Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkTextureCompressor.h"
      9 #include "SkTextureCompressor_Blitter.h"
     10 
     11 #include "SkBlitter.h"
     12 #include "SkEndian.h"
     13 
     14 // #define COMPRESS_R11_EAC_SLOW 1
     15 // #define COMPRESS_R11_EAC_FAST 1
     16 #define COMPRESS_R11_EAC_FASTEST 1
     17 
     18 // Blocks compressed into R11 EAC are represented as follows:
     19 // 0000000000000000000000000000000000000000000000000000000000000000
     20 // |base_cw|mod|mul|  ----------------- indices -------------------
     21 //
     22 // To reconstruct the value of a given pixel, we use the formula:
     23 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
     24 //
     25 // mod_val is chosen from a palette of values based on the index of the
     26 // given pixel. The palette is chosen by the value stored in mod.
     27 // This formula returns a value between 0 and 2047, which is converted
     28 // to a float from 0 to 1 in OpenGL.
     29 //
     30 // If mul is zero, then we set mul = 1/8, so that the formula becomes
     31 // clamp[0, 2047](base_cw * 8 + 4 + mod_val)
     32 
     33 static const int kNumR11EACPalettes = 16;
     34 static const int kR11EACPaletteSize = 8;
     35 static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
     36     {-3, -6, -9, -15, 2, 5, 8, 14},
     37     {-3, -7, -10, -13, 2, 6, 9, 12},
     38     {-2, -5, -8, -13, 1, 4, 7, 12},
     39     {-2, -4, -6, -13, 1, 3, 5, 12},
     40     {-3, -6, -8, -12, 2, 5, 7, 11},
     41     {-3, -7, -9, -11, 2, 6, 8, 10},
     42     {-4, -7, -8, -11, 3, 6, 7, 10},
     43     {-3, -5, -8, -11, 2, 4, 7, 10},
     44     {-2, -6, -8, -10, 1, 5, 7, 9},
     45     {-2, -5, -8, -10, 1, 4, 7, 9},
     46     {-2, -4, -8, -10, 1, 3, 7, 9},
     47     {-2, -5, -7, -10, 1, 4, 6, 9},
     48     {-3, -4, -7, -10, 2, 3, 6, 9},
     49     {-1, -2, -3, -10, 0, 1, 2, 9},
     50     {-4, -6, -8, -9, 3, 5, 7, 8},
     51     {-3, -5, -7, -9, 2, 4, 6, 8}
     52 };
     53 
     54 #if COMPRESS_R11_EAC_SLOW
     55 
     56 // Pack the base codeword, palette, and multiplier into the 64 bits necessary
     57 // to decode it.
     58 static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
     59                                   uint64_t indices) {
     60     SkASSERT(palette < 16);
     61     SkASSERT(multiplier < 16);
     62     SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
     63 
     64     const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
     65     const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
     66     const uint64_t p = static_cast<uint64_t>(palette) << 48;
     67     return SkEndian_SwapBE64(b | m | p | indices);
     68 }
     69 
     70 // Given a base codeword, a modifier, and a multiplier, compute the proper
     71 // pixel value in the range [0, 2047].
     72 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
     73     int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
     74     return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
     75 }
     76 
     77 // Compress a block into R11 EAC format.
     78 // The compression works as follows:
     79 // 1. Find the center of the span of the block's values. Use this as the base codeword.
     80 // 2. Choose a multiplier based roughly on the size of the span of block values
     81 // 3. Iterate through each palette and choose the one with the most accurate
     82 // modifiers.
     83 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
     84     // Find the center of the data...
     85     uint16_t bmin = block[0];
     86     uint16_t bmax = block[0];
     87     for (int i = 1; i < 16; ++i) {
     88         bmin = SkTMin<uint16_t>(bmin, block[i]);
     89         bmax = SkTMax<uint16_t>(bmax, block[i]);
     90     }
     91 
     92     uint16_t center = (bmax + bmin) >> 1;
     93     SkASSERT(center <= 255);
     94 
     95     // Based on the min and max, we can guesstimate a proper multiplier
     96     // This is kind of a magic choice to start with.
     97     uint16_t multiplier = (bmax - center) / 10;
     98 
     99     // Now convert the block to 11 bits and transpose it to match
    100     // the proper layout
    101     uint16_t cblock[16];
    102     for (int i = 0; i < 4; ++i) {
    103         for (int j = 0; j < 4; ++j) {
    104             int srcIdx = i*4+j;
    105             int dstIdx = j*4+i;
    106             cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
    107         }
    108     }
    109 
    110     // Finally, choose the proper palette and indices
    111     uint32_t bestError = 0xFFFFFFFF;
    112     uint64_t bestIndices = 0;
    113     uint16_t bestPalette = 0;
    114     for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
    115         const int *palette = kR11EACModifierPalettes[paletteIdx];
    116 
    117         // Iterate through each pixel to find the best palette index
    118         // and update the indices with the choice. Also store the error
    119         // for this palette to be compared against the best error...
    120         uint32_t error = 0;
    121         uint64_t indices = 0;
    122         for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
    123             const uint16_t pixel = cblock[pixelIdx];
    124 
    125             // Iterate through each palette value to find the best index
    126             // for this particular pixel for this particular palette.
    127             uint16_t bestPixelError =
    128                 abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier));
    129             int bestIndex = 0;
    130             for (int i = 1; i < kR11EACPaletteSize; ++i) {
    131                 const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier);
    132                 const uint16_t perror = abs_diff(pixel, p);
    133 
    134                 // Is this index better?
    135                 if (perror < bestPixelError) {
    136                     bestIndex = i;
    137                     bestPixelError = perror;
    138                 }
    139             }
    140 
    141             SkASSERT(bestIndex < 8);
    142 
    143             error += bestPixelError;
    144             indices <<= 3;
    145             indices |= bestIndex;
    146         }
    147 
    148         SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
    149 
    150         // Is this palette better?
    151         if (error < bestError) {
    152             bestPalette = paletteIdx;
    153             bestIndices = indices;
    154             bestError = error;
    155         }
    156     }
    157 
    158     // Finally, pack everything together...
    159     return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
    160 }
    161 #endif // COMPRESS_R11_EAC_SLOW
    162 
    163 #if COMPRESS_R11_EAC_FAST
    164 // This function takes into account that most blocks that we compress have a gradation from
    165 // fully opaque to fully transparent. The compression scheme works by selecting the
    166 // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
    167 // as the block header (0x8490). The indices are then selected by considering the top
    168 // three bits of each alpha value. For alpha masks, this reduces the dynamic range from
    169 // 17 to 8, but the quality is still acceptable.
    170 //
    171 // There are a few caveats that need to be taken care of...
    172 //
    173 // 1. The block is read in as scanlines, so the indices are stored as:
    174 //     0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    175 //    However, the decomrpession routine reads them in column-major order, so they
    176 //    need to be packed as:
    177 //     0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
    178 //    So when reading, they must be transposed.
    179 //
    180 // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
    181 //    above store the modulation values first decreasing and then increasing:
    182 //      e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
    183 //    Hence, we need to convert the indices with the following mapping:
    184 //      From: 0 1 2 3 4 5 6 7
    185 //      To:   3 2 1 0 4 5 6 7
    186 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
    187     uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
    188     for(int i = 0; i < 4; ++i) {
    189         for(int j = 0; j < 4; ++j) {
    190             const int shift = 45-3*(j*4+i);
    191             SkASSERT(shift <= 45);
    192             const uint64_t idx = block[i*4+j] >> 5;
    193             SkASSERT(idx < 8);
    194 
    195             // !SPEED! This is slightly faster than having an if-statement.
    196             switch(idx) {
    197                 case 0:
    198                 case 1:
    199                 case 2:
    200                 case 3:
    201                     retVal |= (3-idx) << shift;
    202                     break;
    203                 default:
    204                     retVal |= idx << shift;
    205                     break;
    206             }
    207         }
    208     }
    209 
    210     return SkEndian_SwapBE64(retVal);
    211 }
    212 #endif // COMPRESS_R11_EAC_FAST
    213 
    214 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
    215 static uint64_t compress_r11eac_block(const uint8_t block[16]) {
    216     // Are all blocks a solid color?
    217     bool solid = true;
    218     for (int i = 1; i < 16; ++i) {
    219         if (block[i] != block[0]) {
    220             solid = false;
    221             break;
    222         }
    223     }
    224 
    225     if (solid) {
    226         switch(block[0]) {
    227             // Fully transparent? We know the encoding...
    228             case 0:
    229                 // (0x0020 << 48) produces the following:
    230                 // basw_cw: 0
    231                 // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
    232                 // multiplier: 2
    233                 // mod_val: -3
    234                 //
    235                 // this gives the following formula:
    236                 // clamp[0, 2047](0*8+4+(-3)*2*8) = 0
    237                 //
    238                 // Furthermore, it is impervious to endianness:
    239                 // 0x0020000000002000ULL
    240                 // Will produce one pixel with index 2, which gives:
    241                 // clamp[0, 2047](0*8+4+(-9)*2*8) = 0
    242                 return 0x0020000000002000ULL;
    243 
    244             // Fully opaque? We know this encoding too...
    245             case 255:
    246 
    247                 // -1 produces the following:
    248                 // basw_cw: 255
    249                 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
    250                 // mod_val: 8
    251                 //
    252                 // this gives the following formula:
    253                 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
    254                 return 0xFFFFFFFFFFFFFFFFULL;
    255 
    256             default:
    257                 // !TODO! krajcevski:
    258                 // This will probably never happen, since we're using this format
    259                 // primarily for compressing alpha maps. Usually the only
    260                 // non-fullly opaque or fully transparent blocks are not a solid
    261                 // intermediate color. If we notice that they are, then we can
    262                 // add another optimization...
    263                 break;
    264         }
    265     }
    266 
    267     return compress_heterogeneous_r11eac_block(block);
    268 }
    269 
    270 // This function is used by R11 EAC to compress 4x4 blocks
    271 // of 8-bit alpha into 64-bit values that comprise the compressed data.
    272 // We need to make sure that the dimensions of the src pixels are divisible
    273 // by 4, and copy 4x4 blocks one at a time for compression.
    274 typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
    275 
    276 static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
    277                                      int width, int height, int rowBytes,
    278                                      A84x4To64BitProc proc) {
    279     // Make sure that our data is well-formed enough to be considered for compression
    280     if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
    281         return false;
    282     }
    283 
    284     int blocksX = width >> 2;
    285     int blocksY = height >> 2;
    286 
    287     uint8_t block[16];
    288     uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
    289     for (int y = 0; y < blocksY; ++y) {
    290         for (int x = 0; x < blocksX; ++x) {
    291             // Load block
    292             for (int k = 0; k < 4; ++k) {
    293                 memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
    294             }
    295 
    296             // Compress it
    297             *encPtr = proc(block);
    298             ++encPtr;
    299         }
    300         src += 4 * rowBytes;
    301     }
    302 
    303     return true;
    304 }
    305 #endif  // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
    306 
    307 // This function converts an integer containing four bytes of alpha
    308 // values into an integer containing four bytes of indices into R11 EAC.
    309 // Note, there needs to be a mapping of indices:
    310 // 0 1 2 3 4 5 6 7
    311 // 3 2 1 0 4 5 6 7
    312 //
    313 // To compute this, we first negate each byte, and then add three, which
    314 // gives the mapping
    315 // 3 2 1 0 -1 -2 -3 -4
    316 //
    317 // Then we mask out the negative values, take their absolute value, and
    318 // add three.
    319 //
    320 // Most of the voodoo in this function comes from Hacker's Delight, section 2-18
    321 static inline uint32_t convert_indices(uint32_t x) {
    322     // Take the top three bits...
    323     x = (x & 0xE0E0E0E0) >> 5;
    324 
    325     // Negate...
    326     x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
    327 
    328     // Add three
    329     const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
    330     x = ((x ^ 0x03030303) & 0x80808080) ^ s;
    331 
    332     // Absolute value
    333     const uint32_t a = x & 0x80808080;
    334     const uint32_t b = a >> 7;
    335 
    336     // Aside: mask negatives (m is three if the byte was negative)
    337     const uint32_t m = (a >> 6) | b;
    338 
    339     // .. continue absolute value
    340     x = (x ^ ((a - b) | a)) + b;
    341 
    342     // Add three
    343     return x + m;
    344 }
    345 
    346 #if COMPRESS_R11_EAC_FASTEST
    347 template<unsigned shift>
    348 static inline uint64_t swap_shift(uint64_t x, uint64_t mask) {
    349     const uint64_t t = (x ^ (x >> shift)) & mask;
    350     return x ^ t ^ (t << shift);
    351 }
    352 
    353 static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
    354     // If our 3-bit block indices are laid out as:
    355     // a b c d
    356     // e f g h
    357     // i j k l
    358     // m n o p
    359     //
    360     // This function expects topRows and bottomRows to contain the first two rows
    361     // of indices interleaved in the least significant bits of a and b. In other words...
    362     //
    363     // If the architecture is big endian, then topRows and bottomRows will contain the following:
    364     // Bits 31-0:
    365     // a: 00 a e 00 b f 00 c g 00 d h
    366     // b: 00 i m 00 j n 00 k o 00 l p
    367     //
    368     // If the architecture is little endian, then topRows and bottomRows will contain
    369     // the following:
    370     // Bits 31-0:
    371     // a: 00 d h 00 c g 00 b f 00 a e
    372     // b: 00 l p 00 k o 00 j n 00 i m
    373     //
    374     // This function returns a 48-bit packing of the form:
    375     // a e i m b f j n c g k o d h l p
    376     //
    377     // !SPEED! this function might be even faster if certain SIMD intrinsics are
    378     // used..
    379 
    380     // For both architectures, we can figure out a packing of the bits by
    381     // using a shuffle and a few shift-rotates...
    382     uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
    383 
    384     // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
    385 
    386     x = swap_shift<10>(x, 0x3FC0003FC00000ULL);
    387 
    388     // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
    389 
    390     x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16;
    391 
    392     // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
    393 
    394     x = swap_shift<6>(x, 0xFC0000ULL);
    395 
    396 #if defined (SK_CPU_BENDIAN)
    397     // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
    398 
    399     x = swap_shift<36>(x, 0x3FULL);
    400 
    401     // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
    402 
    403     x = swap_shift<12>(x, 0xFFF000000ULL);
    404 #else
    405     // If our CPU is little endian, then the above logic will
    406     // produce the following indices:
    407     // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
    408 
    409     x = swap_shift<36>(x, 0xFC0ULL);
    410 
    411     // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
    412 
    413     x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
    414 #endif
    415 
    416     // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
    417     return x;
    418 }
    419 
    420 // This function follows the same basic procedure as compress_heterogeneous_r11eac_block
    421 // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
    422 // tries to optimize where it can using SIMD.
    423 static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) {
    424     // Store each row of alpha values in an integer
    425     const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
    426     const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
    427     const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
    428     const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
    429 
    430     // Check for solid blocks. The explanations for these values
    431     // can be found in the comments of compress_r11eac_block above
    432     if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
    433         if (0 == alphaRow1) {
    434             // Fully transparent block
    435             return 0x0020000000002000ULL;
    436         } else if (0xFFFFFFFF == alphaRow1) {
    437             // Fully opaque block
    438             return 0xFFFFFFFFFFFFFFFFULL;
    439         }
    440     }
    441 
    442     // Convert each integer of alpha values into an integer of indices
    443     const uint32_t indexRow1 = convert_indices(alphaRow1);
    444     const uint32_t indexRow2 = convert_indices(alphaRow2);
    445     const uint32_t indexRow3 = convert_indices(alphaRow3);
    446     const uint32_t indexRow4 = convert_indices(alphaRow4);
    447 
    448     // Interleave the indices from the top two rows and bottom two rows
    449     // prior to passing them to interleave6. Since each index is at most
    450     // three bits, then each byte can hold two indices... The way that the
    451     // compression scheme expects the packing allows us to efficiently pack
    452     // the top two rows and bottom two rows. Interleaving each 6-bit sequence
    453     // and tightly packing it into a uint64_t is a little trickier, which is
    454     // taken care of in interleave6.
    455     const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
    456     const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
    457     const uint64_t indices = interleave6(r1r2, r3r4);
    458 
    459     // Return the packed incdices in the least significant bits with the magic header
    460     return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
    461 }
    462 
    463 static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
    464                                        int width, int height, int rowBytes) {
    465     // Make sure that our data is well-formed enough to be considered for compression
    466     if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
    467         return false;
    468     }
    469 
    470     const int blocksX = width >> 2;
    471     const int blocksY = height >> 2;
    472 
    473     uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
    474     for (int y = 0; y < blocksY; ++y) {
    475         for (int x = 0; x < blocksX; ++x) {
    476             // Compress it
    477             *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
    478             ++encPtr;
    479         }
    480         src += 4 * rowBytes;
    481     }
    482     return true;
    483 }
    484 #endif // COMPRESS_R11_EAC_FASTEST
    485 
    486 ////////////////////////////////////////////////////////////////////////////////
    487 //
    488 // Utility functions used by the blitter
    489 //
    490 ////////////////////////////////////////////////////////////////////////////////
    491 
    492 // The R11 EAC format expects that indices are given in column-major order. Since
    493 // we receive alpha values in raster order, this usually means that we have to use
    494 // pack6 above to properly pack our indices. However, if our indices come from the
    495 // blitter, then each integer will be a column of indices, and hence can be efficiently
    496 // packed. This function takes the bottom three bits of each byte and places them in
    497 // the least significant 12 bits of the resulting integer.
    498 static inline uint32_t pack_indices_vertical(uint32_t x) {
    499 #if defined (SK_CPU_BENDIAN)
    500     return
    501         (x & 7) |
    502         ((x >> 5) & (7 << 3)) |
    503         ((x >> 10) & (7 << 6)) |
    504         ((x >> 15) & (7 << 9));
    505 #else
    506     return
    507         ((x >> 24) & 7) |
    508         ((x >> 13) & (7 << 3)) |
    509         ((x >> 2) & (7 << 6)) |
    510         ((x << 9) & (7 << 9));
    511 #endif
    512 }
    513 
    514 // This function returns the compressed format of a block given as four columns of
    515 // alpha values. Each column is assumed to be loaded from top to bottom, and hence
    516 // must first be converted to indices and then packed into the resulting 64-bit
    517 // integer.
    518 inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) {
    519 
    520     const uint32_t* src = reinterpret_cast<const uint32_t*>(block);
    521     uint64_t* dst = reinterpret_cast<uint64_t*>(dstPtr);
    522 
    523     const uint32_t alphaColumn0 = src[0];
    524     const uint32_t alphaColumn1 = src[1];
    525     const uint32_t alphaColumn2 = src[2];
    526     const uint32_t alphaColumn3 = src[3];
    527 
    528     if (alphaColumn0 == alphaColumn1 &&
    529         alphaColumn2 == alphaColumn3 &&
    530         alphaColumn0 == alphaColumn2) {
    531 
    532         if (0 == alphaColumn0) {
    533             // Transparent
    534             *dst = 0x0020000000002000ULL;
    535             return;
    536         }
    537         else if (0xFFFFFFFF == alphaColumn0) {
    538             // Opaque
    539             *dst = 0xFFFFFFFFFFFFFFFFULL;
    540             return;
    541         }
    542     }
    543 
    544     const uint32_t indexColumn0 = convert_indices(alphaColumn0);
    545     const uint32_t indexColumn1 = convert_indices(alphaColumn1);
    546     const uint32_t indexColumn2 = convert_indices(alphaColumn2);
    547     const uint32_t indexColumn3 = convert_indices(alphaColumn3);
    548 
    549     const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
    550     const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
    551     const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
    552     const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
    553 
    554     *dst = SkEndian_SwapBE64(0x8490000000000000ULL |
    555                              (static_cast<uint64_t>(packedIndexColumn0) << 36) |
    556                              (static_cast<uint64_t>(packedIndexColumn1) << 24) |
    557                              static_cast<uint64_t>(packedIndexColumn2 << 12) |
    558                              static_cast<uint64_t>(packedIndexColumn3));
    559 }
    560 
    561 static inline int get_r11_eac_index(uint64_t block, int x, int y) {
    562     SkASSERT(x >= 0 && x < 4);
    563     SkASSERT(y >= 0 && y < 4);
    564     const int idx = x*4 + y;
    565     return (block >> ((15-idx)*3)) & 0x7;
    566 }
    567 
    568 static void decompress_r11_eac_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) {
    569     const uint64_t block = SkEndian_SwapBE64(*(reinterpret_cast<const uint64_t *>(src)));
    570 
    571     const int base_cw = (block >> 56) & 0xFF;
    572     const int mod = (block >> 52) & 0xF;
    573     const int palette_idx = (block >> 48) & 0xF;
    574 
    575     const int* palette = kR11EACModifierPalettes[palette_idx];
    576 
    577     for (int j = 0; j < 4; ++j) {
    578         for (int i = 0; i < 4; ++i) {
    579             const int idx = get_r11_eac_index(block, i, j);
    580             const int val = base_cw*8 + 4 + palette[idx]*mod*8;
    581             if (val < 0) {
    582                 dst[i] = 0;
    583             } else if (val > 2047) {
    584                 dst[i] = 0xFF;
    585             } else {
    586                 dst[i] = (val >> 3) & 0xFF;
    587             }
    588         }
    589         dst += dstRowBytes;
    590     }
    591 }
    592 
    593 // This is the type passed as the CompressorType argument of the compressed
    594 // blitter for the R11 EAC format. The static functions required to be in this
    595 // struct are documented in SkTextureCompressor_Blitter.h
    596 struct CompressorR11EAC {
    597     static inline void CompressA8Vertical(uint8_t* dst, const uint8_t* src) {
    598         compress_block_vertical(dst, src);
    599     }
    600 
    601     static inline void CompressA8Horizontal(uint8_t* dst, const uint8_t* src,
    602                                             int srcRowBytes) {
    603         *(reinterpret_cast<uint64_t*>(dst)) = compress_r11eac_block_fast(src, srcRowBytes);
    604     }
    605 
    606 #if PEDANTIC_BLIT_RECT
    607     static inline void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
    608                                    const uint8_t* mask) {
    609         // TODO: krajcevski
    610         // The implementation of this function should be similar to that of LATC, since
    611         // the R11EAC indices directly correspond to pixel values.
    612         SkFAIL("Implement me!");
    613     }
    614 #endif
    615 };
    616 
    617 ////////////////////////////////////////////////////////////////////////////////
    618 
    619 namespace SkTextureCompressor {
    620 
    621 bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) {
    622 
    623 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
    624 
    625     return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
    626 
    627 #elif COMPRESS_R11_EAC_FASTEST
    628 
    629     return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
    630 
    631 #else
    632 #error "Must choose R11 EAC algorithm"
    633 #endif
    634 }
    635 
    636 SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer,
    637                                SkTBlitterAllocator* allocator) {
    638 
    639     if ((width % 4) != 0 || (height % 4) != 0) {
    640         return NULL;
    641     }
    642 
    643     // Memset the output buffer to an encoding that decodes to zero. We must do this
    644     // in order to avoid having uninitialized values in the buffer if the blitter
    645     // decides not to write certain scanlines (and skip entire rows of blocks).
    646     // In the case of R11, we use the encoding from recognizing all zero pixels from above.
    647     const int nBlocks = (width * height / 16);  // 4x4 pixel blocks.
    648     uint64_t *dst = reinterpret_cast<uint64_t *>(outputBuffer);
    649     for (int i = 0; i < nBlocks; ++i) {
    650         *dst = 0x0020000000002000ULL;
    651         ++dst;
    652     }
    653 
    654     return allocator->createT<
    655         SkTCompressedAlphaBlitter<4, 8, CompressorR11EAC>, int, int, void*>
    656         (width, height, outputBuffer);
    657 }
    658 
    659 void DecompressR11EAC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) {
    660     for (int j = 0; j < height; j += 4) {
    661         for (int i = 0; i < width; i += 4) {
    662             decompress_r11_eac_block(dst + i, dstRowBytes, src);
    663             src += 8;
    664         }
    665         dst += 4 * dstRowBytes;
    666     }
    667 }
    668 
    669 }  // namespace SkTextureCompressor
    670