1 # 2010 July 16 2 # 3 # The author disclaims copyright to this source code. In place of 4 # a legal notice, here is a blessing: 5 # 6 # May you do good and not evil. 7 # May you find forgiveness for yourself and forgive others. 8 # May you share freely, never taking more than you give. 9 # 10 #*********************************************************************** 11 # 12 # This file implements tests to verify that the "testable statements" in 13 # the lang_select.html document are correct. 14 # 15 16 set testdir [file dirname $argv0] 17 source $testdir/tester.tcl 18 19 do_execsql_test e_select-1.0 { 20 CREATE TABLE t1(a, b); 21 INSERT INTO t1 VALUES('a', 'one'); 22 INSERT INTO t1 VALUES('b', 'two'); 23 INSERT INTO t1 VALUES('c', 'three'); 24 25 CREATE TABLE t2(a, b); 26 INSERT INTO t2 VALUES('a', 'I'); 27 INSERT INTO t2 VALUES('b', 'II'); 28 INSERT INTO t2 VALUES('c', 'III'); 29 30 CREATE TABLE t3(a, c); 31 INSERT INTO t3 VALUES('a', 1); 32 INSERT INTO t3 VALUES('b', 2); 33 34 CREATE TABLE t4(a, c); 35 INSERT INTO t4 VALUES('a', NULL); 36 INSERT INTO t4 VALUES('b', 2); 37 } {} 38 set t1_cross_t2 [list \ 39 a one a I a one b II \ 40 a one c III b two a I \ 41 b two b II b two c III \ 42 c three a I c three b II \ 43 c three c III \ 44 ] 45 set t1_cross_t1 [list \ 46 a one a one a one b two \ 47 a one c three b two a one \ 48 b two b two b two c three \ 49 c three a one c three b two \ 50 c three c three \ 51 ] 52 53 54 # This proc is a specialized version of [do_execsql_test]. 55 # 56 # The second argument to this proc must be a SELECT statement that 57 # features a cross join of some time. Instead of the usual ",", 58 # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 59 # substituted. 60 # 61 # This test runs the SELECT three times - once with: 62 # 63 # * s/%JOIN%/,/ 64 # * s/%JOIN%/JOIN/ 65 # * s/%JOIN%/INNER JOIN/ 66 # * s/%JOIN%/CROSS JOIN/ 67 # 68 # and checks that each time the results of the SELECT are $res. 69 # 70 proc do_join_test {tn select res} { 71 foreach {tn2 joinop} [list 1 , 2 "CROSS JOIN" 3 "INNER JOIN"] { 72 set S [string map [list %JOIN% $joinop] $select] 73 uplevel do_execsql_test $tn.$tn2 [list $S] [list $res] 74 } 75 } 76 77 #------------------------------------------------------------------------- 78 # The following tests check that all paths on the syntax diagrams on 79 # the lang_select.html page may be taken. 80 # 81 # EVIDENCE-OF: R-18428-22111 -- syntax diagram join-constraint 82 # 83 do_join_test e_select-0.1.1 { 84 SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a) 85 } {3} 86 do_join_test e_select-0.1.2 { 87 SELECT count(*) FROM t1 %JOIN% t2 USING (a) 88 } {3} 89 do_join_test e_select-0.1.3 { 90 SELECT count(*) FROM t1 %JOIN% t2 91 } {9} 92 do_catchsql_test e_select-0.1.4 { 93 SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a) 94 } {1 {cannot have both ON and USING clauses in the same join}} 95 do_catchsql_test e_select-0.1.5 { 96 SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a) 97 } {1 {near "ON": syntax error}} 98 99 # EVIDENCE-OF: R-44854-11739 -- syntax diagram select-core 100 # 101 # 0: SELECT ... 102 # 1: SELECT DISTINCT ... 103 # 2: SELECT ALL ... 104 # 105 # 0: No FROM clause 106 # 1: Has FROM clause 107 # 108 # 0: No WHERE clause 109 # 1: Has WHERE clause 110 # 111 # 0: No GROUP BY clause 112 # 1: Has GROUP BY clause 113 # 2: Has GROUP BY and HAVING clauses 114 # 115 do_select_tests e_select-0.2 { 116 0000.1 "SELECT 1, 2, 3 " {1 2 3} 117 1000.1 "SELECT DISTINCT 1, 2, 3 " {1 2 3} 118 2000.1 "SELECT ALL 1, 2, 3 " {1 2 3} 119 120 0100.1 "SELECT a, b, a||b FROM t1 " { 121 a one aone b two btwo c three cthree 122 } 123 1100.1 "SELECT DISTINCT a, b, a||b FROM t1 " { 124 a one aone b two btwo c three cthree 125 } 126 1200.1 "SELECT ALL a, b, a||b FROM t1 " { 127 a one aone b two btwo c three cthree 128 } 129 130 0010.1 "SELECT 1, 2, 3 WHERE 1 " {1 2 3} 131 0010.2 "SELECT 1, 2, 3 WHERE 0 " {} 132 0010.3 "SELECT 1, 2, 3 WHERE NULL " {} 133 134 1010.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3} 135 136 2010.1 "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3} 137 138 0110.1 "SELECT a, b, a||b FROM t1 WHERE a!='x' " { 139 a one aone b two btwo c three cthree 140 } 141 0110.2 "SELECT a, b, a||b FROM t1 WHERE a=='x'" {} 142 143 1110.1 "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " { 144 a one aone b two btwo c three cthree 145 } 146 147 2110.0 "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {} 148 149 0001.1 "SELECT 1, 2, 3 GROUP BY 2" {1 2 3} 150 0002.1 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 151 0002.2 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 152 153 1001.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3} 154 1002.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 155 1002.2 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 156 157 2001.1 "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3} 158 2002.1 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 159 2002.2 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 160 161 0101.1 "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 162 0102.1 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" { 163 1 a 1 c 1 b 164 } 165 0102.2 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { } 166 167 1101.1 "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 168 1102.1 "SELECT DISTINCT count(*), max(a) FROM t1 169 GROUP BY b HAVING count(*)=1" { 170 1 a 1 c 1 b 171 } 172 1102.2 "SELECT DISTINCT count(*), max(a) FROM t1 173 GROUP BY b HAVING count(*)=2" { 174 } 175 176 2101.1 "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 177 2102.1 "SELECT ALL count(*), max(a) FROM t1 178 GROUP BY b HAVING count(*)=1" { 179 1 a 1 c 1 b 180 } 181 2102.2 "SELECT ALL count(*), max(a) FROM t1 182 GROUP BY b HAVING count(*)=2" { 183 } 184 185 0011.1 "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 186 0012.1 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 187 0012.2 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {} 188 189 1011.1 "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {} 190 1012.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 191 {1 2 3} 192 1012.2 "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {} 193 194 2011.1 "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 195 2012.1 "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 196 2012.2 "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {} 197 198 0111.1 "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a} 199 0112.1 "SELECT count(*), max(a) FROM t1 200 WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c} 201 0112.2 "SELECT count(*), max(a) FROM t1 202 WHERE 0 GROUP BY b HAVING count(*)=2" { } 203 1111.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 204 {1 a 1 b} 205 1112.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a' 206 GROUP BY b HAVING count(*)=1" { 207 1 c 1 b 208 } 209 1112.2 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0 210 GROUP BY b HAVING count(*)=2" { 211 } 212 213 2111.1 "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 214 {1 c 1 b} 215 2112.1 "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b' 216 GROUP BY b HAVING count(*)=1" { 217 1 a 1 c 218 } 219 2112.2 "SELECT ALL count(*), max(a) FROM t1 220 WHERE 0 GROUP BY b HAVING count(*)=2" { } 221 } 222 223 224 # EVIDENCE-OF: R-23316-20169 -- syntax diagram result-column 225 # 226 do_select_tests e_select-0.3 { 227 1 "SELECT * FROM t1" {a one b two c three} 228 2 "SELECT t1.* FROM t1" {a one b two c three} 229 3 "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx} 230 4 "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx} 231 5 "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx} 232 } 233 234 # EVIDENCE-OF: R-41233-21397 -- syntax diagram join-source 235 # 236 # EVIDENCE-OF: R-45040-11121 -- syntax diagram join-op 237 # 238 do_select_tests e_select-0.4 { 239 1 "SELECT t1.rowid FROM t1" {1 2 3} 240 2 "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3} 241 3 "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 242 243 4 "SELECT t1.rowid FROM t1" {1 2 3} 244 5 "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3} 245 6 "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 246 {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 247 248 7 "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2} 249 8 "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3} 250 9 "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3} 251 10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2} 252 11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2} 253 254 12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3} 255 13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3} 256 14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3} 257 15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3} 258 16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3} 259 } 260 261 # EVIDENCE-OF: R-56911-63533 -- syntax diagram compound-operator 262 # 263 do_select_tests e_select-0.5 { 264 1 "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4} 265 2 "SELECT rowid FROM t1 UNION SELECT rowid+2 FROM t4" {1 2 3 4} 266 3 "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3} 267 4 "SELECT rowid FROM t1 EXCEPT SELECT rowid+2 FROM t4" {1 2} 268 } 269 270 # EVIDENCE-OF: R-60388-27458 -- syntax diagram ordering-term 271 # 272 do_select_tests e_select-0.6 { 273 1 "SELECT b||a FROM t1 ORDER BY b||a" {onea threec twob} 274 2 "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob} 275 3 "SELECT b||a FROM t1 ORDER BY (b||a) ASC" {onea threec twob} 276 4 "SELECT b||a FROM t1 ORDER BY (b||a) DESC" {twob threec onea} 277 } 278 279 # EVIDENCE-OF: R-36494-33519 -- syntax diagram select-stmt 280 # 281 do_select_tests e_select-0.7 { 282 1 "SELECT * FROM t1" {a one b two c three} 283 2 "SELECT * FROM t1 ORDER BY b" {a one c three b two} 284 3 "SELECT * FROM t1 ORDER BY b, a" {a one c three b two} 285 286 4 "SELECT * FROM t1 LIMIT 10" {a one b two c three} 287 5 "SELECT * FROM t1 LIMIT 10 OFFSET 5" {} 288 6 "SELECT * FROM t1 LIMIT 10, 5" {} 289 290 7 "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three} 291 8 "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {} 292 9 "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {} 293 294 10 "SELECT * FROM t1 UNION SELECT b, a FROM t1" 295 {a one b two c three one a three c two b} 296 11 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 297 {one a two b three c a one c three b two} 298 12 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 299 {one a two b three c a one c three b two} 300 13 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 301 {a one b two c three one a three c two b} 302 14 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 303 {two b} 304 15 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 305 {} 306 16 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 307 {a one b two c three one a three c two b} 308 17 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 309 {b two} 310 18 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 311 {} 312 } 313 314 #------------------------------------------------------------------------- 315 # The following tests focus on FROM clause (join) processing. 316 # 317 318 # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple 319 # SELECT statement, then the input data is implicitly a single row zero 320 # columns wide 321 # 322 do_select_tests e_select-1.1 { 323 1 "SELECT 'abc'" {abc} 324 2 "SELECT 'abc' WHERE NULL" {} 325 3 "SELECT NULL" {{}} 326 4 "SELECT count(*)" {1} 327 5 "SELECT count(*) WHERE 0" {0} 328 6 "SELECT count(*) WHERE 1" {1} 329 } 330 331 # EVIDENCE-OF: R-48114-33255 If there is only a single table in the 332 # join-source following the FROM clause, then the input data used by the 333 # SELECT statement is the contents of the named table. 334 # 335 # The results of the SELECT queries suggest that they are operating on the 336 # contents of the table 'xx'. 337 # 338 do_execsql_test e_select-1.2.0 { 339 CREATE TABLE xx(x, y); 340 INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2'); 341 INSERT INTO xx VALUES(NULL, -16.87); 342 INSERT INTO xx VALUES(-17.89, 'linguistically'); 343 } {} 344 do_select_tests e_select-1.2 { 345 1 "SELECT quote(x), quote(y) FROM xx" { 346 'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 347 NULL -16.87 348 -17.89 'linguistically' 349 } 350 351 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3} 352 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87} 353 } 354 355 # EVIDENCE-OF: R-23593-12456 If there is more than one table specified 356 # as part of the join-source following the FROM keyword, then the 357 # contents of each named table are joined into a single dataset for the 358 # simple SELECT statement to operate on. 359 # 360 # There are more detailed tests for subsequent requirements that add 361 # more detail to this idea. We just add a single test that shows that 362 # data is coming from each of the three tables following the FROM clause 363 # here to show that the statement, vague as it is, is not incorrect. 364 # 365 do_select_tests e_select-1.3 { 366 1 "SELECT * FROM t1, t2, t3" { 367 a one a I a 1 a one a I b 2 a one b II a 1 368 a one b II b 2 a one c III a 1 a one c III b 2 369 b two a I a 1 b two a I b 2 b two b II a 1 370 b two b II b 2 b two c III a 1 b two c III b 2 371 c three a I a 1 c three a I b 2 c three b II a 1 372 c three b II b 2 c three c III a 1 c three c III b 2 373 } 374 } 375 376 # 377 # The following block of tests - e_select-1.4.* - test that the description 378 # of cartesian joins in the SELECT documentation is consistent with SQLite. 379 # In doing so, we test the following three requirements as a side-effect: 380 # 381 # EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER 382 # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause, 383 # then the result of the join is simply the cartesian product of the 384 # left and right-hand datasets. 385 # 386 # The tests are built on this assertion. Really, they test that the output 387 # of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result 388 # of calculating the cartesian product of the left and right-hand datasets. 389 # 390 # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER 391 # JOIN", "JOIN" and "," join operators. 392 # 393 # EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the 394 # same data as the "INNER JOIN", "JOIN" and "," operators 395 # 396 # All tests are run 4 times, with the only difference in each run being 397 # which of the 4 equivalent cartesian product join operators are used. 398 # Since the output data is the same in all cases, we consider that this 399 # qualifies as testing the two statements above. 400 # 401 do_execsql_test e_select-1.4.0 { 402 CREATE TABLE x1(a, b); 403 CREATE TABLE x2(c, d, e); 404 CREATE TABLE x3(f, g, h, i); 405 406 -- x1: 3 rows, 2 columns 407 INSERT INTO x1 VALUES(24, 'converging'); 408 INSERT INTO x1 VALUES(NULL, X'CB71'); 409 INSERT INTO x1 VALUES('blonds', 'proprietary'); 410 411 -- x2: 2 rows, 3 columns 412 INSERT INTO x2 VALUES(-60.06, NULL, NULL); 413 INSERT INTO x2 VALUES(-58, NULL, 1.21); 414 415 -- x3: 5 rows, 4 columns 416 INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1); 417 INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified'); 418 INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL); 419 INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3); 420 INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL); 421 } {} 422 423 # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product 424 # dataset are, in order, all the columns of the left-hand dataset 425 # followed by all the columns of the right-hand dataset. 426 # 427 do_join_test e_select-1.4.1.1 { 428 SELECT * FROM x1 %JOIN% x2 LIMIT 1 429 } [concat {24 converging} {-60.06 {} {}}] 430 431 do_join_test e_select-1.4.1.2 { 432 SELECT * FROM x2 %JOIN% x1 LIMIT 1 433 } [concat {-60.06 {} {}} {24 converging}] 434 435 do_join_test e_select-1.4.1.3 { 436 SELECT * FROM x3 %JOIN% x2 LIMIT 1 437 } [concat {-39.24 {} encompass -1} {-60.06 {} {}}] 438 439 do_join_test e_select-1.4.1.4 { 440 SELECT * FROM x2 %JOIN% x3 LIMIT 1 441 } [concat {-60.06 {} {}} {-39.24 {} encompass -1}] 442 443 # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product 444 # dataset formed by combining each unique combination of a row from the 445 # left-hand and right-hand datasets. 446 # 447 do_join_test e_select-1.4.2.1 { 448 SELECT * FROM x2 %JOIN% x3 449 } [list -60.06 {} {} -39.24 {} encompass -1 \ 450 -60.06 {} {} presenting 51 reformation dignified \ 451 -60.06 {} {} conducting -87.24 37.56 {} \ 452 -60.06 {} {} coldest -96 dramatists 82.3 \ 453 -60.06 {} {} alerting {} -93.79 {} \ 454 -58 {} 1.21 -39.24 {} encompass -1 \ 455 -58 {} 1.21 presenting 51 reformation dignified \ 456 -58 {} 1.21 conducting -87.24 37.56 {} \ 457 -58 {} 1.21 coldest -96 dramatists 82.3 \ 458 -58 {} 1.21 alerting {} -93.79 {} \ 459 ] 460 # TODO: Come back and add a few more like the above. 461 462 # EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset 463 # consists of Nlhs rows of Mlhs columns, and the right-hand dataset of 464 # Nrhs rows of Mrhs columns, then the cartesian product is a dataset of 465 # Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns. 466 # 467 # x1, x2 (Nlhs=3, Nrhs=2) (Mlhs=2, Mrhs=3) 468 do_join_test e_select-1.4.3.1 { 469 SELECT count(*) FROM x1 %JOIN% x2 470 } [expr 3*2] 471 do_test e_select-1.4.3.2 { 472 expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6} 473 } [expr 2+3] 474 475 # x2, x3 (Nlhs=2, Nrhs=5) (Mlhs=3, Mrhs=4) 476 do_join_test e_select-1.4.3.3 { 477 SELECT count(*) FROM x2 %JOIN% x3 478 } [expr 2*5] 479 do_test e_select-1.4.3.4 { 480 expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10} 481 } [expr 3+4] 482 483 # x3, x1 (Nlhs=5, Nrhs=3) (Mlhs=4, Mrhs=2) 484 do_join_test e_select-1.4.3.5 { 485 SELECT count(*) FROM x3 %JOIN% x1 486 } [expr 5*3] 487 do_test e_select-1.4.3.6 { 488 expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15} 489 } [expr 4+2] 490 491 # x3, x3 (Nlhs=5, Nrhs=5) (Mlhs=4, Mrhs=4) 492 do_join_test e_select-1.4.3.7 { 493 SELECT count(*) FROM x3 %JOIN% x3 494 } [expr 5*5] 495 do_test e_select-1.4.3.8 { 496 expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25} 497 } [expr 4+4] 498 499 # Some extra cartesian product tests using tables t1 and t2. 500 # 501 do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2 502 do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1 503 504 do_select_tests e_select-1.4.5 [list \ 505 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \ 506 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \ 507 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \ 508 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \ 509 ] 510 511 512 # EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then 513 # the ON expression is evaluated for each row of the cartesian product 514 # as a boolean expression. All rows for which the expression evaluates 515 # to false are excluded from the dataset. 516 # 517 foreach {tn select res} [list \ 518 1 { SELECT * FROM t1 %JOIN% t2 ON (1) } $t1_cross_t2 \ 519 2 { SELECT * FROM t1 %JOIN% t2 ON (0) } [list] \ 520 3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) } [list] \ 521 4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') } [list] \ 522 5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') } $t1_cross_t2 \ 523 6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) } $t1_cross_t2 \ 524 7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') } $t1_cross_t2 \ 525 8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) } [list] \ 526 \ 527 9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) } \ 528 {one I two II three III} \ 529 10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') } \ 530 {one I one II one III} \ 531 11 { SELECT t1.b, t2.b 532 FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \ 533 {two I two II two III three I three II three III} \ 534 ] { 535 do_join_test e_select-1.3.$tn $select $res 536 } 537 538 # EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as 539 # part of the join-constraint, then each of the column names specified 540 # must exist in the datasets to both the left and right of the join-op. 541 # 542 do_select_tests e_select-1.4 -error { 543 cannot join using column %s - column not present in both tables 544 } { 545 1 { SELECT * FROM t1, t3 USING (b) } "b" 546 2 { SELECT * FROM t3, t1 USING (c) } "c" 547 3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) } "a" 548 } 549 550 # EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the 551 # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian 552 # product as a boolean expression. All rows for which one or more of the 553 # expressions evaluates to false are excluded from the result set. 554 # 555 do_select_tests e_select-1.5 { 556 1 { SELECT * FROM t1, t3 USING (a) } {a one 1 b two 2} 557 2 { SELECT * FROM t3, t4 USING (a,c) } {b 2} 558 } 559 560 # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a 561 # USING clause, the normal rules for handling affinities, collation 562 # sequences and NULL values in comparisons apply. 563 # 564 # EVIDENCE-OF: R-35466-18578 The column from the dataset on the 565 # left-hand side of the join operator is considered to be on the 566 # left-hand side of the comparison operator (=) for the purposes of 567 # collation sequence and affinity precedence. 568 # 569 do_execsql_test e_select-1.6.0 { 570 CREATE TABLE t5(a COLLATE nocase, b COLLATE binary); 571 INSERT INTO t5 VALUES('AA', 'cc'); 572 INSERT INTO t5 VALUES('BB', 'dd'); 573 INSERT INTO t5 VALUES(NULL, NULL); 574 CREATE TABLE t6(a COLLATE binary, b COLLATE nocase); 575 INSERT INTO t6 VALUES('aa', 'cc'); 576 INSERT INTO t6 VALUES('bb', 'DD'); 577 INSERT INTO t6 VALUES(NULL, NULL); 578 } {} 579 foreach {tn select res} { 580 1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD} 581 2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {} 582 3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 583 {aa cc cc bb DD dd} 584 4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc} 585 5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {} 586 } { 587 do_join_test e_select-1.6.$tn $select $res 588 } 589 590 # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a 591 # USING clause, the column from the right-hand dataset is omitted from 592 # the joined dataset. 593 # 594 # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING 595 # clause and its equivalent ON constraint. 596 # 597 foreach {tn select res} { 598 1a { SELECT * FROM t1 %JOIN% t2 USING (a) } 599 {a one I b two II c three III} 600 1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) } 601 {a one a I b two b II c three c III} 602 603 2a { SELECT * FROM t3 %JOIN% t4 USING (a) } 604 {a 1 {} b 2 2} 605 2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 606 {a 1 a {} b 2 b 2} 607 608 3a { SELECT * FROM t3 %JOIN% t4 USING (a,c) } {b 2} 609 3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2} 610 611 4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 612 %JOIN% t5 USING (a) } 613 {aa cc cc bb DD dd} 614 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 615 %JOIN% t5 ON (x.a=t5.a) } 616 {aa cc AA cc bb DD BB dd} 617 } { 618 do_join_test e_select-1.7.$tn $select $res 619 } 620 621 # EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT 622 # OUTER JOIN", then after the ON or USING filtering clauses have been 623 # applied, an extra row is added to the output for each row in the 624 # original left-hand input dataset that corresponds to no rows at all in 625 # the composite dataset (if any). 626 # 627 do_execsql_test e_select-1.8.0 { 628 CREATE TABLE t7(a, b, c); 629 CREATE TABLE t8(a, d, e); 630 631 INSERT INTO t7 VALUES('x', 'ex', 24); 632 INSERT INTO t7 VALUES('y', 'why', 25); 633 634 INSERT INTO t8 VALUES('x', 'abc', 24); 635 INSERT INTO t8 VALUES('z', 'ghi', 26); 636 } {} 637 638 do_select_tests e_select-1.8 { 639 1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1} 640 1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2} 641 2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1} 642 2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2} 643 } 644 645 646 # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the 647 # columns that would normally contain values copied from the right-hand 648 # input dataset. 649 # 650 do_select_tests e_select-1.9 { 651 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24} 652 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 653 {x ex 24 x abc 24 y why 25 {} {} {}} 654 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 655 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 656 } 657 658 # EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of 659 # the join-ops, then an implicit USING clause is added to the 660 # join-constraints. The implicit USING clause contains each of the 661 # column names that appear in both the left and right-hand input 662 # datasets. 663 # 664 do_select_tests e_select-1-10 { 665 1a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 666 1b "SELECT * FROM t7 NATURAL JOIN t8" {x ex 24 abc 24} 667 668 2a "SELECT * FROM t8 JOIN t7 USING (a)" {x abc 24 ex 24} 669 2b "SELECT * FROM t8 NATURAL JOIN t7" {x abc 24 ex 24} 670 671 3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 672 3b "SELECT * FROM t7 NATURAL LEFT JOIN t8" {x ex 24 abc 24 y why 25 {} {}} 673 674 4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)" {x abc 24 ex 24 z ghi 26 {} {}} 675 4b "SELECT * FROM t8 NATURAL LEFT JOIN t7" {x abc 24 ex 24 z ghi 26 {} {}} 676 677 5a "SELECT * FROM t3 JOIN t4 USING (a,c)" {b 2} 678 5b "SELECT * FROM t3 NATURAL JOIN t4" {b 2} 679 680 6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2} 681 6b "SELECT * FROM t3 NATURAL LEFT JOIN t4" {a 1 b 2} 682 } 683 684 # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets 685 # feature no common column names, then the NATURAL keyword has no effect 686 # on the results of the join. 687 # 688 do_execsql_test e_select-1.11.0 { 689 CREATE TABLE t10(x, y); 690 INSERT INTO t10 VALUES(1, 'true'); 691 INSERT INTO t10 VALUES(0, 'false'); 692 } {} 693 do_select_tests e_select-1-11 { 694 1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 695 1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 696 } 697 698 # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a 699 # join that specifies the NATURAL keyword. 700 # 701 foreach {tn sql} { 702 1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)} 703 2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)} 704 3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)} 705 } { 706 do_catchsql_test e_select-1.12.$tn " 707 $sql 708 " {1 {a NATURAL join may not have an ON or USING clause}} 709 } 710 711 #------------------------------------------------------------------------- 712 # The next block of tests - e_select-3.* - concentrate on verifying 713 # statements made regarding WHERE clause processing. 714 # 715 drop_all_tables 716 do_execsql_test e_select-3.0 { 717 CREATE TABLE x1(k, x, y, z); 718 INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43); 719 INSERT INTO x1 VALUES(2, X'A8E8D66F', X'07CF', -81); 720 INSERT INTO x1 VALUES(3, -22, -27.57, NULL); 721 INSERT INTO x1 VALUES(4, NULL, 'bygone', 'picky'); 722 INSERT INTO x1 VALUES(5, NULL, 96.28, NULL); 723 INSERT INTO x1 VALUES(6, 0, 1, 2); 724 725 CREATE TABLE x2(k, x, y2); 726 INSERT INTO x2 VALUES(1, 50, X'B82838'); 727 INSERT INTO x2 VALUES(5, 84.79, 65.88); 728 INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393'); 729 INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized'); 730 } {} 731 732 # EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE 733 # expression is evaluated for each row in the input data as a boolean 734 # expression. All rows for which the WHERE clause expression evaluates 735 # to false are excluded from the dataset before continuing. 736 # 737 do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x } {3} 738 do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y } {3 5 6} 739 do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z } {1 2 6} 740 do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z } {1 2 4 6} 741 do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5} 742 do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6} 743 744 do_execsql_test e_select-3.2.1a { 745 SELECT k FROM x1 LEFT JOIN x2 USING(k) 746 } {1 2 3 4 5 6} 747 do_execsql_test e_select-3.2.1b { 748 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k 749 } {1 3 5} 750 do_execsql_test e_select-3.2.2 { 751 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL 752 } {2 4 6} 753 754 do_execsql_test e_select-3.2.3 { 755 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k 756 } {3} 757 do_execsql_test e_select-3.2.4 { 758 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3 759 } {} 760 761 #------------------------------------------------------------------------- 762 # Tests below this point are focused on verifying the testable statements 763 # related to caculating the result rows of a simple SELECT statement. 764 # 765 766 drop_all_tables 767 do_execsql_test e_select-4.0 { 768 CREATE TABLE z1(a, b, c); 769 CREATE TABLE z2(d, e); 770 CREATE TABLE z3(a, b); 771 772 INSERT INTO z1 VALUES(51.65, -59.58, 'belfries'); 773 INSERT INTO z1 VALUES(-5, NULL, 75); 774 INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters'); 775 INSERT INTO z1 VALUES(NULL, 67, 'quartets'); 776 INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen'); 777 INSERT INTO z1 VALUES(63, 'born', -26); 778 779 INSERT INTO z2 VALUES(NULL, 21); 780 INSERT INTO z2 VALUES(36, 6); 781 782 INSERT INTO z3 VALUES('subsistence', 'gauze'); 783 INSERT INTO z3 VALUES(49.17, -67); 784 } {} 785 786 # EVIDENCE-OF: R-36327-17224 If a result expression is the special 787 # expression "*" then all columns in the input data are substituted for 788 # that one expression. 789 # 790 # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table 791 # or subquery in the FROM clause followed by ".*" then all columns from 792 # the named table or subquery are substituted for the single expression. 793 # 794 do_select_tests e_select-4.1 { 795 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries} 796 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21} 797 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries} 798 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21} 799 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries} 800 801 6 "SELECT count(*), * FROM z1" {6 63 born -26} 802 7 "SELECT max(a), * FROM z1" {63 63 born -26} 803 8 "SELECT *, min(a) FROM z1" {63 born -26 -5} 804 805 9 "SELECT *,* FROM z1,z2 LIMIT 1" { 806 51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21 807 } 808 10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" { 809 51.65 -59.58 belfries 51.65 -59.58 belfries 810 } 811 } 812 813 # EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*" 814 # expression in any context other than than a result expression list. 815 # 816 # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or 817 # "alias.*" expression in a simple SELECT query that does not have a 818 # FROM clause. 819 # 820 foreach {tn select err} { 821 1.1 "SELECT a, b, c FROM z1 WHERE *" {near "*": syntax error} 822 1.2 "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error} 823 1.3 "SELECT 1 + * FROM z1" {near "*": syntax error} 824 1.4 "SELECT * + 1 FROM z1" {near "+": syntax error} 825 826 2.1 "SELECT *" {no tables specified} 827 2.2 "SELECT * WHERE 1" {no tables specified} 828 2.3 "SELECT * WHERE 0" {no tables specified} 829 2.4 "SELECT count(*), *" {no tables specified} 830 } { 831 do_catchsql_test e_select-4.2.$tn $select [list 1 $err] 832 } 833 834 # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned 835 # by a simple SELECT statement is equal to the number of expressions in 836 # the result expression list after substitution of * and alias.* 837 # expressions. 838 # 839 foreach {tn select nCol} { 840 1 "SELECT * FROM z1" 3 841 2 "SELECT * FROM z1 NATURAL JOIN z3" 3 842 3 "SELECT z1.* FROM z1 NATURAL JOIN z3" 3 843 4 "SELECT z3.* FROM z1 NATURAL JOIN z3" 2 844 5 "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3" 5 845 6 "SELECT 1, 2, z1.* FROM z1" 5 846 7 "SELECT a, *, b, c FROM z1" 6 847 } { 848 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 849 do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol 850 sqlite3_finalize $::stmt 851 } 852 853 854 855 # In lang_select.html, a non-aggregate query is defined as any simple SELECT 856 # that has no GROUP BY clause and no aggregate expressions in the result 857 # expression list. Other queries are aggregate queries. Test cases 858 # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of 859 # simple SELECT that is different for aggregate and non-aggregate queries 860 # verify (in a way) that these definitions are consistent: 861 # 862 # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate 863 # query if it contains either a GROUP BY clause or one or more aggregate 864 # functions in the result-set. 865 # 866 # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no 867 # aggregate functions or a GROUP BY clause, it is a non-aggregate query. 868 # 869 870 # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate 871 # query, then each expression in the result expression list is evaluated 872 # for each row in the dataset filtered by the WHERE clause. 873 # 874 do_select_tests e_select-4.4 { 875 1 "SELECT a, b FROM z1" 876 {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born} 877 878 2 "SELECT a IS NULL, b+1, * FROM z1" { 879 0 -58.58 51.65 -59.58 belfries 880 0 {} -5 {} 75 881 0 -22.18 -2.2 -23.18 suiters 882 1 68 {} 67 quartets 883 0 -31.3 -1.04 -32.3 aspen 884 0 1 63 born -26 885 } 886 887 3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366} 888 } 889 890 891 # Test cases e_select-4.5.* and e_select-4.6.* together show that: 892 # 893 # EVIDENCE-OF: R-51988-01124 The single row of result-set data created 894 # by evaluating the aggregate and non-aggregate expressions in the 895 # result-set forms the result of an aggregate query without a GROUP BY 896 # clause. 897 # 898 899 # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate 900 # query without a GROUP BY clause, then each aggregate expression in the 901 # result-set is evaluated once across the entire dataset. 902 # 903 do_select_tests e_select-4.5 { 904 1 "SELECT count(a), max(a), count(b), max(b) FROM z1" {5 63 5 born} 905 2 "SELECT count(*), max(1)" {1 1} 906 907 3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3" {-43.06} 908 4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3" {-38.06} 909 5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5} 910 } 911 912 # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the 913 # result-set is evaluated once for an arbitrarily selected row of the 914 # dataset. 915 # 916 # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used 917 # for each non-aggregate expression. 918 # 919 # Note: The results of many of the queries in this block of tests are 920 # technically undefined, as the documentation does not specify which row 921 # SQLite will arbitrarily select to use for the evaluation of the 922 # non-aggregate expressions. 923 # 924 drop_all_tables 925 do_execsql_test e_select-4.6.0 { 926 CREATE TABLE a1(one PRIMARY KEY, two); 927 INSERT INTO a1 VALUES(1, 1); 928 INSERT INTO a1 VALUES(2, 3); 929 INSERT INTO a1 VALUES(3, 6); 930 INSERT INTO a1 VALUES(4, 10); 931 932 CREATE TABLE a2(one PRIMARY KEY, three); 933 INSERT INTO a2 VALUES(1, 1); 934 INSERT INTO a2 VALUES(3, 2); 935 INSERT INTO a2 VALUES(6, 3); 936 INSERT INTO a2 VALUES(10, 4); 937 } {} 938 do_select_tests e_select-4.6 { 939 1 "SELECT one, two, count(*) FROM a1" {4 10 4} 940 2 "SELECT one, two, count(*) FROM a1 WHERE one<3" {2 3 2} 941 3 "SELECT one, two, count(*) FROM a1 WHERE one>3" {4 10 1} 942 4 "SELECT *, count(*) FROM a1 JOIN a2" {4 10 10 4 16} 943 5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3} 944 6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3} 945 7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6} 946 } 947 948 # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then 949 # each non-aggregate expression is evaluated against a row consisting 950 # entirely of NULL values. 951 # 952 do_select_tests e_select-4.7 { 953 1 "SELECT one, two, count(*) FROM a1 WHERE 0" {{} {} 0} 954 2 "SELECT sum(two), * FROM a1, a2 WHERE three>5" {{} {} {} {} {}} 955 3 "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" { 956 1 1 1 957 } 958 } 959 960 # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY 961 # clause always returns exactly one row of data, even if there are zero 962 # rows of input data. 963 # 964 foreach {tn select} { 965 8.1 "SELECT count(*) FROM a1" 966 8.2 "SELECT count(*) FROM a1 WHERE 0" 967 8.3 "SELECT count(*) FROM a1 WHERE 1" 968 8.4 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1" 969 8.5 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0" 970 } { 971 # Set $nRow to the number of rows returned by $select: 972 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 973 set nRow 0 974 while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow } 975 set rc [sqlite3_finalize $::stmt] 976 977 # Test that $nRow==1 and that statement execution was successful 978 # (rc==SQLITE_OK). 979 do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1} 980 } 981 982 drop_all_tables 983 do_execsql_test e_select-4.9.0 { 984 CREATE TABLE b1(one PRIMARY KEY, two); 985 INSERT INTO b1 VALUES(1, 'o'); 986 INSERT INTO b1 VALUES(4, 'f'); 987 INSERT INTO b1 VALUES(3, 't'); 988 INSERT INTO b1 VALUES(2, 't'); 989 INSERT INTO b1 VALUES(5, 'f'); 990 INSERT INTO b1 VALUES(7, 's'); 991 INSERT INTO b1 VALUES(6, 's'); 992 993 CREATE TABLE b2(x, y); 994 INSERT INTO b2 VALUES(NULL, 0); 995 INSERT INTO b2 VALUES(NULL, 1); 996 INSERT INTO b2 VALUES('xyz', 2); 997 INSERT INTO b2 VALUES('abc', 3); 998 INSERT INTO b2 VALUES('xyz', 4); 999 1000 CREATE TABLE b3(a COLLATE nocase, b COLLATE binary); 1001 INSERT INTO b3 VALUES('abc', 'abc'); 1002 INSERT INTO b3 VALUES('aBC', 'aBC'); 1003 INSERT INTO b3 VALUES('Def', 'Def'); 1004 INSERT INTO b3 VALUES('dEF', 'dEF'); 1005 } {} 1006 1007 # EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate 1008 # query with a GROUP BY clause, then each of the expressions specified 1009 # as part of the GROUP BY clause is evaluated for each row of the 1010 # dataset. Each row is then assigned to a "group" based on the results; 1011 # rows for which the results of evaluating the GROUP BY expressions are 1012 # the same are assigned to the same group. 1013 # 1014 # These tests also show that the following is not untrue: 1015 # 1016 # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do 1017 # not have to be expressions that appear in the result. 1018 # 1019 do_select_tests e_select-4.9 { 1020 1 "SELECT group_concat(one), two FROM b1 GROUP BY two" { 1021 4,5 f 1 o 7,6 s 3,2 t 1022 } 1023 2 "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" { 1024 1,4,3,2 10 5,7,6 18 1025 } 1026 3 "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" { 1027 4 1,5 2,6 3,7 1028 } 1029 4 "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" { 1030 4,3,5,7,6 1,2 1031 } 1032 } 1033 1034 # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL 1035 # values are considered equal. 1036 # 1037 do_select_tests e_select-4.10 { 1038 1 "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1 3 2,4} 1039 2 "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1} 1040 } 1041 1042 # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation 1043 # sequence with which to compare text values apply when evaluating 1044 # expressions in a GROUP BY clause. 1045 # 1046 do_select_tests e_select-4.11 { 1047 1 "SELECT count(*) FROM b3 GROUP BY b" {1 1 1 1} 1048 2 "SELECT count(*) FROM b3 GROUP BY a" {2 2} 1049 3 "SELECT count(*) FROM b3 GROUP BY +b" {1 1 1 1} 1050 4 "SELECT count(*) FROM b3 GROUP BY +a" {2 2} 1051 5 "SELECT count(*) FROM b3 GROUP BY b||''" {1 1 1 1} 1052 6 "SELECT count(*) FROM b3 GROUP BY a||''" {1 1 1 1} 1053 } 1054 1055 # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may 1056 # not be aggregate expressions. 1057 # 1058 foreach {tn select} { 1059 12.1 "SELECT * FROM b3 GROUP BY count(*)" 1060 12.2 "SELECT max(a) FROM b3 GROUP BY max(b)" 1061 12.3 "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)" 1062 } { 1063 set res {1 {aggregate functions are not allowed in the GROUP BY clause}} 1064 do_catchsql_test e_select-4.$tn $select $res 1065 } 1066 1067 # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is 1068 # evaluated once for each group of rows as a boolean expression. If the 1069 # result of evaluating the HAVING clause is false, the group is 1070 # discarded. 1071 # 1072 # This requirement is tested by all e_select-4.13.* tests. 1073 # 1074 # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate 1075 # expression, it is evaluated across all rows in the group. 1076 # 1077 # Tested by e_select-4.13.1.* 1078 # 1079 # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate 1080 # expression, it is evaluated with respect to an arbitrarily selected 1081 # row from the group. 1082 # 1083 # Tested by e_select-4.13.2.* 1084 # 1085 # Tests in this block also show that this is not untrue: 1086 # 1087 # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values, 1088 # even aggregate functions, that are not in the result. 1089 # 1090 do_execsql_test e_select-4.13.0 { 1091 CREATE TABLE c1(up, down); 1092 INSERT INTO c1 VALUES('x', 1); 1093 INSERT INTO c1 VALUES('x', 2); 1094 INSERT INTO c1 VALUES('x', 4); 1095 INSERT INTO c1 VALUES('x', 8); 1096 INSERT INTO c1 VALUES('y', 16); 1097 INSERT INTO c1 VALUES('y', 32); 1098 1099 CREATE TABLE c2(i, j); 1100 INSERT INTO c2 VALUES(1, 0); 1101 INSERT INTO c2 VALUES(2, 1); 1102 INSERT INTO c2 VALUES(3, 3); 1103 INSERT INTO c2 VALUES(4, 6); 1104 INSERT INTO c2 VALUES(5, 10); 1105 INSERT INTO c2 VALUES(6, 15); 1106 INSERT INTO c2 VALUES(7, 21); 1107 INSERT INTO c2 VALUES(8, 28); 1108 INSERT INTO c2 VALUES(9, 36); 1109 1110 CREATE TABLE c3(i PRIMARY KEY, k TEXT); 1111 INSERT INTO c3 VALUES(1, 'hydrogen'); 1112 INSERT INTO c3 VALUES(2, 'helium'); 1113 INSERT INTO c3 VALUES(3, 'lithium'); 1114 INSERT INTO c3 VALUES(4, 'beryllium'); 1115 INSERT INTO c3 VALUES(5, 'boron'); 1116 INSERT INTO c3 VALUES(94, 'plutonium'); 1117 } {} 1118 1119 do_select_tests e_select-4.13 { 1120 1.1 "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x} 1121 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y} 1122 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x} 1123 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4} 1124 1125 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y} 1126 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y} 1127 1128 2.3 "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6" {9 36} 1129 } 1130 1131 # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then 1132 # evaluated once for each group of rows. 1133 # 1134 # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate 1135 # expression, it is evaluated across all rows in the group. 1136 # 1137 do_select_tests e_select-4.15 { 1138 1 "SELECT sum(down) FROM c1 GROUP BY up" {15 48} 1139 2 "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)" {54 36 27 21 39 28} 1140 3 "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)" {80 36 40 21} 1141 4 "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22} 1142 5 "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2" 1143 {3 4.33 1 2.0} 1144 } 1145 1146 # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single 1147 # arbitrarily chosen row from within the group. 1148 # 1149 # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate 1150 # expression in the result-set, then all such expressions are evaluated 1151 # for the same row. 1152 # 1153 do_select_tests e_select-4.15 { 1154 1 "SELECT i, j FROM c2 GROUP BY i%2" {8 28 9 36} 1155 2 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28} 1156 3 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36} 1157 4 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36} 1158 5 "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)" 1159 {2 5 boron 2 2 helium 1 3 lithium} 1160 } 1161 1162 # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows 1163 # contributes a single row to the set of result rows. 1164 # 1165 # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the 1166 # DISTINCT keyword, the number of rows returned by an aggregate query 1167 # with a GROUP BY clause is the same as the number of groups of rows 1168 # produced by applying the GROUP BY and HAVING clauses to the filtered 1169 # input dataset. 1170 # 1171 do_select_tests e_select.4.16 -count { 1172 1 "SELECT i, j FROM c2 GROUP BY i%2" 2 1173 2 "SELECT i, j FROM c2 GROUP BY i" 9 1174 3 "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4 1175 } 1176 1177 #------------------------------------------------------------------------- 1178 # The following tests attempt to verify statements made regarding the ALL 1179 # and DISTINCT keywords. 1180 # 1181 drop_all_tables 1182 do_execsql_test e_select-5.1.0 { 1183 CREATE TABLE h1(a, b); 1184 INSERT INTO h1 VALUES(1, 'one'); 1185 INSERT INTO h1 VALUES(1, 'I'); 1186 INSERT INTO h1 VALUES(1, 'i'); 1187 INSERT INTO h1 VALUES(4, 'four'); 1188 INSERT INTO h1 VALUES(4, 'IV'); 1189 INSERT INTO h1 VALUES(4, 'iv'); 1190 1191 CREATE TABLE h2(x COLLATE nocase); 1192 INSERT INTO h2 VALUES('One'); 1193 INSERT INTO h2 VALUES('Two'); 1194 INSERT INTO h2 VALUES('Three'); 1195 INSERT INTO h2 VALUES('Four'); 1196 INSERT INTO h2 VALUES('one'); 1197 INSERT INTO h2 VALUES('two'); 1198 INSERT INTO h2 VALUES('three'); 1199 INSERT INTO h2 VALUES('four'); 1200 1201 CREATE TABLE h3(c, d); 1202 INSERT INTO h3 VALUES(1, NULL); 1203 INSERT INTO h3 VALUES(2, NULL); 1204 INSERT INTO h3 VALUES(3, NULL); 1205 INSERT INTO h3 VALUES(4, '2'); 1206 INSERT INTO h3 VALUES(5, NULL); 1207 INSERT INTO h3 VALUES(6, '2,3'); 1208 INSERT INTO h3 VALUES(7, NULL); 1209 INSERT INTO h3 VALUES(8, '2,4'); 1210 INSERT INTO h3 VALUES(9, '3'); 1211 } {} 1212 1213 # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may 1214 # follow the SELECT keyword in a simple SELECT statement. 1215 # 1216 do_select_tests e_select-5.1 { 1217 1 "SELECT ALL a FROM h1" {1 1 1 4 4 4} 1218 2 "SELECT DISTINCT a FROM h1" {1 4} 1219 } 1220 1221 # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then 1222 # the entire set of result rows are returned by the SELECT. 1223 # 1224 # EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present, 1225 # then the behaviour is as if ALL were specified. 1226 # 1227 # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT, 1228 # then duplicate rows are removed from the set of result rows before it 1229 # is returned. 1230 # 1231 # The three testable statements above are tested by e_select-5.2.*, 1232 # 5.3.* and 5.4.* respectively. 1233 # 1234 do_select_tests e_select-5 { 1235 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four} 1236 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four} 1237 1238 3.1 "SELECT x FROM h2" {One Two Three Four one two three four} 1239 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four} 1240 1241 4.1 "SELECT DISTINCT x FROM h2" {four one three two} 1242 4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {four one} 1243 } 1244 1245 # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate 1246 # rows, two NULL values are considered to be equal. 1247 # 1248 do_select_tests e_select-5.5 { 1249 1 "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3} 1250 } 1251 1252 # EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation 1253 # sequence to compare text values with apply. 1254 # 1255 do_select_tests e_select-5.6 { 1256 1 "SELECT DISTINCT b FROM h1" {I IV four i iv one} 1257 2 "SELECT DISTINCT b COLLATE nocase FROM h1" {four i iv one} 1258 3 "SELECT DISTINCT x FROM h2" {four one three two} 1259 4 "SELECT DISTINCT x COLLATE binary FROM h2" { 1260 Four One Three Two four one three two 1261 } 1262 } 1263 1264 #------------------------------------------------------------------------- 1265 # The following tests - e_select-7.* - test that statements made to do 1266 # with compound SELECT statements are correct. 1267 # 1268 1269 # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent 1270 # SELECTs must return the same number of result columns. 1271 # 1272 # All the other tests in this section use compound SELECTs created 1273 # using component SELECTs that do return the same number of columns. 1274 # So the tests here just show that it is an error to attempt otherwise. 1275 # 1276 drop_all_tables 1277 do_execsql_test e_select-7.1.0 { 1278 CREATE TABLE j1(a, b, c); 1279 CREATE TABLE j2(e, f); 1280 CREATE TABLE j3(g); 1281 } {} 1282 do_select_tests e_select-7.1 -error { 1283 SELECTs to the left and right of %s do not have the same number of result columns 1284 } { 1285 1 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 1286 2 "SELECT * FROM j1 UNION ALL SELECT * FROM j3" {{UNION ALL}} 1287 3 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 1288 4 "SELECT a, b FROM j1 UNION ALL SELECT * FROM j3,j2" {{UNION ALL}} 1289 5 "SELECT * FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}} 1290 1291 6 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 1292 7 "SELECT * FROM j1 UNION SELECT * FROM j3" {UNION} 1293 8 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 1294 9 "SELECT a, b FROM j1 UNION SELECT * FROM j3,j2" {UNION} 1295 10 "SELECT * FROM j3,j2 UNION SELECT a, b FROM j1" {UNION} 1296 1297 11 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 1298 12 "SELECT * FROM j1 INTERSECT SELECT * FROM j3" {INTERSECT} 1299 13 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 1300 14 "SELECT a, b FROM j1 INTERSECT SELECT * FROM j3,j2" {INTERSECT} 1301 15 "SELECT * FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT} 1302 1303 16 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 1304 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j3" {EXCEPT} 1305 18 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 1306 19 "SELECT a, b FROM j1 EXCEPT SELECT * FROM j3,j2" {EXCEPT} 1307 20 "SELECT * FROM j3,j2 EXCEPT SELECT a, b FROM j1" {EXCEPT} 1308 } 1309 1310 # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must 1311 # be simple SELECT statements, they may not contain ORDER BY or LIMIT 1312 # clauses. 1313 # 1314 foreach {tn select op1 op2} { 1315 1 "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 1316 {ORDER BY} {UNION ALL} 1317 2 "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2" 1318 {ORDER BY} {UNION ALL} 1319 3 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2" 1320 {ORDER BY} {UNION ALL} 1321 4 "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 1322 LIMIT {UNION ALL} 1323 5 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 1324 LIMIT {UNION ALL} 1325 6 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 1326 LIMIT {UNION ALL} 1327 1328 7 "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 1329 {ORDER BY} {UNION} 1330 8 "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2" 1331 {ORDER BY} {UNION} 1332 9 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2" 1333 {ORDER BY} {UNION} 1334 10 "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 1335 LIMIT {UNION} 1336 11 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 1337 LIMIT {UNION} 1338 12 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 1339 LIMIT {UNION} 1340 1341 13 "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 1342 {ORDER BY} {EXCEPT} 1343 14 "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2" 1344 {ORDER BY} {EXCEPT} 1345 15 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2" 1346 {ORDER BY} {EXCEPT} 1347 16 "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 1348 LIMIT {EXCEPT} 1349 17 "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 1350 LIMIT {EXCEPT} 1351 18 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 1352 LIMIT {EXCEPT} 1353 1354 19 "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 1355 {ORDER BY} {INTERSECT} 1356 20 "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2" 1357 {ORDER BY} {INTERSECT} 1358 21 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2" 1359 {ORDER BY} {INTERSECT} 1360 22 "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 1361 LIMIT {INTERSECT} 1362 23 "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 1363 LIMIT {INTERSECT} 1364 24 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 1365 LIMIT {INTERSECT} 1366 } { 1367 set err "$op1 clause should come after $op2 not before" 1368 do_catchsql_test e_select-7.2.$tn $select [list 1 $err] 1369 } 1370 1371 # EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur 1372 # at the end of the entire compound SELECT. 1373 # 1374 foreach {tn select} { 1375 1 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a" 1376 2 "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1" 1377 3 "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3" 1378 4 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 1379 5 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1380 6 "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1381 1382 7 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a" 1383 8 "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1" 1384 9 "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3" 1385 10 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 1386 11 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1387 12 "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1388 1389 13 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a" 1390 14 "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1" 1391 15 "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3" 1392 16 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 1393 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1394 18 "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1395 1396 19 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a" 1397 20 "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1" 1398 21 "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3" 1399 22 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 1400 23 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 1401 24 "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 1402 } { 1403 do_test e_select-7.3.$tn { catch {execsql $select} msg } 0 1404 } 1405 1406 # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL 1407 # operator returns all the rows from the SELECT to the left of the UNION 1408 # ALL operator, and all the rows from the SELECT to the right of it. 1409 # 1410 drop_all_tables 1411 do_execsql_test e_select-7.4.0 { 1412 CREATE TABLE q1(a TEXT, b INTEGER, c); 1413 CREATE TABLE q2(d NUMBER, e BLOB); 1414 CREATE TABLE q3(f REAL, g); 1415 1416 INSERT INTO q1 VALUES(16, -87.66, NULL); 1417 INSERT INTO q1 VALUES('legible', 94, -42.47); 1418 INSERT INTO q1 VALUES('beauty', 36, NULL); 1419 1420 INSERT INTO q2 VALUES('legible', 1); 1421 INSERT INTO q2 VALUES('beauty', 2); 1422 INSERT INTO q2 VALUES(-65.91, 4); 1423 INSERT INTO q2 VALUES('emanating', -16.56); 1424 1425 INSERT INTO q3 VALUES('beauty', 2); 1426 INSERT INTO q3 VALUES('beauty', 2); 1427 } {} 1428 do_select_tests e_select-7.4 { 1429 1 {SELECT a FROM q1 UNION ALL SELECT d FROM q2} 1430 {16 legible beauty legible beauty -65.91 emanating} 1431 1432 2 {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1} 1433 {16 -87.66 {} x legible 1} 1434 1435 3 {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 1436 {3 -16.56} 1437 1438 4 {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 1439 {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2} 1440 } 1441 1442 # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as 1443 # UNION ALL, except that duplicate rows are removed from the final 1444 # result set. 1445 # 1446 do_select_tests e_select-7.5 { 1447 1 {SELECT a FROM q1 UNION SELECT d FROM q2} 1448 {-65.91 16 beauty emanating legible} 1449 1450 2 {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1} 1451 {16 -87.66 {} x legible 1} 1452 1453 3 {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 1454 {-16.56 3} 1455 1456 4 {SELECT * FROM q2 UNION SELECT * FROM q3} 1457 {-65.91 4 beauty 2 emanating -16.56 legible 1} 1458 } 1459 1460 # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the 1461 # intersection of the results of the left and right SELECTs. 1462 # 1463 do_select_tests e_select-7.6 { 1464 1 {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible} 1465 2 {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2} 1466 } 1467 1468 # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of 1469 # rows returned by the left SELECT that are not also returned by the 1470 # right-hand SELECT. 1471 # 1472 do_select_tests e_select-7.7 { 1473 1 {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16} 1474 1475 2 {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 1476 {-65.91 4 emanating -16.56 legible 1} 1477 } 1478 1479 # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results 1480 # of INTERSECT and EXCEPT operators before the result set is returned. 1481 # 1482 do_select_tests e_select-7.8 { 1483 0 {SELECT * FROM q3} {beauty 2 beauty 2} 1484 1485 1 {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2} 1486 2 {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1} {beauty 2} 1487 } 1488 1489 # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate 1490 # rows for the results of compound SELECT operators, NULL values are 1491 # considered equal to other NULL values and distinct from all non-NULL 1492 # values. 1493 # 1494 db nullvalue null 1495 do_select_tests e_select-7.9 { 1496 1 {SELECT NULL UNION ALL SELECT NULL} {null null} 1497 2 {SELECT NULL UNION SELECT NULL} {null} 1498 3 {SELECT NULL INTERSECT SELECT NULL} {null} 1499 4 {SELECT NULL EXCEPT SELECT NULL} {} 1500 1501 5 {SELECT NULL UNION ALL SELECT 'ab'} {null ab} 1502 6 {SELECT NULL UNION SELECT 'ab'} {null ab} 1503 7 {SELECT NULL INTERSECT SELECT 'ab'} {} 1504 8 {SELECT NULL EXCEPT SELECT 'ab'} {null} 1505 1506 9 {SELECT NULL UNION ALL SELECT 0} {null 0} 1507 10 {SELECT NULL UNION SELECT 0} {null 0} 1508 11 {SELECT NULL INTERSECT SELECT 0} {} 1509 12 {SELECT NULL EXCEPT SELECT 0} {null} 1510 1511 13 {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2} 1512 14 {SELECT c FROM q1 UNION SELECT g FROM q3} {null -42.47 2} 1513 15 {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {} 1514 16 {SELECT c FROM q1 EXCEPT SELECT g FROM q3} {null -42.47} 1515 } 1516 db nullvalue {} 1517 1518 # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two 1519 # text values is determined as if the columns of the left and right-hand 1520 # SELECT statements were the left and right-hand operands of the equals 1521 # (=) operator, except that greater precedence is not assigned to a 1522 # collation sequence specified with the postfix COLLATE operator. 1523 # 1524 drop_all_tables 1525 do_execsql_test e_select-7.10.0 { 1526 CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c); 1527 INSERT INTO y1 VALUES('Abc', 'abc', 'aBC'); 1528 } {} 1529 do_select_tests e_select-7.10 { 1530 1 {SELECT 'abc' UNION SELECT 'ABC'} {ABC abc} 1531 2 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC} 1532 3 {SELECT 'abc' UNION SELECT 'ABC' COLLATE nocase} {ABC} 1533 4 {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc} 1534 5 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC} 1535 1536 6 {SELECT a FROM y1 UNION SELECT b FROM y1} {abc} 1537 7 {SELECT b FROM y1 UNION SELECT a FROM y1} {Abc abc} 1538 8 {SELECT a FROM y1 UNION SELECT c FROM y1} {aBC} 1539 1540 9 {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC} 1541 } 1542 1543 # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to 1544 # any values when comparing rows as part of a compound SELECT. 1545 # 1546 drop_all_tables 1547 do_execsql_test e_select-7.10.0 { 1548 CREATE TABLE w1(a TEXT, b NUMBER); 1549 CREATE TABLE w2(a, b TEXT); 1550 1551 INSERT INTO w1 VALUES('1', 4.1); 1552 INSERT INTO w2 VALUES(1, 4.1); 1553 } {} 1554 1555 do_select_tests e_select-7.11 { 1556 1 { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1} 1557 2 { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1} 1558 3 { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1} 1559 4 { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1} 1560 1561 5 { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {} 1562 6 { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {} 1563 7 { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {} 1564 8 { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {} 1565 1566 9 { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1} 1567 10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1} 1568 11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1} 1569 12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1} 1570 } 1571 1572 1573 # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are 1574 # connected into a compound SELECT, they group from left to right. In 1575 # other words, if "A", "B" and "C" are all simple SELECT statements, (A 1576 # op B op C) is processed as ((A op B) op C). 1577 # 1578 # e_select-7.12.1: Precedence of UNION vs. INTERSECT 1579 # e_select-7.12.2: Precedence of UNION vs. UNION ALL 1580 # e_select-7.12.3: Precedence of UNION vs. EXCEPT 1581 # e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 1582 # e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT 1583 # e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT 1584 # e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 1585 # "(a EXCEPT b) EXCEPT c". 1586 # 1587 # The INTERSECT and EXCEPT operations are mutually commutative. So 1588 # the e_select-7.12.5 test cases do not prove very much. 1589 # 1590 drop_all_tables 1591 do_execsql_test e_select-7.12.0 { 1592 CREATE TABLE t1(x); 1593 INSERT INTO t1 VALUES(1); 1594 INSERT INTO t1 VALUES(2); 1595 INSERT INTO t1 VALUES(3); 1596 } {} 1597 foreach {tn select res} { 1598 1a "(1,2) INTERSECT (1) UNION (3)" {1 3} 1599 1b "(3) UNION (1,2) INTERSECT (1)" {1} 1600 1601 2a "(1,2) UNION (3) UNION ALL (1)" {1 2 3 1} 1602 2b "(1) UNION ALL (3) UNION (1,2)" {1 2 3} 1603 1604 3a "(1,2) UNION (3) EXCEPT (1)" {2 3} 1605 3b "(1,2) EXCEPT (3) UNION (1)" {1 2} 1606 1607 4a "(1,2) INTERSECT (1) UNION ALL (3)" {1 3} 1608 4b "(3) UNION (1,2) INTERSECT (1)" {1} 1609 1610 5a "(1,2) INTERSECT (2) EXCEPT (2)" {} 1611 5b "(2,3) EXCEPT (2) INTERSECT (2)" {} 1612 1613 6a "(2) UNION ALL (2) EXCEPT (2)" {} 1614 6b "(2) EXCEPT (2) UNION ALL (2)" {2} 1615 1616 7 "(2,3) EXCEPT (2) EXCEPT (3)" {} 1617 } { 1618 set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select] 1619 do_execsql_test e_select-7.12.$tn $select [list {*}$res] 1620 } 1621 1622 1623 #------------------------------------------------------------------------- 1624 # ORDER BY clauses 1625 # 1626 1627 drop_all_tables 1628 do_execsql_test e_select-8.1.0 { 1629 CREATE TABLE d1(x, y, z); 1630 1631 INSERT INTO d1 VALUES(1, 2, 3); 1632 INSERT INTO d1 VALUES(2, 5, -1); 1633 INSERT INTO d1 VALUES(1, 2, 8); 1634 INSERT INTO d1 VALUES(1, 2, 7); 1635 INSERT INTO d1 VALUES(2, 4, 93); 1636 INSERT INTO d1 VALUES(1, 2, -20); 1637 INSERT INTO d1 VALUES(1, 4, 93); 1638 INSERT INTO d1 VALUES(1, 5, -1); 1639 1640 CREATE TABLE d2(a, b); 1641 INSERT INTO d2 VALUES('gently', 'failings'); 1642 INSERT INTO d2 VALUES('commercials', 'bathrobe'); 1643 INSERT INTO d2 VALUES('iterate', 'sexton'); 1644 INSERT INTO d2 VALUES('babied', 'charitableness'); 1645 INSERT INTO d2 VALUES('solemnness', 'annexed'); 1646 INSERT INTO d2 VALUES('rejoicing', 'liabilities'); 1647 INSERT INTO d2 VALUES('pragmatist', 'guarded'); 1648 INSERT INTO d2 VALUES('barked', 'interrupted'); 1649 INSERT INTO d2 VALUES('reemphasizes', 'reply'); 1650 INSERT INTO d2 VALUES('lad', 'relenting'); 1651 } {} 1652 1653 # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results 1654 # of evaluating the left-most expression in the ORDER BY list, then ties 1655 # are broken by evaluating the second left-most expression and so on. 1656 # 1657 do_select_tests e_select-8.1 { 1658 1 "SELECT * FROM d1 ORDER BY x, y, z" { 1659 1 2 -20 1 2 3 1 2 7 1 2 8 1660 1 4 93 1 5 -1 2 4 93 2 5 -1 1661 } 1662 } 1663 1664 # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally 1665 # followed by one of the keywords ASC (smaller values are returned 1666 # first) or DESC (larger values are returned first). 1667 # 1668 # Test cases e_select-8.2.* test the above. 1669 # 1670 # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows 1671 # are sorted in ascending (smaller values first) order by default. 1672 # 1673 # Test cases e_select-8.3.* test the above. All 8.3 test cases are 1674 # copies of 8.2 test cases with the explicit "ASC" removed. 1675 # 1676 do_select_tests e_select-8 { 1677 2.1 "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" { 1678 1 2 -20 1 2 3 1 2 7 1 2 8 1679 1 4 93 1 5 -1 2 4 93 2 5 -1 1680 } 1681 2.2 "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" { 1682 2 5 -1 2 4 93 1 5 -1 1 4 93 1683 1 2 8 1 2 7 1 2 3 1 2 -20 1684 } 1685 2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" { 1686 2 4 93 2 5 -1 1 2 8 1 2 7 1687 1 2 3 1 2 -20 1 4 93 1 5 -1 1688 } 1689 2.4 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" { 1690 2 4 93 2 5 -1 1 2 -20 1 2 3 1691 1 2 7 1 2 8 1 4 93 1 5 -1 1692 } 1693 1694 3.1 "SELECT * FROM d1 ORDER BY x, y, z" { 1695 1 2 -20 1 2 3 1 2 7 1 2 8 1696 1 4 93 1 5 -1 2 4 93 2 5 -1 1697 } 1698 3.3 "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" { 1699 2 4 93 2 5 -1 1 2 8 1 2 7 1700 1 2 3 1 2 -20 1 4 93 1 5 -1 1701 } 1702 3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" { 1703 2 4 93 2 5 -1 1 2 -20 1 2 3 1704 1 2 7 1 2 8 1 4 93 1 5 -1 1705 } 1706 } 1707 1708 # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant 1709 # integer K then the expression is considered an alias for the K-th 1710 # column of the result set (columns are numbered from left to right 1711 # starting with 1). 1712 # 1713 do_select_tests e_select-8.4 { 1714 1 "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" { 1715 1 2 -20 1 2 3 1 2 7 1 2 8 1716 1 4 93 1 5 -1 2 4 93 2 5 -1 1717 } 1718 2 "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" { 1719 2 5 -1 2 4 93 1 5 -1 1 4 93 1720 1 2 8 1 2 7 1 2 3 1 2 -20 1721 } 1722 3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" { 1723 2 4 93 2 5 -1 1 2 8 1 2 7 1724 1 2 3 1 2 -20 1 4 93 1 5 -1 1725 } 1726 4 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" { 1727 2 4 93 2 5 -1 1 2 -20 1 2 3 1728 1 2 7 1 2 8 1 4 93 1 5 -1 1729 } 1730 5 "SELECT * FROM d1 ORDER BY 1, 2, 3" { 1731 1 2 -20 1 2 3 1 2 7 1 2 8 1732 1 4 93 1 5 -1 2 4 93 2 5 -1 1733 } 1734 6 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" { 1735 2 4 93 2 5 -1 1 2 8 1 2 7 1736 1 2 3 1 2 -20 1 4 93 1 5 -1 1737 } 1738 7 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" { 1739 2 4 93 2 5 -1 1 2 -20 1 2 3 1740 1 2 7 1 2 8 1 4 93 1 5 -1 1741 } 1742 8 "SELECT z, x FROM d1 ORDER BY 2" { 1743 3 1 8 1 7 1 -20 1 1744 93 1 -1 1 -1 2 93 2 1745 } 1746 9 "SELECT z, x FROM d1 ORDER BY 1" { 1747 -20 1 -1 2 -1 1 3 1 1748 7 1 8 1 93 2 93 1 1749 } 1750 } 1751 1752 # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier 1753 # that corresponds to the alias of one of the output columns, then the 1754 # expression is considered an alias for that column. 1755 # 1756 do_select_tests e_select-8.5 { 1757 1 "SELECT z+1 AS abc FROM d1 ORDER BY abc" { 1758 -19 0 0 4 8 9 94 94 1759 } 1760 2 "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" { 1761 94 94 9 8 4 0 0 -19 1762 } 1763 3 "SELECT z AS x, x AS z FROM d1 ORDER BY z" { 1764 3 1 8 1 7 1 -20 1 93 1 -1 1 -1 2 93 2 1765 } 1766 4 "SELECT z AS x, x AS z FROM d1 ORDER BY x" { 1767 -20 1 -1 2 -1 1 3 1 7 1 8 1 93 2 93 1 1768 } 1769 } 1770 1771 # EVIDENCE-OF: R-27923-38747 Otherwise, if the ORDER BY expression is 1772 # any other expression, it is evaluated and the the returned value used 1773 # to order the output rows. 1774 # 1775 # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT, 1776 # then an ORDER BY may contain any arbitrary expressions. 1777 # 1778 do_select_tests e_select-8.6 { 1779 1 "SELECT * FROM d1 ORDER BY x+y+z" { 1780 1 2 -20 1 5 -1 1 2 3 2 5 -1 1781 1 2 7 1 2 8 1 4 93 2 4 93 1782 } 1783 2 "SELECT * FROM d1 ORDER BY x*z" { 1784 1 2 -20 2 5 -1 1 5 -1 1 2 3 1785 1 2 7 1 2 8 1 4 93 2 4 93 1786 } 1787 3 "SELECT * FROM d1 ORDER BY y*z" { 1788 1 2 -20 2 5 -1 1 5 -1 1 2 3 1789 1 2 7 1 2 8 2 4 93 1 4 93 1790 } 1791 } 1792 1793 # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound 1794 # SELECT, then ORDER BY expressions that are not aliases to output 1795 # columns must be exactly the same as an expression used as an output 1796 # column. 1797 # 1798 do_select_tests e_select-8.7.1 -error { 1799 %s ORDER BY term does not match any column in the result set 1800 } { 1801 1 "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" 1st 1802 2 "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd 1803 } 1804 1805 do_select_tests e_select-8.7.2 { 1806 1 "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" { 1807 -20 -2 -1 3 7 8 93 186 babied barked commercials gently 1808 iterate lad pragmatist reemphasizes rejoicing solemnness 1809 } 1810 2 "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" { 1811 1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 1812 babied charitableness barked interrupted commercials bathrobe gently 1813 failings iterate sexton lad relenting pragmatist guarded reemphasizes reply 1814 rejoicing liabilities solemnness annexed 1815 } 1816 } 1817 1818 do_execsql_test e_select-8.8.0 { 1819 CREATE TABLE d3(a); 1820 INSERT INTO d3 VALUES('text'); 1821 INSERT INTO d3 VALUES(14.1); 1822 INSERT INTO d3 VALUES(13); 1823 INSERT INTO d3 VALUES(X'78787878'); 1824 INSERT INTO d3 VALUES(15); 1825 INSERT INTO d3 VALUES(12.9); 1826 INSERT INTO d3 VALUES(null); 1827 1828 CREATE TABLE d4(x COLLATE nocase); 1829 INSERT INTO d4 VALUES('abc'); 1830 INSERT INTO d4 VALUES('ghi'); 1831 INSERT INTO d4 VALUES('DEF'); 1832 INSERT INTO d4 VALUES('JKL'); 1833 } {} 1834 1835 # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values 1836 # are compared in the same way as for comparison expressions. 1837 # 1838 # The following tests verify that values of different types are sorted 1839 # correctly, and that mixed real and integer values are compared properly. 1840 # 1841 do_execsql_test e_select-8.8.1 { 1842 SELECT a FROM d3 ORDER BY a 1843 } {{} 12.9 13 14.1 15 text xxxx} 1844 do_execsql_test e_select-8.8.2 { 1845 SELECT a FROM d3 ORDER BY a DESC 1846 } {xxxx text 15 14.1 13 12.9 {}} 1847 1848 1849 # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a 1850 # collation sequence using the postfix COLLATE operator, then the 1851 # specified collation sequence is used. 1852 # 1853 do_execsql_test e_select-8.9.1 { 1854 SELECT x FROM d4 ORDER BY 1 COLLATE binary 1855 } {DEF JKL abc ghi} 1856 do_execsql_test e_select-8.9.2 { 1857 SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase 1858 } {abc DEF ghi JKL} 1859 1860 # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 1861 # an alias to an expression that has been assigned a collation sequence 1862 # using the postfix COLLATE operator, then the collation sequence 1863 # assigned to the aliased expression is used. 1864 # 1865 # In the test 8.10.2, the only result-column expression has no alias. So the 1866 # ORDER BY expression is not a reference to it and therefore does not inherit 1867 # the collation sequence. In test 8.10.3, "x" is the alias (as well as the 1868 # column name), so the ORDER BY expression is interpreted as an alias and the 1869 # collation sequence attached to the result column is used for sorting. 1870 # 1871 do_execsql_test e_select-8.10.1 { 1872 SELECT x COLLATE binary FROM d4 ORDER BY 1 1873 } {DEF JKL abc ghi} 1874 do_execsql_test e_select-8.10.2 { 1875 SELECT x COLLATE binary FROM d4 ORDER BY x 1876 } {abc DEF ghi JKL} 1877 do_execsql_test e_select-8.10.3 { 1878 SELECT x COLLATE binary AS x FROM d4 ORDER BY x 1879 } {DEF JKL abc ghi} 1880 1881 # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a 1882 # column or an alias of an expression that is a column, then the default 1883 # collation sequence for the column is used. 1884 # 1885 do_execsql_test e_select-8.11.1 { 1886 SELECT x AS y FROM d4 ORDER BY y 1887 } {abc DEF ghi JKL} 1888 do_execsql_test e_select-8.11.2 { 1889 SELECT x||'' FROM d4 ORDER BY x 1890 } {abc DEF ghi JKL} 1891 1892 # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is 1893 # used. 1894 # 1895 do_execsql_test e_select-8.12.1 { 1896 SELECT x FROM d4 ORDER BY x||'' 1897 } {DEF JKL abc ghi} 1898 1899 # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer 1900 # alias, then SQLite searches the left-most SELECT in the compound for a 1901 # result column that matches either the second or third rules above. If 1902 # a match is found, the search stops and the expression is handled as an 1903 # alias for the result column that it has been matched against. 1904 # Otherwise, the next SELECT to the right is tried, and so on. 1905 # 1906 do_execsql_test e_select-8.13.0 { 1907 CREATE TABLE d5(a, b); 1908 CREATE TABLE d6(c, d); 1909 CREATE TABLE d7(e, f); 1910 1911 INSERT INTO d5 VALUES(1, 'f'); 1912 INSERT INTO d6 VALUES(2, 'e'); 1913 INSERT INTO d7 VALUES(3, 'd'); 1914 INSERT INTO d5 VALUES(4, 'c'); 1915 INSERT INTO d6 VALUES(5, 'b'); 1916 INSERT INTO d7 VALUES(6, 'a'); 1917 1918 CREATE TABLE d8(x COLLATE nocase); 1919 CREATE TABLE d9(y COLLATE nocase); 1920 1921 INSERT INTO d8 VALUES('a'); 1922 INSERT INTO d9 VALUES('B'); 1923 INSERT INTO d8 VALUES('c'); 1924 INSERT INTO d9 VALUES('D'); 1925 } {} 1926 do_select_tests e_select-8.13 { 1927 1 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1928 ORDER BY a 1929 } {1 2 3 4 5 6} 1930 2 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1931 ORDER BY c 1932 } {1 2 3 4 5 6} 1933 3 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1934 ORDER BY e 1935 } {1 2 3 4 5 6} 1936 4 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 1937 ORDER BY 1 1938 } {1 2 3 4 5 6} 1939 1940 5 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 1941 {f 1 c 4 4 c 1 f} 1942 6 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 1943 {f 1 c 4 4 c 1 f} 1944 1945 7 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 1946 {1 f 4 c c 4 f 1} 1947 8 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 1948 {1 f 4 c c 4 f 1} 1949 1950 9 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 1951 {f 2 c 5 4 c 1 f} 1952 10 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 1953 {f 2 c 5 4 c 1 f} 1954 1955 11 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 1956 {2 f 5 c c 5 f 2} 1957 12 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 1958 {2 f 5 c c 5 f 2} 1959 } 1960 1961 # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in 1962 # the result columns of any constituent SELECT, it is an error. 1963 # 1964 do_select_tests e_select-8.14 -error { 1965 %s ORDER BY term does not match any column in the result set 1966 } { 1967 1 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 } 1st 1968 2 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 } 2nd 1969 3 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' } 1st 1970 4 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah } 1st 1971 5 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d } 3rd 1972 6 { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b } 4th 1973 } 1974 1975 # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is 1976 # processed separately and may be matched against result columns from 1977 # different SELECT statements in the compound. 1978 # 1979 do_select_tests e_select-8.15 { 1980 1 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d } 1981 {1 e 1 f 4 b 4 c} 1982 2 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b } 1983 {1 e 1 f 4 b 4 c} 1984 3 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 } 1985 {1 e 1 f 4 b 4 c} 1986 } 1987 1988 1989 #------------------------------------------------------------------------- 1990 # Tests related to statements made about the LIMIT/OFFSET clause. 1991 # 1992 do_execsql_test e_select-9.0 { 1993 CREATE TABLE f1(a, b); 1994 INSERT INTO f1 VALUES(26, 'z'); 1995 INSERT INTO f1 VALUES(25, 'y'); 1996 INSERT INTO f1 VALUES(24, 'x'); 1997 INSERT INTO f1 VALUES(23, 'w'); 1998 INSERT INTO f1 VALUES(22, 'v'); 1999 INSERT INTO f1 VALUES(21, 'u'); 2000 INSERT INTO f1 VALUES(20, 't'); 2001 INSERT INTO f1 VALUES(19, 's'); 2002 INSERT INTO f1 VALUES(18, 'r'); 2003 INSERT INTO f1 VALUES(17, 'q'); 2004 INSERT INTO f1 VALUES(16, 'p'); 2005 INSERT INTO f1 VALUES(15, 'o'); 2006 INSERT INTO f1 VALUES(14, 'n'); 2007 INSERT INTO f1 VALUES(13, 'm'); 2008 INSERT INTO f1 VALUES(12, 'l'); 2009 INSERT INTO f1 VALUES(11, 'k'); 2010 INSERT INTO f1 VALUES(10, 'j'); 2011 INSERT INTO f1 VALUES(9, 'i'); 2012 INSERT INTO f1 VALUES(8, 'h'); 2013 INSERT INTO f1 VALUES(7, 'g'); 2014 INSERT INTO f1 VALUES(6, 'f'); 2015 INSERT INTO f1 VALUES(5, 'e'); 2016 INSERT INTO f1 VALUES(4, 'd'); 2017 INSERT INTO f1 VALUES(3, 'c'); 2018 INSERT INTO f1 VALUES(2, 'b'); 2019 INSERT INTO f1 VALUES(1, 'a'); 2020 } {} 2021 2022 # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the 2023 # LIMIT clause, so long as it evaluates to an integer or a value that 2024 # can be losslessly converted to an integer. 2025 # 2026 do_select_tests e_select-9.1 { 2027 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e} 2028 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e} 2029 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 2030 {a b c d e} 2031 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e} 2032 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e} 2033 } 2034 2035 # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value 2036 # or any other value that cannot be losslessly converted to an integer, 2037 # an error is returned. 2038 # 2039 2040 do_select_tests e_select-9.2 -error "datatype mismatch" { 2041 1 { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {} 2042 2 { SELECT b FROM f1 ORDER BY a LIMIT NULL } {} 2043 3 { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {} 2044 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {} 2045 5 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {} 2046 } 2047 2048 # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a 2049 # negative value, then there is no upper bound on the number of rows 2050 # returned. 2051 # 2052 do_select_tests e_select-9.4 { 2053 1 { SELECT b FROM f1 ORDER BY a LIMIT -1 } 2054 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2055 2 { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 2056 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2057 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 } 2058 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 2059 } 2060 2061 # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N 2062 # rows of its result set only, where N is the value that the LIMIT 2063 # expression evaluates to. 2064 # 2065 do_select_tests e_select-9.5 { 2066 1 { SELECT b FROM f1 ORDER BY a LIMIT 0 } {} 2067 2 { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w} 2068 3 { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s} 2069 4 { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o} 2070 } 2071 2072 # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return 2073 # less than N rows without a LIMIT clause, then the entire result set is 2074 # returned. 2075 # 2076 do_select_tests e_select-9.6 { 2077 1 { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z} 2078 2 { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5} 2079 } 2080 2081 2082 # EVIDENCE-OF: R-24188-24349 The expression attached to the optional 2083 # OFFSET clause that may follow a LIMIT clause must also evaluate to an 2084 # integer, or a value that can be losslessly converted to an integer. 2085 # 2086 foreach {tn select} { 2087 1 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 2088 2 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 2089 3 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 2090 4 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 2091 5 { SELECT b FROM f1 ORDER BY a 2092 LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 2093 } 2094 } { 2095 do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}} 2096 } 2097 2098 # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then 2099 # the first M rows are omitted from the result set returned by the 2100 # SELECT statement and the next N rows are returned, where M and N are 2101 # the values that the OFFSET and LIMIT clauses evaluate to, 2102 # respectively. 2103 # 2104 do_select_tests e_select-9.8 { 2105 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o} 2106 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o} 2107 3 { SELECT b FROM f1 ORDER BY a 2108 LIMIT (SELECT a FROM f1 WHERE b='j') 2109 OFFSET (SELECT a FROM f1 WHERE b='b') 2110 } {c d e f g h i j k l} 2111 4 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h} 2112 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e} 2113 6 { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {} 2114 7 { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r} 2115 } 2116 2117 # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than 2118 # M+N rows if it did not have a LIMIT clause, then the first M rows are 2119 # skipped and the remaining rows (if any) are returned. 2120 # 2121 do_select_tests e_select-9.9 { 2122 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z} 2123 2 { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1} 2124 } 2125 2126 2127 # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a 2128 # negative value, the results are the same as if it had evaluated to 2129 # zero. 2130 # 2131 do_select_tests e_select-9.10 { 2132 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e} 2133 2 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e} 2134 3 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0 } {a b c d e} 2135 } 2136 2137 # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the 2138 # LIMIT clause may specify two scalar expressions separated by a comma. 2139 # 2140 # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used 2141 # as the OFFSET expression and the second as the LIMIT expression. 2142 # 2143 do_select_tests e_select-9.11 { 2144 1 { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o} 2145 2 { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o} 2146 3 { SELECT b FROM f1 ORDER BY a 2147 LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 2148 } {c d e f g h i j k l} 2149 4 { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h} 2150 5 { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e} 2151 6 { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {} 2152 7 { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r} 2153 2154 8 { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z} 2155 9 { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1} 2156 2157 10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e} 2158 11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e} 2159 12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e} 2160 } 2161 2162 finish_test 2163