Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jcsample.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * Copyright 2009 Pierre Ossman <ossman (at) cendio.se> for Cendio AB
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains downsampling routines.
     10  *
     11  * Downsampling input data is counted in "row groups".  A row group
     12  * is defined to be max_v_samp_factor pixel rows of each component,
     13  * from which the downsampler produces v_samp_factor sample rows.
     14  * A single row group is processed in each call to the downsampler module.
     15  *
     16  * The downsampler is responsible for edge-expansion of its output data
     17  * to fill an integral number of DCT blocks horizontally.  The source buffer
     18  * may be modified if it is helpful for this purpose (the source buffer is
     19  * allocated wide enough to correspond to the desired output width).
     20  * The caller (the prep controller) is responsible for vertical padding.
     21  *
     22  * The downsampler may request "context rows" by setting need_context_rows
     23  * during startup.  In this case, the input arrays will contain at least
     24  * one row group's worth of pixels above and below the passed-in data;
     25  * the caller will create dummy rows at image top and bottom by replicating
     26  * the first or last real pixel row.
     27  *
     28  * An excellent reference for image resampling is
     29  *   Digital Image Warping, George Wolberg, 1990.
     30  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
     31  *
     32  * The downsampling algorithm used here is a simple average of the source
     33  * pixels covered by the output pixel.  The hi-falutin sampling literature
     34  * refers to this as a "box filter".  In general the characteristics of a box
     35  * filter are not very good, but for the specific cases we normally use (1:1
     36  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
     37  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
     38  * advised to improve this code.
     39  *
     40  * A simple input-smoothing capability is provided.  This is mainly intended
     41  * for cleaning up color-dithered GIF input files (if you find it inadequate,
     42  * we suggest using an external filtering program such as pnmconvol).  When
     43  * enabled, each input pixel P is replaced by a weighted sum of itself and its
     44  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
     45  * where SF = (smoothing_factor / 1024).
     46  * Currently, smoothing is only supported for 2h2v sampling factors.
     47  */
     48 
     49 #define JPEG_INTERNALS
     50 #include "jinclude.h"
     51 #include "jpeglib.h"
     52 #include "jsimd.h"
     53 
     54 
     55 /* Pointer to routine to downsample a single component */
     56 typedef JMETHOD(void, downsample1_ptr,
     57 		(j_compress_ptr cinfo, jpeg_component_info * compptr,
     58 		 JSAMPARRAY input_data, JSAMPARRAY output_data));
     59 
     60 /* Private subobject */
     61 
     62 typedef struct {
     63   struct jpeg_downsampler pub;	/* public fields */
     64 
     65   /* Downsampling method pointers, one per component */
     66   downsample1_ptr methods[MAX_COMPONENTS];
     67 } my_downsampler;
     68 
     69 typedef my_downsampler * my_downsample_ptr;
     70 
     71 
     72 /*
     73  * Initialize for a downsampling pass.
     74  */
     75 
     76 METHODDEF(void)
     77 start_pass_downsample (j_compress_ptr cinfo)
     78 {
     79   /* no work for now */
     80 }
     81 
     82 
     83 /*
     84  * Expand a component horizontally from width input_cols to width output_cols,
     85  * by duplicating the rightmost samples.
     86  */
     87 
     88 LOCAL(void)
     89 expand_right_edge (JSAMPARRAY image_data, int num_rows,
     90 		   JDIMENSION input_cols, JDIMENSION output_cols)
     91 {
     92   register JSAMPROW ptr;
     93   register JSAMPLE pixval;
     94   register int count;
     95   int row;
     96   int numcols = (int) (output_cols - input_cols);
     97 
     98   if (numcols > 0) {
     99     for (row = 0; row < num_rows; row++) {
    100       ptr = image_data[row] + input_cols;
    101       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
    102       for (count = numcols; count > 0; count--)
    103 	*ptr++ = pixval;
    104     }
    105   }
    106 }
    107 
    108 
    109 /*
    110  * Do downsampling for a whole row group (all components).
    111  *
    112  * In this version we simply downsample each component independently.
    113  */
    114 
    115 METHODDEF(void)
    116 sep_downsample (j_compress_ptr cinfo,
    117 		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
    118 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
    119 {
    120   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
    121   int ci;
    122   jpeg_component_info * compptr;
    123   JSAMPARRAY in_ptr, out_ptr;
    124 
    125   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    126        ci++, compptr++) {
    127     in_ptr = input_buf[ci] + in_row_index;
    128     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
    129     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
    130   }
    131 }
    132 
    133 
    134 /*
    135  * Downsample pixel values of a single component.
    136  * One row group is processed per call.
    137  * This version handles arbitrary integral sampling ratios, without smoothing.
    138  * Note that this version is not actually used for customary sampling ratios.
    139  */
    140 
    141 METHODDEF(void)
    142 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    143 		JSAMPARRAY input_data, JSAMPARRAY output_data)
    144 {
    145   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
    146   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
    147   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    148   JSAMPROW inptr, outptr;
    149   INT32 outvalue;
    150 
    151   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
    152   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
    153   numpix = h_expand * v_expand;
    154   numpix2 = numpix/2;
    155 
    156   /* Expand input data enough to let all the output samples be generated
    157    * by the standard loop.  Special-casing padded output would be more
    158    * efficient.
    159    */
    160   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    161 		    cinfo->image_width, output_cols * h_expand);
    162 
    163   inrow = 0;
    164   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    165     outptr = output_data[outrow];
    166     for (outcol = 0, outcol_h = 0; outcol < output_cols;
    167 	 outcol++, outcol_h += h_expand) {
    168       outvalue = 0;
    169       for (v = 0; v < v_expand; v++) {
    170 	inptr = input_data[inrow+v] + outcol_h;
    171 	for (h = 0; h < h_expand; h++) {
    172 	  outvalue += (INT32) GETJSAMPLE(*inptr++);
    173 	}
    174       }
    175       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
    176     }
    177     inrow += v_expand;
    178   }
    179 }
    180 
    181 
    182 /*
    183  * Downsample pixel values of a single component.
    184  * This version handles the special case of a full-size component,
    185  * without smoothing.
    186  */
    187 
    188 METHODDEF(void)
    189 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    190 		     JSAMPARRAY input_data, JSAMPARRAY output_data)
    191 {
    192   /* Copy the data */
    193   jcopy_sample_rows(input_data, 0, output_data, 0,
    194 		    cinfo->max_v_samp_factor, cinfo->image_width);
    195   /* Edge-expand */
    196   expand_right_edge(output_data, cinfo->max_v_samp_factor,
    197 		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
    198 }
    199 
    200 
    201 /*
    202  * Downsample pixel values of a single component.
    203  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
    204  * without smoothing.
    205  *
    206  * A note about the "bias" calculations: when rounding fractional values to
    207  * integer, we do not want to always round 0.5 up to the next integer.
    208  * If we did that, we'd introduce a noticeable bias towards larger values.
    209  * Instead, this code is arranged so that 0.5 will be rounded up or down at
    210  * alternate pixel locations (a simple ordered dither pattern).
    211  */
    212 
    213 METHODDEF(void)
    214 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    215 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
    216 {
    217   int outrow;
    218   JDIMENSION outcol;
    219   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    220   register JSAMPROW inptr, outptr;
    221   register int bias;
    222 
    223   /* Expand input data enough to let all the output samples be generated
    224    * by the standard loop.  Special-casing padded output would be more
    225    * efficient.
    226    */
    227   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    228 		    cinfo->image_width, output_cols * 2);
    229 
    230   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    231     outptr = output_data[outrow];
    232     inptr = input_data[outrow];
    233     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
    234     for (outcol = 0; outcol < output_cols; outcol++) {
    235       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
    236 			      + bias) >> 1);
    237       bias ^= 1;		/* 0=>1, 1=>0 */
    238       inptr += 2;
    239     }
    240   }
    241 }
    242 
    243 
    244 /*
    245  * Downsample pixel values of a single component.
    246  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    247  * without smoothing.
    248  */
    249 
    250 METHODDEF(void)
    251 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    252 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
    253 {
    254   int inrow, outrow;
    255   JDIMENSION outcol;
    256   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    257   register JSAMPROW inptr0, inptr1, outptr;
    258   register int bias;
    259 
    260   /* Expand input data enough to let all the output samples be generated
    261    * by the standard loop.  Special-casing padded output would be more
    262    * efficient.
    263    */
    264   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    265 		    cinfo->image_width, output_cols * 2);
    266 
    267   inrow = 0;
    268   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    269     outptr = output_data[outrow];
    270     inptr0 = input_data[inrow];
    271     inptr1 = input_data[inrow+1];
    272     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
    273     for (outcol = 0; outcol < output_cols; outcol++) {
    274       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    275 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
    276 			      + bias) >> 2);
    277       bias ^= 3;		/* 1=>2, 2=>1 */
    278       inptr0 += 2; inptr1 += 2;
    279     }
    280     inrow += 2;
    281   }
    282 }
    283 
    284 
    285 #ifdef INPUT_SMOOTHING_SUPPORTED
    286 
    287 /*
    288  * Downsample pixel values of a single component.
    289  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    290  * with smoothing.  One row of context is required.
    291  */
    292 
    293 METHODDEF(void)
    294 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    295 			JSAMPARRAY input_data, JSAMPARRAY output_data)
    296 {
    297   int inrow, outrow;
    298   JDIMENSION colctr;
    299   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    300   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
    301   INT32 membersum, neighsum, memberscale, neighscale;
    302 
    303   /* Expand input data enough to let all the output samples be generated
    304    * by the standard loop.  Special-casing padded output would be more
    305    * efficient.
    306    */
    307   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    308 		    cinfo->image_width, output_cols * 2);
    309 
    310   /* We don't bother to form the individual "smoothed" input pixel values;
    311    * we can directly compute the output which is the average of the four
    312    * smoothed values.  Each of the four member pixels contributes a fraction
    313    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
    314    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
    315    * output.  The four corner-adjacent neighbor pixels contribute a fraction
    316    * SF to just one smoothed pixel, or SF/4 to the final output; while the
    317    * eight edge-adjacent neighbors contribute SF to each of two smoothed
    318    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
    319    * factors are scaled by 2^16 = 65536.
    320    * Also recall that SF = smoothing_factor / 1024.
    321    */
    322 
    323   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
    324   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
    325 
    326   inrow = 0;
    327   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    328     outptr = output_data[outrow];
    329     inptr0 = input_data[inrow];
    330     inptr1 = input_data[inrow+1];
    331     above_ptr = input_data[inrow-1];
    332     below_ptr = input_data[inrow+2];
    333 
    334     /* Special case for first column: pretend column -1 is same as column 0 */
    335     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    336 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    337     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    338 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    339 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
    340 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
    341     neighsum += neighsum;
    342     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
    343 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
    344     membersum = membersum * memberscale + neighsum * neighscale;
    345     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    346     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    347 
    348     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    349       /* sum of pixels directly mapped to this output element */
    350       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    351 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    352       /* sum of edge-neighbor pixels */
    353       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    354 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    355 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
    356 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
    357       /* The edge-neighbors count twice as much as corner-neighbors */
    358       neighsum += neighsum;
    359       /* Add in the corner-neighbors */
    360       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
    361 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
    362       /* form final output scaled up by 2^16 */
    363       membersum = membersum * memberscale + neighsum * neighscale;
    364       /* round, descale and output it */
    365       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    366       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    367     }
    368 
    369     /* Special case for last column */
    370     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    371 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    372     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    373 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    374 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
    375 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
    376     neighsum += neighsum;
    377     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
    378 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
    379     membersum = membersum * memberscale + neighsum * neighscale;
    380     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    381 
    382     inrow += 2;
    383   }
    384 }
    385 
    386 
    387 /*
    388  * Downsample pixel values of a single component.
    389  * This version handles the special case of a full-size component,
    390  * with smoothing.  One row of context is required.
    391  */
    392 
    393 METHODDEF(void)
    394 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    395 			    JSAMPARRAY input_data, JSAMPARRAY output_data)
    396 {
    397   int outrow;
    398   JDIMENSION colctr;
    399   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    400   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
    401   INT32 membersum, neighsum, memberscale, neighscale;
    402   int colsum, lastcolsum, nextcolsum;
    403 
    404   /* Expand input data enough to let all the output samples be generated
    405    * by the standard loop.  Special-casing padded output would be more
    406    * efficient.
    407    */
    408   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    409 		    cinfo->image_width, output_cols);
    410 
    411   /* Each of the eight neighbor pixels contributes a fraction SF to the
    412    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
    413    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
    414    * Also recall that SF = smoothing_factor / 1024.
    415    */
    416 
    417   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
    418   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
    419 
    420   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    421     outptr = output_data[outrow];
    422     inptr = input_data[outrow];
    423     above_ptr = input_data[outrow-1];
    424     below_ptr = input_data[outrow+1];
    425 
    426     /* Special case for first column */
    427     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
    428 	     GETJSAMPLE(*inptr);
    429     membersum = GETJSAMPLE(*inptr++);
    430     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    431 		 GETJSAMPLE(*inptr);
    432     neighsum = colsum + (colsum - membersum) + nextcolsum;
    433     membersum = membersum * memberscale + neighsum * neighscale;
    434     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    435     lastcolsum = colsum; colsum = nextcolsum;
    436 
    437     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    438       membersum = GETJSAMPLE(*inptr++);
    439       above_ptr++; below_ptr++;
    440       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    441 		   GETJSAMPLE(*inptr);
    442       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
    443       membersum = membersum * memberscale + neighsum * neighscale;
    444       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    445       lastcolsum = colsum; colsum = nextcolsum;
    446     }
    447 
    448     /* Special case for last column */
    449     membersum = GETJSAMPLE(*inptr);
    450     neighsum = lastcolsum + (colsum - membersum) + colsum;
    451     membersum = membersum * memberscale + neighsum * neighscale;
    452     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    453 
    454   }
    455 }
    456 
    457 #endif /* INPUT_SMOOTHING_SUPPORTED */
    458 
    459 
    460 /*
    461  * Module initialization routine for downsampling.
    462  * Note that we must select a routine for each component.
    463  */
    464 
    465 GLOBAL(void)
    466 jinit_downsampler (j_compress_ptr cinfo)
    467 {
    468   my_downsample_ptr downsample;
    469   int ci;
    470   jpeg_component_info * compptr;
    471   boolean smoothok = TRUE;
    472 
    473   downsample = (my_downsample_ptr)
    474     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    475 				SIZEOF(my_downsampler));
    476   cinfo->downsample = (struct jpeg_downsampler *) downsample;
    477   downsample->pub.start_pass = start_pass_downsample;
    478   downsample->pub.downsample = sep_downsample;
    479   downsample->pub.need_context_rows = FALSE;
    480 
    481   if (cinfo->CCIR601_sampling)
    482     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
    483 
    484   /* Verify we can handle the sampling factors, and set up method pointers */
    485   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    486        ci++, compptr++) {
    487     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
    488 	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    489 #ifdef INPUT_SMOOTHING_SUPPORTED
    490       if (cinfo->smoothing_factor) {
    491 	downsample->methods[ci] = fullsize_smooth_downsample;
    492 	downsample->pub.need_context_rows = TRUE;
    493       } else
    494 #endif
    495 	downsample->methods[ci] = fullsize_downsample;
    496     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    497 	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    498       smoothok = FALSE;
    499       if (jsimd_can_h2v1_downsample())
    500         downsample->methods[ci] = jsimd_h2v1_downsample;
    501       else
    502         downsample->methods[ci] = h2v1_downsample;
    503     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    504 	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
    505 #ifdef INPUT_SMOOTHING_SUPPORTED
    506       if (cinfo->smoothing_factor) {
    507 	downsample->methods[ci] = h2v2_smooth_downsample;
    508 	downsample->pub.need_context_rows = TRUE;
    509       } else
    510 #endif
    511 	if (jsimd_can_h2v2_downsample())
    512 	  downsample->methods[ci] = jsimd_h2v2_downsample;
    513 	else
    514 	  downsample->methods[ci] = h2v2_downsample;
    515     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
    516 	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
    517       smoothok = FALSE;
    518       downsample->methods[ci] = int_downsample;
    519     } else
    520       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
    521   }
    522 
    523 #ifdef INPUT_SMOOTHING_SUPPORTED
    524   if (cinfo->smoothing_factor && !smoothok)
    525     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
    526 #endif
    527 }
    528