1 // Copyright 2012 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // main entry for the decoder 11 // 12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com) 13 // Jyrki Alakuijala (jyrki (at) google.com) 14 15 #include <stdlib.h> 16 17 #include "./alphai.h" 18 #include "./vp8li.h" 19 #include "../dsp/dsp.h" 20 #include "../dsp/lossless.h" 21 #include "../dsp/yuv.h" 22 #include "../utils/huffman.h" 23 #include "../utils/utils.h" 24 25 #define NUM_ARGB_CACHE_ROWS 16 26 27 static const int kCodeLengthLiterals = 16; 28 static const int kCodeLengthRepeatCode = 16; 29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 }; 30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 }; 31 32 // ----------------------------------------------------------------------------- 33 // Five Huffman codes are used at each meta code: 34 // 1. green + length prefix codes + color cache codes, 35 // 2. alpha, 36 // 3. red, 37 // 4. blue, and, 38 // 5. distance prefix codes. 39 typedef enum { 40 GREEN = 0, 41 RED = 1, 42 BLUE = 2, 43 ALPHA = 3, 44 DIST = 4 45 } HuffIndex; 46 47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = { 48 NUM_LITERAL_CODES + NUM_LENGTH_CODES, 49 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES, 50 NUM_DISTANCE_CODES 51 }; 52 53 54 #define NUM_CODE_LENGTH_CODES 19 55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = { 56 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 57 }; 58 59 #define CODE_TO_PLANE_CODES 120 60 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = { 61 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, 62 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, 63 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, 64 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, 65 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, 66 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, 67 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, 68 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, 69 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, 70 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, 71 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, 72 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70 73 }; 74 75 static int DecodeImageStream(int xsize, int ysize, 76 int is_level0, 77 VP8LDecoder* const dec, 78 uint32_t** const decoded_data); 79 80 //------------------------------------------------------------------------------ 81 82 int VP8LCheckSignature(const uint8_t* const data, size_t size) { 83 return (size >= VP8L_FRAME_HEADER_SIZE && 84 data[0] == VP8L_MAGIC_BYTE && 85 (data[4] >> 5) == 0); // version 86 } 87 88 static int ReadImageInfo(VP8LBitReader* const br, 89 int* const width, int* const height, 90 int* const has_alpha) { 91 if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0; 92 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; 93 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; 94 *has_alpha = VP8LReadBits(br, 1); 95 if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0; 96 return 1; 97 } 98 99 int VP8LGetInfo(const uint8_t* data, size_t data_size, 100 int* const width, int* const height, int* const has_alpha) { 101 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) { 102 return 0; // not enough data 103 } else if (!VP8LCheckSignature(data, data_size)) { 104 return 0; // bad signature 105 } else { 106 int w, h, a; 107 VP8LBitReader br; 108 VP8LInitBitReader(&br, data, data_size); 109 if (!ReadImageInfo(&br, &w, &h, &a)) { 110 return 0; 111 } 112 if (width != NULL) *width = w; 113 if (height != NULL) *height = h; 114 if (has_alpha != NULL) *has_alpha = a; 115 return 1; 116 } 117 } 118 119 //------------------------------------------------------------------------------ 120 121 static WEBP_INLINE int GetCopyDistance(int distance_symbol, 122 VP8LBitReader* const br) { 123 int extra_bits, offset; 124 if (distance_symbol < 4) { 125 return distance_symbol + 1; 126 } 127 extra_bits = (distance_symbol - 2) >> 1; 128 offset = (2 + (distance_symbol & 1)) << extra_bits; 129 return offset + VP8LReadBits(br, extra_bits) + 1; 130 } 131 132 static WEBP_INLINE int GetCopyLength(int length_symbol, 133 VP8LBitReader* const br) { 134 // Length and distance prefixes are encoded the same way. 135 return GetCopyDistance(length_symbol, br); 136 } 137 138 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) { 139 if (plane_code > CODE_TO_PLANE_CODES) { 140 return plane_code - CODE_TO_PLANE_CODES; 141 } else { 142 const int dist_code = kCodeToPlane[plane_code - 1]; 143 const int yoffset = dist_code >> 4; 144 const int xoffset = 8 - (dist_code & 0xf); 145 const int dist = yoffset * xsize + xoffset; 146 return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small 147 } 148 } 149 150 //------------------------------------------------------------------------------ 151 // Decodes the next Huffman code from bit-stream. 152 // FillBitWindow(br) needs to be called at minimum every second call 153 // to ReadSymbol, in order to pre-fetch enough bits. 154 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree, 155 VP8LBitReader* const br) { 156 const HuffmanTreeNode* node = tree->root_; 157 uint32_t bits = VP8LPrefetchBits(br); 158 int bitpos = br->bit_pos_; 159 // Check if we find the bit combination from the Huffman lookup table. 160 const int lut_ix = bits & (HUFF_LUT - 1); 161 const int lut_bits = tree->lut_bits_[lut_ix]; 162 if (lut_bits <= HUFF_LUT_BITS) { 163 VP8LSetBitPos(br, bitpos + lut_bits); 164 return tree->lut_symbol_[lut_ix]; 165 } 166 node += tree->lut_jump_[lut_ix]; 167 bitpos += HUFF_LUT_BITS; 168 bits >>= HUFF_LUT_BITS; 169 170 // Decode the value from a binary tree. 171 assert(node != NULL); 172 do { 173 node = HuffmanTreeNextNode(node, bits & 1); 174 bits >>= 1; 175 ++bitpos; 176 } while (HuffmanTreeNodeIsNotLeaf(node)); 177 VP8LSetBitPos(br, bitpos); 178 return node->symbol_; 179 } 180 181 static int ReadHuffmanCodeLengths( 182 VP8LDecoder* const dec, const int* const code_length_code_lengths, 183 int num_symbols, int* const code_lengths) { 184 int ok = 0; 185 VP8LBitReader* const br = &dec->br_; 186 int symbol; 187 int max_symbol; 188 int prev_code_len = DEFAULT_CODE_LENGTH; 189 HuffmanTree tree; 190 int huff_codes[NUM_CODE_LENGTH_CODES] = { 0 }; 191 192 if (!VP8LHuffmanTreeBuildImplicit(&tree, code_length_code_lengths, 193 huff_codes, NUM_CODE_LENGTH_CODES)) { 194 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 195 return 0; 196 } 197 198 if (VP8LReadBits(br, 1)) { // use length 199 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3); 200 max_symbol = 2 + VP8LReadBits(br, length_nbits); 201 if (max_symbol > num_symbols) { 202 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 203 goto End; 204 } 205 } else { 206 max_symbol = num_symbols; 207 } 208 209 symbol = 0; 210 while (symbol < num_symbols) { 211 int code_len; 212 if (max_symbol-- == 0) break; 213 VP8LFillBitWindow(br); 214 code_len = ReadSymbol(&tree, br); 215 if (code_len < kCodeLengthLiterals) { 216 code_lengths[symbol++] = code_len; 217 if (code_len != 0) prev_code_len = code_len; 218 } else { 219 const int use_prev = (code_len == kCodeLengthRepeatCode); 220 const int slot = code_len - kCodeLengthLiterals; 221 const int extra_bits = kCodeLengthExtraBits[slot]; 222 const int repeat_offset = kCodeLengthRepeatOffsets[slot]; 223 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset; 224 if (symbol + repeat > num_symbols) { 225 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 226 goto End; 227 } else { 228 const int length = use_prev ? prev_code_len : 0; 229 while (repeat-- > 0) code_lengths[symbol++] = length; 230 } 231 } 232 } 233 ok = 1; 234 235 End: 236 VP8LHuffmanTreeFree(&tree); 237 return ok; 238 } 239 240 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman 241 // tree. 242 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec, 243 int* const code_lengths, int* const huff_codes, 244 HuffmanTree* const tree) { 245 int ok = 0; 246 VP8LBitReader* const br = &dec->br_; 247 const int simple_code = VP8LReadBits(br, 1); 248 249 if (simple_code) { // Read symbols, codes & code lengths directly. 250 int symbols[2]; 251 int codes[2]; 252 const int num_symbols = VP8LReadBits(br, 1) + 1; 253 const int first_symbol_len_code = VP8LReadBits(br, 1); 254 // The first code is either 1 bit or 8 bit code. 255 symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8); 256 codes[0] = 0; 257 code_lengths[0] = num_symbols - 1; 258 // The second code (if present), is always 8 bit long. 259 if (num_symbols == 2) { 260 symbols[1] = VP8LReadBits(br, 8); 261 codes[1] = 1; 262 code_lengths[1] = num_symbols - 1; 263 } 264 ok = VP8LHuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols, 265 alphabet_size, num_symbols); 266 } else { // Decode Huffman-coded code lengths. 267 int i; 268 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 }; 269 const int num_codes = VP8LReadBits(br, 4) + 4; 270 if (num_codes > NUM_CODE_LENGTH_CODES) { 271 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 272 return 0; 273 } 274 275 memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths)); 276 277 for (i = 0; i < num_codes; ++i) { 278 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3); 279 } 280 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size, 281 code_lengths); 282 ok = ok && VP8LHuffmanTreeBuildImplicit(tree, code_lengths, huff_codes, 283 alphabet_size); 284 } 285 ok = ok && !br->error_; 286 if (!ok) { 287 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 288 return 0; 289 } 290 return 1; 291 } 292 293 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize, 294 int color_cache_bits, int allow_recursion) { 295 int i, j; 296 VP8LBitReader* const br = &dec->br_; 297 VP8LMetadata* const hdr = &dec->hdr_; 298 uint32_t* huffman_image = NULL; 299 HTreeGroup* htree_groups = NULL; 300 int num_htree_groups = 1; 301 int max_alphabet_size = 0; 302 int* code_lengths = NULL; 303 int* huff_codes = NULL; 304 305 if (allow_recursion && VP8LReadBits(br, 1)) { 306 // use meta Huffman codes. 307 const int huffman_precision = VP8LReadBits(br, 3) + 2; 308 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision); 309 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision); 310 const int huffman_pixs = huffman_xsize * huffman_ysize; 311 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec, 312 &huffman_image)) { 313 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 314 goto Error; 315 } 316 hdr->huffman_subsample_bits_ = huffman_precision; 317 for (i = 0; i < huffman_pixs; ++i) { 318 // The huffman data is stored in red and green bytes. 319 const int group = (huffman_image[i] >> 8) & 0xffff; 320 huffman_image[i] = group; 321 if (group >= num_htree_groups) { 322 num_htree_groups = group + 1; 323 } 324 } 325 } 326 327 if (br->error_) goto Error; 328 329 // Find maximum alphabet size for the htree group. 330 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 331 int alphabet_size = kAlphabetSize[j]; 332 if (j == 0 && color_cache_bits > 0) { 333 alphabet_size += 1 << color_cache_bits; 334 } 335 if (max_alphabet_size < alphabet_size) { 336 max_alphabet_size = alphabet_size; 337 } 338 } 339 340 htree_groups = VP8LHtreeGroupsNew(num_htree_groups); 341 code_lengths = 342 (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths)); 343 huff_codes = 344 (int*)WebPSafeMalloc((uint64_t)max_alphabet_size, sizeof(*huff_codes)); 345 346 if (htree_groups == NULL || code_lengths == NULL || huff_codes == NULL) { 347 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 348 goto Error; 349 } 350 351 for (i = 0; i < num_htree_groups; ++i) { 352 HuffmanTree* const htrees = htree_groups[i].htrees_; 353 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 354 int alphabet_size = kAlphabetSize[j]; 355 HuffmanTree* const htree = htrees + j; 356 if (j == 0 && color_cache_bits > 0) { 357 alphabet_size += 1 << color_cache_bits; 358 } 359 if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, huff_codes, 360 htree)) { 361 goto Error; 362 } 363 } 364 } 365 WebPSafeFree(huff_codes); 366 WebPSafeFree(code_lengths); 367 368 // All OK. Finalize pointers and return. 369 hdr->huffman_image_ = huffman_image; 370 hdr->num_htree_groups_ = num_htree_groups; 371 hdr->htree_groups_ = htree_groups; 372 return 1; 373 374 Error: 375 WebPSafeFree(huff_codes); 376 WebPSafeFree(code_lengths); 377 WebPSafeFree(huffman_image); 378 VP8LHtreeGroupsFree(htree_groups, num_htree_groups); 379 return 0; 380 } 381 382 //------------------------------------------------------------------------------ 383 // Scaling. 384 385 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) { 386 const int num_channels = 4; 387 const int in_width = io->mb_w; 388 const int out_width = io->scaled_width; 389 const int in_height = io->mb_h; 390 const int out_height = io->scaled_height; 391 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width; 392 int32_t* work; // Rescaler work area. 393 const uint64_t scaled_data_size = num_channels * (uint64_t)out_width; 394 uint32_t* scaled_data; // Temporary storage for scaled BGRA data. 395 const uint64_t memory_size = sizeof(*dec->rescaler) + 396 work_size * sizeof(*work) + 397 scaled_data_size * sizeof(*scaled_data); 398 uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory)); 399 if (memory == NULL) { 400 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 401 return 0; 402 } 403 assert(dec->rescaler_memory == NULL); 404 dec->rescaler_memory = memory; 405 406 dec->rescaler = (WebPRescaler*)memory; 407 memory += sizeof(*dec->rescaler); 408 work = (int32_t*)memory; 409 memory += work_size * sizeof(*work); 410 scaled_data = (uint32_t*)memory; 411 412 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data, 413 out_width, out_height, 0, num_channels, 414 in_width, out_width, in_height, out_height, work); 415 return 1; 416 } 417 418 //------------------------------------------------------------------------------ 419 // Export to ARGB 420 421 // We have special "export" function since we need to convert from BGRA 422 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace, 423 int rgba_stride, uint8_t* const rgba) { 424 uint32_t* const src = (uint32_t*)rescaler->dst; 425 const int dst_width = rescaler->dst_width; 426 int num_lines_out = 0; 427 while (WebPRescalerHasPendingOutput(rescaler)) { 428 uint8_t* const dst = rgba + num_lines_out * rgba_stride; 429 WebPRescalerExportRow(rescaler, 0); 430 WebPMultARGBRow(src, dst_width, 1); 431 VP8LConvertFromBGRA(src, dst_width, colorspace, dst); 432 ++num_lines_out; 433 } 434 return num_lines_out; 435 } 436 437 // Emit scaled rows. 438 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec, 439 uint8_t* in, int in_stride, int mb_h, 440 uint8_t* const out, int out_stride) { 441 const WEBP_CSP_MODE colorspace = dec->output_->colorspace; 442 int num_lines_in = 0; 443 int num_lines_out = 0; 444 while (num_lines_in < mb_h) { 445 uint8_t* const row_in = in + num_lines_in * in_stride; 446 uint8_t* const row_out = out + num_lines_out * out_stride; 447 const int lines_left = mb_h - num_lines_in; 448 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); 449 assert(needed_lines > 0 && needed_lines <= lines_left); 450 WebPMultARGBRows(row_in, in_stride, 451 dec->rescaler->src_width, needed_lines, 0); 452 WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride); 453 num_lines_in += needed_lines; 454 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out); 455 } 456 return num_lines_out; 457 } 458 459 // Emit rows without any scaling. 460 static int EmitRows(WEBP_CSP_MODE colorspace, 461 const uint8_t* row_in, int in_stride, 462 int mb_w, int mb_h, 463 uint8_t* const out, int out_stride) { 464 int lines = mb_h; 465 uint8_t* row_out = out; 466 while (lines-- > 0) { 467 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out); 468 row_in += in_stride; 469 row_out += out_stride; 470 } 471 return mb_h; // Num rows out == num rows in. 472 } 473 474 //------------------------------------------------------------------------------ 475 // Export to YUVA 476 477 // TODO(skal): should be in yuv.c 478 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos, 479 const WebPDecBuffer* const output) { 480 const WebPYUVABuffer* const buf = &output->u.YUVA; 481 // first, the luma plane 482 { 483 int i; 484 uint8_t* const y = buf->y + y_pos * buf->y_stride; 485 for (i = 0; i < width; ++i) { 486 const uint32_t p = src[i]; 487 y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, 488 YUV_HALF); 489 } 490 } 491 492 // then U/V planes 493 { 494 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride; 495 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride; 496 const int uv_width = width >> 1; 497 int i; 498 for (i = 0; i < uv_width; ++i) { 499 const uint32_t v0 = src[2 * i + 0]; 500 const uint32_t v1 = src[2 * i + 1]; 501 // VP8RGBToU/V expects four accumulated pixels. Hence we need to 502 // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less. 503 const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe); 504 const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe); 505 const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe); 506 if (!(y_pos & 1)) { // even lines: store values 507 u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); 508 v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); 509 } else { // odd lines: average with previous values 510 const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); 511 const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); 512 // Approximated average-of-four. But it's an acceptable diff. 513 u[i] = (u[i] + tmp_u + 1) >> 1; 514 v[i] = (v[i] + tmp_v + 1) >> 1; 515 } 516 } 517 if (width & 1) { // last pixel 518 const uint32_t v0 = src[2 * i + 0]; 519 const int r = (v0 >> 14) & 0x3fc; 520 const int g = (v0 >> 6) & 0x3fc; 521 const int b = (v0 << 2) & 0x3fc; 522 if (!(y_pos & 1)) { // even lines 523 u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); 524 v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); 525 } else { // odd lines (note: we could just skip this) 526 const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); 527 const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); 528 u[i] = (u[i] + tmp_u + 1) >> 1; 529 v[i] = (v[i] + tmp_v + 1) >> 1; 530 } 531 } 532 } 533 // Lastly, store alpha if needed. 534 if (buf->a != NULL) { 535 int i; 536 uint8_t* const a = buf->a + y_pos * buf->a_stride; 537 for (i = 0; i < width; ++i) a[i] = (src[i] >> 24); 538 } 539 } 540 541 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) { 542 WebPRescaler* const rescaler = dec->rescaler; 543 uint32_t* const src = (uint32_t*)rescaler->dst; 544 const int dst_width = rescaler->dst_width; 545 int num_lines_out = 0; 546 while (WebPRescalerHasPendingOutput(rescaler)) { 547 WebPRescalerExportRow(rescaler, 0); 548 WebPMultARGBRow(src, dst_width, 1); 549 ConvertToYUVA(src, dst_width, y_pos, dec->output_); 550 ++y_pos; 551 ++num_lines_out; 552 } 553 return num_lines_out; 554 } 555 556 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec, 557 uint8_t* in, int in_stride, int mb_h) { 558 int num_lines_in = 0; 559 int y_pos = dec->last_out_row_; 560 while (num_lines_in < mb_h) { 561 const int lines_left = mb_h - num_lines_in; 562 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); 563 WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0); 564 WebPRescalerImport(dec->rescaler, lines_left, in, in_stride); 565 num_lines_in += needed_lines; 566 in += needed_lines * in_stride; 567 y_pos += ExportYUVA(dec, y_pos); 568 } 569 return y_pos; 570 } 571 572 static int EmitRowsYUVA(const VP8LDecoder* const dec, 573 const uint8_t* in, int in_stride, 574 int mb_w, int num_rows) { 575 int y_pos = dec->last_out_row_; 576 while (num_rows-- > 0) { 577 ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_); 578 in += in_stride; 579 ++y_pos; 580 } 581 return y_pos; 582 } 583 584 //------------------------------------------------------------------------------ 585 // Cropping. 586 587 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and 588 // crop options. Also updates the input data pointer, so that it points to the 589 // start of the cropped window. Note that pixels are in ARGB format even if 590 // 'in_data' is uint8_t*. 591 // Returns true if the crop window is not empty. 592 static int SetCropWindow(VP8Io* const io, int y_start, int y_end, 593 uint8_t** const in_data, int pixel_stride) { 594 assert(y_start < y_end); 595 assert(io->crop_left < io->crop_right); 596 if (y_end > io->crop_bottom) { 597 y_end = io->crop_bottom; // make sure we don't overflow on last row. 598 } 599 if (y_start < io->crop_top) { 600 const int delta = io->crop_top - y_start; 601 y_start = io->crop_top; 602 *in_data += delta * pixel_stride; 603 } 604 if (y_start >= y_end) return 0; // Crop window is empty. 605 606 *in_data += io->crop_left * sizeof(uint32_t); 607 608 io->mb_y = y_start - io->crop_top; 609 io->mb_w = io->crop_right - io->crop_left; 610 io->mb_h = y_end - y_start; 611 return 1; // Non-empty crop window. 612 } 613 614 //------------------------------------------------------------------------------ 615 616 static WEBP_INLINE int GetMetaIndex( 617 const uint32_t* const image, int xsize, int bits, int x, int y) { 618 if (bits == 0) return 0; 619 return image[xsize * (y >> bits) + (x >> bits)]; 620 } 621 622 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr, 623 int x, int y) { 624 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_, 625 hdr->huffman_subsample_bits_, x, y); 626 assert(meta_index < hdr->num_htree_groups_); 627 return hdr->htree_groups_ + meta_index; 628 } 629 630 //------------------------------------------------------------------------------ 631 // Main loop, with custom row-processing function 632 633 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row); 634 635 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows, 636 const uint32_t* const rows) { 637 int n = dec->next_transform_; 638 const int cache_pixs = dec->width_ * num_rows; 639 const int start_row = dec->last_row_; 640 const int end_row = start_row + num_rows; 641 const uint32_t* rows_in = rows; 642 uint32_t* const rows_out = dec->argb_cache_; 643 644 // Inverse transforms. 645 // TODO: most transforms only need to operate on the cropped region only. 646 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out)); 647 while (n-- > 0) { 648 VP8LTransform* const transform = &dec->transforms_[n]; 649 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out); 650 rows_in = rows_out; 651 } 652 } 653 654 // Special method for paletted alpha data. 655 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows, 656 const uint8_t* const rows) { 657 const int start_row = dec->last_row_; 658 const int end_row = start_row + num_rows; 659 const uint8_t* rows_in = rows; 660 uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row; 661 VP8LTransform* const transform = &dec->transforms_[0]; 662 assert(dec->next_transform_ == 1); 663 assert(transform->type_ == COLOR_INDEXING_TRANSFORM); 664 VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in, 665 rows_out); 666 } 667 668 // Processes (transforms, scales & color-converts) the rows decoded after the 669 // last call. 670 static void ProcessRows(VP8LDecoder* const dec, int row) { 671 const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_; 672 const int num_rows = row - dec->last_row_; 673 674 if (num_rows <= 0) return; // Nothing to be done. 675 ApplyInverseTransforms(dec, num_rows, rows); 676 677 // Emit output. 678 { 679 VP8Io* const io = dec->io_; 680 uint8_t* rows_data = (uint8_t*)dec->argb_cache_; 681 const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA 682 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) { 683 // Nothing to output (this time). 684 } else { 685 const WebPDecBuffer* const output = dec->output_; 686 if (output->colorspace < MODE_YUV) { // convert to RGBA 687 const WebPRGBABuffer* const buf = &output->u.RGBA; 688 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride; 689 const int num_rows_out = io->use_scaling ? 690 EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h, 691 rgba, buf->stride) : 692 EmitRows(output->colorspace, rows_data, in_stride, 693 io->mb_w, io->mb_h, rgba, buf->stride); 694 // Update 'last_out_row_'. 695 dec->last_out_row_ += num_rows_out; 696 } else { // convert to YUVA 697 dec->last_out_row_ = io->use_scaling ? 698 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) : 699 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h); 700 } 701 assert(dec->last_out_row_ <= output->height); 702 } 703 } 704 705 // Update 'last_row_'. 706 dec->last_row_ = row; 707 assert(dec->last_row_ <= dec->height_); 708 } 709 710 // Row-processing for the special case when alpha data contains only one 711 // transform (color indexing), and trivial non-green literals. 712 static int Is8bOptimizable(const VP8LMetadata* const hdr) { 713 int i; 714 if (hdr->color_cache_size_ > 0) return 0; 715 // When the Huffman tree contains only one symbol, we can skip the 716 // call to ReadSymbol() for red/blue/alpha channels. 717 for (i = 0; i < hdr->num_htree_groups_; ++i) { 718 const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_; 719 if (htrees[RED].num_nodes_ > 1) return 0; 720 if (htrees[BLUE].num_nodes_ > 1) return 0; 721 if (htrees[ALPHA].num_nodes_ > 1) return 0; 722 } 723 return 1; 724 } 725 726 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) { 727 const int num_rows = row - dec->last_row_; 728 const uint8_t* const in = 729 (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_; 730 if (num_rows > 0) { 731 ApplyInverseTransformsAlpha(dec, num_rows, in); 732 } 733 dec->last_row_ = dec->last_out_row_ = row; 734 } 735 736 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data, 737 int width, int height, int last_row) { 738 int ok = 1; 739 int row = dec->last_pixel_ / width; 740 int col = dec->last_pixel_ % width; 741 VP8LBitReader* const br = &dec->br_; 742 VP8LMetadata* const hdr = &dec->hdr_; 743 const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row); 744 int pos = dec->last_pixel_; // current position 745 const int end = width * height; // End of data 746 const int last = width * last_row; // Last pixel to decode 747 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; 748 const int mask = hdr->huffman_mask_; 749 assert(htree_group != NULL); 750 assert(pos < end); 751 assert(last_row <= height); 752 assert(Is8bOptimizable(hdr)); 753 754 while (!br->eos_ && pos < last) { 755 int code; 756 // Only update when changing tile. 757 if ((col & mask) == 0) { 758 htree_group = GetHtreeGroupForPos(hdr, col, row); 759 } 760 VP8LFillBitWindow(br); 761 code = ReadSymbol(&htree_group->htrees_[GREEN], br); 762 if (code < NUM_LITERAL_CODES) { // Literal 763 data[pos] = code; 764 ++pos; 765 ++col; 766 if (col >= width) { 767 col = 0; 768 ++row; 769 if (row % NUM_ARGB_CACHE_ROWS == 0) { 770 ExtractPalettedAlphaRows(dec, row); 771 } 772 } 773 } else if (code < len_code_limit) { // Backward reference 774 int dist_code, dist; 775 const int length_sym = code - NUM_LITERAL_CODES; 776 const int length = GetCopyLength(length_sym, br); 777 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); 778 VP8LFillBitWindow(br); 779 dist_code = GetCopyDistance(dist_symbol, br); 780 dist = PlaneCodeToDistance(width, dist_code); 781 if (pos >= dist && end - pos >= length) { 782 int i; 783 for (i = 0; i < length; ++i) data[pos + i] = data[pos + i - dist]; 784 } else { 785 ok = 0; 786 goto End; 787 } 788 pos += length; 789 col += length; 790 while (col >= width) { 791 col -= width; 792 ++row; 793 if (row % NUM_ARGB_CACHE_ROWS == 0) { 794 ExtractPalettedAlphaRows(dec, row); 795 } 796 } 797 if (pos < last && (col & mask)) { 798 htree_group = GetHtreeGroupForPos(hdr, col, row); 799 } 800 } else { // Not reached 801 ok = 0; 802 goto End; 803 } 804 ok = !br->error_; 805 if (!ok) goto End; 806 } 807 // Process the remaining rows corresponding to last row-block. 808 ExtractPalettedAlphaRows(dec, row); 809 810 End: 811 if (br->error_ || !ok || (br->eos_ && pos < end)) { 812 ok = 0; 813 dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED 814 : VP8_STATUS_BITSTREAM_ERROR; 815 } else { 816 dec->last_pixel_ = (int)pos; 817 if (pos == end) dec->state_ = READ_DATA; 818 } 819 return ok; 820 } 821 822 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data, 823 int width, int height, int last_row, 824 ProcessRowsFunc process_func) { 825 int ok = 1; 826 int row = dec->last_pixel_ / width; 827 int col = dec->last_pixel_ % width; 828 VP8LBitReader* const br = &dec->br_; 829 VP8LMetadata* const hdr = &dec->hdr_; 830 HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row); 831 uint32_t* src = data + dec->last_pixel_; 832 uint32_t* last_cached = src; 833 uint32_t* const src_end = data + width * height; // End of data 834 uint32_t* const src_last = data + width * last_row; // Last pixel to decode 835 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; 836 const int color_cache_limit = len_code_limit + hdr->color_cache_size_; 837 VP8LColorCache* const color_cache = 838 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; 839 const int mask = hdr->huffman_mask_; 840 assert(htree_group != NULL); 841 assert(src < src_end); 842 assert(src_last <= src_end); 843 844 while (!br->eos_ && src < src_last) { 845 int code; 846 // Only update when changing tile. Note we could use this test: 847 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed 848 // but that's actually slower and needs storing the previous col/row. 849 if ((col & mask) == 0) { 850 htree_group = GetHtreeGroupForPos(hdr, col, row); 851 } 852 VP8LFillBitWindow(br); 853 code = ReadSymbol(&htree_group->htrees_[GREEN], br); 854 if (code < NUM_LITERAL_CODES) { // Literal 855 int red, green, blue, alpha; 856 red = ReadSymbol(&htree_group->htrees_[RED], br); 857 green = code; 858 VP8LFillBitWindow(br); 859 blue = ReadSymbol(&htree_group->htrees_[BLUE], br); 860 alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br); 861 *src = ((uint32_t)alpha << 24) | (red << 16) | (green << 8) | blue; 862 AdvanceByOne: 863 ++src; 864 ++col; 865 if (col >= width) { 866 col = 0; 867 ++row; 868 if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) { 869 process_func(dec, row); 870 } 871 if (color_cache != NULL) { 872 while (last_cached < src) { 873 VP8LColorCacheInsert(color_cache, *last_cached++); 874 } 875 } 876 } 877 } else if (code < len_code_limit) { // Backward reference 878 int dist_code, dist; 879 const int length_sym = code - NUM_LITERAL_CODES; 880 const int length = GetCopyLength(length_sym, br); 881 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); 882 VP8LFillBitWindow(br); 883 dist_code = GetCopyDistance(dist_symbol, br); 884 dist = PlaneCodeToDistance(width, dist_code); 885 if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) { 886 ok = 0; 887 goto End; 888 } else { 889 int i; 890 for (i = 0; i < length; ++i) src[i] = src[i - dist]; 891 src += length; 892 } 893 col += length; 894 while (col >= width) { 895 col -= width; 896 ++row; 897 if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) { 898 process_func(dec, row); 899 } 900 } 901 if (src < src_last) { 902 if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row); 903 if (color_cache != NULL) { 904 while (last_cached < src) { 905 VP8LColorCacheInsert(color_cache, *last_cached++); 906 } 907 } 908 } 909 } else if (code < color_cache_limit) { // Color cache 910 const int key = code - len_code_limit; 911 assert(color_cache != NULL); 912 while (last_cached < src) { 913 VP8LColorCacheInsert(color_cache, *last_cached++); 914 } 915 *src = VP8LColorCacheLookup(color_cache, key); 916 goto AdvanceByOne; 917 } else { // Not reached 918 ok = 0; 919 goto End; 920 } 921 ok = !br->error_; 922 if (!ok) goto End; 923 } 924 // Process the remaining rows corresponding to last row-block. 925 if (process_func != NULL) process_func(dec, row); 926 927 End: 928 if (br->error_ || !ok || (br->eos_ && src < src_end)) { 929 ok = 0; 930 dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED 931 : VP8_STATUS_BITSTREAM_ERROR; 932 } else { 933 dec->last_pixel_ = (int)(src - data); 934 if (src == src_end) dec->state_ = READ_DATA; 935 } 936 return ok; 937 } 938 939 // ----------------------------------------------------------------------------- 940 // VP8LTransform 941 942 static void ClearTransform(VP8LTransform* const transform) { 943 WebPSafeFree(transform->data_); 944 transform->data_ = NULL; 945 } 946 947 // For security reason, we need to remap the color map to span 948 // the total possible bundled values, and not just the num_colors. 949 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) { 950 int i; 951 const int final_num_colors = 1 << (8 >> transform->bits_); 952 uint32_t* const new_color_map = 953 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors, 954 sizeof(*new_color_map)); 955 if (new_color_map == NULL) { 956 return 0; 957 } else { 958 uint8_t* const data = (uint8_t*)transform->data_; 959 uint8_t* const new_data = (uint8_t*)new_color_map; 960 new_color_map[0] = transform->data_[0]; 961 for (i = 4; i < 4 * num_colors; ++i) { 962 // Equivalent to AddPixelEq(), on a byte-basis. 963 new_data[i] = (data[i] + new_data[i - 4]) & 0xff; 964 } 965 for (; i < 4 * final_num_colors; ++i) 966 new_data[i] = 0; // black tail. 967 WebPSafeFree(transform->data_); 968 transform->data_ = new_color_map; 969 } 970 return 1; 971 } 972 973 static int ReadTransform(int* const xsize, int const* ysize, 974 VP8LDecoder* const dec) { 975 int ok = 1; 976 VP8LBitReader* const br = &dec->br_; 977 VP8LTransform* transform = &dec->transforms_[dec->next_transform_]; 978 const VP8LImageTransformType type = 979 (VP8LImageTransformType)VP8LReadBits(br, 2); 980 981 // Each transform type can only be present once in the stream. 982 if (dec->transforms_seen_ & (1U << type)) { 983 return 0; // Already there, let's not accept the second same transform. 984 } 985 dec->transforms_seen_ |= (1U << type); 986 987 transform->type_ = type; 988 transform->xsize_ = *xsize; 989 transform->ysize_ = *ysize; 990 transform->data_ = NULL; 991 ++dec->next_transform_; 992 assert(dec->next_transform_ <= NUM_TRANSFORMS); 993 994 switch (type) { 995 case PREDICTOR_TRANSFORM: 996 case CROSS_COLOR_TRANSFORM: 997 transform->bits_ = VP8LReadBits(br, 3) + 2; 998 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_, 999 transform->bits_), 1000 VP8LSubSampleSize(transform->ysize_, 1001 transform->bits_), 1002 0, dec, &transform->data_); 1003 break; 1004 case COLOR_INDEXING_TRANSFORM: { 1005 const int num_colors = VP8LReadBits(br, 8) + 1; 1006 const int bits = (num_colors > 16) ? 0 1007 : (num_colors > 4) ? 1 1008 : (num_colors > 2) ? 2 1009 : 3; 1010 *xsize = VP8LSubSampleSize(transform->xsize_, bits); 1011 transform->bits_ = bits; 1012 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_); 1013 ok = ok && ExpandColorMap(num_colors, transform); 1014 break; 1015 } 1016 case SUBTRACT_GREEN: 1017 break; 1018 default: 1019 assert(0); // can't happen 1020 break; 1021 } 1022 1023 return ok; 1024 } 1025 1026 // ----------------------------------------------------------------------------- 1027 // VP8LMetadata 1028 1029 static void InitMetadata(VP8LMetadata* const hdr) { 1030 assert(hdr); 1031 memset(hdr, 0, sizeof(*hdr)); 1032 } 1033 1034 static void ClearMetadata(VP8LMetadata* const hdr) { 1035 assert(hdr); 1036 1037 WebPSafeFree(hdr->huffman_image_); 1038 VP8LHtreeGroupsFree(hdr->htree_groups_, hdr->num_htree_groups_); 1039 VP8LColorCacheClear(&hdr->color_cache_); 1040 InitMetadata(hdr); 1041 } 1042 1043 // ----------------------------------------------------------------------------- 1044 // VP8LDecoder 1045 1046 VP8LDecoder* VP8LNew(void) { 1047 VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec)); 1048 if (dec == NULL) return NULL; 1049 dec->status_ = VP8_STATUS_OK; 1050 dec->action_ = READ_DIM; 1051 dec->state_ = READ_DIM; 1052 1053 VP8LDspInit(); // Init critical function pointers. 1054 1055 return dec; 1056 } 1057 1058 void VP8LClear(VP8LDecoder* const dec) { 1059 int i; 1060 if (dec == NULL) return; 1061 ClearMetadata(&dec->hdr_); 1062 1063 WebPSafeFree(dec->pixels_); 1064 dec->pixels_ = NULL; 1065 for (i = 0; i < dec->next_transform_; ++i) { 1066 ClearTransform(&dec->transforms_[i]); 1067 } 1068 dec->next_transform_ = 0; 1069 dec->transforms_seen_ = 0; 1070 1071 WebPSafeFree(dec->rescaler_memory); 1072 dec->rescaler_memory = NULL; 1073 1074 dec->output_ = NULL; // leave no trace behind 1075 } 1076 1077 void VP8LDelete(VP8LDecoder* const dec) { 1078 if (dec != NULL) { 1079 VP8LClear(dec); 1080 WebPSafeFree(dec); 1081 } 1082 } 1083 1084 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) { 1085 VP8LMetadata* const hdr = &dec->hdr_; 1086 const int num_bits = hdr->huffman_subsample_bits_; 1087 dec->width_ = width; 1088 dec->height_ = height; 1089 1090 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits); 1091 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1; 1092 } 1093 1094 static int DecodeImageStream(int xsize, int ysize, 1095 int is_level0, 1096 VP8LDecoder* const dec, 1097 uint32_t** const decoded_data) { 1098 int ok = 1; 1099 int transform_xsize = xsize; 1100 int transform_ysize = ysize; 1101 VP8LBitReader* const br = &dec->br_; 1102 VP8LMetadata* const hdr = &dec->hdr_; 1103 uint32_t* data = NULL; 1104 int color_cache_bits = 0; 1105 1106 // Read the transforms (may recurse). 1107 if (is_level0) { 1108 while (ok && VP8LReadBits(br, 1)) { 1109 ok = ReadTransform(&transform_xsize, &transform_ysize, dec); 1110 } 1111 } 1112 1113 // Color cache 1114 if (ok && VP8LReadBits(br, 1)) { 1115 color_cache_bits = VP8LReadBits(br, 4); 1116 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS); 1117 if (!ok) { 1118 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1119 goto End; 1120 } 1121 } 1122 1123 // Read the Huffman codes (may recurse). 1124 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize, 1125 color_cache_bits, is_level0); 1126 if (!ok) { 1127 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1128 goto End; 1129 } 1130 1131 // Finish setting up the color-cache 1132 if (color_cache_bits > 0) { 1133 hdr->color_cache_size_ = 1 << color_cache_bits; 1134 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) { 1135 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1136 ok = 0; 1137 goto End; 1138 } 1139 } else { 1140 hdr->color_cache_size_ = 0; 1141 } 1142 UpdateDecoder(dec, transform_xsize, transform_ysize); 1143 1144 if (is_level0) { // level 0 complete 1145 dec->state_ = READ_HDR; 1146 goto End; 1147 } 1148 1149 { 1150 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize; 1151 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data)); 1152 if (data == NULL) { 1153 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1154 ok = 0; 1155 goto End; 1156 } 1157 } 1158 1159 // Use the Huffman trees to decode the LZ77 encoded data. 1160 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, 1161 transform_ysize, NULL); 1162 ok = ok && !br->error_; 1163 1164 End: 1165 1166 if (!ok) { 1167 WebPSafeFree(data); 1168 ClearMetadata(hdr); 1169 // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the 1170 // status appropriately. 1171 if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) { 1172 dec->status_ = VP8_STATUS_SUSPENDED; 1173 } 1174 } else { 1175 if (decoded_data != NULL) { 1176 *decoded_data = data; 1177 } else { 1178 // We allocate image data in this function only for transforms. At level 0 1179 // (that is: not the transforms), we shouldn't have allocated anything. 1180 assert(data == NULL); 1181 assert(is_level0); 1182 } 1183 dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls. 1184 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind. 1185 } 1186 return ok; 1187 } 1188 1189 //------------------------------------------------------------------------------ 1190 // Allocate internal buffers dec->pixels_ and dec->argb_cache_. 1191 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) { 1192 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_; 1193 // Scratch buffer corresponding to top-prediction row for transforming the 1194 // first row in the row-blocks. Not needed for paletted alpha. 1195 const uint64_t cache_top_pixels = (uint16_t)final_width; 1196 // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha. 1197 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS; 1198 const uint64_t total_num_pixels = 1199 num_pixels + cache_top_pixels + cache_pixels; 1200 1201 assert(dec->width_ <= final_width); 1202 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t)); 1203 if (dec->pixels_ == NULL) { 1204 dec->argb_cache_ = NULL; // for sanity check 1205 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1206 return 0; 1207 } 1208 dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels; 1209 return 1; 1210 } 1211 1212 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) { 1213 const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_; 1214 dec->argb_cache_ = NULL; // for sanity check 1215 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t)); 1216 if (dec->pixels_ == NULL) { 1217 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1218 return 0; 1219 } 1220 return 1; 1221 } 1222 1223 //------------------------------------------------------------------------------ 1224 1225 // Special row-processing that only stores the alpha data. 1226 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) { 1227 const int num_rows = row - dec->last_row_; 1228 const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_; 1229 1230 if (num_rows <= 0) return; // Nothing to be done. 1231 ApplyInverseTransforms(dec, num_rows, in); 1232 1233 // Extract alpha (which is stored in the green plane). 1234 { 1235 const int width = dec->io_->width; // the final width (!= dec->width_) 1236 const int cache_pixs = width * num_rows; 1237 uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_; 1238 const uint32_t* const src = dec->argb_cache_; 1239 int i; 1240 for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff; 1241 } 1242 dec->last_row_ = dec->last_out_row_ = row; 1243 } 1244 1245 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec, 1246 const uint8_t* const data, size_t data_size, 1247 uint8_t* const output) { 1248 int ok = 0; 1249 VP8LDecoder* dec; 1250 VP8Io* io; 1251 assert(alph_dec != NULL); 1252 alph_dec->vp8l_dec_ = VP8LNew(); 1253 if (alph_dec->vp8l_dec_ == NULL) return 0; 1254 dec = alph_dec->vp8l_dec_; 1255 1256 dec->width_ = alph_dec->width_; 1257 dec->height_ = alph_dec->height_; 1258 dec->io_ = &alph_dec->io_; 1259 io = dec->io_; 1260 1261 VP8InitIo(io); 1262 WebPInitCustomIo(NULL, io); // Just a sanity Init. io won't be used. 1263 io->opaque = output; 1264 io->width = alph_dec->width_; 1265 io->height = alph_dec->height_; 1266 1267 dec->status_ = VP8_STATUS_OK; 1268 VP8LInitBitReader(&dec->br_, data, data_size); 1269 1270 dec->action_ = READ_HDR; 1271 if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) { 1272 goto Err; 1273 } 1274 1275 // Special case: if alpha data uses only the color indexing transform and 1276 // doesn't use color cache (a frequent case), we will use DecodeAlphaData() 1277 // method that only needs allocation of 1 byte per pixel (alpha channel). 1278 if (dec->next_transform_ == 1 && 1279 dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM && 1280 Is8bOptimizable(&dec->hdr_)) { 1281 alph_dec->use_8b_decode = 1; 1282 ok = AllocateInternalBuffers8b(dec); 1283 } else { 1284 // Allocate internal buffers (note that dec->width_ may have changed here). 1285 alph_dec->use_8b_decode = 0; 1286 ok = AllocateInternalBuffers32b(dec, alph_dec->width_); 1287 } 1288 1289 if (!ok) goto Err; 1290 1291 dec->action_ = READ_DATA; 1292 return 1; 1293 1294 Err: 1295 VP8LDelete(alph_dec->vp8l_dec_); 1296 alph_dec->vp8l_dec_ = NULL; 1297 return 0; 1298 } 1299 1300 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) { 1301 VP8LDecoder* const dec = alph_dec->vp8l_dec_; 1302 assert(dec != NULL); 1303 assert(dec->action_ == READ_DATA); 1304 assert(last_row <= dec->height_); 1305 1306 if (dec->last_pixel_ == dec->width_ * dec->height_) { 1307 return 1; // done 1308 } 1309 1310 // Decode (with special row processing). 1311 return alph_dec->use_8b_decode ? 1312 DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_, 1313 last_row) : 1314 DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, 1315 last_row, ExtractAlphaRows); 1316 } 1317 1318 //------------------------------------------------------------------------------ 1319 1320 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) { 1321 int width, height, has_alpha; 1322 1323 if (dec == NULL) return 0; 1324 if (io == NULL) { 1325 dec->status_ = VP8_STATUS_INVALID_PARAM; 1326 return 0; 1327 } 1328 1329 dec->io_ = io; 1330 dec->status_ = VP8_STATUS_OK; 1331 VP8LInitBitReader(&dec->br_, io->data, io->data_size); 1332 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) { 1333 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1334 goto Error; 1335 } 1336 dec->state_ = READ_DIM; 1337 io->width = width; 1338 io->height = height; 1339 1340 dec->action_ = READ_HDR; 1341 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error; 1342 return 1; 1343 1344 Error: 1345 VP8LClear(dec); 1346 assert(dec->status_ != VP8_STATUS_OK); 1347 return 0; 1348 } 1349 1350 int VP8LDecodeImage(VP8LDecoder* const dec) { 1351 VP8Io* io = NULL; 1352 WebPDecParams* params = NULL; 1353 1354 // Sanity checks. 1355 if (dec == NULL) return 0; 1356 1357 io = dec->io_; 1358 assert(io != NULL); 1359 params = (WebPDecParams*)io->opaque; 1360 assert(params != NULL); 1361 dec->output_ = params->output; 1362 assert(dec->output_ != NULL); 1363 1364 // Initialization. 1365 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) { 1366 dec->status_ = VP8_STATUS_INVALID_PARAM; 1367 goto Err; 1368 } 1369 1370 if (!AllocateInternalBuffers32b(dec, io->width)) goto Err; 1371 1372 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err; 1373 1374 if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) { 1375 // need the alpha-multiply functions for premultiplied output or rescaling 1376 WebPInitAlphaProcessing(); 1377 } 1378 1379 // Decode. 1380 dec->action_ = READ_DATA; 1381 if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, 1382 dec->height_, ProcessRows)) { 1383 goto Err; 1384 } 1385 1386 // Cleanup. 1387 params->last_y = dec->last_out_row_; 1388 VP8LClear(dec); 1389 return 1; 1390 1391 Err: 1392 VP8LClear(dec); 1393 assert(dec->status_ != VP8_STATUS_OK); 1394 return 0; 1395 } 1396 1397 //------------------------------------------------------------------------------ 1398