Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jdarith.c
      3  *
      4  * Developed 1997-2009 by Guido Vollbeding.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains portable arithmetic entropy decoding routines for JPEG
      9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
     10  *
     11  * Both sequential and progressive modes are supported in this single module.
     12  *
     13  * Suspension is not currently supported in this module.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 
     20 
     21 /* Expanded entropy decoder object for arithmetic decoding. */
     22 
     23 typedef struct {
     24   struct jpeg_entropy_decoder pub; /* public fields */
     25 
     26   INT32 c;       /* C register, base of coding interval + input bit buffer */
     27   INT32 a;               /* A register, normalized size of coding interval */
     28   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
     29                                                          /* init: ct = -16 */
     30                                                          /* run: ct = 0..7 */
     31                                                          /* error: ct = -1 */
     32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     33   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
     34 
     35   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     36 
     37   /* Pointers to statistics areas (these workspaces have image lifespan) */
     38   unsigned char * dc_stats[NUM_ARITH_TBLS];
     39   unsigned char * ac_stats[NUM_ARITH_TBLS];
     40 
     41   /* Statistics bin for coding with fixed probability 0.5 */
     42   unsigned char fixed_bin[4];
     43 } arith_entropy_decoder;
     44 
     45 typedef arith_entropy_decoder * arith_entropy_ptr;
     46 
     47 /* The following two definitions specify the allocation chunk size
     48  * for the statistics area.
     49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
     50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
     51  *
     52  * We use a compact representation with 1 byte per statistics bin,
     53  * thus the numbers directly represent byte sizes.
     54  * This 1 byte per statistics bin contains the meaning of the MPS
     55  * (more probable symbol) in the highest bit (mask 0x80), and the
     56  * index into the probability estimation state machine table
     57  * in the lower bits (mask 0x7F).
     58  */
     59 
     60 #define DC_STAT_BINS 64
     61 #define AC_STAT_BINS 256
     62 
     63 
     64 LOCAL(int)
     65 get_byte (j_decompress_ptr cinfo)
     66 /* Read next input byte; we do not support suspension in this module. */
     67 {
     68   struct jpeg_source_mgr * src = cinfo->src;
     69 
     70   if (src->bytes_in_buffer == 0)
     71     if (! (*src->fill_input_buffer) (cinfo))
     72       ERREXIT(cinfo, JERR_CANT_SUSPEND);
     73   src->bytes_in_buffer--;
     74   return GETJOCTET(*src->next_input_byte++);
     75 }
     76 
     77 
     78 /*
     79  * The core arithmetic decoding routine (common in JPEG and JBIG).
     80  * This needs to go as fast as possible.
     81  * Machine-dependent optimization facilities
     82  * are not utilized in this portable implementation.
     83  * However, this code should be fairly efficient and
     84  * may be a good base for further optimizations anyway.
     85  *
     86  * Return value is 0 or 1 (binary decision).
     87  *
     88  * Note: I've changed the handling of the code base & bit
     89  * buffer register C compared to other implementations
     90  * based on the standards layout & procedures.
     91  * While it also contains both the actual base of the
     92  * coding interval (16 bits) and the next-bits buffer,
     93  * the cut-point between these two parts is floating
     94  * (instead of fixed) with the bit shift counter CT.
     95  * Thus, we also need only one (variable instead of
     96  * fixed size) shift for the LPS/MPS decision, and
     97  * we can get away with any renormalization update
     98  * of C (except for new data insertion, of course).
     99  *
    100  * I've also introduced a new scheme for accessing
    101  * the probability estimation state machine table,
    102  * derived from Markus Kuhn's JBIG implementation.
    103  */
    104 
    105 LOCAL(int)
    106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
    107 {
    108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    109   register unsigned char nl, nm;
    110   register INT32 qe, temp;
    111   register int sv, data;
    112 
    113   /* Renormalization & data input per section D.2.6 */
    114   while (e->a < 0x8000L) {
    115     if (--e->ct < 0) {
    116       /* Need to fetch next data byte */
    117       if (cinfo->unread_marker)
    118 	data = 0;		/* stuff zero data */
    119       else {
    120 	data = get_byte(cinfo);	/* read next input byte */
    121 	if (data == 0xFF) {	/* zero stuff or marker code */
    122 	  do data = get_byte(cinfo);
    123 	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
    124 	  if (data == 0)
    125 	    data = 0xFF;	/* discard stuffed zero byte */
    126 	  else {
    127 	    /* Note: Different from the Huffman decoder, hitting
    128 	     * a marker while processing the compressed data
    129 	     * segment is legal in arithmetic coding.
    130 	     * The convention is to supply zero data
    131 	     * then until decoding is complete.
    132 	     */
    133 	    cinfo->unread_marker = data;
    134 	    data = 0;
    135 	  }
    136 	}
    137       }
    138       e->c = (e->c << 8) | data; /* insert data into C register */
    139       if ((e->ct += 8) < 0)	 /* update bit shift counter */
    140 	/* Need more initial bytes */
    141 	if (++e->ct == 0)
    142 	  /* Got 2 initial bytes -> re-init A and exit loop */
    143 	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
    144     }
    145     e->a <<= 1;
    146   }
    147 
    148   /* Fetch values from our compact representation of Table D.2:
    149    * Qe values and probability estimation state machine
    150    */
    151   sv = *st;
    152   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
    153   nl = (unsigned char) qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
    154   nm = (unsigned char) qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
    155 
    156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
    157   temp = e->a - qe;
    158   e->a = temp;
    159   temp <<= e->ct;
    160   if (e->c >= temp) {
    161     e->c -= temp;
    162     /* Conditional LPS (less probable symbol) exchange */
    163     if (e->a < qe) {
    164       e->a = qe;
    165       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
    166     } else {
    167       e->a = qe;
    168       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
    169       sv ^= 0x80;		/* Exchange LPS/MPS */
    170     }
    171   } else if (e->a < 0x8000L) {
    172     /* Conditional MPS (more probable symbol) exchange */
    173     if (e->a < qe) {
    174       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
    175       sv ^= 0x80;		/* Exchange LPS/MPS */
    176     } else {
    177       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
    178     }
    179   }
    180 
    181   return sv >> 7;
    182 }
    183 
    184 
    185 /*
    186  * Check for a restart marker & resynchronize decoder.
    187  */
    188 
    189 LOCAL(void)
    190 process_restart (j_decompress_ptr cinfo)
    191 {
    192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    193   int ci;
    194   jpeg_component_info * compptr;
    195 
    196   /* Advance past the RSTn marker */
    197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    199 
    200   /* Re-initialize statistics areas */
    201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    202     compptr = cinfo->cur_comp_info[ci];
    203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
    205       /* Reset DC predictions to 0 */
    206       entropy->last_dc_val[ci] = 0;
    207       entropy->dc_context[ci] = 0;
    208     }
    209     if (! cinfo->progressive_mode || cinfo->Ss) {
    210       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    211     }
    212   }
    213 
    214   /* Reset arithmetic decoding variables */
    215   entropy->c = 0;
    216   entropy->a = 0;
    217   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
    218 
    219   /* Reset restart counter */
    220   entropy->restarts_to_go = cinfo->restart_interval;
    221 }
    222 
    223 
    224 /*
    225  * Arithmetic MCU decoding.
    226  * Each of these routines decodes and returns one MCU's worth of
    227  * arithmetic-compressed coefficients.
    228  * The coefficients are reordered from zigzag order into natural array order,
    229  * but are not dequantized.
    230  *
    231  * The i'th block of the MCU is stored into the block pointed to by
    232  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
    233  */
    234 
    235 /*
    236  * MCU decoding for DC initial scan (either spectral selection,
    237  * or first pass of successive approximation).
    238  */
    239 
    240 METHODDEF(boolean)
    241 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    242 {
    243   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    244   JBLOCKROW block;
    245   unsigned char *st;
    246   int blkn, ci, tbl, sign;
    247   int v, m;
    248 
    249   /* Process restart marker if needed */
    250   if (cinfo->restart_interval) {
    251     if (entropy->restarts_to_go == 0)
    252       process_restart(cinfo);
    253     entropy->restarts_to_go--;
    254   }
    255 
    256   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    257 
    258   /* Outer loop handles each block in the MCU */
    259 
    260   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    261     block = MCU_data[blkn];
    262     ci = cinfo->MCU_membership[blkn];
    263     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
    264 
    265     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    266 
    267     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    268     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    269 
    270     /* Figure F.19: Decode_DC_DIFF */
    271     if (arith_decode(cinfo, st) == 0)
    272       entropy->dc_context[ci] = 0;
    273     else {
    274       /* Figure F.21: Decoding nonzero value v */
    275       /* Figure F.22: Decoding the sign of v */
    276       sign = arith_decode(cinfo, st + 1);
    277       st += 2; st += sign;
    278       /* Figure F.23: Decoding the magnitude category of v */
    279       if ((m = arith_decode(cinfo, st)) != 0) {
    280 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
    281 	while (arith_decode(cinfo, st)) {
    282 	  if ((m <<= 1) == 0x8000) {
    283 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    284 	    entropy->ct = -1;			/* magnitude overflow */
    285 	    return TRUE;
    286 	  }
    287 	  st += 1;
    288 	}
    289       }
    290       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    291       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    292 	entropy->dc_context[ci] = 0;		   /* zero diff category */
    293       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    294 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    295       else
    296 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    297       v = m;
    298       /* Figure F.24: Decoding the magnitude bit pattern of v */
    299       st += 14;
    300       while (m >>= 1)
    301 	if (arith_decode(cinfo, st)) v |= m;
    302       v += 1; if (sign) v = -v;
    303       entropy->last_dc_val[ci] += v;
    304     }
    305 
    306     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
    307     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
    308   }
    309 
    310   return TRUE;
    311 }
    312 
    313 
    314 /*
    315  * MCU decoding for AC initial scan (either spectral selection,
    316  * or first pass of successive approximation).
    317  */
    318 
    319 METHODDEF(boolean)
    320 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    321 {
    322   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    323   JBLOCKROW block;
    324   unsigned char *st;
    325   int tbl, sign, k;
    326   int v, m;
    327 
    328   /* Process restart marker if needed */
    329   if (cinfo->restart_interval) {
    330     if (entropy->restarts_to_go == 0)
    331       process_restart(cinfo);
    332     entropy->restarts_to_go--;
    333   }
    334 
    335   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    336 
    337   /* There is always only one block per MCU */
    338   block = MCU_data[0];
    339   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    340 
    341   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    342 
    343   /* Figure F.20: Decode_AC_coefficients */
    344   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    345     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    346     if (arith_decode(cinfo, st)) break;		/* EOB flag */
    347     while (arith_decode(cinfo, st + 1) == 0) {
    348       st += 3; k++;
    349       if (k > cinfo->Se) {
    350 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    351 	entropy->ct = -1;			/* spectral overflow */
    352 	return TRUE;
    353       }
    354     }
    355     /* Figure F.21: Decoding nonzero value v */
    356     /* Figure F.22: Decoding the sign of v */
    357     sign = arith_decode(cinfo, entropy->fixed_bin);
    358     st += 2;
    359     /* Figure F.23: Decoding the magnitude category of v */
    360     if ((m = arith_decode(cinfo, st)) != 0) {
    361       if (arith_decode(cinfo, st)) {
    362 	m <<= 1;
    363 	st = entropy->ac_stats[tbl] +
    364 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    365 	while (arith_decode(cinfo, st)) {
    366 	  if ((m <<= 1) == 0x8000) {
    367 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    368 	    entropy->ct = -1;			/* magnitude overflow */
    369 	    return TRUE;
    370 	  }
    371 	  st += 1;
    372 	}
    373       }
    374     }
    375     v = m;
    376     /* Figure F.24: Decoding the magnitude bit pattern of v */
    377     st += 14;
    378     while (m >>= 1)
    379       if (arith_decode(cinfo, st)) v |= m;
    380     v += 1; if (sign) v = -v;
    381     /* Scale and output coefficient in natural (dezigzagged) order */
    382     (*block)[jpeg_natural_order[k]] = (JCOEF) (v << cinfo->Al);
    383   }
    384 
    385   return TRUE;
    386 }
    387 
    388 
    389 /*
    390  * MCU decoding for DC successive approximation refinement scan.
    391  */
    392 
    393 METHODDEF(boolean)
    394 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    395 {
    396   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    397   unsigned char *st;
    398   int p1, blkn;
    399 
    400   /* Process restart marker if needed */
    401   if (cinfo->restart_interval) {
    402     if (entropy->restarts_to_go == 0)
    403       process_restart(cinfo);
    404     entropy->restarts_to_go--;
    405   }
    406 
    407   st = entropy->fixed_bin;	/* use fixed probability estimation */
    408   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
    409 
    410   /* Outer loop handles each block in the MCU */
    411 
    412   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    413     /* Encoded data is simply the next bit of the two's-complement DC value */
    414     if (arith_decode(cinfo, st))
    415       MCU_data[blkn][0][0] |= p1;
    416   }
    417 
    418   return TRUE;
    419 }
    420 
    421 
    422 /*
    423  * MCU decoding for AC successive approximation refinement scan.
    424  */
    425 
    426 METHODDEF(boolean)
    427 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    428 {
    429   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    430   JBLOCKROW block;
    431   JCOEFPTR thiscoef;
    432   unsigned char *st;
    433   int tbl, k, kex;
    434   int p1, m1;
    435 
    436   /* Process restart marker if needed */
    437   if (cinfo->restart_interval) {
    438     if (entropy->restarts_to_go == 0)
    439       process_restart(cinfo);
    440     entropy->restarts_to_go--;
    441   }
    442 
    443   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    444 
    445   /* There is always only one block per MCU */
    446   block = MCU_data[0];
    447   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    448 
    449   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
    450   m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
    451 
    452   /* Establish EOBx (previous stage end-of-block) index */
    453   for (kex = cinfo->Se; kex > 0; kex--)
    454     if ((*block)[jpeg_natural_order[kex]]) break;
    455 
    456   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    457     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    458     if (k > kex)
    459       if (arith_decode(cinfo, st)) break;	/* EOB flag */
    460     for (;;) {
    461       thiscoef = *block + jpeg_natural_order[k];
    462       if (*thiscoef) {				/* previously nonzero coef */
    463 	if (arith_decode(cinfo, st + 2)) {
    464 	  if (*thiscoef < 0)
    465 	    *thiscoef += m1;
    466 	  else
    467 	    *thiscoef += p1;
    468 	}
    469 	break;
    470       }
    471       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
    472 	if (arith_decode(cinfo, entropy->fixed_bin))
    473 	  *thiscoef = m1;
    474 	else
    475 	  *thiscoef = p1;
    476 	break;
    477       }
    478       st += 3; k++;
    479       if (k > cinfo->Se) {
    480 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    481 	entropy->ct = -1;			/* spectral overflow */
    482 	return TRUE;
    483       }
    484     }
    485   }
    486 
    487   return TRUE;
    488 }
    489 
    490 
    491 /*
    492  * Decode one MCU's worth of arithmetic-compressed coefficients.
    493  */
    494 
    495 METHODDEF(boolean)
    496 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    497 {
    498   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    499   jpeg_component_info * compptr;
    500   JBLOCKROW block;
    501   unsigned char *st;
    502   int blkn, ci, tbl, sign, k;
    503   int v, m;
    504 
    505   /* Process restart marker if needed */
    506   if (cinfo->restart_interval) {
    507     if (entropy->restarts_to_go == 0)
    508       process_restart(cinfo);
    509     entropy->restarts_to_go--;
    510   }
    511 
    512   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
    513 
    514   /* Outer loop handles each block in the MCU */
    515 
    516   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    517     block = MCU_data[blkn];
    518     ci = cinfo->MCU_membership[blkn];
    519     compptr = cinfo->cur_comp_info[ci];
    520 
    521     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    522 
    523     tbl = compptr->dc_tbl_no;
    524 
    525     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    526     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    527 
    528     /* Figure F.19: Decode_DC_DIFF */
    529     if (arith_decode(cinfo, st) == 0)
    530       entropy->dc_context[ci] = 0;
    531     else {
    532       /* Figure F.21: Decoding nonzero value v */
    533       /* Figure F.22: Decoding the sign of v */
    534       sign = arith_decode(cinfo, st + 1);
    535       st += 2; st += sign;
    536       /* Figure F.23: Decoding the magnitude category of v */
    537       if ((m = arith_decode(cinfo, st)) != 0) {
    538 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
    539 	while (arith_decode(cinfo, st)) {
    540 	  if ((m <<= 1) == 0x8000) {
    541 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    542 	    entropy->ct = -1;			/* magnitude overflow */
    543 	    return TRUE;
    544 	  }
    545 	  st += 1;
    546 	}
    547       }
    548       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    549       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    550 	entropy->dc_context[ci] = 0;		   /* zero diff category */
    551       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    552 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    553       else
    554 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    555       v = m;
    556       /* Figure F.24: Decoding the magnitude bit pattern of v */
    557       st += 14;
    558       while (m >>= 1)
    559 	if (arith_decode(cinfo, st)) v |= m;
    560       v += 1; if (sign) v = -v;
    561       entropy->last_dc_val[ci] += v;
    562     }
    563 
    564     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
    565 
    566     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    567 
    568     tbl = compptr->ac_tbl_no;
    569 
    570     /* Figure F.20: Decode_AC_coefficients */
    571     for (k = 1; k <= DCTSIZE2 - 1; k++) {
    572       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    573       if (arith_decode(cinfo, st)) break;	/* EOB flag */
    574       while (arith_decode(cinfo, st + 1) == 0) {
    575 	st += 3; k++;
    576 	if (k > DCTSIZE2 - 1) {
    577 	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    578 	  entropy->ct = -1;			/* spectral overflow */
    579 	  return TRUE;
    580 	}
    581       }
    582       /* Figure F.21: Decoding nonzero value v */
    583       /* Figure F.22: Decoding the sign of v */
    584       sign = arith_decode(cinfo, entropy->fixed_bin);
    585       st += 2;
    586       /* Figure F.23: Decoding the magnitude category of v */
    587       if ((m = arith_decode(cinfo, st)) != 0) {
    588 	if (arith_decode(cinfo, st)) {
    589 	  m <<= 1;
    590 	  st = entropy->ac_stats[tbl] +
    591 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    592 	  while (arith_decode(cinfo, st)) {
    593 	    if ((m <<= 1) == 0x8000) {
    594 	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    595 	      entropy->ct = -1;			/* magnitude overflow */
    596 	      return TRUE;
    597 	    }
    598 	    st += 1;
    599 	  }
    600 	}
    601       }
    602       v = m;
    603       /* Figure F.24: Decoding the magnitude bit pattern of v */
    604       st += 14;
    605       while (m >>= 1)
    606 	if (arith_decode(cinfo, st)) v |= m;
    607       v += 1; if (sign) v = -v;
    608       (*block)[jpeg_natural_order[k]] = (JCOEF) v;
    609     }
    610   }
    611 
    612   return TRUE;
    613 }
    614 
    615 
    616 /*
    617  * Initialize for an arithmetic-compressed scan.
    618  */
    619 
    620 METHODDEF(void)
    621 start_pass (j_decompress_ptr cinfo)
    622 {
    623   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    624   int ci, tbl;
    625   jpeg_component_info * compptr;
    626 
    627   if (cinfo->progressive_mode) {
    628     /* Validate progressive scan parameters */
    629     if (cinfo->Ss == 0) {
    630       if (cinfo->Se != 0)
    631 	goto bad;
    632     } else {
    633       /* need not check Ss/Se < 0 since they came from unsigned bytes */
    634       if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
    635 	goto bad;
    636       /* AC scans may have only one component */
    637       if (cinfo->comps_in_scan != 1)
    638 	goto bad;
    639     }
    640     if (cinfo->Ah != 0) {
    641       /* Successive approximation refinement scan: must have Al = Ah-1. */
    642       if (cinfo->Ah-1 != cinfo->Al)
    643 	goto bad;
    644     }
    645     if (cinfo->Al > 13) {	/* need not check for < 0 */
    646       bad:
    647       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
    648 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    649     }
    650     /* Update progression status, and verify that scan order is legal.
    651      * Note that inter-scan inconsistencies are treated as warnings
    652      * not fatal errors ... not clear if this is right way to behave.
    653      */
    654     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    655       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
    656       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
    657       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
    658 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
    659       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
    660 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
    661 	if (cinfo->Ah != expected)
    662 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
    663 	coef_bit_ptr[coefi] = cinfo->Al;
    664       }
    665     }
    666     /* Select MCU decoding routine */
    667     if (cinfo->Ah == 0) {
    668       if (cinfo->Ss == 0)
    669 	entropy->pub.decode_mcu = decode_mcu_DC_first;
    670       else
    671 	entropy->pub.decode_mcu = decode_mcu_AC_first;
    672     } else {
    673       if (cinfo->Ss == 0)
    674 	entropy->pub.decode_mcu = decode_mcu_DC_refine;
    675       else
    676 	entropy->pub.decode_mcu = decode_mcu_AC_refine;
    677     }
    678   } else {
    679     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
    680      * This ought to be an error condition, but we make it a warning.
    681      */
    682     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
    683 	(cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
    684       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    685     /* Select MCU decoding routine */
    686     entropy->pub.decode_mcu = decode_mcu;
    687   }
    688 
    689   /* Allocate & initialize requested statistics areas */
    690   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    691     compptr = cinfo->cur_comp_info[ci];
    692     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    693       tbl = compptr->dc_tbl_no;
    694       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    695 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    696       if (entropy->dc_stats[tbl] == NULL)
    697 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    698 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
    699       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
    700       /* Initialize DC predictions to 0 */
    701       entropy->last_dc_val[ci] = 0;
    702       entropy->dc_context[ci] = 0;
    703     }
    704     if (! cinfo->progressive_mode || cinfo->Ss) {
    705       tbl = compptr->ac_tbl_no;
    706       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    707 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    708       if (entropy->ac_stats[tbl] == NULL)
    709 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    710 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
    711       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    712     }
    713   }
    714 
    715   /* Initialize arithmetic decoding variables */
    716   entropy->c = 0;
    717   entropy->a = 0;
    718   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
    719 
    720   /* Initialize restart counter */
    721   entropy->restarts_to_go = cinfo->restart_interval;
    722 }
    723 
    724 
    725 /*
    726  * Module initialization routine for arithmetic entropy decoding.
    727  */
    728 
    729 GLOBAL(void)
    730 jinit_arith_decoder (j_decompress_ptr cinfo)
    731 {
    732   arith_entropy_ptr entropy;
    733   int i;
    734 
    735   entropy = (arith_entropy_ptr)
    736     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    737 				SIZEOF(arith_entropy_decoder));
    738   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    739   entropy->pub.start_pass = start_pass;
    740 
    741   /* Mark tables unallocated */
    742   for (i = 0; i < NUM_ARITH_TBLS; i++) {
    743     entropy->dc_stats[i] = NULL;
    744     entropy->ac_stats[i] = NULL;
    745   }
    746 
    747   /* Initialize index for fixed probability estimation */
    748   entropy->fixed_bin[0] = 113;
    749 
    750   if (cinfo->progressive_mode) {
    751     /* Create progression status table */
    752     int *coef_bit_ptr, ci;
    753     cinfo->coef_bits = (int (*)[DCTSIZE2])
    754       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    755 				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
    756     coef_bit_ptr = & cinfo->coef_bits[0][0];
    757     for (ci = 0; ci < cinfo->num_components; ci++)
    758       for (i = 0; i < DCTSIZE2; i++)
    759 	*coef_bit_ptr++ = -1;
    760   }
    761 }
    762