1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> 2 <html lang="en"> 3 <head> 4 <meta http-equiv="content-type" content="text/html; charset=utf-8"> 5 <title>Xlib Software Driver</title> 6 <link rel="stylesheet" type="text/css" href="mesa.css"> 7 </head> 8 <body> 9 10 <h1>Xlib Software Driver</h1> 11 12 <p> 13 Mesa's Xlib driver provides an emulation of the GLX interface so that 14 OpenGL programs which use the GLX API can render to any X display, even 15 those that don't support the GLX extension. 16 Effectively, the Xlib driver converts all OpenGL rendering into Xlib calls. 17 </p> 18 19 <p> 20 The Xlib driver is the oldest Mesa driver and the most mature of Mesa's 21 software-only drivers. 22 </p> 23 24 <p> 25 Since the Xlib driver <em>emulates</em> the GLX extension, it's not 26 totally conformant with a true GLX implementation. 27 The differences are fairly obscure, however. 28 </p> 29 30 <p> 31 The unique features of the Xlib driver follows. 32 </p> 33 34 35 <h2>X Visual Selection</h2> 36 <p> 37 Mesa supports RGB(A) rendering into almost any X visual type and depth. 38 </p> 39 <p> 40 The glXChooseVisual function tries to choose the best X visual 41 for the given attribute list. However, if this doesn't suit your needs 42 you can force Mesa to use any X visual you want (any supported by your 43 X server that is) by setting the <b>MESA_RGB_VISUAL</b> and 44 <b>MESA_CI_VISUAL</b> 45 environment variables. 46 When an RGB visual is requested, glXChooseVisual 47 will first look if the MESA_RGB_VISUAL variable is defined. 48 If so, it will try to use the specified visual. 49 Similarly, when a color index visual is requested, glXChooseVisual will 50 look for the MESA_CI_VISUAL variable. 51 </p> 52 53 <p> 54 The format of accepted values is: <code>visual-class depth</code> 55 </p> 56 <p> 57 Here are some examples: 58 </p> 59 <pre> 60 using csh: 61 % setenv MESA_RGB_VISUAL "TrueColor 8" // 8-bit TrueColor 62 % setenv MESA_CI_VISUAL "PseudoColor 12" // 12-bit PseudoColor 63 % setenv MESA_RGB_VISUAL "PseudoColor 8" // 8-bit PseudoColor 64 65 using bash: 66 $ export MESA_RGB_VISUAL="TrueColor 8" 67 $ export MESA_CI_VISUAL="PseudoColor 12" 68 $ export MESA_RGB_VISUAL="PseudoColor 8" 69 </pre> 70 71 72 <h2>Double Buffering</h2> 73 <p> 74 Mesa can use either an X Pixmap or XImage as the back color buffer when in 75 double-buffer mode. 76 The default is to use an XImage. 77 The <b>MESA_BACK_BUFFER</b> environment variable can override this. 78 The valid values for <b>MESA_BACK_BUFFER</b> are: <b>Pixmap</b> and 79 <b>XImage</b> (only the first letter is checked, case doesn't matter). 80 </p> 81 82 <p> 83 Using XImage is almost always faster than a Pixmap since it resides in 84 the application's address space. 85 When glXSwapBuffers() is called, XPutImage() or XShmPutImage() is used 86 to transfer the XImage to the on-screen window. 87 </p> 88 <p> 89 A Pixmap may be faster when doing remote rendering of a simple scene. 90 Some OpenGL features will be very slow with a Pixmap (for example, blending 91 will require a round-trip message for pixel readback.) 92 </p> 93 <p> 94 Experiment with the MESA_BACK_BUFFER variable to see which is faster 95 for your application. 96 </p> 97 98 99 <h2>Colormaps</h2> 100 <p> 101 When using Mesa directly or with GLX, it's up to the application 102 writer to create a window with an appropriate colormap. The GLUT 103 toolkit tris to minimize colormap <em>flashing</em> by sharing 104 colormaps when possible. Specifically, if the visual and depth of the 105 window matches that of the root window, the root window's colormap 106 will be shared by the Mesa window. Otherwise, a new, private colormap 107 will be allocated. 108 </p> 109 110 <p> 111 When sharing the root colormap, Mesa may be unable to allocate the colors 112 it needs, resulting in poor color quality. This can happen when a 113 large number of colorcells in the root colormap are already allocated. 114 To prevent colormap sharing in GLUT, set the 115 <b>MESA_PRIVATE_CMAP</b> environment variable. The value isn't 116 significant. 117 </p> 118 119 120 <h2>Gamma Correction</h2> 121 <p> 122 To compensate for the nonlinear relationship between pixel values 123 and displayed intensities, there is a gamma correction feature in 124 Mesa. Some systems, such as Silicon Graphics, support gamma 125 correction in hardware (man gamma) so you won't need to use Mesa's 126 gamma facility. Other systems, however, may need gamma adjustment 127 to produce images which look correct. If you believe that 128 Mesa's images are too dim, read on. 129 </p> 130 131 <p> 132 Gamma correction is controlled with the <b>MESA_GAMMA</b> environment 133 variable. Its value is of the form <b>Gr Gg Gb</b> or just <b>G</b> where 134 Gr is the red gamma value, Gg is the green gamma value, Gb is the 135 blue gamma value and G is one gamma value to use for all three 136 channels. Each value is a positive real number typically in the 137 range 1.0 to 2.5. 138 The defaults are all 1.0, effectively disabling gamma correction. 139 Examples: 140 </p> 141 <pre> 142 % export MESA_GAMMA="2.3 2.2 2.4" // separate R,G,B values 143 % export MESA_GAMMA="2.0" // same gamma for R,G,B 144 </pre> 145 <p> 146 The progs/demos/gamma.c program may help you to determine reasonable gamma 147 value for your display. With correct gamma values, the color intensities 148 displayed in the top row (drawn by dithering) should nearly match those 149 in the bottom row (drawn as grays). 150 </p> 151 152 <p> 153 Alex De Bruyn reports that gamma values of 1.6, 1.6 and 1.9 work well 154 on HP displays using the HP-ColorRecovery technology. 155 </p> 156 157 <p> 158 Mesa implements gamma correction with a lookup table which translates 159 a "linear" pixel value to a gamma-corrected pixel value. There is a 160 small performance penalty. Gamma correction only works in RGB mode. 161 Also be aware that pixel values read back from the frame buffer will 162 not be "un-corrected" so glReadPixels may not return the same data 163 drawn with glDrawPixels. 164 </p> 165 166 <p> 167 For more information about gamma correction see: 168 <a href="http://www.inforamp.net/~poynton/notes/colour_and_gamma/GammaFAQ.html"> 169 the Gamma FAQ</a> 170 </p> 171 172 173 <h2>Overlay Planes</h2> 174 <p> 175 Hardware overlay planes are supported by the Xlib driver. To 176 determine if your X server has overlay support you can test for the 177 SERVER_OVERLAY_VISUALS property: 178 </p> 179 <pre> 180 xprop -root | grep SERVER_OVERLAY_VISUALS 181 </pre> 182 183 184 <h2>HPCR Dithering</h2> 185 <p> 186 If you set the <b>MESA_HPCR_CLEAR</b> environment variable then dithering 187 will be used when clearing the color buffer. This is only applicable 188 to HP systems with the HPCR (Color Recovery) feature. 189 This incurs a small performance penalty. 190 </p> 191 192 193 <h2>Extensions</h2> 194 <p> 195 The following MESA-specific extensions are implemented in the Xlib driver. 196 </p> 197 198 <h3>GLX_MESA_pixmap_colormap</h3> 199 200 <p> 201 This extension adds the GLX function: 202 </p> 203 <pre> 204 GLXPixmap glXCreateGLXPixmapMESA( Display *dpy, XVisualInfo *visual, 205 Pixmap pixmap, Colormap cmap ) 206 </pre> 207 <p> 208 It is an alternative to the standard glXCreateGLXPixmap() function. 209 Since Mesa supports RGB rendering into any X visual, not just True- 210 Color or DirectColor, Mesa needs colormap information to convert RGB 211 values into pixel values. An X window carries this information but a 212 pixmap does not. This function associates a colormap to a GLX pixmap. 213 See the xdemos/glxpixmap.c file for an example of how to use this 214 extension. 215 </p> 216 <p> 217 <a href="MESA_pixmap_colormap.spec">GLX_MESA_pixmap_colormap specification</a> 218 </p> 219 220 221 <h3>GLX_MESA_release_buffers</h3> 222 <p> 223 Mesa associates a set of ancillary (depth, accumulation, stencil and 224 alpha) buffers with each X window it draws into. These ancillary 225 buffers are allocated for each X window the first time the X window 226 is passed to glXMakeCurrent(). Mesa, however, can't detect when an 227 X window has been destroyed in order to free the ancillary buffers. 228 </p> 229 <p> 230 The best it can do is to check for recently destroyed windows whenever 231 the client calls the glXCreateContext() or glXDestroyContext() 232 functions. This may not be sufficient in all situations though. 233 </p> 234 <p> 235 The GLX_MESA_release_buffers extension allows a client to explicitly 236 deallocate the ancillary buffers by calling glxReleaseBuffersMESA() 237 just before an X window is destroyed. For example: 238 </p> 239 <pre> 240 #ifdef GLX_MESA_release_buffers 241 glXReleaseBuffersMESA( dpy, window ); 242 #endif 243 XDestroyWindow( dpy, window ); 244 </pre> 245 <p> 246 <a href="MESA_release_buffers.spec">GLX_MESA_release_buffers specification</a> 247 </p> 248 <p> 249 This extension was added in Mesa 2.0. 250 </p> 251 252 <h3>GLX_MESA_copy_sub_buffer</h3> 253 <p> 254 This extension adds the glXCopySubBufferMESA() function. It works 255 like glXSwapBuffers() but only copies a sub-region of the window 256 instead of the whole window. 257 </p> 258 <p> 259 <a href="MESA_copy_sub_buffer.spec">GLX_MESA_copy_sub_buffer specification</a> 260 </p> 261 <p> 262 This extension was added in Mesa 2.6 263 </p> 264 265 <h2>Summary of X-related environment variables</h2> 266 <pre> 267 MESA_RGB_VISUAL - specifies the X visual and depth for RGB mode (X only) 268 MESA_CI_VISUAL - specifies the X visual and depth for CI mode (X only) 269 MESA_BACK_BUFFER - specifies how to implement the back color buffer (X only) 270 MESA_PRIVATE_CMAP - force aux/tk libraries to use private colormaps (X only) 271 MESA_GAMMA - gamma correction coefficients (X only) 272 </pre> 273 274 275 </body> 276 </html> 277