Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkIntersections.h"
      8 #include "SkPathOpsLine.h"
      9 #include "SkPathOpsQuad.h"
     10 
     11 /*
     12 Find the interection of a line and quadratic by solving for valid t values.
     13 
     14 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
     15 
     16 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
     17 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
     18 A, B and C are points and t goes from zero to one.
     19 
     20 This will give you two equations:
     21 
     22   x = a(1 - t)^2 + b(1 - t)t + ct^2
     23   y = d(1 - t)^2 + e(1 - t)t + ft^2
     24 
     25 If you add for instance the line equation (y = kx + m) to that, you'll end up
     26 with three equations and three unknowns (x, y and t)."
     27 
     28 Similar to above, the quadratic is represented as
     29   x = a(1-t)^2 + 2b(1-t)t + ct^2
     30   y = d(1-t)^2 + 2e(1-t)t + ft^2
     31 and the line as
     32   y = g*x + h
     33 
     34 Using Mathematica, solve for the values of t where the quadratic intersects the
     35 line:
     36 
     37   (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
     38                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
     39   (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
     40          g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
     41   (in)  Solve[t1 == 0, t]
     42   (out) {
     43     {t -> (-2 d + 2 e +   2 a g - 2 b g    -
     44       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
     45           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
     46          (2 (-d + 2 e - f + a g - 2 b g    + c g))
     47          },
     48     {t -> (-2 d + 2 e +   2 a g - 2 b g    +
     49       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
     50           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
     51          (2 (-d + 2 e - f + a g - 2 b g    + c g))
     52          }
     53         }
     54 
     55 Using the results above (when the line tends towards horizontal)
     56        A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
     57        B = 2*( (d -   e    ) - g*(a -   b    )     )
     58        C =   (-(d          ) + g*(a          ) + h )
     59 
     60 If g goes to infinity, we can rewrite the line in terms of x.
     61   x = g'*y + h'
     62 
     63 And solve accordingly in Mathematica:
     64 
     65   (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
     66                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
     67   (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
     68          g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
     69   (in)  Solve[t2 == 0, t]
     70   (out) {
     71     {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
     72     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
     73           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
     74          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
     75          },
     76     {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
     77     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
     78           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
     79          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
     80          }
     81         }
     82 
     83 Thus, if the slope of the line tends towards vertical, we use:
     84        A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
     85        B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
     86        C =   ( (a          ) - g'*(d           ) - h' )
     87  */
     88 
     89 class LineQuadraticIntersections {
     90 public:
     91     enum PinTPoint {
     92         kPointUninitialized,
     93         kPointInitialized
     94     };
     95 
     96     LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
     97         : fQuad(q)
     98         , fLine(l)
     99         , fIntersections(i)
    100         , fAllowNear(true) {
    101         i->setMax(3);  // allow short partial coincidence plus discrete intersection
    102     }
    103 
    104     void allowNear(bool allow) {
    105         fAllowNear = allow;
    106     }
    107 
    108     int intersectRay(double roots[2]) {
    109     /*
    110         solve by rotating line+quad so line is horizontal, then finding the roots
    111         set up matrix to rotate quad to x-axis
    112         |cos(a) -sin(a)|
    113         |sin(a)  cos(a)|
    114         note that cos(a) = A(djacent) / Hypoteneuse
    115                   sin(a) = O(pposite) / Hypoteneuse
    116         since we are computing Ts, we can ignore hypoteneuse, the scale factor:
    117         |  A     -O    |
    118         |  O      A    |
    119         A = line[1].fX - line[0].fX (adjacent side of the right triangle)
    120         O = line[1].fY - line[0].fY (opposite side of the right triangle)
    121         for each of the three points (e.g. n = 0 to 2)
    122         quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
    123     */
    124         double adj = fLine[1].fX - fLine[0].fX;
    125         double opp = fLine[1].fY - fLine[0].fY;
    126         double r[3];
    127         for (int n = 0; n < 3; ++n) {
    128             r[n] = (fQuad[n].fY - fLine[0].fY) * adj - (fQuad[n].fX - fLine[0].fX) * opp;
    129         }
    130         double A = r[2];
    131         double B = r[1];
    132         double C = r[0];
    133         A += C - 2 * B;  // A = a - 2*b + c
    134         B -= C;  // B = -(b - c)
    135         return SkDQuad::RootsValidT(A, 2 * B, C, roots);
    136     }
    137 
    138     int intersect() {
    139         addExactEndPoints();
    140         if (fAllowNear) {
    141             addNearEndPoints();
    142         }
    143         if (fIntersections->used() == 2) {
    144             // FIXME : need sharable code that turns spans into coincident if middle point is on
    145         } else {
    146             double rootVals[2];
    147             int roots = intersectRay(rootVals);
    148             for (int index = 0; index < roots; ++index) {
    149                 double quadT = rootVals[index];
    150                 double lineT = findLineT(quadT);
    151                 SkDPoint pt;
    152                 if (pinTs(&quadT, &lineT, &pt, kPointUninitialized)) {
    153                     fIntersections->insert(quadT, lineT, pt);
    154                 }
    155             }
    156         }
    157         return fIntersections->used();
    158     }
    159 
    160     int horizontalIntersect(double axisIntercept, double roots[2]) {
    161         double D = fQuad[2].fY;  // f
    162         double E = fQuad[1].fY;  // e
    163         double F = fQuad[0].fY;  // d
    164         D += F - 2 * E;         // D = d - 2*e + f
    165         E -= F;                 // E = -(d - e)
    166         F -= axisIntercept;
    167         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    168     }
    169 
    170     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
    171         addExactHorizontalEndPoints(left, right, axisIntercept);
    172         if (fAllowNear) {
    173             addNearHorizontalEndPoints(left, right, axisIntercept);
    174         }
    175         double rootVals[2];
    176         int roots = horizontalIntersect(axisIntercept, rootVals);
    177         for (int index = 0; index < roots; ++index) {
    178             double quadT = rootVals[index];
    179             SkDPoint pt = fQuad.ptAtT(quadT);
    180             double lineT = (pt.fX - left) / (right - left);
    181             if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
    182                 fIntersections->insert(quadT, lineT, pt);
    183             }
    184         }
    185         if (flipped) {
    186             fIntersections->flip();
    187         }
    188         return fIntersections->used();
    189     }
    190 
    191     int verticalIntersect(double axisIntercept, double roots[2]) {
    192         double D = fQuad[2].fX;  // f
    193         double E = fQuad[1].fX;  // e
    194         double F = fQuad[0].fX;  // d
    195         D += F - 2 * E;         // D = d - 2*e + f
    196         E -= F;                 // E = -(d - e)
    197         F -= axisIntercept;
    198         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    199     }
    200 
    201     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
    202         addExactVerticalEndPoints(top, bottom, axisIntercept);
    203         if (fAllowNear) {
    204             addNearVerticalEndPoints(top, bottom, axisIntercept);
    205         }
    206         double rootVals[2];
    207         int roots = verticalIntersect(axisIntercept, rootVals);
    208         for (int index = 0; index < roots; ++index) {
    209             double quadT = rootVals[index];
    210             SkDPoint pt = fQuad.ptAtT(quadT);
    211             double lineT = (pt.fY - top) / (bottom - top);
    212             if (pinTs(&quadT, &lineT, &pt, kPointInitialized)) {
    213                 fIntersections->insert(quadT, lineT, pt);
    214             }
    215         }
    216         if (flipped) {
    217             fIntersections->flip();
    218         }
    219         return fIntersections->used();
    220     }
    221 
    222 protected:
    223     // add endpoints first to get zero and one t values exactly
    224     void addExactEndPoints() {
    225         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    226             double lineT = fLine.exactPoint(fQuad[qIndex]);
    227             if (lineT < 0) {
    228                 continue;
    229             }
    230             double quadT = (double) (qIndex >> 1);
    231             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    232         }
    233     }
    234 
    235     void addNearEndPoints() {
    236         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    237             double quadT = (double) (qIndex >> 1);
    238             if (fIntersections->hasT(quadT)) {
    239                 continue;
    240             }
    241             double lineT = fLine.nearPoint(fQuad[qIndex], NULL);
    242             if (lineT < 0) {
    243                 continue;
    244             }
    245             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    246         }
    247         // FIXME: see if line end is nearly on quad
    248     }
    249 
    250     void addExactHorizontalEndPoints(double left, double right, double y) {
    251         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    252             double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
    253             if (lineT < 0) {
    254                 continue;
    255             }
    256             double quadT = (double) (qIndex >> 1);
    257             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    258         }
    259     }
    260 
    261     void addNearHorizontalEndPoints(double left, double right, double y) {
    262         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    263             double quadT = (double) (qIndex >> 1);
    264             if (fIntersections->hasT(quadT)) {
    265                 continue;
    266             }
    267             double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
    268             if (lineT < 0) {
    269                 continue;
    270             }
    271             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    272         }
    273         // FIXME: see if line end is nearly on quad
    274     }
    275 
    276     void addExactVerticalEndPoints(double top, double bottom, double x) {
    277         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    278             double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
    279             if (lineT < 0) {
    280                 continue;
    281             }
    282             double quadT = (double) (qIndex >> 1);
    283             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    284         }
    285     }
    286 
    287     void addNearVerticalEndPoints(double top, double bottom, double x) {
    288         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
    289             double quadT = (double) (qIndex >> 1);
    290             if (fIntersections->hasT(quadT)) {
    291                 continue;
    292             }
    293             double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
    294             if (lineT < 0) {
    295                 continue;
    296             }
    297             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
    298         }
    299         // FIXME: see if line end is nearly on quad
    300     }
    301 
    302     double findLineT(double t) {
    303         SkDPoint xy = fQuad.ptAtT(t);
    304         double dx = fLine[1].fX - fLine[0].fX;
    305         double dy = fLine[1].fY - fLine[0].fY;
    306         if (fabs(dx) > fabs(dy)) {
    307             return (xy.fX - fLine[0].fX) / dx;
    308         }
    309         return (xy.fY - fLine[0].fY) / dy;
    310     }
    311 
    312     bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
    313         if (!approximately_one_or_less_double(*lineT)) {
    314             return false;
    315         }
    316         if (!approximately_zero_or_more_double(*lineT)) {
    317             return false;
    318         }
    319         double qT = *quadT = SkPinT(*quadT);
    320         double lT = *lineT = SkPinT(*lineT);
    321         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
    322             *pt = fLine.ptAtT(lT);
    323         } else if (ptSet == kPointUninitialized) {
    324             *pt = fQuad.ptAtT(qT);
    325         }
    326         SkPoint gridPt = pt->asSkPoint();
    327         if (SkDPoint::ApproximatelyEqual(gridPt, fLine[0].asSkPoint())) {
    328             *pt = fLine[0];
    329             *lineT = 0;
    330         } else if (SkDPoint::ApproximatelyEqual(gridPt, fLine[1].asSkPoint())) {
    331             *pt = fLine[1];
    332             *lineT = 1;
    333         }
    334         if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
    335             return false;
    336         }
    337         if (gridPt == fQuad[0].asSkPoint()) {
    338             *pt = fQuad[0];
    339             *quadT = 0;
    340         } else if (gridPt == fQuad[2].asSkPoint()) {
    341             *pt = fQuad[2];
    342             *quadT = 1;
    343         }
    344         return true;
    345     }
    346 
    347 private:
    348     const SkDQuad& fQuad;
    349     const SkDLine& fLine;
    350     SkIntersections* fIntersections;
    351     bool fAllowNear;
    352 };
    353 
    354 int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
    355                                 bool flipped) {
    356     SkDLine line = {{{ left, y }, { right, y }}};
    357     LineQuadraticIntersections q(quad, line, this);
    358     return q.horizontalIntersect(y, left, right, flipped);
    359 }
    360 
    361 int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
    362                               bool flipped) {
    363     SkDLine line = {{{ x, top }, { x, bottom }}};
    364     LineQuadraticIntersections q(quad, line, this);
    365     return q.verticalIntersect(x, top, bottom, flipped);
    366 }
    367 
    368 int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
    369     LineQuadraticIntersections q(quad, line, this);
    370     q.allowNear(fAllowNear);
    371     return q.intersect();
    372 }
    373 
    374 int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
    375     LineQuadraticIntersections q(quad, line, this);
    376     fUsed = q.intersectRay(fT[0]);
    377     for (int index = 0; index < fUsed; ++index) {
    378         fPt[index] = quad.ptAtT(fT[0][index]);
    379     }
    380     return fUsed;
    381 }
    382