Home | History | Annotate | Download | only in base
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 // This file is an internal atomic implementation, use atomicops.h instead.
     29 
     30 #ifndef V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_
     31 #define V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_
     32 
     33 namespace v8 {
     34 namespace base {
     35 
     36 // Atomically execute:
     37 //      result = *ptr;
     38 //      if (*ptr == old_value)
     39 //        *ptr = new_value;
     40 //      return result;
     41 //
     42 // I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value".
     43 // Always return the old value of "*ptr"
     44 //
     45 // This routine implies no memory barriers.
     46 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
     47                                          Atomic32 old_value,
     48                                          Atomic32 new_value) {
     49   Atomic32 prev, tmp;
     50   __asm__ __volatile__(".set push\n"
     51                        ".set noreorder\n"
     52                        "1:\n"
     53                        "ll %0, %5\n"  // prev = *ptr
     54                        "bne %0, %3, 2f\n"  // if (prev != old_value) goto 2
     55                        "move %2, %4\n"  // tmp = new_value
     56                        "sc %2, %1\n"  // *ptr = tmp (with atomic check)
     57                        "beqz %2, 1b\n"  // start again on atomic error
     58                        "nop\n"  // delay slot nop
     59                        "2:\n"
     60                        ".set pop\n"
     61                        : "=&r" (prev), "=m" (*ptr), "=&r" (tmp)
     62                        : "Ir" (old_value), "r" (new_value), "m" (*ptr)
     63                        : "memory");
     64   return prev;
     65 }
     66 
     67 // Atomically store new_value into *ptr, returning the previous value held in
     68 // *ptr.  This routine implies no memory barriers.
     69 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
     70                                          Atomic32 new_value) {
     71   Atomic32 temp, old;
     72   __asm__ __volatile__(".set push\n"
     73                        ".set noreorder\n"
     74                        "1:\n"
     75                        "ll %1, %2\n"  // old = *ptr
     76                        "move %0, %3\n"  // temp = new_value
     77                        "sc %0, %2\n"  // *ptr = temp (with atomic check)
     78                        "beqz %0, 1b\n"  // start again on atomic error
     79                        "nop\n"  // delay slot nop
     80                        ".set pop\n"
     81                        : "=&r" (temp), "=&r" (old), "=m" (*ptr)
     82                        : "r" (new_value), "m" (*ptr)
     83                        : "memory");
     84 
     85   return old;
     86 }
     87 
     88 // Atomically increment *ptr by "increment".  Returns the new value of
     89 // *ptr with the increment applied.  This routine implies no memory barriers.
     90 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
     91                                           Atomic32 increment) {
     92   Atomic32 temp, temp2;
     93 
     94   __asm__ __volatile__(".set push\n"
     95                        ".set noreorder\n"
     96                        "1:\n"
     97                        "ll %0, %2\n"  // temp = *ptr
     98                        "addu %1, %0, %3\n"  // temp2 = temp + increment
     99                        "sc %1, %2\n"  // *ptr = temp2 (with atomic check)
    100                        "beqz %1, 1b\n"  // start again on atomic error
    101                        "addu %1, %0, %3\n"  // temp2 = temp + increment
    102                        ".set pop\n"
    103                        : "=&r" (temp), "=&r" (temp2), "=m" (*ptr)
    104                        : "Ir" (increment), "m" (*ptr)
    105                        : "memory");
    106   // temp2 now holds the final value.
    107   return temp2;
    108 }
    109 
    110 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
    111                                         Atomic32 increment) {
    112   MemoryBarrier();
    113   Atomic32 res = NoBarrier_AtomicIncrement(ptr, increment);
    114   MemoryBarrier();
    115   return res;
    116 }
    117 
    118 // "Acquire" operations
    119 // ensure that no later memory access can be reordered ahead of the operation.
    120 // "Release" operations ensure that no previous memory access can be reordered
    121 // after the operation.  "Barrier" operations have both "Acquire" and "Release"
    122 // semantics.   A MemoryBarrier() has "Barrier" semantics, but does no memory
    123 // access.
    124 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
    125                                        Atomic32 old_value,
    126                                        Atomic32 new_value) {
    127   Atomic32 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
    128   MemoryBarrier();
    129   return res;
    130 }
    131 
    132 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
    133                                        Atomic32 old_value,
    134                                        Atomic32 new_value) {
    135   MemoryBarrier();
    136   return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
    137 }
    138 
    139 inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) {
    140   *ptr = value;
    141 }
    142 
    143 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
    144   *ptr = value;
    145 }
    146 
    147 inline void MemoryBarrier() {
    148   __asm__ __volatile__("sync" : : : "memory");
    149 }
    150 
    151 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
    152   *ptr = value;
    153   MemoryBarrier();
    154 }
    155 
    156 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
    157   MemoryBarrier();
    158   *ptr = value;
    159 }
    160 
    161 inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) {
    162   return *ptr;
    163 }
    164 
    165 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
    166   return *ptr;
    167 }
    168 
    169 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
    170   Atomic32 value = *ptr;
    171   MemoryBarrier();
    172   return value;
    173 }
    174 
    175 inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
    176   MemoryBarrier();
    177   return *ptr;
    178 }
    179 
    180 
    181 // 64-bit versions of the atomic ops.
    182 
    183 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
    184                                          Atomic64 old_value,
    185                                          Atomic64 new_value) {
    186   Atomic64 prev, tmp;
    187   __asm__ __volatile__(".set push\n"
    188                        ".set noreorder\n"
    189                        "1:\n"
    190                        "lld %0, %5\n"  // prev = *ptr
    191                        "bne %0, %3, 2f\n"  // if (prev != old_value) goto 2
    192                        "move %2, %4\n"  // tmp = new_value
    193                        "scd %2, %1\n"  // *ptr = tmp (with atomic check)
    194                        "beqz %2, 1b\n"  // start again on atomic error
    195                        "nop\n"  // delay slot nop
    196                        "2:\n"
    197                        ".set pop\n"
    198                        : "=&r" (prev), "=m" (*ptr), "=&r" (tmp)
    199                        : "Ir" (old_value), "r" (new_value), "m" (*ptr)
    200                        : "memory");
    201   return prev;
    202 }
    203 
    204 // Atomically store new_value into *ptr, returning the previous value held in
    205 // *ptr.  This routine implies no memory barriers.
    206 inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
    207                                          Atomic64 new_value) {
    208   Atomic64 temp, old;
    209   __asm__ __volatile__(".set push\n"
    210                        ".set noreorder\n"
    211                        "1:\n"
    212                        "lld %1, %2\n"  // old = *ptr
    213                        "move %0, %3\n"  // temp = new_value
    214                        "scd %0, %2\n"  // *ptr = temp (with atomic check)
    215                        "beqz %0, 1b\n"  // start again on atomic error
    216                        "nop\n"  // delay slot nop
    217                        ".set pop\n"
    218                        : "=&r" (temp), "=&r" (old), "=m" (*ptr)
    219                        : "r" (new_value), "m" (*ptr)
    220                        : "memory");
    221 
    222   return old;
    223 }
    224 
    225 // Atomically increment *ptr by "increment".  Returns the new value of
    226 // *ptr with the increment applied.  This routine implies no memory barriers.
    227 inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
    228                                           Atomic64 increment) {
    229   Atomic64 temp, temp2;
    230 
    231   __asm__ __volatile__(".set push\n"
    232                        ".set noreorder\n"
    233                        "1:\n"
    234                        "lld %0, %2\n"  // temp = *ptr
    235                        "daddu %1, %0, %3\n"  // temp2 = temp + increment
    236                        "scd %1, %2\n"  // *ptr = temp2 (with atomic check)
    237                        "beqz %1, 1b\n"  // start again on atomic error
    238                        "daddu %1, %0, %3\n"  // temp2 = temp + increment
    239                        ".set pop\n"
    240                        : "=&r" (temp), "=&r" (temp2), "=m" (*ptr)
    241                        : "Ir" (increment), "m" (*ptr)
    242                        : "memory");
    243   // temp2 now holds the final value.
    244   return temp2;
    245 }
    246 
    247 inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
    248                                         Atomic64 increment) {
    249   MemoryBarrier();
    250   Atomic64 res = NoBarrier_AtomicIncrement(ptr, increment);
    251   MemoryBarrier();
    252   return res;
    253 }
    254 
    255 // "Acquire" operations
    256 // ensure that no later memory access can be reordered ahead of the operation.
    257 // "Release" operations ensure that no previous memory access can be reordered
    258 // after the operation.  "Barrier" operations have both "Acquire" and "Release"
    259 // semantics.   A MemoryBarrier() has "Barrier" semantics, but does no memory
    260 // access.
    261 inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
    262                                        Atomic64 old_value,
    263                                        Atomic64 new_value) {
    264   Atomic64 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
    265   MemoryBarrier();
    266   return res;
    267 }
    268 
    269 inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
    270                                        Atomic64 old_value,
    271                                        Atomic64 new_value) {
    272   MemoryBarrier();
    273   return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
    274 }
    275 
    276 inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
    277   *ptr = value;
    278 }
    279 
    280 inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
    281   *ptr = value;
    282   MemoryBarrier();
    283 }
    284 
    285 inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
    286   MemoryBarrier();
    287   *ptr = value;
    288 }
    289 
    290 inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
    291   return *ptr;
    292 }
    293 
    294 inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
    295   Atomic64 value = *ptr;
    296   MemoryBarrier();
    297   return value;
    298 }
    299 
    300 inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
    301   MemoryBarrier();
    302   return *ptr;
    303 }
    304 
    305 } }  // namespace v8::base
    306 
    307 #endif  // V8_BASE_ATOMICOPS_INTERNALS_MIPS_GCC_H_
    308