Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 #
      3 # ====================================================================
      4 # Written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 #
     10 # March, June 2010
     11 #
     12 # The module implements "4-bit" GCM GHASH function and underlying
     13 # single multiplication operation in GF(2^128). "4-bit" means that
     14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
     15 # function features so called "528B" variant utilizing additional
     16 # 256+16 bytes of per-key storage [+512 bytes shared table].
     17 # Performance results are for this streamed GHASH subroutine and are
     18 # expressed in cycles per processed byte, less is better:
     19 #
     20 #		gcc 3.4.x(*)	assembler
     21 #
     22 # P4		28.6		14.0		+100%
     23 # Opteron	19.3		7.7		+150%
     24 # Core2		17.8		8.1(**)		+120%
     25 # Atom		31.6		16.8		+88%
     26 # VIA Nano	21.8		10.1		+115%
     27 #
     28 # (*)	comparison is not completely fair, because C results are
     29 #	for vanilla "256B" implementation, while assembler results
     30 #	are for "528B";-)
     31 # (**)	it's mystery [to me] why Core2 result is not same as for
     32 #	Opteron;
     33 
     34 # May 2010
     35 #
     36 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
     37 # See ghash-x86.pl for background information and details about coding
     38 # techniques.
     39 #
     40 # Special thanks to David Woodhouse <dwmw2 (at] infradead.org> for
     41 # providing access to a Westmere-based system on behalf of Intel
     42 # Open Source Technology Centre.
     43 
     44 # December 2012
     45 #
     46 # Overhaul: aggregate Karatsuba post-processing, improve ILP in
     47 # reduction_alg9, increase reduction aggregate factor to 4x. As for
     48 # the latter. ghash-x86.pl discusses that it makes lesser sense to
     49 # increase aggregate factor. Then why increase here? Critical path
     50 # consists of 3 independent pclmulqdq instructions, Karatsuba post-
     51 # processing and reduction. "On top" of this we lay down aggregated
     52 # multiplication operations, triplets of independent pclmulqdq's. As
     53 # issue rate for pclmulqdq is limited, it makes lesser sense to
     54 # aggregate more multiplications than it takes to perform remaining
     55 # non-multiplication operations. 2x is near-optimal coefficient for
     56 # contemporary Intel CPUs (therefore modest improvement coefficient),
     57 # but not for Bulldozer. Latter is because logical SIMD operations
     58 # are twice as slow in comparison to Intel, so that critical path is
     59 # longer. A CPU with higher pclmulqdq issue rate would also benefit
     60 # from higher aggregate factor...
     61 #
     62 # Westmere	1.78(+13%)
     63 # Sandy Bridge	1.80(+8%)
     64 # Ivy Bridge	1.80(+7%)
     65 # Haswell	0.55(+93%) (if system doesn't support AVX)
     66 # Bulldozer	1.49(+27%)
     67 
     68 # March 2013
     69 #
     70 # ... 8x aggregate factor AVX code path is using reduction algorithm
     71 # suggested by Shay Gueron[1]. Even though contemporary AVX-capable
     72 # CPUs such as Sandy and Ivy Bridge can execute it, the code performs
     73 # sub-optimally in comparison to above mentioned version. But thanks
     74 # to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
     75 # it performs in 0.41 cycles per byte on Haswell processor.
     76 #
     77 # [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
     78 
     79 $flavour = shift;
     80 $output  = shift;
     81 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
     82 
     83 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
     84 
     85 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     86 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
     87 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
     88 die "can't locate x86_64-xlate.pl";
     89 
     90 if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
     91 		=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
     92 	$avx = ($1>=2.19) + ($1>=2.22);
     93 }
     94 
     95 if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
     96 	    `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
     97 	$avx = ($1>=2.09) + ($1>=2.10);
     98 }
     99 
    100 if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
    101 	    `ml64 2>&1` =~ /Version ([0-9]+)\./) {
    102 	$avx = ($1>=10) + ($1>=11);
    103 }
    104 
    105 if (!$avx && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/) {
    106 	$avx = ($2>=3.0) + ($2>3.0);
    107 }
    108 
    109 open OUT,"| \"$^X\" $xlate $flavour $output";
    110 *STDOUT=*OUT;
    111 
    112 $do4xaggr=1;
    113 
    114 # common register layout
    115 $nlo="%rax";
    116 $nhi="%rbx";
    117 $Zlo="%r8";
    118 $Zhi="%r9";
    119 $tmp="%r10";
    120 $rem_4bit = "%r11";
    121 
    122 $Xi="%rdi";
    123 $Htbl="%rsi";
    124 
    125 # per-function register layout
    126 $cnt="%rcx";
    127 $rem="%rdx";
    128 
    129 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/	or
    130 			$r =~ s/%[er]([sd]i)/%\1l/	or
    131 			$r =~ s/%[er](bp)/%\1l/		or
    132 			$r =~ s/%(r[0-9]+)[d]?/%\1b/;   $r; }
    133 
    134 sub AUTOLOAD()		# thunk [simplified] 32-bit style perlasm
    135 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
    136   my $arg = pop;
    137     $arg = "\$$arg" if ($arg*1 eq $arg);
    138     $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
    139 }
    140 
    142 { my $N;
    143   sub loop() {
    144   my $inp = shift;
    145 
    146 	$N++;
    147 $code.=<<___;
    148 	xor	$nlo,$nlo
    149 	xor	$nhi,$nhi
    150 	mov	`&LB("$Zlo")`,`&LB("$nlo")`
    151 	mov	`&LB("$Zlo")`,`&LB("$nhi")`
    152 	shl	\$4,`&LB("$nlo")`
    153 	mov	\$14,$cnt
    154 	mov	8($Htbl,$nlo),$Zlo
    155 	mov	($Htbl,$nlo),$Zhi
    156 	and	\$0xf0,`&LB("$nhi")`
    157 	mov	$Zlo,$rem
    158 	jmp	.Loop$N
    159 
    160 .align	16
    161 .Loop$N:
    162 	shr	\$4,$Zlo
    163 	and	\$0xf,$rem
    164 	mov	$Zhi,$tmp
    165 	mov	($inp,$cnt),`&LB("$nlo")`
    166 	shr	\$4,$Zhi
    167 	xor	8($Htbl,$nhi),$Zlo
    168 	shl	\$60,$tmp
    169 	xor	($Htbl,$nhi),$Zhi
    170 	mov	`&LB("$nlo")`,`&LB("$nhi")`
    171 	xor	($rem_4bit,$rem,8),$Zhi
    172 	mov	$Zlo,$rem
    173 	shl	\$4,`&LB("$nlo")`
    174 	xor	$tmp,$Zlo
    175 	dec	$cnt
    176 	js	.Lbreak$N
    177 
    178 	shr	\$4,$Zlo
    179 	and	\$0xf,$rem
    180 	mov	$Zhi,$tmp
    181 	shr	\$4,$Zhi
    182 	xor	8($Htbl,$nlo),$Zlo
    183 	shl	\$60,$tmp
    184 	xor	($Htbl,$nlo),$Zhi
    185 	and	\$0xf0,`&LB("$nhi")`
    186 	xor	($rem_4bit,$rem,8),$Zhi
    187 	mov	$Zlo,$rem
    188 	xor	$tmp,$Zlo
    189 	jmp	.Loop$N
    190 
    191 .align	16
    192 .Lbreak$N:
    193 	shr	\$4,$Zlo
    194 	and	\$0xf,$rem
    195 	mov	$Zhi,$tmp
    196 	shr	\$4,$Zhi
    197 	xor	8($Htbl,$nlo),$Zlo
    198 	shl	\$60,$tmp
    199 	xor	($Htbl,$nlo),$Zhi
    200 	and	\$0xf0,`&LB("$nhi")`
    201 	xor	($rem_4bit,$rem,8),$Zhi
    202 	mov	$Zlo,$rem
    203 	xor	$tmp,$Zlo
    204 
    205 	shr	\$4,$Zlo
    206 	and	\$0xf,$rem
    207 	mov	$Zhi,$tmp
    208 	shr	\$4,$Zhi
    209 	xor	8($Htbl,$nhi),$Zlo
    210 	shl	\$60,$tmp
    211 	xor	($Htbl,$nhi),$Zhi
    212 	xor	$tmp,$Zlo
    213 	xor	($rem_4bit,$rem,8),$Zhi
    214 
    215 	bswap	$Zlo
    216 	bswap	$Zhi
    217 ___
    218 }}
    219 
    220 $code=<<___;
    221 .text
    222 .extern	OPENSSL_ia32cap_P
    223 
    224 .globl	gcm_gmult_4bit
    225 .type	gcm_gmult_4bit,\@function,2
    226 .align	16
    227 gcm_gmult_4bit:
    228 	push	%rbx
    229 	push	%rbp		# %rbp and %r12 are pushed exclusively in
    230 	push	%r12		# order to reuse Win64 exception handler...
    231 .Lgmult_prologue:
    232 
    233 	movzb	15($Xi),$Zlo
    234 	lea	.Lrem_4bit(%rip),$rem_4bit
    235 ___
    236 	&loop	($Xi);
    237 $code.=<<___;
    238 	mov	$Zlo,8($Xi)
    239 	mov	$Zhi,($Xi)
    240 
    241 	mov	16(%rsp),%rbx
    242 	lea	24(%rsp),%rsp
    243 .Lgmult_epilogue:
    244 	ret
    245 .size	gcm_gmult_4bit,.-gcm_gmult_4bit
    246 ___
    247 
    249 # per-function register layout
    250 $inp="%rdx";
    251 $len="%rcx";
    252 $rem_8bit=$rem_4bit;
    253 
    254 $code.=<<___;
    255 .globl	gcm_ghash_4bit
    256 .type	gcm_ghash_4bit,\@function,4
    257 .align	16
    258 gcm_ghash_4bit:
    259 	push	%rbx
    260 	push	%rbp
    261 	push	%r12
    262 	push	%r13
    263 	push	%r14
    264 	push	%r15
    265 	sub	\$280,%rsp
    266 .Lghash_prologue:
    267 	mov	$inp,%r14		# reassign couple of args
    268 	mov	$len,%r15
    269 ___
    270 { my $inp="%r14";
    271   my $dat="%edx";
    272   my $len="%r15";
    273   my @nhi=("%ebx","%ecx");
    274   my @rem=("%r12","%r13");
    275   my $Hshr4="%rbp";
    276 
    277 	&sub	($Htbl,-128);		# size optimization
    278 	&lea	($Hshr4,"16+128(%rsp)");
    279 	{ my @lo =($nlo,$nhi);
    280           my @hi =($Zlo,$Zhi);
    281 
    282 	  &xor	($dat,$dat);
    283 	  for ($i=0,$j=-2;$i<18;$i++,$j++) {
    284 	    &mov	("$j(%rsp)",&LB($dat))		if ($i>1);
    285 	    &or		($lo[0],$tmp)			if ($i>1);
    286 	    &mov	(&LB($dat),&LB($lo[1]))		if ($i>0 && $i<17);
    287 	    &shr	($lo[1],4)			if ($i>0 && $i<17);
    288 	    &mov	($tmp,$hi[1])			if ($i>0 && $i<17);
    289 	    &shr	($hi[1],4)			if ($i>0 && $i<17);
    290 	    &mov	("8*$j($Hshr4)",$hi[0])		if ($i>1);
    291 	    &mov	($hi[0],"16*$i+0-128($Htbl)")	if ($i<16);
    292 	    &shl	(&LB($dat),4)			if ($i>0 && $i<17);
    293 	    &mov	("8*$j-128($Hshr4)",$lo[0])	if ($i>1);
    294 	    &mov	($lo[0],"16*$i+8-128($Htbl)")	if ($i<16);
    295 	    &shl	($tmp,60)			if ($i>0 && $i<17);
    296 
    297 	    push	(@lo,shift(@lo));
    298 	    push	(@hi,shift(@hi));
    299 	  }
    300 	}
    301 	&add	($Htbl,-128);
    302 	&mov	($Zlo,"8($Xi)");
    303 	&mov	($Zhi,"0($Xi)");
    304 	&add	($len,$inp);		# pointer to the end of data
    305 	&lea	($rem_8bit,".Lrem_8bit(%rip)");
    306 	&jmp	(".Louter_loop");
    307 
    308 $code.=".align	16\n.Louter_loop:\n";
    309 	&xor	($Zhi,"($inp)");
    310 	&mov	("%rdx","8($inp)");
    311 	&lea	($inp,"16($inp)");
    312 	&xor	("%rdx",$Zlo);
    313 	&mov	("($Xi)",$Zhi);
    314 	&mov	("8($Xi)","%rdx");
    315 	&shr	("%rdx",32);
    316 
    317 	&xor	($nlo,$nlo);
    318 	&rol	($dat,8);
    319 	&mov	(&LB($nlo),&LB($dat));
    320 	&movz	($nhi[0],&LB($dat));
    321 	&shl	(&LB($nlo),4);
    322 	&shr	($nhi[0],4);
    323 
    324 	for ($j=11,$i=0;$i<15;$i++) {
    325 	    &rol	($dat,8);
    326 	    &xor	($Zlo,"8($Htbl,$nlo)")			if ($i>0);
    327 	    &xor	($Zhi,"($Htbl,$nlo)")			if ($i>0);
    328 	    &mov	($Zlo,"8($Htbl,$nlo)")			if ($i==0);
    329 	    &mov	($Zhi,"($Htbl,$nlo)")			if ($i==0);
    330 
    331 	    &mov	(&LB($nlo),&LB($dat));
    332 	    &xor	($Zlo,$tmp)				if ($i>0);
    333 	    &movzw	($rem[1],"($rem_8bit,$rem[1],2)")	if ($i>0);
    334 
    335 	    &movz	($nhi[1],&LB($dat));
    336 	    &shl	(&LB($nlo),4);
    337 	    &movzb	($rem[0],"(%rsp,$nhi[0])");
    338 
    339 	    &shr	($nhi[1],4)				if ($i<14);
    340 	    &and	($nhi[1],0xf0)				if ($i==14);
    341 	    &shl	($rem[1],48)				if ($i>0);
    342 	    &xor	($rem[0],$Zlo);
    343 
    344 	    &mov	($tmp,$Zhi);
    345 	    &xor	($Zhi,$rem[1])				if ($i>0);
    346 	    &shr	($Zlo,8);
    347 
    348 	    &movz	($rem[0],&LB($rem[0]));
    349 	    &mov	($dat,"$j($Xi)")			if (--$j%4==0);
    350 	    &shr	($Zhi,8);
    351 
    352 	    &xor	($Zlo,"-128($Hshr4,$nhi[0],8)");
    353 	    &shl	($tmp,56);
    354 	    &xor	($Zhi,"($Hshr4,$nhi[0],8)");
    355 
    356 	    unshift	(@nhi,pop(@nhi));		# "rotate" registers
    357 	    unshift	(@rem,pop(@rem));
    358 	}
    359 	&movzw	($rem[1],"($rem_8bit,$rem[1],2)");
    360 	&xor	($Zlo,"8($Htbl,$nlo)");
    361 	&xor	($Zhi,"($Htbl,$nlo)");
    362 
    363 	&shl	($rem[1],48);
    364 	&xor	($Zlo,$tmp);
    365 
    366 	&xor	($Zhi,$rem[1]);
    367 	&movz	($rem[0],&LB($Zlo));
    368 	&shr	($Zlo,4);
    369 
    370 	&mov	($tmp,$Zhi);
    371 	&shl	(&LB($rem[0]),4);
    372 	&shr	($Zhi,4);
    373 
    374 	&xor	($Zlo,"8($Htbl,$nhi[0])");
    375 	&movzw	($rem[0],"($rem_8bit,$rem[0],2)");
    376 	&shl	($tmp,60);
    377 
    378 	&xor	($Zhi,"($Htbl,$nhi[0])");
    379 	&xor	($Zlo,$tmp);
    380 	&shl	($rem[0],48);
    381 
    382 	&bswap	($Zlo);
    383 	&xor	($Zhi,$rem[0]);
    384 
    385 	&bswap	($Zhi);
    386 	&cmp	($inp,$len);
    387 	&jb	(".Louter_loop");
    388 }
    389 $code.=<<___;
    390 	mov	$Zlo,8($Xi)
    391 	mov	$Zhi,($Xi)
    392 
    393 	lea	280(%rsp),%rsi
    394 	mov	0(%rsi),%r15
    395 	mov	8(%rsi),%r14
    396 	mov	16(%rsi),%r13
    397 	mov	24(%rsi),%r12
    398 	mov	32(%rsi),%rbp
    399 	mov	40(%rsi),%rbx
    400 	lea	48(%rsi),%rsp
    401 .Lghash_epilogue:
    402 	ret
    403 .size	gcm_ghash_4bit,.-gcm_ghash_4bit
    404 ___
    405 
    407 ######################################################################
    408 # PCLMULQDQ version.
    409 
    410 @_4args=$win64?	("%rcx","%rdx","%r8", "%r9") :	# Win64 order
    411 		("%rdi","%rsi","%rdx","%rcx");	# Unix order
    412 
    413 ($Xi,$Xhi)=("%xmm0","%xmm1");	$Hkey="%xmm2";
    414 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
    415 
    416 sub clmul64x64_T2 {	# minimal register pressure
    417 my ($Xhi,$Xi,$Hkey,$HK)=@_;
    418 
    419 if (!defined($HK)) {	$HK = $T2;
    420 $code.=<<___;
    421 	movdqa		$Xi,$Xhi		#
    422 	pshufd		\$0b01001110,$Xi,$T1
    423 	pshufd		\$0b01001110,$Hkey,$T2
    424 	pxor		$Xi,$T1			#
    425 	pxor		$Hkey,$T2
    426 ___
    427 } else {
    428 $code.=<<___;
    429 	movdqa		$Xi,$Xhi		#
    430 	pshufd		\$0b01001110,$Xi,$T1
    431 	pxor		$Xi,$T1			#
    432 ___
    433 }
    434 $code.=<<___;
    435 	pclmulqdq	\$0x00,$Hkey,$Xi	#######
    436 	pclmulqdq	\$0x11,$Hkey,$Xhi	#######
    437 	pclmulqdq	\$0x00,$HK,$T1		#######
    438 	pxor		$Xi,$T1			#
    439 	pxor		$Xhi,$T1		#
    440 
    441 	movdqa		$T1,$T2			#
    442 	psrldq		\$8,$T1
    443 	pslldq		\$8,$T2			#
    444 	pxor		$T1,$Xhi
    445 	pxor		$T2,$Xi			#
    446 ___
    447 }
    448 
    449 sub reduction_alg9 {	# 17/11 times faster than Intel version
    450 my ($Xhi,$Xi) = @_;
    451 
    452 $code.=<<___;
    453 	# 1st phase
    454 	movdqa		$Xi,$T2			#
    455 	movdqa		$Xi,$T1
    456 	psllq		\$5,$Xi
    457 	pxor		$Xi,$T1			#
    458 	psllq		\$1,$Xi
    459 	pxor		$T1,$Xi			#
    460 	psllq		\$57,$Xi		#
    461 	movdqa		$Xi,$T1			#
    462 	pslldq		\$8,$Xi
    463 	psrldq		\$8,$T1			#	
    464 	pxor		$T2,$Xi
    465 	pxor		$T1,$Xhi		#
    466 
    467 	# 2nd phase
    468 	movdqa		$Xi,$T2
    469 	psrlq		\$1,$Xi
    470 	pxor		$T2,$Xhi		#
    471 	pxor		$Xi,$T2
    472 	psrlq		\$5,$Xi
    473 	pxor		$T2,$Xi			#
    474 	psrlq		\$1,$Xi			#
    475 	pxor		$Xhi,$Xi		#
    476 ___
    477 }
    478 
    480 { my ($Htbl,$Xip)=@_4args;
    481   my $HK="%xmm6";
    482 
    483 $code.=<<___;
    484 .globl	gcm_init_clmul
    485 .type	gcm_init_clmul,\@abi-omnipotent
    486 .align	16
    487 gcm_init_clmul:
    488 .L_init_clmul:
    489 ___
    490 $code.=<<___ if ($win64);
    491 .LSEH_begin_gcm_init_clmul:
    492 	# I can't trust assembler to use specific encoding:-(
    493 	.byte	0x48,0x83,0xec,0x18		#sub	$0x18,%rsp
    494 	.byte	0x0f,0x29,0x34,0x24		#movaps	%xmm6,(%rsp)
    495 ___
    496 $code.=<<___;
    497 	movdqu		($Xip),$Hkey
    498 	pshufd		\$0b01001110,$Hkey,$Hkey	# dword swap
    499 
    500 	# <<1 twist
    501 	pshufd		\$0b11111111,$Hkey,$T2	# broadcast uppermost dword
    502 	movdqa		$Hkey,$T1
    503 	psllq		\$1,$Hkey
    504 	pxor		$T3,$T3			#
    505 	psrlq		\$63,$T1
    506 	pcmpgtd		$T2,$T3			# broadcast carry bit
    507 	pslldq		\$8,$T1
    508 	por		$T1,$Hkey		# H<<=1
    509 
    510 	# magic reduction
    511 	pand		.L0x1c2_polynomial(%rip),$T3
    512 	pxor		$T3,$Hkey		# if(carry) H^=0x1c2_polynomial
    513 
    514 	# calculate H^2
    515 	pshufd		\$0b01001110,$Hkey,$HK
    516 	movdqa		$Hkey,$Xi
    517 	pxor		$Hkey,$HK
    518 ___
    519 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);
    520 	&reduction_alg9	($Xhi,$Xi);
    521 $code.=<<___;
    522 	pshufd		\$0b01001110,$Hkey,$T1
    523 	pshufd		\$0b01001110,$Xi,$T2
    524 	pxor		$Hkey,$T1		# Karatsuba pre-processing
    525 	movdqu		$Hkey,0x00($Htbl)	# save H
    526 	pxor		$Xi,$T2			# Karatsuba pre-processing
    527 	movdqu		$Xi,0x10($Htbl)		# save H^2
    528 	palignr		\$8,$T1,$T2		# low part is H.lo^H.hi...
    529 	movdqu		$T2,0x20($Htbl)		# save Karatsuba "salt"
    530 ___
    531 if ($do4xaggr) {
    532 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H^3
    533 	&reduction_alg9	($Xhi,$Xi);
    534 $code.=<<___;
    535 	movdqa		$Xi,$T3
    536 ___
    537 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H^4
    538 	&reduction_alg9	($Xhi,$Xi);
    539 $code.=<<___;
    540 	pshufd		\$0b01001110,$T3,$T1
    541 	pshufd		\$0b01001110,$Xi,$T2
    542 	pxor		$T3,$T1			# Karatsuba pre-processing
    543 	movdqu		$T3,0x30($Htbl)		# save H^3
    544 	pxor		$Xi,$T2			# Karatsuba pre-processing
    545 	movdqu		$Xi,0x40($Htbl)		# save H^4
    546 	palignr		\$8,$T1,$T2		# low part is H^3.lo^H^3.hi...
    547 	movdqu		$T2,0x50($Htbl)		# save Karatsuba "salt"
    548 ___
    549 }
    550 $code.=<<___ if ($win64);
    551 	movaps	(%rsp),%xmm6
    552 	lea	0x18(%rsp),%rsp
    553 .LSEH_end_gcm_init_clmul:
    554 ___
    555 $code.=<<___;
    556 	ret
    557 .size	gcm_init_clmul,.-gcm_init_clmul
    558 ___
    559 }
    560 
    561 { my ($Xip,$Htbl)=@_4args;
    562 
    563 $code.=<<___;
    564 .globl	gcm_gmult_clmul
    565 .type	gcm_gmult_clmul,\@abi-omnipotent
    566 .align	16
    567 gcm_gmult_clmul:
    568 .L_gmult_clmul:
    569 	movdqu		($Xip),$Xi
    570 	movdqa		.Lbswap_mask(%rip),$T3
    571 	movdqu		($Htbl),$Hkey
    572 	movdqu		0x20($Htbl),$T2
    573 	pshufb		$T3,$Xi
    574 ___
    575 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
    576 $code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
    577 	# experimental alternative. special thing about is that there
    578 	# no dependency between the two multiplications... 
    579 	mov		\$`0xE1<<1`,%eax
    580 	mov		\$0xA040608020C0E000,%r10	# ((7..0)0xE0)&0xff
    581 	mov		\$0x07,%r11d
    582 	movq		%rax,$T1
    583 	movq		%r10,$T2
    584 	movq		%r11,$T3		# borrow $T3
    585 	pand		$Xi,$T3
    586 	pshufb		$T3,$T2			# ($Xi&7)0xE0
    587 	movq		%rax,$T3
    588 	pclmulqdq	\$0x00,$Xi,$T1		# (0xE1<<1)
    589 	pxor		$Xi,$T2
    590 	pslldq		\$15,$T2
    591 	paddd		$T2,$T2			# <<(64+56+1)
    592 	pxor		$T2,$Xi
    593 	pclmulqdq	\$0x01,$T3,$Xi
    594 	movdqa		.Lbswap_mask(%rip),$T3	# reload $T3
    595 	psrldq		\$1,$T1
    596 	pxor		$T1,$Xhi
    597 	pslldq		\$7,$Xi
    598 	pxor		$Xhi,$Xi
    599 ___
    600 $code.=<<___;
    601 	pshufb		$T3,$Xi
    602 	movdqu		$Xi,($Xip)
    603 	ret
    604 .size	gcm_gmult_clmul,.-gcm_gmult_clmul
    605 ___
    606 }
    607 
    609 { my ($Xip,$Htbl,$inp,$len)=@_4args;
    610   my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
    611   my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
    612 
    613 $code.=<<___;
    614 .globl	gcm_ghash_clmul
    615 .type	gcm_ghash_clmul,\@abi-omnipotent
    616 .align	32
    617 gcm_ghash_clmul:
    618 .L_ghash_clmul:
    619 ___
    620 $code.=<<___ if ($win64);
    621 	lea	-0x88(%rsp),%rax
    622 .LSEH_begin_gcm_ghash_clmul:
    623 	# I can't trust assembler to use specific encoding:-(
    624 	.byte	0x48,0x8d,0x60,0xe0		#lea	-0x20(%rax),%rsp
    625 	.byte	0x0f,0x29,0x70,0xe0		#movaps	%xmm6,-0x20(%rax)
    626 	.byte	0x0f,0x29,0x78,0xf0		#movaps	%xmm7,-0x10(%rax)
    627 	.byte	0x44,0x0f,0x29,0x00		#movaps	%xmm8,0(%rax)
    628 	.byte	0x44,0x0f,0x29,0x48,0x10	#movaps	%xmm9,0x10(%rax)
    629 	.byte	0x44,0x0f,0x29,0x50,0x20	#movaps	%xmm10,0x20(%rax)
    630 	.byte	0x44,0x0f,0x29,0x58,0x30	#movaps	%xmm11,0x30(%rax)
    631 	.byte	0x44,0x0f,0x29,0x60,0x40	#movaps	%xmm12,0x40(%rax)
    632 	.byte	0x44,0x0f,0x29,0x68,0x50	#movaps	%xmm13,0x50(%rax)
    633 	.byte	0x44,0x0f,0x29,0x70,0x60	#movaps	%xmm14,0x60(%rax)
    634 	.byte	0x44,0x0f,0x29,0x78,0x70	#movaps	%xmm15,0x70(%rax)
    635 ___
    636 $code.=<<___;
    637 	movdqa		.Lbswap_mask(%rip),$T3
    638 
    639 	movdqu		($Xip),$Xi
    640 	movdqu		($Htbl),$Hkey
    641 	movdqu		0x20($Htbl),$HK
    642 	pshufb		$T3,$Xi
    643 
    644 	sub		\$0x10,$len
    645 	jz		.Lodd_tail
    646 
    647 	movdqu		0x10($Htbl),$Hkey2
    648 ___
    649 if ($do4xaggr) {
    650 my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
    651 
    652 $code.=<<___;
    653 	mov		OPENSSL_ia32cap_P+4(%rip),%eax
    654 	cmp		\$0x30,$len
    655 	jb		.Lskip4x
    656 
    657 	and		\$`1<<26|1<<22`,%eax	# isolate MOVBE+XSAVE
    658 	cmp		\$`1<<22`,%eax		# check for MOVBE without XSAVE
    659 	je		.Lskip4x
    660 
    661 	sub		\$0x30,$len
    662 	mov		\$0xA040608020C0E000,%rax	# ((7..0)0xE0)&0xff
    663 	movdqu		0x30($Htbl),$Hkey3
    664 	movdqu		0x40($Htbl),$Hkey4
    665 
    666 	#######
    667 	# Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
    668 	#
    669 	movdqu		0x30($inp),$Xln
    670 	 movdqu		0x20($inp),$Xl
    671 	pshufb		$T3,$Xln
    672 	 pshufb		$T3,$Xl
    673 	movdqa		$Xln,$Xhn
    674 	pshufd		\$0b01001110,$Xln,$Xmn
    675 	pxor		$Xln,$Xmn
    676 	pclmulqdq	\$0x00,$Hkey,$Xln
    677 	pclmulqdq	\$0x11,$Hkey,$Xhn
    678 	pclmulqdq	\$0x00,$HK,$Xmn
    679 
    680 	movdqa		$Xl,$Xh
    681 	pshufd		\$0b01001110,$Xl,$Xm
    682 	pxor		$Xl,$Xm
    683 	pclmulqdq	\$0x00,$Hkey2,$Xl
    684 	pclmulqdq	\$0x11,$Hkey2,$Xh
    685 	pclmulqdq	\$0x10,$HK,$Xm
    686 	xorps		$Xl,$Xln
    687 	xorps		$Xh,$Xhn
    688 	movups		0x50($Htbl),$HK
    689 	xorps		$Xm,$Xmn
    690 
    691 	movdqu		0x10($inp),$Xl
    692 	 movdqu		0($inp),$T1
    693 	pshufb		$T3,$Xl
    694 	 pshufb		$T3,$T1
    695 	movdqa		$Xl,$Xh
    696 	pshufd		\$0b01001110,$Xl,$Xm
    697 	 pxor		$T1,$Xi
    698 	pxor		$Xl,$Xm
    699 	pclmulqdq	\$0x00,$Hkey3,$Xl
    700 	 movdqa		$Xi,$Xhi
    701 	 pshufd		\$0b01001110,$Xi,$T1
    702 	 pxor		$Xi,$T1
    703 	pclmulqdq	\$0x11,$Hkey3,$Xh
    704 	pclmulqdq	\$0x00,$HK,$Xm
    705 	xorps		$Xl,$Xln
    706 	xorps		$Xh,$Xhn
    707 
    708 	lea	0x40($inp),$inp
    709 	sub	\$0x40,$len
    710 	jc	.Ltail4x
    711 
    712 	jmp	.Lmod4_loop
    713 .align	32
    714 .Lmod4_loop:
    715 	pclmulqdq	\$0x00,$Hkey4,$Xi
    716 	xorps		$Xm,$Xmn
    717 	 movdqu		0x30($inp),$Xl
    718 	 pshufb		$T3,$Xl
    719 	pclmulqdq	\$0x11,$Hkey4,$Xhi
    720 	xorps		$Xln,$Xi
    721 	 movdqu		0x20($inp),$Xln
    722 	 movdqa		$Xl,$Xh
    723 	pclmulqdq	\$0x10,$HK,$T1
    724 	 pshufd		\$0b01001110,$Xl,$Xm
    725 	xorps		$Xhn,$Xhi
    726 	 pxor		$Xl,$Xm
    727 	 pshufb		$T3,$Xln
    728 	movups		0x20($Htbl),$HK
    729 	xorps		$Xmn,$T1
    730 	 pclmulqdq	\$0x00,$Hkey,$Xl
    731 	 pshufd		\$0b01001110,$Xln,$Xmn
    732 
    733 	pxor		$Xi,$T1			# aggregated Karatsuba post-processing
    734 	 movdqa		$Xln,$Xhn
    735 	pxor		$Xhi,$T1		#
    736 	 pxor		$Xln,$Xmn
    737 	movdqa		$T1,$T2			#
    738 	 pclmulqdq	\$0x11,$Hkey,$Xh
    739 	pslldq		\$8,$T1
    740 	psrldq		\$8,$T2			#
    741 	pxor		$T1,$Xi
    742 	movdqa		.L7_mask(%rip),$T1
    743 	pxor		$T2,$Xhi		#
    744 	movq		%rax,$T2
    745 
    746 	pand		$Xi,$T1			# 1st phase
    747 	pshufb		$T1,$T2			#
    748 	pxor		$Xi,$T2			#
    749 	 pclmulqdq	\$0x00,$HK,$Xm
    750 	psllq		\$57,$T2		#
    751 	movdqa		$T2,$T1			#
    752 	pslldq		\$8,$T2
    753 	 pclmulqdq	\$0x00,$Hkey2,$Xln
    754 	psrldq		\$8,$T1			#	
    755 	pxor		$T2,$Xi
    756 	pxor		$T1,$Xhi		#
    757 	movdqu		0($inp),$T1
    758 
    759 	movdqa		$Xi,$T2			# 2nd phase
    760 	psrlq		\$1,$Xi
    761 	 pclmulqdq	\$0x11,$Hkey2,$Xhn
    762 	 xorps		$Xl,$Xln
    763 	 movdqu		0x10($inp),$Xl
    764 	 pshufb		$T3,$Xl
    765 	 pclmulqdq	\$0x10,$HK,$Xmn
    766 	 xorps		$Xh,$Xhn
    767 	 movups		0x50($Htbl),$HK
    768 	pshufb		$T3,$T1
    769 	pxor		$T2,$Xhi		#
    770 	pxor		$Xi,$T2
    771 	psrlq		\$5,$Xi
    772 
    773 	 movdqa		$Xl,$Xh
    774 	 pxor		$Xm,$Xmn
    775 	 pshufd		\$0b01001110,$Xl,$Xm
    776 	pxor		$T2,$Xi			#
    777 	pxor		$T1,$Xhi
    778 	 pxor		$Xl,$Xm
    779 	 pclmulqdq	\$0x00,$Hkey3,$Xl
    780 	psrlq		\$1,$Xi			#
    781 	pxor		$Xhi,$Xi		#
    782 	movdqa		$Xi,$Xhi
    783 	 pclmulqdq	\$0x11,$Hkey3,$Xh
    784 	 xorps		$Xl,$Xln
    785 	pshufd		\$0b01001110,$Xi,$T1
    786 	pxor		$Xi,$T1
    787 
    788 	 pclmulqdq	\$0x00,$HK,$Xm
    789 	 xorps		$Xh,$Xhn
    790 
    791 	lea	0x40($inp),$inp
    792 	sub	\$0x40,$len
    793 	jnc	.Lmod4_loop
    794 
    795 .Ltail4x:
    796 	pclmulqdq	\$0x00,$Hkey4,$Xi
    797 	pclmulqdq	\$0x11,$Hkey4,$Xhi
    798 	pclmulqdq	\$0x10,$HK,$T1
    799 	xorps		$Xm,$Xmn
    800 	xorps		$Xln,$Xi
    801 	xorps		$Xhn,$Xhi
    802 	pxor		$Xi,$Xhi		# aggregated Karatsuba post-processing
    803 	pxor		$Xmn,$T1
    804 
    805 	pxor		$Xhi,$T1		#
    806 	pxor		$Xi,$Xhi
    807 
    808 	movdqa		$T1,$T2			#
    809 	psrldq		\$8,$T1
    810 	pslldq		\$8,$T2			#
    811 	pxor		$T1,$Xhi
    812 	pxor		$T2,$Xi			#
    813 ___
    814 	&reduction_alg9($Xhi,$Xi);
    815 $code.=<<___;
    816 	add	\$0x40,$len
    817 	jz	.Ldone
    818 	movdqu	0x20($Htbl),$HK
    819 	sub	\$0x10,$len
    820 	jz	.Lodd_tail
    821 .Lskip4x:
    822 ___
    823 }
    824 $code.=<<___;
    825 	#######
    826 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
    827 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
    828 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
    829 	#
    830 	movdqu		($inp),$T1		# Ii
    831 	movdqu		16($inp),$Xln		# Ii+1
    832 	pshufb		$T3,$T1
    833 	pshufb		$T3,$Xln
    834 	pxor		$T1,$Xi			# Ii+Xi
    835 
    836 	movdqa		$Xln,$Xhn
    837 	pshufd		\$0b01001110,$Xln,$Xmn
    838 	pxor		$Xln,$Xmn
    839 	pclmulqdq	\$0x00,$Hkey,$Xln
    840 	pclmulqdq	\$0x11,$Hkey,$Xhn
    841 	pclmulqdq	\$0x00,$HK,$Xmn
    842 
    843 	lea		32($inp),$inp		# i+=2
    844 	nop
    845 	sub		\$0x20,$len
    846 	jbe		.Leven_tail
    847 	nop
    848 	jmp		.Lmod_loop
    849 
    850 .align	32
    851 .Lmod_loop:
    852 	movdqa		$Xi,$Xhi
    853 	movdqa		$Xmn,$T1
    854 	pshufd		\$0b01001110,$Xi,$Xmn	#
    855 	pxor		$Xi,$Xmn		#
    856 
    857 	pclmulqdq	\$0x00,$Hkey2,$Xi
    858 	pclmulqdq	\$0x11,$Hkey2,$Xhi
    859 	pclmulqdq	\$0x10,$HK,$Xmn
    860 
    861 	pxor		$Xln,$Xi		# (H*Ii+1) + H^2*(Ii+Xi)
    862 	pxor		$Xhn,$Xhi
    863 	  movdqu	($inp),$T2		# Ii
    864 	pxor		$Xi,$T1			# aggregated Karatsuba post-processing
    865 	  pshufb	$T3,$T2
    866 	  movdqu	16($inp),$Xln		# Ii+1
    867 
    868 	pxor		$Xhi,$T1
    869 	  pxor		$T2,$Xhi		# "Ii+Xi", consume early
    870 	pxor		$T1,$Xmn
    871 	 pshufb		$T3,$Xln
    872 	movdqa		$Xmn,$T1		#
    873 	psrldq		\$8,$T1
    874 	pslldq		\$8,$Xmn		#
    875 	pxor		$T1,$Xhi
    876 	pxor		$Xmn,$Xi		#
    877 
    878 	movdqa		$Xln,$Xhn		#
    879 
    880 	  movdqa	$Xi,$T2			# 1st phase
    881 	  movdqa	$Xi,$T1
    882 	  psllq		\$5,$Xi
    883 	  pxor		$Xi,$T1			#
    884 	pclmulqdq	\$0x00,$Hkey,$Xln	#######
    885 	  psllq		\$1,$Xi
    886 	  pxor		$T1,$Xi			#
    887 	  psllq		\$57,$Xi		#
    888 	  movdqa	$Xi,$T1			#
    889 	  pslldq	\$8,$Xi
    890 	  psrldq	\$8,$T1			#	
    891 	  pxor		$T2,$Xi
    892 	pshufd		\$0b01001110,$Xhn,$Xmn
    893 	  pxor		$T1,$Xhi		#
    894 	pxor		$Xhn,$Xmn		#
    895 
    896 	  movdqa	$Xi,$T2			# 2nd phase
    897 	  psrlq		\$1,$Xi
    898 	pclmulqdq	\$0x11,$Hkey,$Xhn	#######
    899 	  pxor		$T2,$Xhi		#
    900 	  pxor		$Xi,$T2
    901 	  psrlq		\$5,$Xi
    902 	  pxor		$T2,$Xi			#
    903 	lea		32($inp),$inp
    904 	  psrlq		\$1,$Xi			#
    905 	pclmulqdq	\$0x00,$HK,$Xmn		#######
    906 	  pxor		$Xhi,$Xi		#
    907 
    908 	sub		\$0x20,$len
    909 	ja		.Lmod_loop
    910 
    911 .Leven_tail:
    912 	 movdqa		$Xi,$Xhi
    913 	 movdqa		$Xmn,$T1
    914 	 pshufd		\$0b01001110,$Xi,$Xmn	#
    915 	 pxor		$Xi,$Xmn		#
    916 
    917 	pclmulqdq	\$0x00,$Hkey2,$Xi
    918 	pclmulqdq	\$0x11,$Hkey2,$Xhi
    919 	pclmulqdq	\$0x10,$HK,$Xmn
    920 
    921 	pxor		$Xln,$Xi		# (H*Ii+1) + H^2*(Ii+Xi)
    922 	pxor		$Xhn,$Xhi
    923 	pxor		$Xi,$T1
    924 	pxor		$Xhi,$T1
    925 	pxor		$T1,$Xmn
    926 	movdqa		$Xmn,$T1		#
    927 	psrldq		\$8,$T1
    928 	pslldq		\$8,$Xmn		#
    929 	pxor		$T1,$Xhi
    930 	pxor		$Xmn,$Xi		#
    931 ___
    932 	&reduction_alg9	($Xhi,$Xi);
    933 $code.=<<___;
    934 	test		$len,$len
    935 	jnz		.Ldone
    936 
    937 .Lodd_tail:
    938 	movdqu		($inp),$T1		# Ii
    939 	pshufb		$T3,$T1
    940 	pxor		$T1,$Xi			# Ii+Xi
    941 ___
    942 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$HK);	# H*(Ii+Xi)
    943 	&reduction_alg9	($Xhi,$Xi);
    944 $code.=<<___;
    945 .Ldone:
    946 	pshufb		$T3,$Xi
    947 	movdqu		$Xi,($Xip)
    948 ___
    949 $code.=<<___ if ($win64);
    950 	movaps	(%rsp),%xmm6
    951 	movaps	0x10(%rsp),%xmm7
    952 	movaps	0x20(%rsp),%xmm8
    953 	movaps	0x30(%rsp),%xmm9
    954 	movaps	0x40(%rsp),%xmm10
    955 	movaps	0x50(%rsp),%xmm11
    956 	movaps	0x60(%rsp),%xmm12
    957 	movaps	0x70(%rsp),%xmm13
    958 	movaps	0x80(%rsp),%xmm14
    959 	movaps	0x90(%rsp),%xmm15
    960 	lea	0xa8(%rsp),%rsp
    961 .LSEH_end_gcm_ghash_clmul:
    962 ___
    963 $code.=<<___;
    964 	ret
    965 .size	gcm_ghash_clmul,.-gcm_ghash_clmul
    966 ___
    967 }
    968 
    970 $code.=<<___;
    971 .globl	gcm_init_avx
    972 .type	gcm_init_avx,\@abi-omnipotent
    973 .align	32
    974 gcm_init_avx:
    975 ___
    976 if ($avx) {
    977 my ($Htbl,$Xip)=@_4args;
    978 my $HK="%xmm6";
    979 
    980 $code.=<<___ if ($win64);
    981 .LSEH_begin_gcm_init_avx:
    982 	# I can't trust assembler to use specific encoding:-(
    983 	.byte	0x48,0x83,0xec,0x18		#sub	$0x18,%rsp
    984 	.byte	0x0f,0x29,0x34,0x24		#movaps	%xmm6,(%rsp)
    985 ___
    986 $code.=<<___;
    987 	vzeroupper
    988 
    989 	vmovdqu		($Xip),$Hkey
    990 	vpshufd		\$0b01001110,$Hkey,$Hkey	# dword swap
    991 
    992 	# <<1 twist
    993 	vpshufd		\$0b11111111,$Hkey,$T2	# broadcast uppermost dword
    994 	vpsrlq		\$63,$Hkey,$T1
    995 	vpsllq		\$1,$Hkey,$Hkey
    996 	vpxor		$T3,$T3,$T3		#
    997 	vpcmpgtd	$T2,$T3,$T3		# broadcast carry bit
    998 	vpslldq		\$8,$T1,$T1
    999 	vpor		$T1,$Hkey,$Hkey		# H<<=1
   1000 
   1001 	# magic reduction
   1002 	vpand		.L0x1c2_polynomial(%rip),$T3,$T3
   1003 	vpxor		$T3,$Hkey,$Hkey		# if(carry) H^=0x1c2_polynomial
   1004 
   1005 	vpunpckhqdq	$Hkey,$Hkey,$HK
   1006 	vmovdqa		$Hkey,$Xi
   1007 	vpxor		$Hkey,$HK,$HK
   1008 	mov		\$4,%r10		# up to H^8
   1009 	jmp		.Linit_start_avx
   1010 ___
   1011 
   1012 sub clmul64x64_avx {
   1013 my ($Xhi,$Xi,$Hkey,$HK)=@_;
   1014 
   1015 if (!defined($HK)) {	$HK = $T2;
   1016 $code.=<<___;
   1017 	vpunpckhqdq	$Xi,$Xi,$T1
   1018 	vpunpckhqdq	$Hkey,$Hkey,$T2
   1019 	vpxor		$Xi,$T1,$T1		#
   1020 	vpxor		$Hkey,$T2,$T2
   1021 ___
   1022 } else {
   1023 $code.=<<___;
   1024 	vpunpckhqdq	$Xi,$Xi,$T1
   1025 	vpxor		$Xi,$T1,$T1		#
   1026 ___
   1027 }
   1028 $code.=<<___;
   1029 	vpclmulqdq	\$0x11,$Hkey,$Xi,$Xhi	#######
   1030 	vpclmulqdq	\$0x00,$Hkey,$Xi,$Xi	#######
   1031 	vpclmulqdq	\$0x00,$HK,$T1,$T1	#######
   1032 	vpxor		$Xi,$Xhi,$T2		#
   1033 	vpxor		$T2,$T1,$T1		#
   1034 
   1035 	vpslldq		\$8,$T1,$T2		#
   1036 	vpsrldq		\$8,$T1,$T1
   1037 	vpxor		$T2,$Xi,$Xi		#
   1038 	vpxor		$T1,$Xhi,$Xhi
   1039 ___
   1040 }
   1041 
   1042 sub reduction_avx {
   1043 my ($Xhi,$Xi) = @_;
   1044 
   1045 $code.=<<___;
   1046 	vpsllq		\$57,$Xi,$T1		# 1st phase
   1047 	vpsllq		\$62,$Xi,$T2
   1048 	vpxor		$T1,$T2,$T2		#
   1049 	vpsllq		\$63,$Xi,$T1
   1050 	vpxor		$T1,$T2,$T2		#
   1051 	vpslldq		\$8,$T2,$T1		#
   1052 	vpsrldq		\$8,$T2,$T2
   1053 	vpxor		$T1,$Xi,$Xi		#
   1054 	vpxor		$T2,$Xhi,$Xhi
   1055 
   1056 	vpsrlq		\$1,$Xi,$T2		# 2nd phase
   1057 	vpxor		$Xi,$Xhi,$Xhi
   1058 	vpxor		$T2,$Xi,$Xi		#
   1059 	vpsrlq		\$5,$T2,$T2
   1060 	vpxor		$T2,$Xi,$Xi		#
   1061 	vpsrlq		\$1,$Xi,$Xi		#
   1062 	vpxor		$Xhi,$Xi,$Xi		#
   1063 ___
   1064 }
   1065 
   1066 $code.=<<___;
   1067 .align	32
   1068 .Linit_loop_avx:
   1069 	vpalignr	\$8,$T1,$T2,$T3		# low part is H.lo^H.hi...
   1070 	vmovdqu		$T3,-0x10($Htbl)	# save Karatsuba "salt"
   1071 ___
   1072 	&clmul64x64_avx	($Xhi,$Xi,$Hkey,$HK);	# calculate H^3,5,7
   1073 	&reduction_avx	($Xhi,$Xi);
   1074 $code.=<<___;
   1075 .Linit_start_avx:
   1076 	vmovdqa		$Xi,$T3
   1077 ___
   1078 	&clmul64x64_avx	($Xhi,$Xi,$Hkey,$HK);	# calculate H^2,4,6,8
   1079 	&reduction_avx	($Xhi,$Xi);
   1080 $code.=<<___;
   1081 	vpshufd		\$0b01001110,$T3,$T1
   1082 	vpshufd		\$0b01001110,$Xi,$T2
   1083 	vpxor		$T3,$T1,$T1		# Karatsuba pre-processing
   1084 	vmovdqu		$T3,0x00($Htbl)		# save H^1,3,5,7
   1085 	vpxor		$Xi,$T2,$T2		# Karatsuba pre-processing
   1086 	vmovdqu		$Xi,0x10($Htbl)		# save H^2,4,6,8
   1087 	lea		0x30($Htbl),$Htbl
   1088 	sub		\$1,%r10
   1089 	jnz		.Linit_loop_avx
   1090 
   1091 	vpalignr	\$8,$T2,$T1,$T3		# last "salt" is flipped
   1092 	vmovdqu		$T3,-0x10($Htbl)
   1093 
   1094 	vzeroupper
   1095 ___
   1096 $code.=<<___ if ($win64);
   1097 	movaps	(%rsp),%xmm6
   1098 	lea	0x18(%rsp),%rsp
   1099 .LSEH_end_gcm_init_avx:
   1100 ___
   1101 $code.=<<___;
   1102 	ret
   1103 .size	gcm_init_avx,.-gcm_init_avx
   1104 ___
   1105 } else {
   1106 $code.=<<___;
   1107 	jmp	.L_init_clmul
   1108 .size	gcm_init_avx,.-gcm_init_avx
   1109 ___
   1110 }
   1111 
   1112 $code.=<<___;
   1113 .globl	gcm_gmult_avx
   1114 .type	gcm_gmult_avx,\@abi-omnipotent
   1115 .align	32
   1116 gcm_gmult_avx:
   1117 	jmp	.L_gmult_clmul
   1118 .size	gcm_gmult_avx,.-gcm_gmult_avx
   1119 ___
   1120 
   1122 $code.=<<___;
   1123 .globl	gcm_ghash_avx
   1124 .type	gcm_ghash_avx,\@abi-omnipotent
   1125 .align	32
   1126 gcm_ghash_avx:
   1127 ___
   1128 if ($avx) {
   1129 my ($Xip,$Htbl,$inp,$len)=@_4args;
   1130 my ($Xlo,$Xhi,$Xmi,
   1131     $Zlo,$Zhi,$Zmi,
   1132     $Hkey,$HK,$T1,$T2,
   1133     $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
   1134 
   1135 $code.=<<___ if ($win64);
   1136 	lea	-0x88(%rsp),%rax
   1137 .LSEH_begin_gcm_ghash_avx:
   1138 	# I can't trust assembler to use specific encoding:-(
   1139 	.byte	0x48,0x8d,0x60,0xe0		#lea	-0x20(%rax),%rsp
   1140 	.byte	0x0f,0x29,0x70,0xe0		#movaps	%xmm6,-0x20(%rax)
   1141 	.byte	0x0f,0x29,0x78,0xf0		#movaps	%xmm7,-0x10(%rax)
   1142 	.byte	0x44,0x0f,0x29,0x00		#movaps	%xmm8,0(%rax)
   1143 	.byte	0x44,0x0f,0x29,0x48,0x10	#movaps	%xmm9,0x10(%rax)
   1144 	.byte	0x44,0x0f,0x29,0x50,0x20	#movaps	%xmm10,0x20(%rax)
   1145 	.byte	0x44,0x0f,0x29,0x58,0x30	#movaps	%xmm11,0x30(%rax)
   1146 	.byte	0x44,0x0f,0x29,0x60,0x40	#movaps	%xmm12,0x40(%rax)
   1147 	.byte	0x44,0x0f,0x29,0x68,0x50	#movaps	%xmm13,0x50(%rax)
   1148 	.byte	0x44,0x0f,0x29,0x70,0x60	#movaps	%xmm14,0x60(%rax)
   1149 	.byte	0x44,0x0f,0x29,0x78,0x70	#movaps	%xmm15,0x70(%rax)
   1150 ___
   1151 $code.=<<___;
   1152 	vzeroupper
   1153 
   1154 	vmovdqu		($Xip),$Xi		# load $Xi
   1155 	lea		.L0x1c2_polynomial(%rip),%r10
   1156 	lea		0x40($Htbl),$Htbl	# size optimization
   1157 	vmovdqu		.Lbswap_mask(%rip),$bswap
   1158 	vpshufb		$bswap,$Xi,$Xi
   1159 	cmp		\$0x80,$len
   1160 	jb		.Lshort_avx
   1161 	sub		\$0x80,$len
   1162 
   1163 	vmovdqu		0x70($inp),$Ii		# I[7]
   1164 	vmovdqu		0x00-0x40($Htbl),$Hkey	# $Hkey^1
   1165 	vpshufb		$bswap,$Ii,$Ii
   1166 	vmovdqu		0x20-0x40($Htbl),$HK
   1167 
   1168 	vpunpckhqdq	$Ii,$Ii,$T2
   1169 	 vmovdqu	0x60($inp),$Ij		# I[6]
   1170 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1171 	vpxor		$Ii,$T2,$T2
   1172 	 vpshufb	$bswap,$Ij,$Ij
   1173 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1174 	 vmovdqu	0x10-0x40($Htbl),$Hkey	# $Hkey^2
   1175 	 vpunpckhqdq	$Ij,$Ij,$T1
   1176 	 vmovdqu	0x50($inp),$Ii		# I[5]
   1177 	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
   1178 	 vpxor		$Ij,$T1,$T1
   1179 
   1180 	 vpshufb	$bswap,$Ii,$Ii
   1181 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1182 	 vpunpckhqdq	$Ii,$Ii,$T2
   1183 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1184 	 vmovdqu	0x30-0x40($Htbl),$Hkey	# $Hkey^3
   1185 	 vpxor		$Ii,$T2,$T2
   1186 	 vmovdqu	0x40($inp),$Ij		# I[4]
   1187 	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
   1188 	 vmovdqu	0x50-0x40($Htbl),$HK
   1189 
   1190 	 vpshufb	$bswap,$Ij,$Ij
   1191 	vpxor		$Xlo,$Zlo,$Zlo
   1192 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1193 	vpxor		$Xhi,$Zhi,$Zhi
   1194 	 vpunpckhqdq	$Ij,$Ij,$T1
   1195 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1196 	 vmovdqu	0x40-0x40($Htbl),$Hkey	# $Hkey^4
   1197 	vpxor		$Xmi,$Zmi,$Zmi
   1198 	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
   1199 	 vpxor		$Ij,$T1,$T1
   1200 
   1201 	 vmovdqu	0x30($inp),$Ii		# I[3]
   1202 	vpxor		$Zlo,$Xlo,$Xlo
   1203 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1204 	vpxor		$Zhi,$Xhi,$Xhi
   1205 	 vpshufb	$bswap,$Ii,$Ii
   1206 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1207 	 vmovdqu	0x60-0x40($Htbl),$Hkey	# $Hkey^5
   1208 	vpxor		$Zmi,$Xmi,$Xmi
   1209 	 vpunpckhqdq	$Ii,$Ii,$T2
   1210 	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
   1211 	 vmovdqu	0x80-0x40($Htbl),$HK
   1212 	 vpxor		$Ii,$T2,$T2
   1213 
   1214 	 vmovdqu	0x20($inp),$Ij		# I[2]
   1215 	vpxor		$Xlo,$Zlo,$Zlo
   1216 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1217 	vpxor		$Xhi,$Zhi,$Zhi
   1218 	 vpshufb	$bswap,$Ij,$Ij
   1219 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1220 	 vmovdqu	0x70-0x40($Htbl),$Hkey	# $Hkey^6
   1221 	vpxor		$Xmi,$Zmi,$Zmi
   1222 	 vpunpckhqdq	$Ij,$Ij,$T1
   1223 	vpclmulqdq	\$0x00,$HK,$T2,$Xmi
   1224 	 vpxor		$Ij,$T1,$T1
   1225 
   1226 	 vmovdqu	0x10($inp),$Ii		# I[1]
   1227 	vpxor		$Zlo,$Xlo,$Xlo
   1228 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1229 	vpxor		$Zhi,$Xhi,$Xhi
   1230 	 vpshufb	$bswap,$Ii,$Ii
   1231 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1232 	 vmovdqu	0x90-0x40($Htbl),$Hkey	# $Hkey^7
   1233 	vpxor		$Zmi,$Xmi,$Xmi
   1234 	 vpunpckhqdq	$Ii,$Ii,$T2
   1235 	vpclmulqdq	\$0x10,$HK,$T1,$Zmi
   1236 	 vmovdqu	0xb0-0x40($Htbl),$HK
   1237 	 vpxor		$Ii,$T2,$T2
   1238 
   1239 	 vmovdqu	($inp),$Ij		# I[0]
   1240 	vpxor		$Xlo,$Zlo,$Zlo
   1241 	vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1242 	vpxor		$Xhi,$Zhi,$Zhi
   1243 	 vpshufb	$bswap,$Ij,$Ij
   1244 	vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1245 	 vmovdqu	0xa0-0x40($Htbl),$Hkey	# $Hkey^8
   1246 	vpxor		$Xmi,$Zmi,$Zmi
   1247 	vpclmulqdq	\$0x10,$HK,$T2,$Xmi
   1248 
   1249 	lea		0x80($inp),$inp
   1250 	cmp		\$0x80,$len
   1251 	jb		.Ltail_avx
   1252 
   1253 	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
   1254 	sub		\$0x80,$len
   1255 	jmp		.Loop8x_avx
   1256 
   1257 .align	32
   1258 .Loop8x_avx:
   1259 	vpunpckhqdq	$Ij,$Ij,$T1
   1260 	 vmovdqu	0x70($inp),$Ii		# I[7]
   1261 	vpxor		$Xlo,$Zlo,$Zlo
   1262 	vpxor		$Ij,$T1,$T1
   1263 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xi
   1264 	 vpshufb	$bswap,$Ii,$Ii
   1265 	vpxor		$Xhi,$Zhi,$Zhi
   1266 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xo
   1267 	 vmovdqu	0x00-0x40($Htbl),$Hkey	# $Hkey^1
   1268 	 vpunpckhqdq	$Ii,$Ii,$T2
   1269 	vpxor		$Xmi,$Zmi,$Zmi
   1270 	vpclmulqdq	\$0x00,$HK,$T1,$Tred
   1271 	 vmovdqu	0x20-0x40($Htbl),$HK
   1272 	 vpxor		$Ii,$T2,$T2
   1273 
   1274 	  vmovdqu	0x60($inp),$Ij		# I[6]
   1275 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1276 	vpxor		$Zlo,$Xi,$Xi		# collect result
   1277 	  vpshufb	$bswap,$Ij,$Ij
   1278 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1279 	vxorps		$Zhi,$Xo,$Xo
   1280 	  vmovdqu	0x10-0x40($Htbl),$Hkey	# $Hkey^2
   1281 	 vpunpckhqdq	$Ij,$Ij,$T1
   1282 	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
   1283 	vpxor		$Zmi,$Tred,$Tred
   1284 	 vxorps		$Ij,$T1,$T1
   1285 
   1286 	  vmovdqu	0x50($inp),$Ii		# I[5]
   1287 	vpxor		$Xi,$Tred,$Tred		# aggregated Karatsuba post-processing
   1288 	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1289 	vpxor		$Xo,$Tred,$Tred
   1290 	vpslldq		\$8,$Tred,$T2
   1291 	 vpxor		$Xlo,$Zlo,$Zlo
   1292 	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1293 	vpsrldq		\$8,$Tred,$Tred
   1294 	vpxor		$T2, $Xi, $Xi
   1295 	  vmovdqu	0x30-0x40($Htbl),$Hkey	# $Hkey^3
   1296 	  vpshufb	$bswap,$Ii,$Ii
   1297 	vxorps		$Tred,$Xo, $Xo
   1298 	 vpxor		$Xhi,$Zhi,$Zhi
   1299 	 vpunpckhqdq	$Ii,$Ii,$T2
   1300 	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
   1301 	  vmovdqu	0x50-0x40($Htbl),$HK
   1302 	 vpxor		$Ii,$T2,$T2
   1303 	 vpxor		$Xmi,$Zmi,$Zmi
   1304 
   1305 	  vmovdqu	0x40($inp),$Ij		# I[4]
   1306 	vpalignr	\$8,$Xi,$Xi,$Tred	# 1st phase
   1307 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1308 	  vpshufb	$bswap,$Ij,$Ij
   1309 	 vpxor		$Zlo,$Xlo,$Xlo
   1310 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1311 	  vmovdqu	0x40-0x40($Htbl),$Hkey	# $Hkey^4
   1312 	 vpunpckhqdq	$Ij,$Ij,$T1
   1313 	 vpxor		$Zhi,$Xhi,$Xhi
   1314 	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
   1315 	 vxorps		$Ij,$T1,$T1
   1316 	 vpxor		$Zmi,$Xmi,$Xmi
   1317 
   1318 	  vmovdqu	0x30($inp),$Ii		# I[3]
   1319 	vpclmulqdq	\$0x10,(%r10),$Xi,$Xi
   1320 	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1321 	  vpshufb	$bswap,$Ii,$Ii
   1322 	 vpxor		$Xlo,$Zlo,$Zlo
   1323 	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1324 	  vmovdqu	0x60-0x40($Htbl),$Hkey	# $Hkey^5
   1325 	 vpunpckhqdq	$Ii,$Ii,$T2
   1326 	 vpxor		$Xhi,$Zhi,$Zhi
   1327 	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
   1328 	  vmovdqu	0x80-0x40($Htbl),$HK
   1329 	 vpxor		$Ii,$T2,$T2
   1330 	 vpxor		$Xmi,$Zmi,$Zmi
   1331 
   1332 	  vmovdqu	0x20($inp),$Ij		# I[2]
   1333 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1334 	  vpshufb	$bswap,$Ij,$Ij
   1335 	 vpxor		$Zlo,$Xlo,$Xlo
   1336 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1337 	  vmovdqu	0x70-0x40($Htbl),$Hkey	# $Hkey^6
   1338 	 vpunpckhqdq	$Ij,$Ij,$T1
   1339 	 vpxor		$Zhi,$Xhi,$Xhi
   1340 	 vpclmulqdq	\$0x00,$HK,  $T2,$Xmi
   1341 	 vpxor		$Ij,$T1,$T1
   1342 	 vpxor		$Zmi,$Xmi,$Xmi
   1343 	vxorps		$Tred,$Xi,$Xi
   1344 
   1345 	  vmovdqu	0x10($inp),$Ii		# I[1]
   1346 	vpalignr	\$8,$Xi,$Xi,$Tred	# 2nd phase
   1347 	 vpclmulqdq	\$0x00,$Hkey,$Ij,$Zlo
   1348 	  vpshufb	$bswap,$Ii,$Ii
   1349 	 vpxor		$Xlo,$Zlo,$Zlo
   1350 	 vpclmulqdq	\$0x11,$Hkey,$Ij,$Zhi
   1351 	  vmovdqu	0x90-0x40($Htbl),$Hkey	# $Hkey^7
   1352 	vpclmulqdq	\$0x10,(%r10),$Xi,$Xi
   1353 	vxorps		$Xo,$Tred,$Tred
   1354 	 vpunpckhqdq	$Ii,$Ii,$T2
   1355 	 vpxor		$Xhi,$Zhi,$Zhi
   1356 	 vpclmulqdq	\$0x10,$HK,  $T1,$Zmi
   1357 	  vmovdqu	0xb0-0x40($Htbl),$HK
   1358 	 vpxor		$Ii,$T2,$T2
   1359 	 vpxor		$Xmi,$Zmi,$Zmi
   1360 
   1361 	  vmovdqu	($inp),$Ij		# I[0]
   1362 	 vpclmulqdq	\$0x00,$Hkey,$Ii,$Xlo
   1363 	  vpshufb	$bswap,$Ij,$Ij
   1364 	 vpclmulqdq	\$0x11,$Hkey,$Ii,$Xhi
   1365 	  vmovdqu	0xa0-0x40($Htbl),$Hkey	# $Hkey^8
   1366 	vpxor		$Tred,$Ij,$Ij
   1367 	 vpclmulqdq	\$0x10,$HK,  $T2,$Xmi
   1368 	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
   1369 
   1370 	lea		0x80($inp),$inp
   1371 	sub		\$0x80,$len
   1372 	jnc		.Loop8x_avx
   1373 
   1374 	add		\$0x80,$len
   1375 	jmp		.Ltail_no_xor_avx
   1376 
   1377 .align	32
   1378 .Lshort_avx:
   1379 	vmovdqu		-0x10($inp,$len),$Ii	# very last word
   1380 	lea		($inp,$len),$inp
   1381 	vmovdqu		0x00-0x40($Htbl),$Hkey	# $Hkey^1
   1382 	vmovdqu		0x20-0x40($Htbl),$HK
   1383 	vpshufb		$bswap,$Ii,$Ij
   1384 
   1385 	vmovdqa		$Xlo,$Zlo		# subtle way to zero $Zlo,
   1386 	vmovdqa		$Xhi,$Zhi		# $Zhi and
   1387 	vmovdqa		$Xmi,$Zmi		# $Zmi
   1388 	sub		\$0x10,$len
   1389 	jz		.Ltail_avx
   1390 
   1391 	vpunpckhqdq	$Ij,$Ij,$T1
   1392 	vpxor		$Xlo,$Zlo,$Zlo
   1393 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1394 	vpxor		$Ij,$T1,$T1
   1395 	 vmovdqu	-0x20($inp),$Ii
   1396 	vpxor		$Xhi,$Zhi,$Zhi
   1397 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1398 	vmovdqu		0x10-0x40($Htbl),$Hkey	# $Hkey^2
   1399 	 vpshufb	$bswap,$Ii,$Ij
   1400 	vpxor		$Xmi,$Zmi,$Zmi
   1401 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1402 	vpsrldq		\$8,$HK,$HK
   1403 	sub		\$0x10,$len
   1404 	jz		.Ltail_avx
   1405 
   1406 	vpunpckhqdq	$Ij,$Ij,$T1
   1407 	vpxor		$Xlo,$Zlo,$Zlo
   1408 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1409 	vpxor		$Ij,$T1,$T1
   1410 	 vmovdqu	-0x30($inp),$Ii
   1411 	vpxor		$Xhi,$Zhi,$Zhi
   1412 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1413 	vmovdqu		0x30-0x40($Htbl),$Hkey	# $Hkey^3
   1414 	 vpshufb	$bswap,$Ii,$Ij
   1415 	vpxor		$Xmi,$Zmi,$Zmi
   1416 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1417 	vmovdqu		0x50-0x40($Htbl),$HK
   1418 	sub		\$0x10,$len
   1419 	jz		.Ltail_avx
   1420 
   1421 	vpunpckhqdq	$Ij,$Ij,$T1
   1422 	vpxor		$Xlo,$Zlo,$Zlo
   1423 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1424 	vpxor		$Ij,$T1,$T1
   1425 	 vmovdqu	-0x40($inp),$Ii
   1426 	vpxor		$Xhi,$Zhi,$Zhi
   1427 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1428 	vmovdqu		0x40-0x40($Htbl),$Hkey	# $Hkey^4
   1429 	 vpshufb	$bswap,$Ii,$Ij
   1430 	vpxor		$Xmi,$Zmi,$Zmi
   1431 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1432 	vpsrldq		\$8,$HK,$HK
   1433 	sub		\$0x10,$len
   1434 	jz		.Ltail_avx
   1435 
   1436 	vpunpckhqdq	$Ij,$Ij,$T1
   1437 	vpxor		$Xlo,$Zlo,$Zlo
   1438 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1439 	vpxor		$Ij,$T1,$T1
   1440 	 vmovdqu	-0x50($inp),$Ii
   1441 	vpxor		$Xhi,$Zhi,$Zhi
   1442 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1443 	vmovdqu		0x60-0x40($Htbl),$Hkey	# $Hkey^5
   1444 	 vpshufb	$bswap,$Ii,$Ij
   1445 	vpxor		$Xmi,$Zmi,$Zmi
   1446 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1447 	vmovdqu		0x80-0x40($Htbl),$HK
   1448 	sub		\$0x10,$len
   1449 	jz		.Ltail_avx
   1450 
   1451 	vpunpckhqdq	$Ij,$Ij,$T1
   1452 	vpxor		$Xlo,$Zlo,$Zlo
   1453 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1454 	vpxor		$Ij,$T1,$T1
   1455 	 vmovdqu	-0x60($inp),$Ii
   1456 	vpxor		$Xhi,$Zhi,$Zhi
   1457 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1458 	vmovdqu		0x70-0x40($Htbl),$Hkey	# $Hkey^6
   1459 	 vpshufb	$bswap,$Ii,$Ij
   1460 	vpxor		$Xmi,$Zmi,$Zmi
   1461 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1462 	vpsrldq		\$8,$HK,$HK
   1463 	sub		\$0x10,$len
   1464 	jz		.Ltail_avx
   1465 
   1466 	vpunpckhqdq	$Ij,$Ij,$T1
   1467 	vpxor		$Xlo,$Zlo,$Zlo
   1468 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1469 	vpxor		$Ij,$T1,$T1
   1470 	 vmovdqu	-0x70($inp),$Ii
   1471 	vpxor		$Xhi,$Zhi,$Zhi
   1472 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1473 	vmovdqu		0x90-0x40($Htbl),$Hkey	# $Hkey^7
   1474 	 vpshufb	$bswap,$Ii,$Ij
   1475 	vpxor		$Xmi,$Zmi,$Zmi
   1476 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1477 	vmovq		0xb8-0x40($Htbl),$HK
   1478 	sub		\$0x10,$len
   1479 	jmp		.Ltail_avx
   1480 
   1481 .align	32
   1482 .Ltail_avx:
   1483 	vpxor		$Xi,$Ij,$Ij		# accumulate $Xi
   1484 .Ltail_no_xor_avx:
   1485 	vpunpckhqdq	$Ij,$Ij,$T1
   1486 	vpxor		$Xlo,$Zlo,$Zlo
   1487 	vpclmulqdq	\$0x00,$Hkey,$Ij,$Xlo
   1488 	vpxor		$Ij,$T1,$T1
   1489 	vpxor		$Xhi,$Zhi,$Zhi
   1490 	vpclmulqdq	\$0x11,$Hkey,$Ij,$Xhi
   1491 	vpxor		$Xmi,$Zmi,$Zmi
   1492 	vpclmulqdq	\$0x00,$HK,$T1,$Xmi
   1493 
   1494 	vmovdqu		(%r10),$Tred
   1495 
   1496 	vpxor		$Xlo,$Zlo,$Xi
   1497 	vpxor		$Xhi,$Zhi,$Xo
   1498 	vpxor		$Xmi,$Zmi,$Zmi
   1499 
   1500 	vpxor		$Xi, $Zmi,$Zmi		# aggregated Karatsuba post-processing
   1501 	vpxor		$Xo, $Zmi,$Zmi
   1502 	vpslldq		\$8, $Zmi,$T2
   1503 	vpsrldq		\$8, $Zmi,$Zmi
   1504 	vpxor		$T2, $Xi, $Xi
   1505 	vpxor		$Zmi,$Xo, $Xo
   1506 
   1507 	vpclmulqdq	\$0x10,$Tred,$Xi,$T2	# 1st phase
   1508 	vpalignr	\$8,$Xi,$Xi,$Xi
   1509 	vpxor		$T2,$Xi,$Xi
   1510 
   1511 	vpclmulqdq	\$0x10,$Tred,$Xi,$T2	# 2nd phase
   1512 	vpalignr	\$8,$Xi,$Xi,$Xi
   1513 	vpxor		$Xo,$Xi,$Xi
   1514 	vpxor		$T2,$Xi,$Xi
   1515 
   1516 	cmp		\$0,$len
   1517 	jne		.Lshort_avx
   1518 
   1519 	vpshufb		$bswap,$Xi,$Xi
   1520 	vmovdqu		$Xi,($Xip)
   1521 	vzeroupper
   1522 ___
   1523 $code.=<<___ if ($win64);
   1524 	movaps	(%rsp),%xmm6
   1525 	movaps	0x10(%rsp),%xmm7
   1526 	movaps	0x20(%rsp),%xmm8
   1527 	movaps	0x30(%rsp),%xmm9
   1528 	movaps	0x40(%rsp),%xmm10
   1529 	movaps	0x50(%rsp),%xmm11
   1530 	movaps	0x60(%rsp),%xmm12
   1531 	movaps	0x70(%rsp),%xmm13
   1532 	movaps	0x80(%rsp),%xmm14
   1533 	movaps	0x90(%rsp),%xmm15
   1534 	lea	0xa8(%rsp),%rsp
   1535 .LSEH_end_gcm_ghash_avx:
   1536 ___
   1537 $code.=<<___;
   1538 	ret
   1539 .size	gcm_ghash_avx,.-gcm_ghash_avx
   1540 ___
   1541 } else {
   1542 $code.=<<___;
   1543 	jmp	.L_ghash_clmul
   1544 .size	gcm_ghash_avx,.-gcm_ghash_avx
   1545 ___
   1546 }
   1547 
   1549 $code.=<<___;
   1550 .align	64
   1551 .Lbswap_mask:
   1552 	.byte	15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
   1553 .L0x1c2_polynomial:
   1554 	.byte	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
   1555 .L7_mask:
   1556 	.long	7,0,7,0
   1557 .L7_mask_poly:
   1558 	.long	7,0,`0xE1<<1`,0
   1559 .align	64
   1560 .type	.Lrem_4bit,\@object
   1561 .Lrem_4bit:
   1562 	.long	0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
   1563 	.long	0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
   1564 	.long	0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
   1565 	.long	0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
   1566 .type	.Lrem_8bit,\@object
   1567 .Lrem_8bit:
   1568 	.value	0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
   1569 	.value	0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
   1570 	.value	0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
   1571 	.value	0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
   1572 	.value	0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
   1573 	.value	0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
   1574 	.value	0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
   1575 	.value	0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
   1576 	.value	0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
   1577 	.value	0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
   1578 	.value	0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
   1579 	.value	0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
   1580 	.value	0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
   1581 	.value	0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
   1582 	.value	0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
   1583 	.value	0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
   1584 	.value	0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
   1585 	.value	0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
   1586 	.value	0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
   1587 	.value	0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
   1588 	.value	0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
   1589 	.value	0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
   1590 	.value	0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
   1591 	.value	0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
   1592 	.value	0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
   1593 	.value	0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
   1594 	.value	0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
   1595 	.value	0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
   1596 	.value	0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
   1597 	.value	0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
   1598 	.value	0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
   1599 	.value	0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
   1600 
   1601 .asciz	"GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
   1602 .align	64
   1603 ___
   1604 
   1606 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
   1607 #		CONTEXT *context,DISPATCHER_CONTEXT *disp)
   1608 if ($win64) {
   1609 $rec="%rcx";
   1610 $frame="%rdx";
   1611 $context="%r8";
   1612 $disp="%r9";
   1613 
   1614 $code.=<<___;
   1615 .extern	__imp_RtlVirtualUnwind
   1616 .type	se_handler,\@abi-omnipotent
   1617 .align	16
   1618 se_handler:
   1619 	push	%rsi
   1620 	push	%rdi
   1621 	push	%rbx
   1622 	push	%rbp
   1623 	push	%r12
   1624 	push	%r13
   1625 	push	%r14
   1626 	push	%r15
   1627 	pushfq
   1628 	sub	\$64,%rsp
   1629 
   1630 	mov	120($context),%rax	# pull context->Rax
   1631 	mov	248($context),%rbx	# pull context->Rip
   1632 
   1633 	mov	8($disp),%rsi		# disp->ImageBase
   1634 	mov	56($disp),%r11		# disp->HandlerData
   1635 
   1636 	mov	0(%r11),%r10d		# HandlerData[0]
   1637 	lea	(%rsi,%r10),%r10	# prologue label
   1638 	cmp	%r10,%rbx		# context->Rip<prologue label
   1639 	jb	.Lin_prologue
   1640 
   1641 	mov	152($context),%rax	# pull context->Rsp
   1642 
   1643 	mov	4(%r11),%r10d		# HandlerData[1]
   1644 	lea	(%rsi,%r10),%r10	# epilogue label
   1645 	cmp	%r10,%rbx		# context->Rip>=epilogue label
   1646 	jae	.Lin_prologue
   1647 
   1648 	lea	24(%rax),%rax		# adjust "rsp"
   1649 
   1650 	mov	-8(%rax),%rbx
   1651 	mov	-16(%rax),%rbp
   1652 	mov	-24(%rax),%r12
   1653 	mov	%rbx,144($context)	# restore context->Rbx
   1654 	mov	%rbp,160($context)	# restore context->Rbp
   1655 	mov	%r12,216($context)	# restore context->R12
   1656 
   1657 .Lin_prologue:
   1658 	mov	8(%rax),%rdi
   1659 	mov	16(%rax),%rsi
   1660 	mov	%rax,152($context)	# restore context->Rsp
   1661 	mov	%rsi,168($context)	# restore context->Rsi
   1662 	mov	%rdi,176($context)	# restore context->Rdi
   1663 
   1664 	mov	40($disp),%rdi		# disp->ContextRecord
   1665 	mov	$context,%rsi		# context
   1666 	mov	\$`1232/8`,%ecx		# sizeof(CONTEXT)
   1667 	.long	0xa548f3fc		# cld; rep movsq
   1668 
   1669 	mov	$disp,%rsi
   1670 	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
   1671 	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
   1672 	mov	0(%rsi),%r8		# arg3, disp->ControlPc
   1673 	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
   1674 	mov	40(%rsi),%r10		# disp->ContextRecord
   1675 	lea	56(%rsi),%r11		# &disp->HandlerData
   1676 	lea	24(%rsi),%r12		# &disp->EstablisherFrame
   1677 	mov	%r10,32(%rsp)		# arg5
   1678 	mov	%r11,40(%rsp)		# arg6
   1679 	mov	%r12,48(%rsp)		# arg7
   1680 	mov	%rcx,56(%rsp)		# arg8, (NULL)
   1681 	call	*__imp_RtlVirtualUnwind(%rip)
   1682 
   1683 	mov	\$1,%eax		# ExceptionContinueSearch
   1684 	add	\$64,%rsp
   1685 	popfq
   1686 	pop	%r15
   1687 	pop	%r14
   1688 	pop	%r13
   1689 	pop	%r12
   1690 	pop	%rbp
   1691 	pop	%rbx
   1692 	pop	%rdi
   1693 	pop	%rsi
   1694 	ret
   1695 .size	se_handler,.-se_handler
   1696 
   1697 .section	.pdata
   1698 .align	4
   1699 	.rva	.LSEH_begin_gcm_gmult_4bit
   1700 	.rva	.LSEH_end_gcm_gmult_4bit
   1701 	.rva	.LSEH_info_gcm_gmult_4bit
   1702 
   1703 	.rva	.LSEH_begin_gcm_ghash_4bit
   1704 	.rva	.LSEH_end_gcm_ghash_4bit
   1705 	.rva	.LSEH_info_gcm_ghash_4bit
   1706 
   1707 	.rva	.LSEH_begin_gcm_init_clmul
   1708 	.rva	.LSEH_end_gcm_init_clmul
   1709 	.rva	.LSEH_info_gcm_init_clmul
   1710 
   1711 	.rva	.LSEH_begin_gcm_ghash_clmul
   1712 	.rva	.LSEH_end_gcm_ghash_clmul
   1713 	.rva	.LSEH_info_gcm_ghash_clmul
   1714 ___
   1715 $code.=<<___	if ($avx);
   1716 	.rva	.LSEH_begin_gcm_init_avx
   1717 	.rva	.LSEH_end_gcm_init_avx
   1718 	.rva	.LSEH_info_gcm_init_clmul
   1719 
   1720 	.rva	.LSEH_begin_gcm_ghash_avx
   1721 	.rva	.LSEH_end_gcm_ghash_avx
   1722 	.rva	.LSEH_info_gcm_ghash_clmul
   1723 ___
   1724 $code.=<<___;
   1725 .section	.xdata
   1726 .align	8
   1727 .LSEH_info_gcm_gmult_4bit:
   1728 	.byte	9,0,0,0
   1729 	.rva	se_handler
   1730 	.rva	.Lgmult_prologue,.Lgmult_epilogue	# HandlerData
   1731 .LSEH_info_gcm_ghash_4bit:
   1732 	.byte	9,0,0,0
   1733 	.rva	se_handler
   1734 	.rva	.Lghash_prologue,.Lghash_epilogue	# HandlerData
   1735 .LSEH_info_gcm_init_clmul:
   1736 	.byte	0x01,0x08,0x03,0x00
   1737 	.byte	0x08,0x68,0x00,0x00	#movaps	0x00(rsp),xmm6
   1738 	.byte	0x04,0x22,0x00,0x00	#sub	rsp,0x18
   1739 .LSEH_info_gcm_ghash_clmul:
   1740 	.byte	0x01,0x33,0x16,0x00
   1741 	.byte	0x33,0xf8,0x09,0x00	#movaps 0x90(rsp),xmm15
   1742 	.byte	0x2e,0xe8,0x08,0x00	#movaps 0x80(rsp),xmm14
   1743 	.byte	0x29,0xd8,0x07,0x00	#movaps 0x70(rsp),xmm13
   1744 	.byte	0x24,0xc8,0x06,0x00	#movaps 0x60(rsp),xmm12
   1745 	.byte	0x1f,0xb8,0x05,0x00	#movaps 0x50(rsp),xmm11
   1746 	.byte	0x1a,0xa8,0x04,0x00	#movaps 0x40(rsp),xmm10
   1747 	.byte	0x15,0x98,0x03,0x00	#movaps 0x30(rsp),xmm9
   1748 	.byte	0x10,0x88,0x02,0x00	#movaps 0x20(rsp),xmm8
   1749 	.byte	0x0c,0x78,0x01,0x00	#movaps 0x10(rsp),xmm7
   1750 	.byte	0x08,0x68,0x00,0x00	#movaps 0x00(rsp),xmm6
   1751 	.byte	0x04,0x01,0x15,0x00	#sub	rsp,0xa8
   1752 ___
   1753 }
   1754 
   1756 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
   1757 
   1758 print $code;
   1759 
   1760 close STDOUT;
   1761