   1089 	&pshufd		($T1,$Xhn,0b01001110);
   1090 	  &movdqa	($T2,$Xi);		# 2nd phase
   1091 	  &psrlq	($Xi,1);
   1092 	&pxor		($T1,$Xhn);
   1093 	  &pxor		($Xhi,$T2);		#
   1094 	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
   1095 	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
   1096 	  &pxor		($T2,$Xi);
   1097 	  &psrlq	($Xi,5);
   1098 	  &pxor		($Xi,$T2);		#
   1099 	  &psrlq	($Xi,1);		#
   1100 	  &pxor		($Xi,$Xhi)		#
   1101 	&pclmulqdq	($T1,$T3,0x00);		#######
   1102 
   1103 	&lea		($inp,&DWP(32,$inp));
   1104 	&sub		($len,0x20);
   1105 	&ja		(&label("mod_loop"));
   1106 
   1107 &set_label("even_tail");
   1108 	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
   1109 	&movdqa		($Xhi,$Xi);
   1110 	&pxor		($T2,$Xi);		#
   1111 
   1112 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
   1113 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
   1114 	&pclmulqdq	($T2,$T3,0x10);		#######
   1115 	&movdqa		($T3,&QWP(0,$const));
   1116 
   1117 	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
   1118 	&xorps		($Xhi,$Xhn);
   1119 	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
   1120 	&pxor		($T1,$Xhi);		#
   1121 
   1122 	&pxor		($T2,$T1);		#
   1123 
   1124 	&movdqa		($T1,$T2);		#
   1125 	&psrldq		($T2,8);
   1126 	&pslldq		($T1,8);		#
   1127 	&pxor		($Xhi,$T2);
   1128 	&pxor		($Xi,$T1);		#
   1129 
   1130 	&reduction_alg9	($Xhi,$Xi);
   1131 
   1132 	&test		($len,$len);
   1133 	&jnz		(&label("done"));
   1134 
   1135 	&movups		($Hkey,&QWP(0,$Htbl));	# load H
   1136 &set_label("odd_tail");
   1137 	&movdqu		($T1,&QWP(0,$inp));	# Ii
   1138 	&pshufb		($T1,$T3);
   1139 	&pxor		($Xi,$T1);		# Ii+Xi
   1140 
   1141 	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
   1142 	&reduction_alg9	($Xhi,$Xi);
   1143 
   1144 &set_label("done");
   1145 	&pshufb		($Xi,$T3);
   1146 	&movdqu		(&QWP(0,$Xip),$Xi);
   1147 &function_end("gcm_ghash_clmul");
   1148 
   1150 } else {		# Algorith 5. Kept for reference purposes.
   1151 
   1152 sub reduction_alg5 {	# 19/16 times faster than Intel version
   1153 my ($Xhi,$Xi)=@_;
   1154 
   1155 	# <<1
   1156 	&movdqa		($T1,$Xi);		#
   1157 	&movdqa		($T2,$Xhi);
   1158 	&pslld		($Xi,1);
   1159 	&pslld		($Xhi,1);		#
   1160 	&psrld		($T1,31);
   1161 	&psrld		($T2,31);		#
   1162 	&movdqa		($T3,$T1);
   1163 	&pslldq		($T1,4);
   1164 	&psrldq		($T3,12);		#
   1165 	&pslldq		($T2,4);
   1166 	&por		($Xhi,$T3);		#
   1167 	&por		($Xi,$T1);
   1168 	&por		($Xhi,$T2);		#
   1169 
   1170 	# 1st phase
   1171 	&movdqa		($T1,$Xi);
   1172 	&movdqa		($T2,$Xi);
   1173 	&movdqa		($T3,$Xi);		#
   1174 	&pslld		($T1,31);
   1175 	&pslld		($T2,30);
   1176 	&pslld		($Xi,25);		#
   1177 	&pxor		($T1,$T2);
   1178 	&pxor		($T1,$Xi);		#
   1179 	&movdqa		($T2,$T1);		#
   1180 	&pslldq		($T1,12);
   1181 	&psrldq		($T2,4);		#
   1182 	&pxor		($T3,$T1);
   1183 
   1184 	# 2nd phase
   1185 	&pxor		($Xhi,$T3);		#
   1186 	&movdqa		($Xi,$T3);
   1187 	&movdqa		($T1,$T3);
   1188 	&psrld		($Xi,1);		#
   1189 	&psrld		($T1,2);
   1190 	&psrld		($T3,7);		#
   1191 	&pxor		($Xi,$T1);
   1192 	&pxor		($Xhi,$T2);
   1193 	&pxor		($Xi,$T3);		#
   1194 	&pxor		($Xi,$Xhi);		#
   1195 }
   1196 
   1197 &function_begin_B("gcm_init_clmul");
   1198 	&mov		($Htbl,&wparam(0));
   1199 	&mov		($Xip,&wparam(1));
   1200 
   1201 	&call		(&label("pic"));
   1202 &set_label("pic");
   1203 	&blindpop	($const);
   1204 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
   1205 
   1206 	&movdqu		($Hkey,&QWP(0,$Xip));
   1207 	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
   1208 
   1209 	# calculate H^2
   1210 	&movdqa		($Xi,$Hkey);
   1211 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
   1212 	&reduction_alg5	($Xhi,$Xi);
   1213 
   1214 	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
   1215 	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
   1216 
   1217 	&ret		();
   1218 &function_end_B("gcm_init_clmul");
   1219 
   1220 &function_begin_B("gcm_gmult_clmul");
   1221 	&mov		($Xip,&wparam(0));
   1222 	&mov		($Htbl,&wparam(1));
   1223 
   1224 	&call		(&label("pic"));
   1225 &set_label("pic");
   1226 	&blindpop	($const);
   1227 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
   1228 
   1229 	&movdqu		($Xi,&QWP(0,$Xip));
   1230 	&movdqa		($Xn,&QWP(0,$const));
   1231 	&movdqu		($Hkey,&QWP(0,$Htbl));
   1232 	&pshufb		($Xi,$Xn);
   1233 
   1234 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
   1235 	&reduction_alg5	($Xhi,$Xi);
   1236 
   1237 	&pshufb		($Xi,$Xn);
   1238 	&movdqu		(&QWP(0,$Xip),$Xi);
   1239 
   1240 	&ret	();
   1241 &function_end_B("gcm_gmult_clmul");
   1242 
   1243 &function_begin("gcm_ghash_clmul");
   1244 	&mov		($Xip,&wparam(0));
   1245 	&mov		($Htbl,&wparam(1));
   1246 	&mov		($inp,&wparam(2));
   1247 	&mov		($len,&wparam(3));
   1248 
   1249 	&call		(&label("pic"));
   1250 &set_label("pic");
   1251 	&blindpop	($const);
   1252 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
   1253 
   1254 	&movdqu		($Xi,&QWP(0,$Xip));
   1255 	&movdqa		($T3,&QWP(0,$const));
   1256 	&movdqu		($Hkey,&QWP(0,$Htbl));
   1257 	&pshufb		($Xi,$T3);
   1258 
   1259 	&sub		($len,0x10);
   1260 	&jz		(&label("odd_tail"));
   1261 
   1262 	#######
   1263 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
   1264 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
   1265 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
   1266 	#
   1267 	&movdqu		($T1,&QWP(0,$inp));	# Ii
   1268 	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
   1269 	&pshufb		($T1,$T3);
   1270 	&pshufb		($Xn,$T3);
   1271 	&pxor		($Xi,$T1);		# Ii+Xi
   1272 
   1273 	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
   1274 	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
   1275 
   1276 	&sub		($len,0x20);
   1277 	&lea		($inp,&DWP(32,$inp));	# i+=2
   1278 	&jbe		(&label("even_tail"));
   1279 
   1280 &set_label("mod_loop");
   1281 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
   1282 	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
   1283 
   1284 	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
   1285 	&pxor		($Xhi,$Xhn);
   1286 
   1287 	&reduction_alg5	($Xhi,$Xi);
   1288 
   1289 	#######
   1290 	&movdqa		($T3,&QWP(0,$const));
   1291 	&movdqu		($T1,&QWP(0,$inp));	# Ii
   1292 	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
   1293 	&pshufb		($T1,$T3);
   1294 	&pshufb		($Xn,$T3);
   1295 	&pxor		($Xi,$T1);		# Ii+Xi
   1296 
   1297 	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
   1298 	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
   1299 
   1300 	&sub		($len,0x20);
   1301 	&lea		($inp,&DWP(32,$inp));
   1302 	&ja		(&label("mod_loop"));
   1303 
   1304 &set_label("even_tail");
   1305 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
   1306 
   1307 	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
   1308 	&pxor		($Xhi,$Xhn);
   1309 
   1310 	&reduction_alg5	($Xhi,$Xi);
   1311 
   1312 	&movdqa		($T3,&QWP(0,$const));
   1313 	&test		($len,$len);
   1314 	&jnz		(&label("done"));
   1315 
   1316 	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
   1317 &set_label("odd_tail");
   1318 	&movdqu		($T1,&QWP(0,$inp));	# Ii
   1319 	&pshufb		($T1,$T3);
   1320 	&pxor		($Xi,$T1);		# Ii+Xi
   1321 
   1322 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
   1323 	&reduction_alg5	($Xhi,$Xi);
   1324 
   1325 	&movdqa		($T3,&QWP(0,$const));
   1326 &set_label("done");
   1327 	&pshufb		($Xi,$T3);
   1328 	&movdqu		(&QWP(0,$Xip),$Xi);
   1329 &function_end("gcm_ghash_clmul");
   1330 
   1331 }
   1332 
   1334 &set_label("bswap",64);
   1335 	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
   1336 	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
   1337 &set_label("rem_8bit",64);
   1338 	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
   1339 	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
   1340 	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
   1341 	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
   1342 	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
   1343 	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
   1344 	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
   1345 	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
   1346 	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
   1347 	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
   1348 	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
   1349 	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
   1350 	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
   1351 	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
   1352 	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
   1353 	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
   1354 	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
   1355 	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
   1356 	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
   1357 	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
   1358 	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
   1359 	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
   1360 	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
   1361 	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
   1362 	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
   1363 	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
   1364 	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
   1365 	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
   1366 	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
   1367 	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
   1368 	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
   1369 	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
   1370 }}	# $sse2
   1371 
   1372 &set_label("rem_4bit",64);
   1373 	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
   1374 	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
   1375 	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
   1376 	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
   1377 }}}	# !$x86only
   1378 
   1379 &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
   1380 &asm_finish();
   1381 
   1382 # A question was risen about choice of vanilla MMX. Or rather why wasn't
   1383 # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
   1384 # CPUs such as PIII, "4-bit" MMX version was observed to provide better
   1385 # performance than *corresponding* SSE2 one even on contemporary CPUs.
   1386 # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
   1387 # implementation featuring full range of lookup-table sizes, but with
   1388 # per-invocation lookup table setup. Latter means that table size is
   1389 # chosen depending on how much data is to be hashed in every given call,
   1390 # more data - larger table. Best reported result for Core2 is ~4 cycles
   1391 # per processed byte out of 64KB block. This number accounts even for
   1392 # 64KB table setup overhead. As discussed in gcm128.c we choose to be
   1393 # more conservative in respect to lookup table sizes, but how do the
   1394 # results compare? Minimalistic "256B" MMX version delivers ~11 cycles
   1395 # on same platform. As also discussed in gcm128.c, next in line "8-bit
   1396 # Shoup's" or "4KB" method should deliver twice the performance of
   1397 # "256B" one, in other words not worse than ~6 cycles per byte. It
   1398 # should be also be noted that in SSE2 case improvement can be "super-
   1399 # linear," i.e. more than twice, mostly because >>8 maps to single
   1400 # instruction on SSE2 register. This is unlike "4-bit" case when >>4
   1401 # maps to same amount of instructions in both MMX and SSE2 cases.
   1402 # Bottom line is that switch to SSE2 is considered to be justifiable
   1403 # only in case we choose to implement "8-bit" method...
   1404