1 /* 2 ** 2007 August 28 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement mutexes for pthreads 13 */ 14 #include "sqliteInt.h" 15 16 /* 17 ** The code in this file is only used if we are compiling threadsafe 18 ** under unix with pthreads. 19 ** 20 ** Note that this implementation requires a version of pthreads that 21 ** supports recursive mutexes. 22 */ 23 #ifdef SQLITE_MUTEX_PTHREADS 24 25 #include <pthread.h> 26 27 /* 28 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields 29 ** are necessary under two condidtions: (1) Debug builds and (2) using 30 ** home-grown mutexes. Encapsulate these conditions into a single #define. 31 */ 32 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX) 33 # define SQLITE_MUTEX_NREF 1 34 #else 35 # define SQLITE_MUTEX_NREF 0 36 #endif 37 38 /* 39 ** Each recursive mutex is an instance of the following structure. 40 */ 41 struct sqlite3_mutex { 42 pthread_mutex_t mutex; /* Mutex controlling the lock */ 43 #if SQLITE_MUTEX_NREF 44 int id; /* Mutex type */ 45 volatile int nRef; /* Number of entrances */ 46 volatile pthread_t owner; /* Thread that is within this mutex */ 47 int trace; /* True to trace changes */ 48 #endif 49 }; 50 #if SQLITE_MUTEX_NREF 51 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 } 52 #else 53 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER } 54 #endif 55 56 /* 57 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are 58 ** intended for use only inside assert() statements. On some platforms, 59 ** there might be race conditions that can cause these routines to 60 ** deliver incorrect results. In particular, if pthread_equal() is 61 ** not an atomic operation, then these routines might delivery 62 ** incorrect results. On most platforms, pthread_equal() is a 63 ** comparison of two integers and is therefore atomic. But we are 64 ** told that HPUX is not such a platform. If so, then these routines 65 ** will not always work correctly on HPUX. 66 ** 67 ** On those platforms where pthread_equal() is not atomic, SQLite 68 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to 69 ** make sure no assert() statements are evaluated and hence these 70 ** routines are never called. 71 */ 72 #if !defined(NDEBUG) || defined(SQLITE_DEBUG) 73 static int pthreadMutexHeld(sqlite3_mutex *p){ 74 return (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); 75 } 76 static int pthreadMutexNotheld(sqlite3_mutex *p){ 77 return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; 78 } 79 #endif 80 81 /* 82 ** Initialize and deinitialize the mutex subsystem. 83 */ 84 static int pthreadMutexInit(void){ return SQLITE_OK; } 85 static int pthreadMutexEnd(void){ return SQLITE_OK; } 86 87 /* 88 ** The sqlite3_mutex_alloc() routine allocates a new 89 ** mutex and returns a pointer to it. If it returns NULL 90 ** that means that a mutex could not be allocated. SQLite 91 ** will unwind its stack and return an error. The argument 92 ** to sqlite3_mutex_alloc() is one of these integer constants: 93 ** 94 ** <ul> 95 ** <li> SQLITE_MUTEX_FAST 96 ** <li> SQLITE_MUTEX_RECURSIVE 97 ** <li> SQLITE_MUTEX_STATIC_MASTER 98 ** <li> SQLITE_MUTEX_STATIC_MEM 99 ** <li> SQLITE_MUTEX_STATIC_MEM2 100 ** <li> SQLITE_MUTEX_STATIC_PRNG 101 ** <li> SQLITE_MUTEX_STATIC_LRU 102 ** <li> SQLITE_MUTEX_STATIC_PMEM 103 ** </ul> 104 ** 105 ** The first two constants cause sqlite3_mutex_alloc() to create 106 ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE 107 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. 108 ** The mutex implementation does not need to make a distinction 109 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does 110 ** not want to. But SQLite will only request a recursive mutex in 111 ** cases where it really needs one. If a faster non-recursive mutex 112 ** implementation is available on the host platform, the mutex subsystem 113 ** might return such a mutex in response to SQLITE_MUTEX_FAST. 114 ** 115 ** The other allowed parameters to sqlite3_mutex_alloc() each return 116 ** a pointer to a static preexisting mutex. Six static mutexes are 117 ** used by the current version of SQLite. Future versions of SQLite 118 ** may add additional static mutexes. Static mutexes are for internal 119 ** use by SQLite only. Applications that use SQLite mutexes should 120 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or 121 ** SQLITE_MUTEX_RECURSIVE. 122 ** 123 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST 124 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() 125 ** returns a different mutex on every call. But for the static 126 ** mutex types, the same mutex is returned on every call that has 127 ** the same type number. 128 */ 129 static sqlite3_mutex *pthreadMutexAlloc(int iType){ 130 static sqlite3_mutex staticMutexes[] = { 131 SQLITE3_MUTEX_INITIALIZER, 132 SQLITE3_MUTEX_INITIALIZER, 133 SQLITE3_MUTEX_INITIALIZER, 134 SQLITE3_MUTEX_INITIALIZER, 135 SQLITE3_MUTEX_INITIALIZER, 136 SQLITE3_MUTEX_INITIALIZER 137 }; 138 sqlite3_mutex *p; 139 switch( iType ){ 140 case SQLITE_MUTEX_RECURSIVE: { 141 p = sqlite3MallocZero( sizeof(*p) ); 142 if( p ){ 143 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX 144 /* If recursive mutexes are not available, we will have to 145 ** build our own. See below. */ 146 pthread_mutex_init(&p->mutex, 0); 147 #else 148 /* Use a recursive mutex if it is available */ 149 pthread_mutexattr_t recursiveAttr; 150 pthread_mutexattr_init(&recursiveAttr); 151 pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); 152 pthread_mutex_init(&p->mutex, &recursiveAttr); 153 pthread_mutexattr_destroy(&recursiveAttr); 154 #endif 155 #if SQLITE_MUTEX_NREF 156 p->id = iType; 157 #endif 158 } 159 break; 160 } 161 case SQLITE_MUTEX_FAST: { 162 p = sqlite3MallocZero( sizeof(*p) ); 163 if( p ){ 164 #if SQLITE_MUTEX_NREF 165 p->id = iType; 166 #endif 167 pthread_mutex_init(&p->mutex, 0); 168 } 169 break; 170 } 171 default: { 172 assert( iType-2 >= 0 ); 173 assert( iType-2 < ArraySize(staticMutexes) ); 174 p = &staticMutexes[iType-2]; 175 #if SQLITE_MUTEX_NREF 176 p->id = iType; 177 #endif 178 break; 179 } 180 } 181 return p; 182 } 183 184 185 /* 186 ** This routine deallocates a previously 187 ** allocated mutex. SQLite is careful to deallocate every 188 ** mutex that it allocates. 189 */ 190 static void pthreadMutexFree(sqlite3_mutex *p){ 191 assert( p->nRef==0 ); 192 assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); 193 pthread_mutex_destroy(&p->mutex); 194 sqlite3_free(p); 195 } 196 197 /* 198 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt 199 ** to enter a mutex. If another thread is already within the mutex, 200 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return 201 ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK 202 ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can 203 ** be entered multiple times by the same thread. In such cases the, 204 ** mutex must be exited an equal number of times before another thread 205 ** can enter. If the same thread tries to enter any other kind of mutex 206 ** more than once, the behavior is undefined. 207 */ 208 static void pthreadMutexEnter(sqlite3_mutex *p){ 209 assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); 210 211 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX 212 /* If recursive mutexes are not available, then we have to grow 213 ** our own. This implementation assumes that pthread_equal() 214 ** is atomic - that it cannot be deceived into thinking self 215 ** and p->owner are equal if p->owner changes between two values 216 ** that are not equal to self while the comparison is taking place. 217 ** This implementation also assumes a coherent cache - that 218 ** separate processes cannot read different values from the same 219 ** address at the same time. If either of these two conditions 220 ** are not met, then the mutexes will fail and problems will result. 221 */ 222 { 223 pthread_t self = pthread_self(); 224 if( p->nRef>0 && pthread_equal(p->owner, self) ){ 225 p->nRef++; 226 }else{ 227 pthread_mutex_lock(&p->mutex); 228 assert( p->nRef==0 ); 229 p->owner = self; 230 p->nRef = 1; 231 } 232 } 233 #else 234 /* Use the built-in recursive mutexes if they are available. 235 */ 236 pthread_mutex_lock(&p->mutex); 237 #if SQLITE_MUTEX_NREF 238 assert( p->nRef>0 || p->owner==0 ); 239 p->owner = pthread_self(); 240 p->nRef++; 241 #endif 242 #endif 243 244 #ifdef SQLITE_DEBUG 245 if( p->trace ){ 246 printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); 247 } 248 #endif 249 } 250 static int pthreadMutexTry(sqlite3_mutex *p){ 251 int rc; 252 assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) ); 253 254 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX 255 /* If recursive mutexes are not available, then we have to grow 256 ** our own. This implementation assumes that pthread_equal() 257 ** is atomic - that it cannot be deceived into thinking self 258 ** and p->owner are equal if p->owner changes between two values 259 ** that are not equal to self while the comparison is taking place. 260 ** This implementation also assumes a coherent cache - that 261 ** separate processes cannot read different values from the same 262 ** address at the same time. If either of these two conditions 263 ** are not met, then the mutexes will fail and problems will result. 264 */ 265 { 266 pthread_t self = pthread_self(); 267 if( p->nRef>0 && pthread_equal(p->owner, self) ){ 268 p->nRef++; 269 rc = SQLITE_OK; 270 }else if( pthread_mutex_trylock(&p->mutex)==0 ){ 271 assert( p->nRef==0 ); 272 p->owner = self; 273 p->nRef = 1; 274 rc = SQLITE_OK; 275 }else{ 276 rc = SQLITE_BUSY; 277 } 278 } 279 #else 280 /* Use the built-in recursive mutexes if they are available. 281 */ 282 if( pthread_mutex_trylock(&p->mutex)==0 ){ 283 #if SQLITE_MUTEX_NREF 284 p->owner = pthread_self(); 285 p->nRef++; 286 #endif 287 rc = SQLITE_OK; 288 }else{ 289 rc = SQLITE_BUSY; 290 } 291 #endif 292 293 #ifdef SQLITE_DEBUG 294 if( rc==SQLITE_OK && p->trace ){ 295 printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); 296 } 297 #endif 298 return rc; 299 } 300 301 /* 302 ** The sqlite3_mutex_leave() routine exits a mutex that was 303 ** previously entered by the same thread. The behavior 304 ** is undefined if the mutex is not currently entered or 305 ** is not currently allocated. SQLite will never do either. 306 */ 307 static void pthreadMutexLeave(sqlite3_mutex *p){ 308 assert( pthreadMutexHeld(p) ); 309 #if SQLITE_MUTEX_NREF 310 p->nRef--; 311 if( p->nRef==0 ) p->owner = 0; 312 #endif 313 assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); 314 315 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX 316 if( p->nRef==0 ){ 317 pthread_mutex_unlock(&p->mutex); 318 } 319 #else 320 pthread_mutex_unlock(&p->mutex); 321 #endif 322 323 #ifdef SQLITE_DEBUG 324 if( p->trace ){ 325 printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); 326 } 327 #endif 328 } 329 330 sqlite3_mutex_methods const *sqlite3DefaultMutex(void){ 331 static const sqlite3_mutex_methods sMutex = { 332 pthreadMutexInit, 333 pthreadMutexEnd, 334 pthreadMutexAlloc, 335 pthreadMutexFree, 336 pthreadMutexEnter, 337 pthreadMutexTry, 338 pthreadMutexLeave, 339 #ifdef SQLITE_DEBUG 340 pthreadMutexHeld, 341 pthreadMutexNotheld 342 #else 343 0, 344 0 345 #endif 346 }; 347 348 return &sMutex; 349 } 350 351 #endif /* SQLITE_MUTEX_PTHREAD */ 352