Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkLineParameters.h"
      8 #include "SkPathOpsCubic.h"
      9 #include "SkPathOpsLine.h"
     10 #include "SkPathOpsQuad.h"
     11 #include "SkPathOpsRect.h"
     12 #include "SkTSort.h"
     13 
     14 const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework
     15 
     16 // give up when changing t no longer moves point
     17 // also, copy point rather than recompute it when it does change
     18 double SkDCubic::binarySearch(double min, double max, double axisIntercept,
     19         SearchAxis xAxis) const {
     20     double t = (min + max) / 2;
     21     double step = (t - min) / 2;
     22     SkDPoint cubicAtT = ptAtT(t);
     23     double calcPos = (&cubicAtT.fX)[xAxis];
     24     double calcDist = calcPos - axisIntercept;
     25     do {
     26         double priorT = t - step;
     27         SkASSERT(priorT >= min);
     28         SkDPoint lessPt = ptAtT(priorT);
     29         if (approximately_equal(lessPt.fX, cubicAtT.fX)
     30                 && approximately_equal(lessPt.fY, cubicAtT.fY)) {
     31             return -1;  // binary search found no point at this axis intercept
     32         }
     33         double lessDist = (&lessPt.fX)[xAxis] - axisIntercept;
     34 #if DEBUG_CUBIC_BINARY_SEARCH
     35         SkDebugf("t=%1.9g calc=%1.9g dist=%1.9g step=%1.9g less=%1.9g\n", t, calcPos, calcDist,
     36                 step, lessDist);
     37 #endif
     38         double lastStep = step;
     39         step /= 2;
     40         if (calcDist > 0 ? calcDist > lessDist : calcDist < lessDist) {
     41             t = priorT;
     42         } else {
     43             double nextT = t + lastStep;
     44             SkASSERT(nextT <= max);
     45             SkDPoint morePt = ptAtT(nextT);
     46             if (approximately_equal(morePt.fX, cubicAtT.fX)
     47                     && approximately_equal(morePt.fY, cubicAtT.fY)) {
     48                 return -1;  // binary search found no point at this axis intercept
     49             }
     50             double moreDist = (&morePt.fX)[xAxis] - axisIntercept;
     51             if (calcDist > 0 ? calcDist <= moreDist : calcDist >= moreDist) {
     52                 continue;
     53             }
     54             t = nextT;
     55         }
     56         SkDPoint testAtT = ptAtT(t);
     57         cubicAtT = testAtT;
     58         calcPos = (&cubicAtT.fX)[xAxis];
     59         calcDist = calcPos - axisIntercept;
     60     } while (!approximately_equal(calcPos, axisIntercept));
     61     return t;
     62 }
     63 
     64 // FIXME: cache keep the bounds and/or precision with the caller?
     65 double SkDCubic::calcPrecision() const {
     66     SkDRect dRect;
     67     dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
     68     double width = dRect.fRight - dRect.fLeft;
     69     double height = dRect.fBottom - dRect.fTop;
     70     return (width > height ? width : height) / gPrecisionUnit;
     71 }
     72 
     73 bool SkDCubic::clockwise() const {
     74     double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
     75     for (int idx = 0; idx < 3; ++idx) {
     76         sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
     77     }
     78     return sum <= 0;
     79 }
     80 
     81 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
     82     *A = src[6];  // d
     83     *B = src[4] * 3;  // 3*c
     84     *C = src[2] * 3;  // 3*b
     85     *D = src[0];  // a
     86     *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
     87     *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
     88     *C -= 3 * *D;           // C = -3*a + 3*b
     89 }
     90 
     91 bool SkDCubic::controlsContainedByEnds() const {
     92     SkDVector startTan = fPts[1] - fPts[0];
     93     if (startTan.fX == 0 && startTan.fY == 0) {
     94         startTan = fPts[2] - fPts[0];
     95     }
     96     SkDVector endTan = fPts[2] - fPts[3];
     97     if (endTan.fX == 0 && endTan.fY == 0) {
     98         endTan = fPts[1] - fPts[3];
     99     }
    100     if (startTan.dot(endTan) >= 0) {
    101         return false;
    102     }
    103     SkDLine startEdge = {{fPts[0], fPts[0]}};
    104     startEdge[1].fX -= startTan.fY;
    105     startEdge[1].fY += startTan.fX;
    106     SkDLine endEdge = {{fPts[3], fPts[3]}};
    107     endEdge[1].fX -= endTan.fY;
    108     endEdge[1].fY += endTan.fX;
    109     double leftStart1 = startEdge.isLeft(fPts[1]);
    110     if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
    111         return false;
    112     }
    113     double leftEnd1 = endEdge.isLeft(fPts[1]);
    114     if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
    115         return false;
    116     }
    117     return leftStart1 * leftEnd1 >= 0;
    118 }
    119 
    120 bool SkDCubic::endsAreExtremaInXOrY() const {
    121     return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
    122             && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
    123             || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
    124             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
    125 }
    126 
    127 bool SkDCubic::isLinear(int startIndex, int endIndex) const {
    128     SkLineParameters lineParameters;
    129     lineParameters.cubicEndPoints(*this, startIndex, endIndex);
    130     // FIXME: maybe it's possible to avoid this and compare non-normalized
    131     lineParameters.normalize();
    132     double distance = lineParameters.controlPtDistance(*this, 1);
    133     if (!approximately_zero(distance)) {
    134         return false;
    135     }
    136     distance = lineParameters.controlPtDistance(*this, 2);
    137     return approximately_zero(distance);
    138 }
    139 
    140 bool SkDCubic::monotonicInY() const {
    141     return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
    142             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
    143 }
    144 
    145 int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept,
    146         SearchAxis xAxis, double* validRoots) const {
    147     extrema += findInflections(&extremeTs[extrema]);
    148     extremeTs[extrema++] = 0;
    149     extremeTs[extrema] = 1;
    150     SkTQSort(extremeTs, extremeTs + extrema);
    151     int validCount = 0;
    152     for (int index = 0; index < extrema; ) {
    153         double min = extremeTs[index];
    154         double max = extremeTs[++index];
    155         if (min == max) {
    156             continue;
    157         }
    158         double newT = binarySearch(min, max, axisIntercept, xAxis);
    159         if (newT >= 0) {
    160             validRoots[validCount++] = newT;
    161         }
    162     }
    163     return validCount;
    164 }
    165 
    166 bool SkDCubic::serpentine() const {
    167 #if 0  // FIXME: enabling this fixes cubicOp114 but breaks cubicOp58d and cubicOp53d
    168     double tValues[2];
    169     // OPTIMIZATION : another case where caching the present of cubic inflections would be useful
    170     return findInflections(tValues) > 1;
    171 #endif
    172     if (!controlsContainedByEnds()) {
    173         return false;
    174     }
    175     double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
    176     for (int idx = 0; idx < 2; ++idx) {
    177         wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    178     }
    179     double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
    180     for (int idx = 1; idx < 3; ++idx) {
    181         waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    182     }
    183     return wiggle * waggle < 0;
    184 }
    185 
    186 // cubic roots
    187 
    188 static const double PI = 3.141592653589793;
    189 
    190 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
    191 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
    192     double s[3];
    193     int realRoots = RootsReal(A, B, C, D, s);
    194     int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
    195     return foundRoots;
    196 }
    197 
    198 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
    199 #ifdef SK_DEBUG
    200     // create a string mathematica understands
    201     // GDB set print repe 15 # if repeated digits is a bother
    202     //     set print elements 400 # if line doesn't fit
    203     char str[1024];
    204     sk_bzero(str, sizeof(str));
    205     SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
    206             A, B, C, D);
    207     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
    208 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    209     SkDebugf("%s\n", str);
    210 #endif
    211 #endif
    212     if (approximately_zero(A)
    213             && approximately_zero_when_compared_to(A, B)
    214             && approximately_zero_when_compared_to(A, C)
    215             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
    216         return SkDQuad::RootsReal(B, C, D, s);
    217     }
    218     if (approximately_zero_when_compared_to(D, A)
    219             && approximately_zero_when_compared_to(D, B)
    220             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
    221         int num = SkDQuad::RootsReal(A, B, C, s);
    222         for (int i = 0; i < num; ++i) {
    223             if (approximately_zero(s[i])) {
    224                 return num;
    225             }
    226         }
    227         s[num++] = 0;
    228         return num;
    229     }
    230     if (approximately_zero(A + B + C + D)) {  // 1 is one root
    231         int num = SkDQuad::RootsReal(A, A + B, -D, s);
    232         for (int i = 0; i < num; ++i) {
    233             if (AlmostDequalUlps(s[i], 1)) {
    234                 return num;
    235             }
    236         }
    237         s[num++] = 1;
    238         return num;
    239     }
    240     double a, b, c;
    241     {
    242         double invA = 1 / A;
    243         a = B * invA;
    244         b = C * invA;
    245         c = D * invA;
    246     }
    247     double a2 = a * a;
    248     double Q = (a2 - b * 3) / 9;
    249     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    250     double R2 = R * R;
    251     double Q3 = Q * Q * Q;
    252     double R2MinusQ3 = R2 - Q3;
    253     double adiv3 = a / 3;
    254     double r;
    255     double* roots = s;
    256     if (R2MinusQ3 < 0) {   // we have 3 real roots
    257         double theta = acos(R / sqrt(Q3));
    258         double neg2RootQ = -2 * sqrt(Q);
    259 
    260         r = neg2RootQ * cos(theta / 3) - adiv3;
    261         *roots++ = r;
    262 
    263         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
    264         if (!AlmostDequalUlps(s[0], r)) {
    265             *roots++ = r;
    266         }
    267         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
    268         if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
    269             *roots++ = r;
    270         }
    271     } else {  // we have 1 real root
    272         double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
    273         double A = fabs(R) + sqrtR2MinusQ3;
    274         A = SkDCubeRoot(A);
    275         if (R > 0) {
    276             A = -A;
    277         }
    278         if (A != 0) {
    279             A += Q / A;
    280         }
    281         r = A - adiv3;
    282         *roots++ = r;
    283         if (AlmostDequalUlps((double) R2, (double) Q3)) {
    284             r = -A / 2 - adiv3;
    285             if (!AlmostDequalUlps(s[0], r)) {
    286                 *roots++ = r;
    287             }
    288         }
    289     }
    290     return static_cast<int>(roots - s);
    291 }
    292 
    293 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
    294 // c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
    295 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
    296 //       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
    297 static double derivative_at_t(const double* src, double t) {
    298     double one_t = 1 - t;
    299     double a = src[0];
    300     double b = src[2];
    301     double c = src[4];
    302     double d = src[6];
    303     return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
    304 }
    305 
    306 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
    307 SkDVector SkDCubic::dxdyAtT(double t) const {
    308     SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
    309     return result;
    310 }
    311 
    312 // OPTIMIZE? share code with formulate_F1DotF2
    313 int SkDCubic::findInflections(double tValues[]) const {
    314     double Ax = fPts[1].fX - fPts[0].fX;
    315     double Ay = fPts[1].fY - fPts[0].fY;
    316     double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
    317     double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
    318     double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
    319     double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
    320     return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
    321 }
    322 
    323 static void formulate_F1DotF2(const double src[], double coeff[4]) {
    324     double a = src[2] - src[0];
    325     double b = src[4] - 2 * src[2] + src[0];
    326     double c = src[6] + 3 * (src[2] - src[4]) - src[0];
    327     coeff[0] = c * c;
    328     coeff[1] = 3 * b * c;
    329     coeff[2] = 2 * b * b + c * a;
    330     coeff[3] = a * b;
    331 }
    332 
    333 /** SkDCubic'(t) = At^2 + Bt + C, where
    334     A = 3(-a + 3(b - c) + d)
    335     B = 6(a - 2b + c)
    336     C = 3(b - a)
    337     Solve for t, keeping only those that fit between 0 < t < 1
    338 */
    339 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
    340     // we divide A,B,C by 3 to simplify
    341     double A = d - a + 3*(b - c);
    342     double B = 2*(a - b - b + c);
    343     double C = b - a;
    344 
    345     return SkDQuad::RootsValidT(A, B, C, tValues);
    346 }
    347 
    348 /*  from SkGeometry.cpp
    349     Looking for F' dot F'' == 0
    350 
    351     A = b - a
    352     B = c - 2b + a
    353     C = d - 3c + 3b - a
    354 
    355     F' = 3Ct^2 + 6Bt + 3A
    356     F'' = 6Ct + 6B
    357 
    358     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    359 */
    360 int SkDCubic::findMaxCurvature(double tValues[]) const {
    361     double coeffX[4], coeffY[4];
    362     int i;
    363     formulate_F1DotF2(&fPts[0].fX, coeffX);
    364     formulate_F1DotF2(&fPts[0].fY, coeffY);
    365     for (i = 0; i < 4; i++) {
    366         coeffX[i] = coeffX[i] + coeffY[i];
    367     }
    368     return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
    369 }
    370 
    371 SkDPoint SkDCubic::top(double startT, double endT) const {
    372     SkDCubic sub = subDivide(startT, endT);
    373     SkDPoint topPt = sub[0];
    374     if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
    375         topPt = sub[3];
    376     }
    377     double extremeTs[2];
    378     if (!sub.monotonicInY()) {
    379         int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
    380         for (int index = 0; index < roots; ++index) {
    381             double t = startT + (endT - startT) * extremeTs[index];
    382             SkDPoint mid = ptAtT(t);
    383             if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
    384                 topPt = mid;
    385             }
    386         }
    387     }
    388     return topPt;
    389 }
    390 
    391 SkDPoint SkDCubic::ptAtT(double t) const {
    392     if (0 == t) {
    393         return fPts[0];
    394     }
    395     if (1 == t) {
    396         return fPts[3];
    397     }
    398     double one_t = 1 - t;
    399     double one_t2 = one_t * one_t;
    400     double a = one_t2 * one_t;
    401     double b = 3 * one_t2 * t;
    402     double t2 = t * t;
    403     double c = 3 * one_t * t2;
    404     double d = t2 * t;
    405     SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
    406             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
    407     return result;
    408 }
    409 
    410 /*
    411  Given a cubic c, t1, and t2, find a small cubic segment.
    412 
    413  The new cubic is defined as points A, B, C, and D, where
    414  s1 = 1 - t1
    415  s2 = 1 - t2
    416  A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
    417  D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
    418 
    419  We don't have B or C. So We define two equations to isolate them.
    420  First, compute two reference T values 1/3 and 2/3 from t1 to t2:
    421 
    422  c(at (2*t1 + t2)/3) == E
    423  c(at (t1 + 2*t2)/3) == F
    424 
    425  Next, compute where those values must be if we know the values of B and C:
    426 
    427  _12   =  A*2/3 + B*1/3
    428  12_   =  A*1/3 + B*2/3
    429  _23   =  B*2/3 + C*1/3
    430  23_   =  B*1/3 + C*2/3
    431  _34   =  C*2/3 + D*1/3
    432  34_   =  C*1/3 + D*2/3
    433  _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
    434  123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
    435  _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
    436  234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
    437  _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
    438        =  A*8/27 + B*12/27 + C*6/27 + D*1/27
    439        =  E
    440  1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
    441        =  A*1/27 + B*6/27 + C*12/27 + D*8/27
    442        =  F
    443  E*27  =  A*8    + B*12   + C*6     + D
    444  F*27  =  A      + B*6    + C*12    + D*8
    445 
    446 Group the known values on one side:
    447 
    448  M       = E*27 - A*8 - D     = B*12 + C* 6
    449  N       = F*27 - A   - D*8   = B* 6 + C*12
    450  M*2 - N = B*18
    451  N*2 - M = C*18
    452  B       = (M*2 - N)/18
    453  C       = (N*2 - M)/18
    454  */
    455 
    456 static double interp_cubic_coords(const double* src, double t) {
    457     double ab = SkDInterp(src[0], src[2], t);
    458     double bc = SkDInterp(src[2], src[4], t);
    459     double cd = SkDInterp(src[4], src[6], t);
    460     double abc = SkDInterp(ab, bc, t);
    461     double bcd = SkDInterp(bc, cd, t);
    462     double abcd = SkDInterp(abc, bcd, t);
    463     return abcd;
    464 }
    465 
    466 SkDCubic SkDCubic::subDivide(double t1, double t2) const {
    467     if (t1 == 0 || t2 == 1) {
    468         if (t1 == 0 && t2 == 1) {
    469             return *this;
    470         }
    471         SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
    472         SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
    473         return dst;
    474     }
    475     SkDCubic dst;
    476     double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
    477     double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
    478     double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
    479     double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
    480     double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
    481     double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
    482     double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
    483     double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
    484     double mx = ex * 27 - ax * 8 - dx;
    485     double my = ey * 27 - ay * 8 - dy;
    486     double nx = fx * 27 - ax - dx * 8;
    487     double ny = fy * 27 - ay - dy * 8;
    488     /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
    489     /* by = */ dst[1].fY = (my * 2 - ny) / 18;
    490     /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
    491     /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
    492     // FIXME: call align() ?
    493     return dst;
    494 }
    495 
    496 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
    497     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
    498         dstPt->fX = fPts[endIndex].fX;
    499     }
    500     if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
    501         dstPt->fY = fPts[endIndex].fY;
    502     }
    503 }
    504 
    505 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
    506                          double t1, double t2, SkDPoint dst[2]) const {
    507     SkASSERT(t1 != t2);
    508 #if 0
    509     double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
    510     double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
    511     double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
    512     double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
    513     double mx = ex * 27 - a.fX * 8 - d.fX;
    514     double my = ey * 27 - a.fY * 8 - d.fY;
    515     double nx = fx * 27 - a.fX - d.fX * 8;
    516     double ny = fy * 27 - a.fY - d.fY * 8;
    517     /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
    518     /* by = */ dst[0].fY = (my * 2 - ny) / 18;
    519     /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
    520     /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
    521 #else
    522     // this approach assumes that the control points computed directly are accurate enough
    523     SkDCubic sub = subDivide(t1, t2);
    524     dst[0] = sub[1] + (a - sub[0]);
    525     dst[1] = sub[2] + (d - sub[3]);
    526 #endif
    527     if (t1 == 0 || t2 == 0) {
    528         align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
    529     }
    530     if (t1 == 1 || t2 == 1) {
    531         align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
    532     }
    533     if (AlmostBequalUlps(dst[0].fX, a.fX)) {
    534         dst[0].fX = a.fX;
    535     }
    536     if (AlmostBequalUlps(dst[0].fY, a.fY)) {
    537         dst[0].fY = a.fY;
    538     }
    539     if (AlmostBequalUlps(dst[1].fX, d.fX)) {
    540         dst[1].fX = d.fX;
    541     }
    542     if (AlmostBequalUlps(dst[1].fY, d.fY)) {
    543         dst[1].fY = d.fY;
    544     }
    545 }
    546 
    547 /* classic one t subdivision */
    548 static void interp_cubic_coords(const double* src, double* dst, double t) {
    549     double ab = SkDInterp(src[0], src[2], t);
    550     double bc = SkDInterp(src[2], src[4], t);
    551     double cd = SkDInterp(src[4], src[6], t);
    552     double abc = SkDInterp(ab, bc, t);
    553     double bcd = SkDInterp(bc, cd, t);
    554     double abcd = SkDInterp(abc, bcd, t);
    555 
    556     dst[0] = src[0];
    557     dst[2] = ab;
    558     dst[4] = abc;
    559     dst[6] = abcd;
    560     dst[8] = bcd;
    561     dst[10] = cd;
    562     dst[12] = src[6];
    563 }
    564 
    565 SkDCubicPair SkDCubic::chopAt(double t) const {
    566     SkDCubicPair dst;
    567     if (t == 0.5) {
    568         dst.pts[0] = fPts[0];
    569         dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
    570         dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
    571         dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
    572         dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
    573         dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
    574         dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
    575         dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
    576         dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
    577         dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
    578         dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
    579         dst.pts[6] = fPts[3];
    580         return dst;
    581     }
    582     interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
    583     interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
    584     return dst;
    585 }
    586