1 /* 2 ** 2007 October 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement a memory 13 ** allocation subsystem for use by SQLite. 14 ** 15 ** This version of the memory allocation subsystem omits all 16 ** use of malloc(). The application gives SQLite a block of memory 17 ** before calling sqlite3_initialize() from which allocations 18 ** are made and returned by the xMalloc() and xRealloc() 19 ** implementations. Once sqlite3_initialize() has been called, 20 ** the amount of memory available to SQLite is fixed and cannot 21 ** be changed. 22 ** 23 ** This version of the memory allocation subsystem is included 24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. 25 ** 26 ** This memory allocator uses the following algorithm: 27 ** 28 ** 1. All memory allocations sizes are rounded up to a power of 2. 29 ** 30 ** 2. If two adjacent free blocks are the halves of a larger block, 31 ** then the two blocks are coalesed into the single larger block. 32 ** 33 ** 3. New memory is allocated from the first available free block. 34 ** 35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions 36 ** Concerning Dynamic Storage Allocation". Journal of the Association for 37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. 38 ** 39 ** Let n be the size of the largest allocation divided by the minimum 40 ** allocation size (after rounding all sizes up to a power of 2.) Let M 41 ** be the maximum amount of memory ever outstanding at one time. Let 42 ** N be the total amount of memory available for allocation. Robson 43 ** proved that this memory allocator will never breakdown due to 44 ** fragmentation as long as the following constraint holds: 45 ** 46 ** N >= M*(1 + log2(n)/2) - n + 1 47 ** 48 ** The sqlite3_status() logic tracks the maximum values of n and M so 49 ** that an application can, at any time, verify this constraint. 50 */ 51 #include "sqliteInt.h" 52 53 /* 54 ** This version of the memory allocator is used only when 55 ** SQLITE_ENABLE_MEMSYS5 is defined. 56 */ 57 #ifdef SQLITE_ENABLE_MEMSYS5 58 59 /* 60 ** A minimum allocation is an instance of the following structure. 61 ** Larger allocations are an array of these structures where the 62 ** size of the array is a power of 2. 63 ** 64 ** The size of this object must be a power of two. That fact is 65 ** verified in memsys5Init(). 66 */ 67 typedef struct Mem5Link Mem5Link; 68 struct Mem5Link { 69 int next; /* Index of next free chunk */ 70 int prev; /* Index of previous free chunk */ 71 }; 72 73 /* 74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since 75 ** mem5.szAtom is always at least 8 and 32-bit integers are used, 76 ** it is not actually possible to reach this limit. 77 */ 78 #define LOGMAX 30 79 80 /* 81 ** Masks used for mem5.aCtrl[] elements. 82 */ 83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ 84 #define CTRL_FREE 0x20 /* True if not checked out */ 85 86 /* 87 ** All of the static variables used by this module are collected 88 ** into a single structure named "mem5". This is to keep the 89 ** static variables organized and to reduce namespace pollution 90 ** when this module is combined with other in the amalgamation. 91 */ 92 static SQLITE_WSD struct Mem5Global { 93 /* 94 ** Memory available for allocation 95 */ 96 int szAtom; /* Smallest possible allocation in bytes */ 97 int nBlock; /* Number of szAtom sized blocks in zPool */ 98 u8 *zPool; /* Memory available to be allocated */ 99 100 /* 101 ** Mutex to control access to the memory allocation subsystem. 102 */ 103 sqlite3_mutex *mutex; 104 105 /* 106 ** Performance statistics 107 */ 108 u64 nAlloc; /* Total number of calls to malloc */ 109 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ 110 u64 totalExcess; /* Total internal fragmentation */ 111 u32 currentOut; /* Current checkout, including internal fragmentation */ 112 u32 currentCount; /* Current number of distinct checkouts */ 113 u32 maxOut; /* Maximum instantaneous currentOut */ 114 u32 maxCount; /* Maximum instantaneous currentCount */ 115 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ 116 117 /* 118 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of 119 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. 120 ** and so forth. 121 */ 122 int aiFreelist[LOGMAX+1]; 123 124 /* 125 ** Space for tracking which blocks are checked out and the size 126 ** of each block. One byte per block. 127 */ 128 u8 *aCtrl; 129 130 } mem5; 131 132 /* 133 ** Access the static variable through a macro for SQLITE_OMIT_WSD 134 */ 135 #define mem5 GLOBAL(struct Mem5Global, mem5) 136 137 /* 138 ** Assuming mem5.zPool is divided up into an array of Mem5Link 139 ** structures, return a pointer to the idx-th such lik. 140 */ 141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) 142 143 /* 144 ** Unlink the chunk at mem5.aPool[i] from list it is currently 145 ** on. It should be found on mem5.aiFreelist[iLogsize]. 146 */ 147 static void memsys5Unlink(int i, int iLogsize){ 148 int next, prev; 149 assert( i>=0 && i<mem5.nBlock ); 150 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 151 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 152 153 next = MEM5LINK(i)->next; 154 prev = MEM5LINK(i)->prev; 155 if( prev<0 ){ 156 mem5.aiFreelist[iLogsize] = next; 157 }else{ 158 MEM5LINK(prev)->next = next; 159 } 160 if( next>=0 ){ 161 MEM5LINK(next)->prev = prev; 162 } 163 } 164 165 /* 166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize 167 ** free list. 168 */ 169 static void memsys5Link(int i, int iLogsize){ 170 int x; 171 assert( sqlite3_mutex_held(mem5.mutex) ); 172 assert( i>=0 && i<mem5.nBlock ); 173 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 174 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 175 176 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; 177 MEM5LINK(i)->prev = -1; 178 if( x>=0 ){ 179 assert( x<mem5.nBlock ); 180 MEM5LINK(x)->prev = i; 181 } 182 mem5.aiFreelist[iLogsize] = i; 183 } 184 185 /* 186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex 187 ** will already be held (obtained by code in malloc.c) if 188 ** sqlite3GlobalConfig.bMemStat is true. 189 */ 190 static void memsys5Enter(void){ 191 sqlite3_mutex_enter(mem5.mutex); 192 } 193 static void memsys5Leave(void){ 194 sqlite3_mutex_leave(mem5.mutex); 195 } 196 197 /* 198 ** Return the size of an outstanding allocation, in bytes. The 199 ** size returned omits the 8-byte header overhead. This only 200 ** works for chunks that are currently checked out. 201 */ 202 static int memsys5Size(void *p){ 203 int iSize = 0; 204 if( p ){ 205 int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; 206 assert( i>=0 && i<mem5.nBlock ); 207 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); 208 } 209 return iSize; 210 } 211 212 /* 213 ** Find the first entry on the freelist iLogsize. Unlink that 214 ** entry and return its index. 215 */ 216 static int memsys5UnlinkFirst(int iLogsize){ 217 int i; 218 int iFirst; 219 220 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 221 i = iFirst = mem5.aiFreelist[iLogsize]; 222 assert( iFirst>=0 ); 223 while( i>0 ){ 224 if( i<iFirst ) iFirst = i; 225 i = MEM5LINK(i)->next; 226 } 227 memsys5Unlink(iFirst, iLogsize); 228 return iFirst; 229 } 230 231 /* 232 ** Return a block of memory of at least nBytes in size. 233 ** Return NULL if unable. Return NULL if nBytes==0. 234 ** 235 ** The caller guarantees that nByte positive. 236 ** 237 ** The caller has obtained a mutex prior to invoking this 238 ** routine so there is never any chance that two or more 239 ** threads can be in this routine at the same time. 240 */ 241 static void *memsys5MallocUnsafe(int nByte){ 242 int i; /* Index of a mem5.aPool[] slot */ 243 int iBin; /* Index into mem5.aiFreelist[] */ 244 int iFullSz; /* Size of allocation rounded up to power of 2 */ 245 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ 246 247 /* nByte must be a positive */ 248 assert( nByte>0 ); 249 250 /* Keep track of the maximum allocation request. Even unfulfilled 251 ** requests are counted */ 252 if( (u32)nByte>mem5.maxRequest ){ 253 mem5.maxRequest = nByte; 254 } 255 256 /* Abort if the requested allocation size is larger than the largest 257 ** power of two that we can represent using 32-bit signed integers. 258 */ 259 if( nByte > 0x40000000 ){ 260 return 0; 261 } 262 263 /* Round nByte up to the next valid power of two */ 264 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} 265 266 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free 267 ** block. If not, then split a block of the next larger power of 268 ** two in order to create a new free block of size iLogsize. 269 */ 270 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} 271 if( iBin>LOGMAX ){ 272 testcase( sqlite3GlobalConfig.xLog!=0 ); 273 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); 274 return 0; 275 } 276 i = memsys5UnlinkFirst(iBin); 277 while( iBin>iLogsize ){ 278 int newSize; 279 280 iBin--; 281 newSize = 1 << iBin; 282 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; 283 memsys5Link(i+newSize, iBin); 284 } 285 mem5.aCtrl[i] = iLogsize; 286 287 /* Update allocator performance statistics. */ 288 mem5.nAlloc++; 289 mem5.totalAlloc += iFullSz; 290 mem5.totalExcess += iFullSz - nByte; 291 mem5.currentCount++; 292 mem5.currentOut += iFullSz; 293 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; 294 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; 295 296 /* Return a pointer to the allocated memory. */ 297 return (void*)&mem5.zPool[i*mem5.szAtom]; 298 } 299 300 /* 301 ** Free an outstanding memory allocation. 302 */ 303 static void memsys5FreeUnsafe(void *pOld){ 304 u32 size, iLogsize; 305 int iBlock; 306 307 /* Set iBlock to the index of the block pointed to by pOld in 308 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. 309 */ 310 iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom; 311 312 /* Check that the pointer pOld points to a valid, non-free block. */ 313 assert( iBlock>=0 && iBlock<mem5.nBlock ); 314 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); 315 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); 316 317 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; 318 size = 1<<iLogsize; 319 assert( iBlock+size-1<(u32)mem5.nBlock ); 320 321 mem5.aCtrl[iBlock] |= CTRL_FREE; 322 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; 323 assert( mem5.currentCount>0 ); 324 assert( mem5.currentOut>=(size*mem5.szAtom) ); 325 mem5.currentCount--; 326 mem5.currentOut -= size*mem5.szAtom; 327 assert( mem5.currentOut>0 || mem5.currentCount==0 ); 328 assert( mem5.currentCount>0 || mem5.currentOut==0 ); 329 330 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 331 while( ALWAYS(iLogsize<LOGMAX) ){ 332 int iBuddy; 333 if( (iBlock>>iLogsize) & 1 ){ 334 iBuddy = iBlock - size; 335 }else{ 336 iBuddy = iBlock + size; 337 } 338 assert( iBuddy>=0 ); 339 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; 340 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; 341 memsys5Unlink(iBuddy, iLogsize); 342 iLogsize++; 343 if( iBuddy<iBlock ){ 344 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; 345 mem5.aCtrl[iBlock] = 0; 346 iBlock = iBuddy; 347 }else{ 348 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 349 mem5.aCtrl[iBuddy] = 0; 350 } 351 size *= 2; 352 } 353 memsys5Link(iBlock, iLogsize); 354 } 355 356 /* 357 ** Allocate nBytes of memory 358 */ 359 static void *memsys5Malloc(int nBytes){ 360 sqlite3_int64 *p = 0; 361 if( nBytes>0 ){ 362 memsys5Enter(); 363 p = memsys5MallocUnsafe(nBytes); 364 memsys5Leave(); 365 } 366 return (void*)p; 367 } 368 369 /* 370 ** Free memory. 371 ** 372 ** The outer layer memory allocator prevents this routine from 373 ** being called with pPrior==0. 374 */ 375 static void memsys5Free(void *pPrior){ 376 assert( pPrior!=0 ); 377 memsys5Enter(); 378 memsys5FreeUnsafe(pPrior); 379 memsys5Leave(); 380 } 381 382 /* 383 ** Change the size of an existing memory allocation. 384 ** 385 ** The outer layer memory allocator prevents this routine from 386 ** being called with pPrior==0. 387 ** 388 ** nBytes is always a value obtained from a prior call to 389 ** memsys5Round(). Hence nBytes is always a non-negative power 390 ** of two. If nBytes==0 that means that an oversize allocation 391 ** (an allocation larger than 0x40000000) was requested and this 392 ** routine should return 0 without freeing pPrior. 393 */ 394 static void *memsys5Realloc(void *pPrior, int nBytes){ 395 int nOld; 396 void *p; 397 assert( pPrior!=0 ); 398 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ 399 assert( nBytes>=0 ); 400 if( nBytes==0 ){ 401 return 0; 402 } 403 nOld = memsys5Size(pPrior); 404 if( nBytes<=nOld ){ 405 return pPrior; 406 } 407 memsys5Enter(); 408 p = memsys5MallocUnsafe(nBytes); 409 if( p ){ 410 memcpy(p, pPrior, nOld); 411 memsys5FreeUnsafe(pPrior); 412 } 413 memsys5Leave(); 414 return p; 415 } 416 417 /* 418 ** Round up a request size to the next valid allocation size. If 419 ** the allocation is too large to be handled by this allocation system, 420 ** return 0. 421 ** 422 ** All allocations must be a power of two and must be expressed by a 423 ** 32-bit signed integer. Hence the largest allocation is 0x40000000 424 ** or 1073741824 bytes. 425 */ 426 static int memsys5Roundup(int n){ 427 int iFullSz; 428 if( n > 0x40000000 ) return 0; 429 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); 430 return iFullSz; 431 } 432 433 /* 434 ** Return the ceiling of the logarithm base 2 of iValue. 435 ** 436 ** Examples: memsys5Log(1) -> 0 437 ** memsys5Log(2) -> 1 438 ** memsys5Log(4) -> 2 439 ** memsys5Log(5) -> 3 440 ** memsys5Log(8) -> 3 441 ** memsys5Log(9) -> 4 442 */ 443 static int memsys5Log(int iValue){ 444 int iLog; 445 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); 446 return iLog; 447 } 448 449 /* 450 ** Initialize the memory allocator. 451 ** 452 ** This routine is not threadsafe. The caller must be holding a mutex 453 ** to prevent multiple threads from entering at the same time. 454 */ 455 static int memsys5Init(void *NotUsed){ 456 int ii; /* Loop counter */ 457 int nByte; /* Number of bytes of memory available to this allocator */ 458 u8 *zByte; /* Memory usable by this allocator */ 459 int nMinLog; /* Log base 2 of minimum allocation size in bytes */ 460 int iOffset; /* An offset into mem5.aCtrl[] */ 461 462 UNUSED_PARAMETER(NotUsed); 463 464 /* For the purposes of this routine, disable the mutex */ 465 mem5.mutex = 0; 466 467 /* The size of a Mem5Link object must be a power of two. Verify that 468 ** this is case. 469 */ 470 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); 471 472 nByte = sqlite3GlobalConfig.nHeap; 473 zByte = (u8*)sqlite3GlobalConfig.pHeap; 474 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ 475 476 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ 477 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); 478 mem5.szAtom = (1<<nMinLog); 479 while( (int)sizeof(Mem5Link)>mem5.szAtom ){ 480 mem5.szAtom = mem5.szAtom << 1; 481 } 482 483 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); 484 mem5.zPool = zByte; 485 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; 486 487 for(ii=0; ii<=LOGMAX; ii++){ 488 mem5.aiFreelist[ii] = -1; 489 } 490 491 iOffset = 0; 492 for(ii=LOGMAX; ii>=0; ii--){ 493 int nAlloc = (1<<ii); 494 if( (iOffset+nAlloc)<=mem5.nBlock ){ 495 mem5.aCtrl[iOffset] = ii | CTRL_FREE; 496 memsys5Link(iOffset, ii); 497 iOffset += nAlloc; 498 } 499 assert((iOffset+nAlloc)>mem5.nBlock); 500 } 501 502 /* If a mutex is required for normal operation, allocate one */ 503 if( sqlite3GlobalConfig.bMemstat==0 ){ 504 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 505 } 506 507 return SQLITE_OK; 508 } 509 510 /* 511 ** Deinitialize this module. 512 */ 513 static void memsys5Shutdown(void *NotUsed){ 514 UNUSED_PARAMETER(NotUsed); 515 mem5.mutex = 0; 516 return; 517 } 518 519 #ifdef SQLITE_TEST 520 /* 521 ** Open the file indicated and write a log of all unfreed memory 522 ** allocations into that log. 523 */ 524 void sqlite3Memsys5Dump(const char *zFilename){ 525 FILE *out; 526 int i, j, n; 527 int nMinLog; 528 529 if( zFilename==0 || zFilename[0]==0 ){ 530 out = stdout; 531 }else{ 532 out = fopen(zFilename, "w"); 533 if( out==0 ){ 534 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", 535 zFilename); 536 return; 537 } 538 } 539 memsys5Enter(); 540 nMinLog = memsys5Log(mem5.szAtom); 541 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ 542 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} 543 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); 544 } 545 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); 546 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); 547 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); 548 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); 549 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); 550 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); 551 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); 552 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); 553 memsys5Leave(); 554 if( out==stdout ){ 555 fflush(stdout); 556 }else{ 557 fclose(out); 558 } 559 } 560 #endif 561 562 /* 563 ** This routine is the only routine in this file with external 564 ** linkage. It returns a pointer to a static sqlite3_mem_methods 565 ** struct populated with the memsys5 methods. 566 */ 567 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ 568 static const sqlite3_mem_methods memsys5Methods = { 569 memsys5Malloc, 570 memsys5Free, 571 memsys5Realloc, 572 memsys5Size, 573 memsys5Roundup, 574 memsys5Init, 575 memsys5Shutdown, 576 0 577 }; 578 return &memsys5Methods; 579 } 580 581 #endif /* SQLITE_ENABLE_MEMSYS5 */ 582