1 // Copyright 2014 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/factory.h" 6 7 #include "src/allocation-site-scopes.h" 8 #include "src/base/bits.h" 9 #include "src/conversions.h" 10 #include "src/isolate-inl.h" 11 #include "src/macro-assembler.h" 12 13 namespace v8 { 14 namespace internal { 15 16 17 template<typename T> 18 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) { 19 CALL_HEAP_FUNCTION( 20 isolate(), 21 isolate()->heap()->Allocate(*map, space), 22 T); 23 } 24 25 26 template<typename T> 27 Handle<T> Factory::New(Handle<Map> map, 28 AllocationSpace space, 29 Handle<AllocationSite> allocation_site) { 30 CALL_HEAP_FUNCTION( 31 isolate(), 32 isolate()->heap()->Allocate(*map, space, *allocation_site), 33 T); 34 } 35 36 37 Handle<HeapObject> Factory::NewFillerObject(int size, 38 bool double_align, 39 AllocationSpace space) { 40 CALL_HEAP_FUNCTION( 41 isolate(), 42 isolate()->heap()->AllocateFillerObject(size, double_align, space), 43 HeapObject); 44 } 45 46 47 Handle<Box> Factory::NewBox(Handle<Object> value) { 48 Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE)); 49 result->set_value(*value); 50 return result; 51 } 52 53 54 Handle<Oddball> Factory::NewOddball(Handle<Map> map, 55 const char* to_string, 56 Handle<Object> to_number, 57 byte kind) { 58 Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE); 59 Oddball::Initialize(isolate(), oddball, to_string, to_number, kind); 60 return oddball; 61 } 62 63 64 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) { 65 DCHECK(0 <= size); 66 CALL_HEAP_FUNCTION( 67 isolate(), 68 isolate()->heap()->AllocateFixedArray(size, pretenure), 69 FixedArray); 70 } 71 72 73 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size, 74 PretenureFlag pretenure) { 75 DCHECK(0 <= size); 76 CALL_HEAP_FUNCTION( 77 isolate(), 78 isolate()->heap()->AllocateFixedArrayWithFiller(size, 79 pretenure, 80 *the_hole_value()), 81 FixedArray); 82 } 83 84 85 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) { 86 CALL_HEAP_FUNCTION( 87 isolate(), 88 isolate()->heap()->AllocateUninitializedFixedArray(size), 89 FixedArray); 90 } 91 92 93 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size, 94 PretenureFlag pretenure) { 95 DCHECK(0 <= size); 96 CALL_HEAP_FUNCTION( 97 isolate(), 98 isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure), 99 FixedArrayBase); 100 } 101 102 103 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles( 104 int size, 105 PretenureFlag pretenure) { 106 DCHECK(0 <= size); 107 Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure); 108 if (size > 0) { 109 Handle<FixedDoubleArray> double_array = 110 Handle<FixedDoubleArray>::cast(array); 111 for (int i = 0; i < size; ++i) { 112 double_array->set_the_hole(i); 113 } 114 } 115 return array; 116 } 117 118 119 Handle<ConstantPoolArray> Factory::NewConstantPoolArray( 120 const ConstantPoolArray::NumberOfEntries& small) { 121 DCHECK(small.total_count() > 0); 122 CALL_HEAP_FUNCTION( 123 isolate(), 124 isolate()->heap()->AllocateConstantPoolArray(small), 125 ConstantPoolArray); 126 } 127 128 129 Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray( 130 const ConstantPoolArray::NumberOfEntries& small, 131 const ConstantPoolArray::NumberOfEntries& extended) { 132 DCHECK(small.total_count() > 0); 133 DCHECK(extended.total_count() > 0); 134 CALL_HEAP_FUNCTION( 135 isolate(), 136 isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended), 137 ConstantPoolArray); 138 } 139 140 141 Handle<OrderedHashSet> Factory::NewOrderedHashSet() { 142 return OrderedHashSet::Allocate(isolate(), 4); 143 } 144 145 146 Handle<OrderedHashMap> Factory::NewOrderedHashMap() { 147 return OrderedHashMap::Allocate(isolate(), 4); 148 } 149 150 151 Handle<AccessorPair> Factory::NewAccessorPair() { 152 Handle<AccessorPair> accessors = 153 Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE)); 154 accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER); 155 accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER); 156 return accessors; 157 } 158 159 160 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() { 161 Handle<TypeFeedbackInfo> info = 162 Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE)); 163 info->initialize_storage(); 164 return info; 165 } 166 167 168 // Internalized strings are created in the old generation (data space). 169 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) { 170 Utf8StringKey key(string, isolate()->heap()->HashSeed()); 171 return InternalizeStringWithKey(&key); 172 } 173 174 175 // Internalized strings are created in the old generation (data space). 176 Handle<String> Factory::InternalizeString(Handle<String> string) { 177 if (string->IsInternalizedString()) return string; 178 return StringTable::LookupString(isolate(), string); 179 } 180 181 182 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) { 183 OneByteStringKey key(string, isolate()->heap()->HashSeed()); 184 return InternalizeStringWithKey(&key); 185 } 186 187 188 Handle<String> Factory::InternalizeOneByteString( 189 Handle<SeqOneByteString> string, int from, int length) { 190 SeqOneByteSubStringKey key(string, from, length); 191 return InternalizeStringWithKey(&key); 192 } 193 194 195 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) { 196 TwoByteStringKey key(string, isolate()->heap()->HashSeed()); 197 return InternalizeStringWithKey(&key); 198 } 199 200 201 template<class StringTableKey> 202 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) { 203 return StringTable::LookupKey(isolate(), key); 204 } 205 206 207 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string, 208 PretenureFlag pretenure) { 209 int length = string.length(); 210 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); 211 Handle<SeqOneByteString> result; 212 ASSIGN_RETURN_ON_EXCEPTION( 213 isolate(), 214 result, 215 NewRawOneByteString(string.length(), pretenure), 216 String); 217 218 DisallowHeapAllocation no_gc; 219 // Copy the characters into the new object. 220 CopyChars(SeqOneByteString::cast(*result)->GetChars(), 221 string.start(), 222 length); 223 return result; 224 } 225 226 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string, 227 PretenureFlag pretenure) { 228 // Check for ASCII first since this is the common case. 229 const char* start = string.start(); 230 int length = string.length(); 231 int non_ascii_start = String::NonAsciiStart(start, length); 232 if (non_ascii_start >= length) { 233 // If the string is ASCII, we do not need to convert the characters 234 // since UTF8 is backwards compatible with ASCII. 235 return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure); 236 } 237 238 // Non-ASCII and we need to decode. 239 Access<UnicodeCache::Utf8Decoder> 240 decoder(isolate()->unicode_cache()->utf8_decoder()); 241 decoder->Reset(string.start() + non_ascii_start, 242 length - non_ascii_start); 243 int utf16_length = decoder->Utf16Length(); 244 DCHECK(utf16_length > 0); 245 // Allocate string. 246 Handle<SeqTwoByteString> result; 247 ASSIGN_RETURN_ON_EXCEPTION( 248 isolate(), result, 249 NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), 250 String); 251 // Copy ASCII portion. 252 uint16_t* data = result->GetChars(); 253 const char* ascii_data = string.start(); 254 for (int i = 0; i < non_ascii_start; i++) { 255 *data++ = *ascii_data++; 256 } 257 // Now write the remainder. 258 decoder->WriteUtf16(data, utf16_length); 259 return result; 260 } 261 262 263 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string, 264 PretenureFlag pretenure) { 265 int length = string.length(); 266 const uc16* start = string.start(); 267 if (String::IsOneByte(start, length)) { 268 if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); 269 Handle<SeqOneByteString> result; 270 ASSIGN_RETURN_ON_EXCEPTION( 271 isolate(), 272 result, 273 NewRawOneByteString(length, pretenure), 274 String); 275 CopyChars(result->GetChars(), start, length); 276 return result; 277 } else { 278 Handle<SeqTwoByteString> result; 279 ASSIGN_RETURN_ON_EXCEPTION( 280 isolate(), 281 result, 282 NewRawTwoByteString(length, pretenure), 283 String); 284 CopyChars(result->GetChars(), start, length); 285 return result; 286 } 287 } 288 289 290 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str, 291 int chars, 292 uint32_t hash_field) { 293 CALL_HEAP_FUNCTION( 294 isolate(), 295 isolate()->heap()->AllocateInternalizedStringFromUtf8( 296 str, chars, hash_field), 297 String); 298 } 299 300 301 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString( 302 Vector<const uint8_t> str, 303 uint32_t hash_field) { 304 CALL_HEAP_FUNCTION( 305 isolate(), 306 isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field), 307 String); 308 } 309 310 311 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString( 312 Handle<SeqOneByteString> string, int offset, int length, 313 uint32_t hash_field) { 314 CALL_HEAP_FUNCTION( 315 isolate(), isolate()->heap()->AllocateOneByteInternalizedString( 316 Vector<const uint8_t>(string->GetChars() + offset, length), 317 hash_field), 318 String); 319 } 320 321 322 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString( 323 Vector<const uc16> str, 324 uint32_t hash_field) { 325 CALL_HEAP_FUNCTION( 326 isolate(), 327 isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field), 328 String); 329 } 330 331 332 Handle<String> Factory::NewInternalizedStringImpl( 333 Handle<String> string, int chars, uint32_t hash_field) { 334 CALL_HEAP_FUNCTION( 335 isolate(), 336 isolate()->heap()->AllocateInternalizedStringImpl( 337 *string, chars, hash_field), 338 String); 339 } 340 341 342 MaybeHandle<Map> Factory::InternalizedStringMapForString( 343 Handle<String> string) { 344 // If the string is in new space it cannot be used as internalized. 345 if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>(); 346 347 // Find the corresponding internalized string map for strings. 348 switch (string->map()->instance_type()) { 349 case STRING_TYPE: return internalized_string_map(); 350 case ONE_BYTE_STRING_TYPE: 351 return one_byte_internalized_string_map(); 352 case EXTERNAL_STRING_TYPE: return external_internalized_string_map(); 353 case EXTERNAL_ONE_BYTE_STRING_TYPE: 354 return external_one_byte_internalized_string_map(); 355 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: 356 return external_internalized_string_with_one_byte_data_map(); 357 case SHORT_EXTERNAL_STRING_TYPE: 358 return short_external_internalized_string_map(); 359 case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: 360 return short_external_one_byte_internalized_string_map(); 361 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: 362 return short_external_internalized_string_with_one_byte_data_map(); 363 default: return MaybeHandle<Map>(); // No match found. 364 } 365 } 366 367 368 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString( 369 int length, PretenureFlag pretenure) { 370 if (length > String::kMaxLength || length < 0) { 371 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString); 372 } 373 CALL_HEAP_FUNCTION( 374 isolate(), 375 isolate()->heap()->AllocateRawOneByteString(length, pretenure), 376 SeqOneByteString); 377 } 378 379 380 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString( 381 int length, PretenureFlag pretenure) { 382 if (length > String::kMaxLength || length < 0) { 383 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString); 384 } 385 CALL_HEAP_FUNCTION( 386 isolate(), 387 isolate()->heap()->AllocateRawTwoByteString(length, pretenure), 388 SeqTwoByteString); 389 } 390 391 392 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) { 393 if (code <= String::kMaxOneByteCharCodeU) { 394 { 395 DisallowHeapAllocation no_allocation; 396 Object* value = single_character_string_cache()->get(code); 397 if (value != *undefined_value()) { 398 return handle(String::cast(value), isolate()); 399 } 400 } 401 uint8_t buffer[1]; 402 buffer[0] = static_cast<uint8_t>(code); 403 Handle<String> result = 404 InternalizeOneByteString(Vector<const uint8_t>(buffer, 1)); 405 single_character_string_cache()->set(code, *result); 406 return result; 407 } 408 DCHECK(code <= String::kMaxUtf16CodeUnitU); 409 410 Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked(); 411 result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code)); 412 return result; 413 } 414 415 416 // Returns true for a character in a range. Both limits are inclusive. 417 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) { 418 // This makes uses of the the unsigned wraparound. 419 return character - from <= to - from; 420 } 421 422 423 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate, 424 uint16_t c1, 425 uint16_t c2) { 426 // Numeric strings have a different hash algorithm not known by 427 // LookupTwoCharsStringIfExists, so we skip this step for such strings. 428 if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) { 429 Handle<String> result; 430 if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2). 431 ToHandle(&result)) { 432 return result; 433 } 434 } 435 436 // Now we know the length is 2, we might as well make use of that fact 437 // when building the new string. 438 if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) { 439 // We can do this. 440 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 441 1)); // because of this. 442 Handle<SeqOneByteString> str = 443 isolate->factory()->NewRawOneByteString(2).ToHandleChecked(); 444 uint8_t* dest = str->GetChars(); 445 dest[0] = static_cast<uint8_t>(c1); 446 dest[1] = static_cast<uint8_t>(c2); 447 return str; 448 } else { 449 Handle<SeqTwoByteString> str = 450 isolate->factory()->NewRawTwoByteString(2).ToHandleChecked(); 451 uc16* dest = str->GetChars(); 452 dest[0] = c1; 453 dest[1] = c2; 454 return str; 455 } 456 } 457 458 459 template<typename SinkChar, typename StringType> 460 Handle<String> ConcatStringContent(Handle<StringType> result, 461 Handle<String> first, 462 Handle<String> second) { 463 DisallowHeapAllocation pointer_stays_valid; 464 SinkChar* sink = result->GetChars(); 465 String::WriteToFlat(*first, sink, 0, first->length()); 466 String::WriteToFlat(*second, sink + first->length(), 0, second->length()); 467 return result; 468 } 469 470 471 MaybeHandle<String> Factory::NewConsString(Handle<String> left, 472 Handle<String> right) { 473 int left_length = left->length(); 474 if (left_length == 0) return right; 475 int right_length = right->length(); 476 if (right_length == 0) return left; 477 478 int length = left_length + right_length; 479 480 if (length == 2) { 481 uint16_t c1 = left->Get(0); 482 uint16_t c2 = right->Get(0); 483 return MakeOrFindTwoCharacterString(isolate(), c1, c2); 484 } 485 486 // Make sure that an out of memory exception is thrown if the length 487 // of the new cons string is too large. 488 if (length > String::kMaxLength || length < 0) { 489 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); 490 } 491 492 bool left_is_one_byte = left->IsOneByteRepresentation(); 493 bool right_is_one_byte = right->IsOneByteRepresentation(); 494 bool is_one_byte = left_is_one_byte && right_is_one_byte; 495 bool is_one_byte_data_in_two_byte_string = false; 496 if (!is_one_byte) { 497 // At least one of the strings uses two-byte representation so we 498 // can't use the fast case code for short one-byte strings below, but 499 // we can try to save memory if all chars actually fit in one-byte. 500 is_one_byte_data_in_two_byte_string = 501 left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars(); 502 if (is_one_byte_data_in_two_byte_string) { 503 isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment(); 504 } 505 } 506 507 // If the resulting string is small make a flat string. 508 if (length < ConsString::kMinLength) { 509 // Note that neither of the two inputs can be a slice because: 510 STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength); 511 DCHECK(left->IsFlat()); 512 DCHECK(right->IsFlat()); 513 514 STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength); 515 if (is_one_byte) { 516 Handle<SeqOneByteString> result = 517 NewRawOneByteString(length).ToHandleChecked(); 518 DisallowHeapAllocation no_gc; 519 uint8_t* dest = result->GetChars(); 520 // Copy left part. 521 const uint8_t* src = 522 left->IsExternalString() 523 ? Handle<ExternalOneByteString>::cast(left)->GetChars() 524 : Handle<SeqOneByteString>::cast(left)->GetChars(); 525 for (int i = 0; i < left_length; i++) *dest++ = src[i]; 526 // Copy right part. 527 src = right->IsExternalString() 528 ? Handle<ExternalOneByteString>::cast(right)->GetChars() 529 : Handle<SeqOneByteString>::cast(right)->GetChars(); 530 for (int i = 0; i < right_length; i++) *dest++ = src[i]; 531 return result; 532 } 533 534 return (is_one_byte_data_in_two_byte_string) 535 ? ConcatStringContent<uint8_t>( 536 NewRawOneByteString(length).ToHandleChecked(), left, right) 537 : ConcatStringContent<uc16>( 538 NewRawTwoByteString(length).ToHandleChecked(), left, right); 539 } 540 541 Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string) 542 ? cons_one_byte_string_map() 543 : cons_string_map(); 544 Handle<ConsString> result = New<ConsString>(map, NEW_SPACE); 545 546 DisallowHeapAllocation no_gc; 547 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); 548 549 result->set_hash_field(String::kEmptyHashField); 550 result->set_length(length); 551 result->set_first(*left, mode); 552 result->set_second(*right, mode); 553 return result; 554 } 555 556 557 Handle<String> Factory::NewProperSubString(Handle<String> str, 558 int begin, 559 int end) { 560 #if VERIFY_HEAP 561 if (FLAG_verify_heap) str->StringVerify(); 562 #endif 563 DCHECK(begin > 0 || end < str->length()); 564 565 str = String::Flatten(str); 566 567 int length = end - begin; 568 if (length <= 0) return empty_string(); 569 if (length == 1) { 570 return LookupSingleCharacterStringFromCode(str->Get(begin)); 571 } 572 if (length == 2) { 573 // Optimization for 2-byte strings often used as keys in a decompression 574 // dictionary. Check whether we already have the string in the string 575 // table to prevent creation of many unnecessary strings. 576 uint16_t c1 = str->Get(begin); 577 uint16_t c2 = str->Get(begin + 1); 578 return MakeOrFindTwoCharacterString(isolate(), c1, c2); 579 } 580 581 if (!FLAG_string_slices || length < SlicedString::kMinLength) { 582 if (str->IsOneByteRepresentation()) { 583 Handle<SeqOneByteString> result = 584 NewRawOneByteString(length).ToHandleChecked(); 585 uint8_t* dest = result->GetChars(); 586 DisallowHeapAllocation no_gc; 587 String::WriteToFlat(*str, dest, begin, end); 588 return result; 589 } else { 590 Handle<SeqTwoByteString> result = 591 NewRawTwoByteString(length).ToHandleChecked(); 592 uc16* dest = result->GetChars(); 593 DisallowHeapAllocation no_gc; 594 String::WriteToFlat(*str, dest, begin, end); 595 return result; 596 } 597 } 598 599 int offset = begin; 600 601 if (str->IsSlicedString()) { 602 Handle<SlicedString> slice = Handle<SlicedString>::cast(str); 603 str = Handle<String>(slice->parent(), isolate()); 604 offset += slice->offset(); 605 } 606 607 DCHECK(str->IsSeqString() || str->IsExternalString()); 608 Handle<Map> map = str->IsOneByteRepresentation() 609 ? sliced_one_byte_string_map() 610 : sliced_string_map(); 611 Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE); 612 613 slice->set_hash_field(String::kEmptyHashField); 614 slice->set_length(length); 615 slice->set_parent(*str); 616 slice->set_offset(offset); 617 return slice; 618 } 619 620 621 MaybeHandle<String> Factory::NewExternalStringFromOneByte( 622 const ExternalOneByteString::Resource* resource) { 623 size_t length = resource->length(); 624 if (length > static_cast<size_t>(String::kMaxLength)) { 625 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); 626 } 627 628 Handle<Map> map = external_one_byte_string_map(); 629 Handle<ExternalOneByteString> external_string = 630 New<ExternalOneByteString>(map, NEW_SPACE); 631 external_string->set_length(static_cast<int>(length)); 632 external_string->set_hash_field(String::kEmptyHashField); 633 external_string->set_resource(resource); 634 635 return external_string; 636 } 637 638 639 MaybeHandle<String> Factory::NewExternalStringFromTwoByte( 640 const ExternalTwoByteString::Resource* resource) { 641 size_t length = resource->length(); 642 if (length > static_cast<size_t>(String::kMaxLength)) { 643 THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); 644 } 645 646 // For small strings we check whether the resource contains only 647 // one byte characters. If yes, we use a different string map. 648 static const size_t kOneByteCheckLengthLimit = 32; 649 bool is_one_byte = length <= kOneByteCheckLengthLimit && 650 String::IsOneByte(resource->data(), static_cast<int>(length)); 651 Handle<Map> map = is_one_byte ? 652 external_string_with_one_byte_data_map() : external_string_map(); 653 Handle<ExternalTwoByteString> external_string = 654 New<ExternalTwoByteString>(map, NEW_SPACE); 655 external_string->set_length(static_cast<int>(length)); 656 external_string->set_hash_field(String::kEmptyHashField); 657 external_string->set_resource(resource); 658 659 return external_string; 660 } 661 662 663 Handle<Symbol> Factory::NewSymbol() { 664 CALL_HEAP_FUNCTION( 665 isolate(), 666 isolate()->heap()->AllocateSymbol(), 667 Symbol); 668 } 669 670 671 Handle<Symbol> Factory::NewPrivateSymbol() { 672 Handle<Symbol> symbol = NewSymbol(); 673 symbol->set_is_private(true); 674 return symbol; 675 } 676 677 678 Handle<Symbol> Factory::NewPrivateOwnSymbol() { 679 Handle<Symbol> symbol = NewSymbol(); 680 symbol->set_is_private(true); 681 symbol->set_is_own(true); 682 return symbol; 683 } 684 685 686 Handle<Context> Factory::NewNativeContext() { 687 Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS); 688 array->set_map_no_write_barrier(*native_context_map()); 689 Handle<Context> context = Handle<Context>::cast(array); 690 context->set_js_array_maps(*undefined_value()); 691 DCHECK(context->IsNativeContext()); 692 return context; 693 } 694 695 696 Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function, 697 Handle<ScopeInfo> scope_info) { 698 Handle<FixedArray> array = 699 NewFixedArray(scope_info->ContextLength(), TENURED); 700 array->set_map_no_write_barrier(*global_context_map()); 701 Handle<Context> context = Handle<Context>::cast(array); 702 context->set_closure(*function); 703 context->set_previous(function->context()); 704 context->set_extension(*scope_info); 705 context->set_global_object(function->context()->global_object()); 706 DCHECK(context->IsGlobalContext()); 707 return context; 708 } 709 710 711 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) { 712 Handle<FixedArray> array = 713 NewFixedArray(scope_info->ContextLength(), TENURED); 714 array->set_map_no_write_barrier(*module_context_map()); 715 // Instance link will be set later. 716 Handle<Context> context = Handle<Context>::cast(array); 717 context->set_extension(Smi::FromInt(0)); 718 return context; 719 } 720 721 722 Handle<Context> Factory::NewFunctionContext(int length, 723 Handle<JSFunction> function) { 724 DCHECK(length >= Context::MIN_CONTEXT_SLOTS); 725 Handle<FixedArray> array = NewFixedArray(length); 726 array->set_map_no_write_barrier(*function_context_map()); 727 Handle<Context> context = Handle<Context>::cast(array); 728 context->set_closure(*function); 729 context->set_previous(function->context()); 730 context->set_extension(Smi::FromInt(0)); 731 context->set_global_object(function->context()->global_object()); 732 return context; 733 } 734 735 736 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function, 737 Handle<Context> previous, 738 Handle<String> name, 739 Handle<Object> thrown_object) { 740 STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); 741 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1); 742 array->set_map_no_write_barrier(*catch_context_map()); 743 Handle<Context> context = Handle<Context>::cast(array); 744 context->set_closure(*function); 745 context->set_previous(*previous); 746 context->set_extension(*name); 747 context->set_global_object(previous->global_object()); 748 context->set(Context::THROWN_OBJECT_INDEX, *thrown_object); 749 return context; 750 } 751 752 753 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function, 754 Handle<Context> previous, 755 Handle<JSReceiver> extension) { 756 Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS); 757 array->set_map_no_write_barrier(*with_context_map()); 758 Handle<Context> context = Handle<Context>::cast(array); 759 context->set_closure(*function); 760 context->set_previous(*previous); 761 context->set_extension(*extension); 762 context->set_global_object(previous->global_object()); 763 return context; 764 } 765 766 767 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function, 768 Handle<Context> previous, 769 Handle<ScopeInfo> scope_info) { 770 Handle<FixedArray> array = 771 NewFixedArrayWithHoles(scope_info->ContextLength()); 772 array->set_map_no_write_barrier(*block_context_map()); 773 Handle<Context> context = Handle<Context>::cast(array); 774 context->set_closure(*function); 775 context->set_previous(*previous); 776 context->set_extension(*scope_info); 777 context->set_global_object(previous->global_object()); 778 return context; 779 } 780 781 782 Handle<Struct> Factory::NewStruct(InstanceType type) { 783 CALL_HEAP_FUNCTION( 784 isolate(), 785 isolate()->heap()->AllocateStruct(type), 786 Struct); 787 } 788 789 790 Handle<CodeCache> Factory::NewCodeCache() { 791 Handle<CodeCache> code_cache = 792 Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE)); 793 code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER); 794 code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER); 795 return code_cache; 796 } 797 798 799 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry( 800 int aliased_context_slot) { 801 Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast( 802 NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE)); 803 entry->set_aliased_context_slot(aliased_context_slot); 804 return entry; 805 } 806 807 808 Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() { 809 return Handle<DeclaredAccessorDescriptor>::cast( 810 NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE)); 811 } 812 813 814 Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() { 815 Handle<DeclaredAccessorInfo> info = 816 Handle<DeclaredAccessorInfo>::cast( 817 NewStruct(DECLARED_ACCESSOR_INFO_TYPE)); 818 info->set_flag(0); // Must clear the flag, it was initialized as undefined. 819 return info; 820 } 821 822 823 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() { 824 Handle<ExecutableAccessorInfo> info = 825 Handle<ExecutableAccessorInfo>::cast( 826 NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE)); 827 info->set_flag(0); // Must clear the flag, it was initialized as undefined. 828 return info; 829 } 830 831 832 Handle<Script> Factory::NewScript(Handle<String> source) { 833 // Generate id for this script. 834 Heap* heap = isolate()->heap(); 835 int id = heap->last_script_id()->value() + 1; 836 if (!Smi::IsValid(id) || id < 0) id = 1; 837 heap->set_last_script_id(Smi::FromInt(id)); 838 839 // Create and initialize script object. 840 Handle<Foreign> wrapper = NewForeign(0, TENURED); 841 Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE)); 842 script->set_source(*source); 843 script->set_name(heap->undefined_value()); 844 script->set_id(Smi::FromInt(id)); 845 script->set_line_offset(Smi::FromInt(0)); 846 script->set_column_offset(Smi::FromInt(0)); 847 script->set_context_data(heap->undefined_value()); 848 script->set_type(Smi::FromInt(Script::TYPE_NORMAL)); 849 script->set_wrapper(*wrapper); 850 script->set_line_ends(heap->undefined_value()); 851 script->set_eval_from_shared(heap->undefined_value()); 852 script->set_eval_from_instructions_offset(Smi::FromInt(0)); 853 script->set_flags(Smi::FromInt(0)); 854 855 return script; 856 } 857 858 859 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) { 860 CALL_HEAP_FUNCTION(isolate(), 861 isolate()->heap()->AllocateForeign(addr, pretenure), 862 Foreign); 863 } 864 865 866 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) { 867 return NewForeign((Address) desc, TENURED); 868 } 869 870 871 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) { 872 DCHECK(0 <= length); 873 CALL_HEAP_FUNCTION( 874 isolate(), 875 isolate()->heap()->AllocateByteArray(length, pretenure), 876 ByteArray); 877 } 878 879 880 Handle<ExternalArray> Factory::NewExternalArray(int length, 881 ExternalArrayType array_type, 882 void* external_pointer, 883 PretenureFlag pretenure) { 884 DCHECK(0 <= length && length <= Smi::kMaxValue); 885 CALL_HEAP_FUNCTION( 886 isolate(), 887 isolate()->heap()->AllocateExternalArray(length, 888 array_type, 889 external_pointer, 890 pretenure), 891 ExternalArray); 892 } 893 894 895 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray( 896 int length, 897 ExternalArrayType array_type, 898 PretenureFlag pretenure) { 899 DCHECK(0 <= length && length <= Smi::kMaxValue); 900 CALL_HEAP_FUNCTION( 901 isolate(), 902 isolate()->heap()->AllocateFixedTypedArray(length, 903 array_type, 904 pretenure), 905 FixedTypedArrayBase); 906 } 907 908 909 Handle<Cell> Factory::NewCell(Handle<Object> value) { 910 AllowDeferredHandleDereference convert_to_cell; 911 CALL_HEAP_FUNCTION( 912 isolate(), 913 isolate()->heap()->AllocateCell(*value), 914 Cell); 915 } 916 917 918 Handle<PropertyCell> Factory::NewPropertyCellWithHole() { 919 CALL_HEAP_FUNCTION( 920 isolate(), 921 isolate()->heap()->AllocatePropertyCell(), 922 PropertyCell); 923 } 924 925 926 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) { 927 AllowDeferredHandleDereference convert_to_cell; 928 Handle<PropertyCell> cell = NewPropertyCellWithHole(); 929 PropertyCell::SetValueInferType(cell, value); 930 return cell; 931 } 932 933 934 Handle<AllocationSite> Factory::NewAllocationSite() { 935 Handle<Map> map = allocation_site_map(); 936 Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE); 937 site->Initialize(); 938 939 // Link the site 940 site->set_weak_next(isolate()->heap()->allocation_sites_list()); 941 isolate()->heap()->set_allocation_sites_list(*site); 942 return site; 943 } 944 945 946 Handle<Map> Factory::NewMap(InstanceType type, 947 int instance_size, 948 ElementsKind elements_kind) { 949 CALL_HEAP_FUNCTION( 950 isolate(), 951 isolate()->heap()->AllocateMap(type, instance_size, elements_kind), 952 Map); 953 } 954 955 956 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) { 957 CALL_HEAP_FUNCTION(isolate(), 958 isolate()->heap()->CopyJSObject(*object, NULL), 959 JSObject); 960 } 961 962 963 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite( 964 Handle<JSObject> object, 965 Handle<AllocationSite> site) { 966 CALL_HEAP_FUNCTION(isolate(), 967 isolate()->heap()->CopyJSObject( 968 *object, 969 site.is_null() ? NULL : *site), 970 JSObject); 971 } 972 973 974 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array, 975 Handle<Map> map) { 976 CALL_HEAP_FUNCTION(isolate(), 977 isolate()->heap()->CopyFixedArrayWithMap(*array, *map), 978 FixedArray); 979 } 980 981 982 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) { 983 CALL_HEAP_FUNCTION(isolate(), 984 isolate()->heap()->CopyFixedArray(*array), 985 FixedArray); 986 } 987 988 989 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray( 990 Handle<FixedArray> array) { 991 DCHECK(isolate()->heap()->InNewSpace(*array)); 992 CALL_HEAP_FUNCTION(isolate(), 993 isolate()->heap()->CopyAndTenureFixedCOWArray(*array), 994 FixedArray); 995 } 996 997 998 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray( 999 Handle<FixedDoubleArray> array) { 1000 CALL_HEAP_FUNCTION(isolate(), 1001 isolate()->heap()->CopyFixedDoubleArray(*array), 1002 FixedDoubleArray); 1003 } 1004 1005 1006 Handle<ConstantPoolArray> Factory::CopyConstantPoolArray( 1007 Handle<ConstantPoolArray> array) { 1008 CALL_HEAP_FUNCTION(isolate(), 1009 isolate()->heap()->CopyConstantPoolArray(*array), 1010 ConstantPoolArray); 1011 } 1012 1013 1014 Handle<Object> Factory::NewNumber(double value, 1015 PretenureFlag pretenure) { 1016 // We need to distinguish the minus zero value and this cannot be 1017 // done after conversion to int. Doing this by comparing bit 1018 // patterns is faster than using fpclassify() et al. 1019 if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure); 1020 1021 int int_value = FastD2I(value); 1022 if (value == int_value && Smi::IsValid(int_value)) { 1023 return handle(Smi::FromInt(int_value), isolate()); 1024 } 1025 1026 // Materialize the value in the heap. 1027 return NewHeapNumber(value, IMMUTABLE, pretenure); 1028 } 1029 1030 1031 Handle<Object> Factory::NewNumberFromInt(int32_t value, 1032 PretenureFlag pretenure) { 1033 if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate()); 1034 // Bypass NewNumber to avoid various redundant checks. 1035 return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure); 1036 } 1037 1038 1039 Handle<Object> Factory::NewNumberFromUint(uint32_t value, 1040 PretenureFlag pretenure) { 1041 int32_t int32v = static_cast<int32_t>(value); 1042 if (int32v >= 0 && Smi::IsValid(int32v)) { 1043 return handle(Smi::FromInt(int32v), isolate()); 1044 } 1045 return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure); 1046 } 1047 1048 1049 Handle<HeapNumber> Factory::NewHeapNumber(double value, 1050 MutableMode mode, 1051 PretenureFlag pretenure) { 1052 CALL_HEAP_FUNCTION( 1053 isolate(), 1054 isolate()->heap()->AllocateHeapNumber(value, mode, pretenure), 1055 HeapNumber); 1056 } 1057 1058 1059 MaybeHandle<Object> Factory::NewTypeError(const char* message, 1060 Vector<Handle<Object> > args) { 1061 return NewError("MakeTypeError", message, args); 1062 } 1063 1064 1065 MaybeHandle<Object> Factory::NewTypeError(Handle<String> message) { 1066 return NewError("$TypeError", message); 1067 } 1068 1069 1070 MaybeHandle<Object> Factory::NewRangeError(const char* message, 1071 Vector<Handle<Object> > args) { 1072 return NewError("MakeRangeError", message, args); 1073 } 1074 1075 1076 MaybeHandle<Object> Factory::NewRangeError(Handle<String> message) { 1077 return NewError("$RangeError", message); 1078 } 1079 1080 1081 MaybeHandle<Object> Factory::NewSyntaxError(const char* message, 1082 Handle<JSArray> args) { 1083 return NewError("MakeSyntaxError", message, args); 1084 } 1085 1086 1087 MaybeHandle<Object> Factory::NewSyntaxError(Handle<String> message) { 1088 return NewError("$SyntaxError", message); 1089 } 1090 1091 1092 MaybeHandle<Object> Factory::NewReferenceError(const char* message, 1093 Vector<Handle<Object> > args) { 1094 return NewError("MakeReferenceError", message, args); 1095 } 1096 1097 1098 MaybeHandle<Object> Factory::NewReferenceError(const char* message, 1099 Handle<JSArray> args) { 1100 return NewError("MakeReferenceError", message, args); 1101 } 1102 1103 1104 MaybeHandle<Object> Factory::NewReferenceError(Handle<String> message) { 1105 return NewError("$ReferenceError", message); 1106 } 1107 1108 1109 MaybeHandle<Object> Factory::NewError(const char* maker, const char* message, 1110 Vector<Handle<Object> > args) { 1111 // Instantiate a closeable HandleScope for EscapeFrom. 1112 v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate())); 1113 Handle<FixedArray> array = NewFixedArray(args.length()); 1114 for (int i = 0; i < args.length(); i++) { 1115 array->set(i, *args[i]); 1116 } 1117 Handle<JSArray> object = NewJSArrayWithElements(array); 1118 Handle<Object> result; 1119 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, 1120 NewError(maker, message, object), Object); 1121 return result.EscapeFrom(&scope); 1122 } 1123 1124 1125 MaybeHandle<Object> Factory::NewEvalError(const char* message, 1126 Vector<Handle<Object> > args) { 1127 return NewError("MakeEvalError", message, args); 1128 } 1129 1130 1131 MaybeHandle<Object> Factory::NewError(const char* message, 1132 Vector<Handle<Object> > args) { 1133 return NewError("MakeError", message, args); 1134 } 1135 1136 1137 Handle<String> Factory::EmergencyNewError(const char* message, 1138 Handle<JSArray> args) { 1139 const int kBufferSize = 1000; 1140 char buffer[kBufferSize]; 1141 size_t space = kBufferSize; 1142 char* p = &buffer[0]; 1143 1144 Vector<char> v(buffer, kBufferSize); 1145 StrNCpy(v, message, space); 1146 space -= Min(space, strlen(message)); 1147 p = &buffer[kBufferSize] - space; 1148 1149 for (int i = 0; i < Smi::cast(args->length())->value(); i++) { 1150 if (space > 0) { 1151 *p++ = ' '; 1152 space--; 1153 if (space > 0) { 1154 Handle<String> arg_str = Handle<String>::cast( 1155 Object::GetElement(isolate(), args, i).ToHandleChecked()); 1156 SmartArrayPointer<char> arg = arg_str->ToCString(); 1157 Vector<char> v2(p, static_cast<int>(space)); 1158 StrNCpy(v2, arg.get(), space); 1159 space -= Min(space, strlen(arg.get())); 1160 p = &buffer[kBufferSize] - space; 1161 } 1162 } 1163 } 1164 if (space > 0) { 1165 *p = '\0'; 1166 } else { 1167 buffer[kBufferSize - 1] = '\0'; 1168 } 1169 return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked(); 1170 } 1171 1172 1173 MaybeHandle<Object> Factory::NewError(const char* maker, const char* message, 1174 Handle<JSArray> args) { 1175 Handle<String> make_str = InternalizeUtf8String(maker); 1176 Handle<Object> fun_obj = Object::GetProperty( 1177 isolate()->js_builtins_object(), make_str).ToHandleChecked(); 1178 // If the builtins haven't been properly configured yet this error 1179 // constructor may not have been defined. Bail out. 1180 if (!fun_obj->IsJSFunction()) { 1181 return EmergencyNewError(message, args); 1182 } 1183 Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj); 1184 Handle<Object> message_obj = InternalizeUtf8String(message); 1185 Handle<Object> argv[] = { message_obj, args }; 1186 1187 // Invoke the JavaScript factory method. If an exception is thrown while 1188 // running the factory method, use the exception as the result. 1189 Handle<Object> result; 1190 MaybeHandle<Object> exception; 1191 if (!Execution::TryCall(fun, 1192 isolate()->js_builtins_object(), 1193 arraysize(argv), 1194 argv, 1195 &exception).ToHandle(&result)) { 1196 return exception; 1197 } 1198 return result; 1199 } 1200 1201 1202 MaybeHandle<Object> Factory::NewError(Handle<String> message) { 1203 return NewError("$Error", message); 1204 } 1205 1206 1207 MaybeHandle<Object> Factory::NewError(const char* constructor, 1208 Handle<String> message) { 1209 Handle<String> constr = InternalizeUtf8String(constructor); 1210 Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty( 1211 isolate()->js_builtins_object(), constr).ToHandleChecked()); 1212 Handle<Object> argv[] = { message }; 1213 1214 // Invoke the JavaScript factory method. If an exception is thrown while 1215 // running the factory method, use the exception as the result. 1216 Handle<Object> result; 1217 MaybeHandle<Object> exception; 1218 if (!Execution::TryCall(fun, 1219 isolate()->js_builtins_object(), 1220 arraysize(argv), 1221 argv, 1222 &exception).ToHandle(&result)) { 1223 return exception; 1224 } 1225 return result; 1226 } 1227 1228 1229 void Factory::InitializeFunction(Handle<JSFunction> function, 1230 Handle<SharedFunctionInfo> info, 1231 Handle<Context> context) { 1232 function->initialize_properties(); 1233 function->initialize_elements(); 1234 function->set_shared(*info); 1235 function->set_code(info->code()); 1236 function->set_context(*context); 1237 function->set_prototype_or_initial_map(*the_hole_value()); 1238 function->set_literals_or_bindings(*empty_fixed_array()); 1239 function->set_next_function_link(*undefined_value()); 1240 } 1241 1242 1243 Handle<JSFunction> Factory::NewFunction(Handle<Map> map, 1244 Handle<SharedFunctionInfo> info, 1245 Handle<Context> context, 1246 PretenureFlag pretenure) { 1247 AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE; 1248 Handle<JSFunction> result = New<JSFunction>(map, space); 1249 InitializeFunction(result, info, context); 1250 return result; 1251 } 1252 1253 1254 Handle<JSFunction> Factory::NewFunction(Handle<Map> map, 1255 Handle<String> name, 1256 MaybeHandle<Code> code) { 1257 Handle<Context> context(isolate()->native_context()); 1258 Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code); 1259 DCHECK((info->strict_mode() == SLOPPY) && 1260 (map.is_identical_to(isolate()->sloppy_function_map()) || 1261 map.is_identical_to( 1262 isolate()->sloppy_function_without_prototype_map()) || 1263 map.is_identical_to( 1264 isolate()->sloppy_function_with_readonly_prototype_map()))); 1265 return NewFunction(map, info, context); 1266 } 1267 1268 1269 Handle<JSFunction> Factory::NewFunction(Handle<String> name) { 1270 return NewFunction( 1271 isolate()->sloppy_function_map(), name, MaybeHandle<Code>()); 1272 } 1273 1274 1275 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name, 1276 Handle<Code> code) { 1277 return NewFunction( 1278 isolate()->sloppy_function_without_prototype_map(), name, code); 1279 } 1280 1281 1282 Handle<JSFunction> Factory::NewFunction(Handle<String> name, 1283 Handle<Code> code, 1284 Handle<Object> prototype, 1285 bool read_only_prototype) { 1286 Handle<Map> map = read_only_prototype 1287 ? isolate()->sloppy_function_with_readonly_prototype_map() 1288 : isolate()->sloppy_function_map(); 1289 Handle<JSFunction> result = NewFunction(map, name, code); 1290 result->set_prototype_or_initial_map(*prototype); 1291 return result; 1292 } 1293 1294 1295 Handle<JSFunction> Factory::NewFunction(Handle<String> name, 1296 Handle<Code> code, 1297 Handle<Object> prototype, 1298 InstanceType type, 1299 int instance_size, 1300 bool read_only_prototype) { 1301 // Allocate the function 1302 Handle<JSFunction> function = NewFunction( 1303 name, code, prototype, read_only_prototype); 1304 1305 Handle<Map> initial_map = NewMap( 1306 type, instance_size, GetInitialFastElementsKind()); 1307 if (prototype->IsTheHole() && !function->shared()->is_generator()) { 1308 prototype = NewFunctionPrototype(function); 1309 } 1310 1311 JSFunction::SetInitialMap(function, initial_map, 1312 Handle<JSReceiver>::cast(prototype)); 1313 1314 return function; 1315 } 1316 1317 1318 Handle<JSFunction> Factory::NewFunction(Handle<String> name, 1319 Handle<Code> code, 1320 InstanceType type, 1321 int instance_size) { 1322 return NewFunction(name, code, the_hole_value(), type, instance_size); 1323 } 1324 1325 1326 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) { 1327 // Make sure to use globals from the function's context, since the function 1328 // can be from a different context. 1329 Handle<Context> native_context(function->context()->native_context()); 1330 Handle<Map> new_map; 1331 if (function->shared()->is_generator()) { 1332 // Generator prototypes can share maps since they don't have "constructor" 1333 // properties. 1334 new_map = handle(native_context->generator_object_prototype_map()); 1335 } else { 1336 // Each function prototype gets a fresh map to avoid unwanted sharing of 1337 // maps between prototypes of different constructors. 1338 Handle<JSFunction> object_function(native_context->object_function()); 1339 DCHECK(object_function->has_initial_map()); 1340 new_map = handle(object_function->initial_map()); 1341 } 1342 1343 DCHECK(!new_map->is_prototype_map()); 1344 Handle<JSObject> prototype = NewJSObjectFromMap(new_map); 1345 1346 if (!function->shared()->is_generator()) { 1347 JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM); 1348 } 1349 1350 return prototype; 1351 } 1352 1353 1354 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo( 1355 Handle<SharedFunctionInfo> info, 1356 Handle<Context> context, 1357 PretenureFlag pretenure) { 1358 int map_index = Context::FunctionMapIndex(info->strict_mode(), info->kind()); 1359 Handle<Map> map(Map::cast(context->native_context()->get(map_index))); 1360 Handle<JSFunction> result = NewFunction(map, info, context, pretenure); 1361 1362 if (info->ic_age() != isolate()->heap()->global_ic_age()) { 1363 info->ResetForNewContext(isolate()->heap()->global_ic_age()); 1364 } 1365 1366 int index = info->SearchOptimizedCodeMap(context->native_context(), 1367 BailoutId::None()); 1368 if (!info->bound() && index < 0) { 1369 int number_of_literals = info->num_literals(); 1370 Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure); 1371 if (number_of_literals > 0) { 1372 // Store the native context in the literals array prefix. This 1373 // context will be used when creating object, regexp and array 1374 // literals in this function. 1375 literals->set(JSFunction::kLiteralNativeContextIndex, 1376 context->native_context()); 1377 } 1378 result->set_literals(*literals); 1379 } 1380 1381 if (index > 0) { 1382 // Caching of optimized code enabled and optimized code found. 1383 FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index); 1384 if (literals != NULL) result->set_literals(literals); 1385 Code* code = info->GetCodeFromOptimizedCodeMap(index); 1386 DCHECK(!code->marked_for_deoptimization()); 1387 result->ReplaceCode(code); 1388 return result; 1389 } 1390 1391 if (isolate()->use_crankshaft() && 1392 FLAG_always_opt && 1393 result->is_compiled() && 1394 !info->is_toplevel() && 1395 info->allows_lazy_compilation() && 1396 !info->optimization_disabled() && 1397 !isolate()->DebuggerHasBreakPoints()) { 1398 result->MarkForOptimization(); 1399 } 1400 return result; 1401 } 1402 1403 1404 Handle<ScopeInfo> Factory::NewScopeInfo(int length) { 1405 Handle<FixedArray> array = NewFixedArray(length, TENURED); 1406 array->set_map_no_write_barrier(*scope_info_map()); 1407 Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array); 1408 return scope_info; 1409 } 1410 1411 1412 Handle<JSObject> Factory::NewExternal(void* value) { 1413 Handle<Foreign> foreign = NewForeign(static_cast<Address>(value)); 1414 Handle<JSObject> external = NewJSObjectFromMap(external_map()); 1415 external->SetInternalField(0, *foreign); 1416 return external; 1417 } 1418 1419 1420 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) { 1421 CALL_HEAP_FUNCTION(isolate(), 1422 isolate()->heap()->AllocateCode(object_size, immovable), 1423 Code); 1424 } 1425 1426 1427 Handle<Code> Factory::NewCode(const CodeDesc& desc, 1428 Code::Flags flags, 1429 Handle<Object> self_ref, 1430 bool immovable, 1431 bool crankshafted, 1432 int prologue_offset, 1433 bool is_debug) { 1434 Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED); 1435 Handle<ConstantPoolArray> constant_pool = 1436 desc.origin->NewConstantPool(isolate()); 1437 1438 // Compute size. 1439 int body_size = RoundUp(desc.instr_size, kObjectAlignment); 1440 int obj_size = Code::SizeFor(body_size); 1441 1442 Handle<Code> code = NewCodeRaw(obj_size, immovable); 1443 DCHECK(isolate()->code_range() == NULL || 1444 !isolate()->code_range()->valid() || 1445 isolate()->code_range()->contains(code->address())); 1446 1447 // The code object has not been fully initialized yet. We rely on the 1448 // fact that no allocation will happen from this point on. 1449 DisallowHeapAllocation no_gc; 1450 code->set_gc_metadata(Smi::FromInt(0)); 1451 code->set_ic_age(isolate()->heap()->global_ic_age()); 1452 code->set_instruction_size(desc.instr_size); 1453 code->set_relocation_info(*reloc_info); 1454 code->set_flags(flags); 1455 code->set_raw_kind_specific_flags1(0); 1456 code->set_raw_kind_specific_flags2(0); 1457 code->set_is_crankshafted(crankshafted); 1458 code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER); 1459 code->set_raw_type_feedback_info(Smi::FromInt(0)); 1460 code->set_next_code_link(*undefined_value()); 1461 code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER); 1462 code->set_prologue_offset(prologue_offset); 1463 if (code->kind() == Code::OPTIMIZED_FUNCTION) { 1464 code->set_marked_for_deoptimization(false); 1465 } 1466 1467 if (is_debug) { 1468 DCHECK(code->kind() == Code::FUNCTION); 1469 code->set_has_debug_break_slots(true); 1470 } 1471 1472 desc.origin->PopulateConstantPool(*constant_pool); 1473 code->set_constant_pool(*constant_pool); 1474 1475 // Allow self references to created code object by patching the handle to 1476 // point to the newly allocated Code object. 1477 if (!self_ref.is_null()) *(self_ref.location()) = *code; 1478 1479 // Migrate generated code. 1480 // The generated code can contain Object** values (typically from handles) 1481 // that are dereferenced during the copy to point directly to the actual heap 1482 // objects. These pointers can include references to the code object itself, 1483 // through the self_reference parameter. 1484 code->CopyFrom(desc); 1485 1486 #ifdef VERIFY_HEAP 1487 if (FLAG_verify_heap) code->ObjectVerify(); 1488 #endif 1489 return code; 1490 } 1491 1492 1493 Handle<Code> Factory::CopyCode(Handle<Code> code) { 1494 CALL_HEAP_FUNCTION(isolate(), 1495 isolate()->heap()->CopyCode(*code), 1496 Code); 1497 } 1498 1499 1500 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) { 1501 CALL_HEAP_FUNCTION(isolate(), 1502 isolate()->heap()->CopyCode(*code, reloc_info), 1503 Code); 1504 } 1505 1506 1507 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor, 1508 PretenureFlag pretenure) { 1509 JSFunction::EnsureHasInitialMap(constructor); 1510 CALL_HEAP_FUNCTION( 1511 isolate(), 1512 isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject); 1513 } 1514 1515 1516 Handle<JSObject> Factory::NewJSObjectWithMemento( 1517 Handle<JSFunction> constructor, 1518 Handle<AllocationSite> site) { 1519 JSFunction::EnsureHasInitialMap(constructor); 1520 CALL_HEAP_FUNCTION( 1521 isolate(), 1522 isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site), 1523 JSObject); 1524 } 1525 1526 1527 Handle<JSModule> Factory::NewJSModule(Handle<Context> context, 1528 Handle<ScopeInfo> scope_info) { 1529 // Allocate a fresh map. Modules do not have a prototype. 1530 Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize); 1531 // Allocate the object based on the map. 1532 Handle<JSModule> module = 1533 Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED)); 1534 module->set_context(*context); 1535 module->set_scope_info(*scope_info); 1536 return module; 1537 } 1538 1539 1540 Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) { 1541 DCHECK(constructor->has_initial_map()); 1542 Handle<Map> map(constructor->initial_map()); 1543 DCHECK(map->is_dictionary_map()); 1544 1545 // Make sure no field properties are described in the initial map. 1546 // This guarantees us that normalizing the properties does not 1547 // require us to change property values to PropertyCells. 1548 DCHECK(map->NextFreePropertyIndex() == 0); 1549 1550 // Make sure we don't have a ton of pre-allocated slots in the 1551 // global objects. They will be unused once we normalize the object. 1552 DCHECK(map->unused_property_fields() == 0); 1553 DCHECK(map->inobject_properties() == 0); 1554 1555 // Initial size of the backing store to avoid resize of the storage during 1556 // bootstrapping. The size differs between the JS global object ad the 1557 // builtins object. 1558 int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512; 1559 1560 // Allocate a dictionary object for backing storage. 1561 int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size; 1562 Handle<NameDictionary> dictionary = 1563 NameDictionary::New(isolate(), at_least_space_for); 1564 1565 // The global object might be created from an object template with accessors. 1566 // Fill these accessors into the dictionary. 1567 Handle<DescriptorArray> descs(map->instance_descriptors()); 1568 for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) { 1569 PropertyDetails details = descs->GetDetails(i); 1570 DCHECK(details.type() == CALLBACKS); // Only accessors are expected. 1571 PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1); 1572 Handle<Name> name(descs->GetKey(i)); 1573 Handle<Object> value(descs->GetCallbacksObject(i), isolate()); 1574 Handle<PropertyCell> cell = NewPropertyCell(value); 1575 // |dictionary| already contains enough space for all properties. 1576 USE(NameDictionary::Add(dictionary, name, cell, d)); 1577 } 1578 1579 // Allocate the global object and initialize it with the backing store. 1580 Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE); 1581 isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map); 1582 1583 // Create a new map for the global object. 1584 Handle<Map> new_map = Map::CopyDropDescriptors(map); 1585 new_map->set_dictionary_map(true); 1586 1587 // Set up the global object as a normalized object. 1588 global->set_map(*new_map); 1589 global->set_properties(*dictionary); 1590 1591 // Make sure result is a global object with properties in dictionary. 1592 DCHECK(global->IsGlobalObject() && !global->HasFastProperties()); 1593 return global; 1594 } 1595 1596 1597 Handle<JSObject> Factory::NewJSObjectFromMap( 1598 Handle<Map> map, 1599 PretenureFlag pretenure, 1600 bool alloc_props, 1601 Handle<AllocationSite> allocation_site) { 1602 CALL_HEAP_FUNCTION( 1603 isolate(), 1604 isolate()->heap()->AllocateJSObjectFromMap( 1605 *map, 1606 pretenure, 1607 alloc_props, 1608 allocation_site.is_null() ? NULL : *allocation_site), 1609 JSObject); 1610 } 1611 1612 1613 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, 1614 PretenureFlag pretenure) { 1615 Context* native_context = isolate()->context()->native_context(); 1616 JSFunction* array_function = native_context->array_function(); 1617 Map* map = array_function->initial_map(); 1618 Map* transition_map = isolate()->get_initial_js_array_map(elements_kind); 1619 if (transition_map != NULL) map = transition_map; 1620 return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure)); 1621 } 1622 1623 1624 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, 1625 int length, 1626 int capacity, 1627 ArrayStorageAllocationMode mode, 1628 PretenureFlag pretenure) { 1629 Handle<JSArray> array = NewJSArray(elements_kind, pretenure); 1630 NewJSArrayStorage(array, length, capacity, mode); 1631 return array; 1632 } 1633 1634 1635 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements, 1636 ElementsKind elements_kind, 1637 int length, 1638 PretenureFlag pretenure) { 1639 DCHECK(length <= elements->length()); 1640 Handle<JSArray> array = NewJSArray(elements_kind, pretenure); 1641 1642 array->set_elements(*elements); 1643 array->set_length(Smi::FromInt(length)); 1644 JSObject::ValidateElements(array); 1645 return array; 1646 } 1647 1648 1649 void Factory::NewJSArrayStorage(Handle<JSArray> array, 1650 int length, 1651 int capacity, 1652 ArrayStorageAllocationMode mode) { 1653 DCHECK(capacity >= length); 1654 1655 if (capacity == 0) { 1656 array->set_length(Smi::FromInt(0)); 1657 array->set_elements(*empty_fixed_array()); 1658 return; 1659 } 1660 1661 Handle<FixedArrayBase> elms; 1662 ElementsKind elements_kind = array->GetElementsKind(); 1663 if (IsFastDoubleElementsKind(elements_kind)) { 1664 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { 1665 elms = NewFixedDoubleArray(capacity); 1666 } else { 1667 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); 1668 elms = NewFixedDoubleArrayWithHoles(capacity); 1669 } 1670 } else { 1671 DCHECK(IsFastSmiOrObjectElementsKind(elements_kind)); 1672 if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) { 1673 elms = NewUninitializedFixedArray(capacity); 1674 } else { 1675 DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); 1676 elms = NewFixedArrayWithHoles(capacity); 1677 } 1678 } 1679 1680 array->set_elements(*elms); 1681 array->set_length(Smi::FromInt(length)); 1682 } 1683 1684 1685 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject( 1686 Handle<JSFunction> function) { 1687 DCHECK(function->shared()->is_generator()); 1688 JSFunction::EnsureHasInitialMap(function); 1689 Handle<Map> map(function->initial_map()); 1690 DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE); 1691 CALL_HEAP_FUNCTION( 1692 isolate(), 1693 isolate()->heap()->AllocateJSObjectFromMap(*map), 1694 JSGeneratorObject); 1695 } 1696 1697 1698 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() { 1699 Handle<JSFunction> array_buffer_fun( 1700 isolate()->native_context()->array_buffer_fun()); 1701 CALL_HEAP_FUNCTION( 1702 isolate(), 1703 isolate()->heap()->AllocateJSObject(*array_buffer_fun), 1704 JSArrayBuffer); 1705 } 1706 1707 1708 Handle<JSDataView> Factory::NewJSDataView() { 1709 Handle<JSFunction> data_view_fun( 1710 isolate()->native_context()->data_view_fun()); 1711 CALL_HEAP_FUNCTION( 1712 isolate(), 1713 isolate()->heap()->AllocateJSObject(*data_view_fun), 1714 JSDataView); 1715 } 1716 1717 1718 static JSFunction* GetTypedArrayFun(ExternalArrayType type, 1719 Isolate* isolate) { 1720 Context* native_context = isolate->context()->native_context(); 1721 switch (type) { 1722 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \ 1723 case kExternal##Type##Array: \ 1724 return native_context->type##_array_fun(); 1725 1726 TYPED_ARRAYS(TYPED_ARRAY_FUN) 1727 #undef TYPED_ARRAY_FUN 1728 1729 default: 1730 UNREACHABLE(); 1731 return NULL; 1732 } 1733 } 1734 1735 1736 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) { 1737 Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate())); 1738 1739 CALL_HEAP_FUNCTION( 1740 isolate(), 1741 isolate()->heap()->AllocateJSObject(*typed_array_fun_handle), 1742 JSTypedArray); 1743 } 1744 1745 1746 Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler, 1747 Handle<Object> prototype) { 1748 // Allocate map. 1749 // TODO(rossberg): Once we optimize proxies, think about a scheme to share 1750 // maps. Will probably depend on the identity of the handler object, too. 1751 Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize); 1752 map->set_prototype(*prototype); 1753 1754 // Allocate the proxy object. 1755 Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE); 1756 result->InitializeBody(map->instance_size(), Smi::FromInt(0)); 1757 result->set_handler(*handler); 1758 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER); 1759 return result; 1760 } 1761 1762 1763 Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler, 1764 Handle<Object> call_trap, 1765 Handle<Object> construct_trap, 1766 Handle<Object> prototype) { 1767 // Allocate map. 1768 // TODO(rossberg): Once we optimize proxies, think about a scheme to share 1769 // maps. Will probably depend on the identity of the handler object, too. 1770 Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize); 1771 map->set_prototype(*prototype); 1772 1773 // Allocate the proxy object. 1774 Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE); 1775 result->InitializeBody(map->instance_size(), Smi::FromInt(0)); 1776 result->set_handler(*handler); 1777 result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER); 1778 result->set_call_trap(*call_trap); 1779 result->set_construct_trap(*construct_trap); 1780 return result; 1781 } 1782 1783 1784 void Factory::ReinitializeJSProxy(Handle<JSProxy> proxy, InstanceType type, 1785 int size) { 1786 DCHECK(type == JS_OBJECT_TYPE || type == JS_FUNCTION_TYPE); 1787 1788 // Allocate fresh map. 1789 // TODO(rossberg): Once we optimize proxies, cache these maps. 1790 Handle<Map> map = NewMap(type, size); 1791 1792 // Check that the receiver has at least the size of the fresh object. 1793 int size_difference = proxy->map()->instance_size() - map->instance_size(); 1794 DCHECK(size_difference >= 0); 1795 1796 map->set_prototype(proxy->map()->prototype()); 1797 1798 // Allocate the backing storage for the properties. 1799 int prop_size = map->InitialPropertiesLength(); 1800 Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED); 1801 1802 Heap* heap = isolate()->heap(); 1803 MaybeHandle<SharedFunctionInfo> shared; 1804 if (type == JS_FUNCTION_TYPE) { 1805 OneByteStringKey key(STATIC_CHAR_VECTOR("<freezing call trap>"), 1806 heap->HashSeed()); 1807 Handle<String> name = InternalizeStringWithKey(&key); 1808 shared = NewSharedFunctionInfo(name, MaybeHandle<Code>()); 1809 } 1810 1811 // In order to keep heap in consistent state there must be no allocations 1812 // before object re-initialization is finished and filler object is installed. 1813 DisallowHeapAllocation no_allocation; 1814 1815 // Put in filler if the new object is smaller than the old. 1816 if (size_difference > 0) { 1817 Address address = proxy->address(); 1818 heap->CreateFillerObjectAt(address + map->instance_size(), size_difference); 1819 heap->AdjustLiveBytes(address, -size_difference, Heap::FROM_MUTATOR); 1820 } 1821 1822 // Reset the map for the object. 1823 proxy->synchronized_set_map(*map); 1824 Handle<JSObject> jsobj = Handle<JSObject>::cast(proxy); 1825 1826 // Reinitialize the object from the constructor map. 1827 heap->InitializeJSObjectFromMap(*jsobj, *properties, *map); 1828 1829 // The current native context is used to set up certain bits. 1830 // TODO(adamk): Using the current context seems wrong, it should be whatever 1831 // context the JSProxy originated in. But that context isn't stored anywhere. 1832 Handle<Context> context(isolate()->native_context()); 1833 1834 // Functions require some minimal initialization. 1835 if (type == JS_FUNCTION_TYPE) { 1836 map->set_function_with_prototype(true); 1837 Handle<JSFunction> js_function = Handle<JSFunction>::cast(proxy); 1838 InitializeFunction(js_function, shared.ToHandleChecked(), context); 1839 } else { 1840 // Provide JSObjects with a constructor. 1841 map->set_constructor(context->object_function()); 1842 } 1843 } 1844 1845 1846 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object, 1847 Handle<JSFunction> constructor) { 1848 DCHECK(constructor->has_initial_map()); 1849 Handle<Map> map(constructor->initial_map(), isolate()); 1850 1851 // The proxy's hash should be retained across reinitialization. 1852 Handle<Object> hash(object->hash(), isolate()); 1853 1854 // Check that the already allocated object has the same size and type as 1855 // objects allocated using the constructor. 1856 DCHECK(map->instance_size() == object->map()->instance_size()); 1857 DCHECK(map->instance_type() == object->map()->instance_type()); 1858 1859 // Allocate the backing storage for the properties. 1860 int prop_size = map->InitialPropertiesLength(); 1861 Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED); 1862 1863 // In order to keep heap in consistent state there must be no allocations 1864 // before object re-initialization is finished. 1865 DisallowHeapAllocation no_allocation; 1866 1867 // Reset the map for the object. 1868 object->synchronized_set_map(*map); 1869 1870 Heap* heap = isolate()->heap(); 1871 // Reinitialize the object from the constructor map. 1872 heap->InitializeJSObjectFromMap(*object, *properties, *map); 1873 1874 // Restore the saved hash. 1875 object->set_hash(*hash); 1876 } 1877 1878 1879 void Factory::BecomeJSObject(Handle<JSProxy> proxy) { 1880 ReinitializeJSProxy(proxy, JS_OBJECT_TYPE, JSObject::kHeaderSize); 1881 } 1882 1883 1884 void Factory::BecomeJSFunction(Handle<JSProxy> proxy) { 1885 ReinitializeJSProxy(proxy, JS_FUNCTION_TYPE, JSFunction::kSize); 1886 } 1887 1888 1889 Handle<TypeFeedbackVector> Factory::NewTypeFeedbackVector(int slot_count) { 1890 // Ensure we can skip the write barrier 1891 DCHECK_EQ(isolate()->heap()->uninitialized_symbol(), 1892 *TypeFeedbackVector::UninitializedSentinel(isolate())); 1893 1894 if (slot_count == 0) { 1895 return Handle<TypeFeedbackVector>::cast(empty_fixed_array()); 1896 } 1897 1898 CALL_HEAP_FUNCTION(isolate(), 1899 isolate()->heap()->AllocateFixedArrayWithFiller( 1900 slot_count, TENURED, 1901 *TypeFeedbackVector::UninitializedSentinel(isolate())), 1902 TypeFeedbackVector); 1903 } 1904 1905 1906 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo( 1907 Handle<String> name, int number_of_literals, FunctionKind kind, 1908 Handle<Code> code, Handle<ScopeInfo> scope_info, 1909 Handle<TypeFeedbackVector> feedback_vector) { 1910 DCHECK(IsValidFunctionKind(kind)); 1911 Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code); 1912 shared->set_scope_info(*scope_info); 1913 shared->set_feedback_vector(*feedback_vector); 1914 shared->set_kind(kind); 1915 int literals_array_size = number_of_literals; 1916 // If the function contains object, regexp or array literals, 1917 // allocate extra space for a literals array prefix containing the 1918 // context. 1919 if (number_of_literals > 0) { 1920 literals_array_size += JSFunction::kLiteralsPrefixSize; 1921 } 1922 shared->set_num_literals(literals_array_size); 1923 if (IsGeneratorFunction(kind)) { 1924 shared->set_instance_class_name(isolate()->heap()->Generator_string()); 1925 shared->DisableOptimization(kGenerator); 1926 } 1927 return shared; 1928 } 1929 1930 1931 Handle<JSMessageObject> Factory::NewJSMessageObject( 1932 Handle<String> type, 1933 Handle<JSArray> arguments, 1934 int start_position, 1935 int end_position, 1936 Handle<Object> script, 1937 Handle<Object> stack_frames) { 1938 Handle<Map> map = message_object_map(); 1939 Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE); 1940 message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER); 1941 message->initialize_elements(); 1942 message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER); 1943 message->set_type(*type); 1944 message->set_arguments(*arguments); 1945 message->set_start_position(start_position); 1946 message->set_end_position(end_position); 1947 message->set_script(*script); 1948 message->set_stack_frames(*stack_frames); 1949 return message; 1950 } 1951 1952 1953 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo( 1954 Handle<String> name, 1955 MaybeHandle<Code> maybe_code) { 1956 Handle<Map> map = shared_function_info_map(); 1957 Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, 1958 OLD_POINTER_SPACE); 1959 1960 // Set pointer fields. 1961 share->set_name(*name); 1962 Handle<Code> code; 1963 if (!maybe_code.ToHandle(&code)) { 1964 code = handle(isolate()->builtins()->builtin(Builtins::kIllegal)); 1965 } 1966 share->set_code(*code); 1967 share->set_optimized_code_map(Smi::FromInt(0)); 1968 share->set_scope_info(ScopeInfo::Empty(isolate())); 1969 Code* construct_stub = 1970 isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric); 1971 share->set_construct_stub(construct_stub); 1972 share->set_instance_class_name(*Object_string()); 1973 share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER); 1974 share->set_script(*undefined_value(), SKIP_WRITE_BARRIER); 1975 share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER); 1976 share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER); 1977 Handle<TypeFeedbackVector> feedback_vector = NewTypeFeedbackVector(0); 1978 share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER); 1979 share->set_profiler_ticks(0); 1980 share->set_ast_node_count(0); 1981 share->set_counters(0); 1982 1983 // Set integer fields (smi or int, depending on the architecture). 1984 share->set_length(0); 1985 share->set_formal_parameter_count(0); 1986 share->set_expected_nof_properties(0); 1987 share->set_num_literals(0); 1988 share->set_start_position_and_type(0); 1989 share->set_end_position(0); 1990 share->set_function_token_position(0); 1991 // All compiler hints default to false or 0. 1992 share->set_compiler_hints(0); 1993 share->set_opt_count_and_bailout_reason(0); 1994 1995 return share; 1996 } 1997 1998 1999 static inline int NumberCacheHash(Handle<FixedArray> cache, 2000 Handle<Object> number) { 2001 int mask = (cache->length() >> 1) - 1; 2002 if (number->IsSmi()) { 2003 return Handle<Smi>::cast(number)->value() & mask; 2004 } else { 2005 DoubleRepresentation rep(number->Number()); 2006 return 2007 (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask; 2008 } 2009 } 2010 2011 2012 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) { 2013 DisallowHeapAllocation no_gc; 2014 int hash = NumberCacheHash(number_string_cache(), number); 2015 Object* key = number_string_cache()->get(hash * 2); 2016 if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() && 2017 key->Number() == number->Number())) { 2018 return Handle<String>( 2019 String::cast(number_string_cache()->get(hash * 2 + 1)), isolate()); 2020 } 2021 return undefined_value(); 2022 } 2023 2024 2025 void Factory::SetNumberStringCache(Handle<Object> number, 2026 Handle<String> string) { 2027 int hash = NumberCacheHash(number_string_cache(), number); 2028 if (number_string_cache()->get(hash * 2) != *undefined_value()) { 2029 int full_size = isolate()->heap()->FullSizeNumberStringCacheLength(); 2030 if (number_string_cache()->length() != full_size) { 2031 // The first time we have a hash collision, we move to the full sized 2032 // number string cache. The idea is to have a small number string 2033 // cache in the snapshot to keep boot-time memory usage down. 2034 // If we expand the number string cache already while creating 2035 // the snapshot then that didn't work out. 2036 DCHECK(!isolate()->serializer_enabled() || FLAG_extra_code != NULL); 2037 Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED); 2038 isolate()->heap()->set_number_string_cache(*new_cache); 2039 return; 2040 } 2041 } 2042 number_string_cache()->set(hash * 2, *number); 2043 number_string_cache()->set(hash * 2 + 1, *string); 2044 } 2045 2046 2047 Handle<String> Factory::NumberToString(Handle<Object> number, 2048 bool check_number_string_cache) { 2049 isolate()->counters()->number_to_string_runtime()->Increment(); 2050 if (check_number_string_cache) { 2051 Handle<Object> cached = GetNumberStringCache(number); 2052 if (!cached->IsUndefined()) return Handle<String>::cast(cached); 2053 } 2054 2055 char arr[100]; 2056 Vector<char> buffer(arr, arraysize(arr)); 2057 const char* str; 2058 if (number->IsSmi()) { 2059 int num = Handle<Smi>::cast(number)->value(); 2060 str = IntToCString(num, buffer); 2061 } else { 2062 double num = Handle<HeapNumber>::cast(number)->value(); 2063 str = DoubleToCString(num, buffer); 2064 } 2065 2066 // We tenure the allocated string since it is referenced from the 2067 // number-string cache which lives in the old space. 2068 Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED); 2069 SetNumberStringCache(number, js_string); 2070 return js_string; 2071 } 2072 2073 2074 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) { 2075 // Get the original code of the function. 2076 Handle<Code> code(shared->code()); 2077 2078 // Create a copy of the code before allocating the debug info object to avoid 2079 // allocation while setting up the debug info object. 2080 Handle<Code> original_code(*Factory::CopyCode(code)); 2081 2082 // Allocate initial fixed array for active break points before allocating the 2083 // debug info object to avoid allocation while setting up the debug info 2084 // object. 2085 Handle<FixedArray> break_points( 2086 NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction)); 2087 2088 // Create and set up the debug info object. Debug info contains function, a 2089 // copy of the original code, the executing code and initial fixed array for 2090 // active break points. 2091 Handle<DebugInfo> debug_info = 2092 Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE)); 2093 debug_info->set_shared(*shared); 2094 debug_info->set_original_code(*original_code); 2095 debug_info->set_code(*code); 2096 debug_info->set_break_points(*break_points); 2097 2098 // Link debug info to function. 2099 shared->set_debug_info(*debug_info); 2100 2101 return debug_info; 2102 } 2103 2104 2105 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee, 2106 int length) { 2107 bool strict_mode_callee = callee->shared()->strict_mode() == STRICT; 2108 Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map() 2109 : isolate()->sloppy_arguments_map(); 2110 2111 AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(), 2112 false); 2113 DCHECK(!isolate()->has_pending_exception()); 2114 Handle<JSObject> result = NewJSObjectFromMap(map); 2115 Handle<Smi> value(Smi::FromInt(length), isolate()); 2116 Object::SetProperty(result, length_string(), value, STRICT).Assert(); 2117 if (!strict_mode_callee) { 2118 Object::SetProperty(result, callee_string(), callee, STRICT).Assert(); 2119 } 2120 return result; 2121 } 2122 2123 2124 Handle<JSFunction> Factory::CreateApiFunction( 2125 Handle<FunctionTemplateInfo> obj, 2126 Handle<Object> prototype, 2127 ApiInstanceType instance_type) { 2128 Handle<Code> code = isolate()->builtins()->HandleApiCall(); 2129 Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi(); 2130 2131 Handle<JSFunction> result; 2132 if (obj->remove_prototype()) { 2133 result = NewFunctionWithoutPrototype(empty_string(), code); 2134 } else { 2135 int internal_field_count = 0; 2136 if (!obj->instance_template()->IsUndefined()) { 2137 Handle<ObjectTemplateInfo> instance_template = 2138 Handle<ObjectTemplateInfo>( 2139 ObjectTemplateInfo::cast(obj->instance_template())); 2140 internal_field_count = 2141 Smi::cast(instance_template->internal_field_count())->value(); 2142 } 2143 2144 // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing 2145 // JSObject::GetHeaderSize. 2146 int instance_size = kPointerSize * internal_field_count; 2147 InstanceType type; 2148 switch (instance_type) { 2149 case JavaScriptObjectType: 2150 type = JS_OBJECT_TYPE; 2151 instance_size += JSObject::kHeaderSize; 2152 break; 2153 case GlobalObjectType: 2154 type = JS_GLOBAL_OBJECT_TYPE; 2155 instance_size += JSGlobalObject::kSize; 2156 break; 2157 case GlobalProxyType: 2158 type = JS_GLOBAL_PROXY_TYPE; 2159 instance_size += JSGlobalProxy::kSize; 2160 break; 2161 default: 2162 UNREACHABLE(); 2163 type = JS_OBJECT_TYPE; // Keep the compiler happy. 2164 break; 2165 } 2166 2167 result = NewFunction(empty_string(), code, prototype, type, 2168 instance_size, obj->read_only_prototype()); 2169 } 2170 2171 result->shared()->set_length(obj->length()); 2172 Handle<Object> class_name(obj->class_name(), isolate()); 2173 if (class_name->IsString()) { 2174 result->shared()->set_instance_class_name(*class_name); 2175 result->shared()->set_name(*class_name); 2176 } 2177 result->shared()->set_function_data(*obj); 2178 result->shared()->set_construct_stub(*construct_stub); 2179 result->shared()->DontAdaptArguments(); 2180 2181 if (obj->remove_prototype()) { 2182 DCHECK(result->shared()->IsApiFunction()); 2183 DCHECK(!result->has_initial_map()); 2184 DCHECK(!result->has_prototype()); 2185 return result; 2186 } 2187 2188 if (prototype->IsTheHole()) { 2189 #ifdef DEBUG 2190 LookupIterator it(handle(JSObject::cast(result->prototype())), 2191 constructor_string(), 2192 LookupIterator::OWN_SKIP_INTERCEPTOR); 2193 MaybeHandle<Object> maybe_prop = Object::GetProperty(&it); 2194 DCHECK(it.IsFound()); 2195 DCHECK(maybe_prop.ToHandleChecked().is_identical_to(result)); 2196 #endif 2197 } else { 2198 JSObject::AddProperty(handle(JSObject::cast(result->prototype())), 2199 constructor_string(), result, DONT_ENUM); 2200 } 2201 2202 // Down from here is only valid for API functions that can be used as a 2203 // constructor (don't set the "remove prototype" flag). 2204 2205 Handle<Map> map(result->initial_map()); 2206 2207 // Mark as undetectable if needed. 2208 if (obj->undetectable()) { 2209 map->set_is_undetectable(); 2210 } 2211 2212 // Mark as hidden for the __proto__ accessor if needed. 2213 if (obj->hidden_prototype()) { 2214 map->set_is_hidden_prototype(); 2215 } 2216 2217 // Mark as needs_access_check if needed. 2218 if (obj->needs_access_check()) { 2219 map->set_is_access_check_needed(true); 2220 } 2221 2222 // Set interceptor information in the map. 2223 if (!obj->named_property_handler()->IsUndefined()) { 2224 map->set_has_named_interceptor(); 2225 } 2226 if (!obj->indexed_property_handler()->IsUndefined()) { 2227 map->set_has_indexed_interceptor(); 2228 } 2229 2230 // Set instance call-as-function information in the map. 2231 if (!obj->instance_call_handler()->IsUndefined()) { 2232 map->set_has_instance_call_handler(); 2233 } 2234 2235 // Recursively copy parent instance templates' accessors, 2236 // 'data' may be modified. 2237 int max_number_of_additional_properties = 0; 2238 int max_number_of_static_properties = 0; 2239 FunctionTemplateInfo* info = *obj; 2240 while (true) { 2241 if (!info->instance_template()->IsUndefined()) { 2242 Object* props = 2243 ObjectTemplateInfo::cast( 2244 info->instance_template())->property_accessors(); 2245 if (!props->IsUndefined()) { 2246 Handle<Object> props_handle(props, isolate()); 2247 NeanderArray props_array(props_handle); 2248 max_number_of_additional_properties += props_array.length(); 2249 } 2250 } 2251 if (!info->property_accessors()->IsUndefined()) { 2252 Object* props = info->property_accessors(); 2253 if (!props->IsUndefined()) { 2254 Handle<Object> props_handle(props, isolate()); 2255 NeanderArray props_array(props_handle); 2256 max_number_of_static_properties += props_array.length(); 2257 } 2258 } 2259 Object* parent = info->parent_template(); 2260 if (parent->IsUndefined()) break; 2261 info = FunctionTemplateInfo::cast(parent); 2262 } 2263 2264 Map::EnsureDescriptorSlack(map, max_number_of_additional_properties); 2265 2266 // Use a temporary FixedArray to acculumate static accessors 2267 int valid_descriptors = 0; 2268 Handle<FixedArray> array; 2269 if (max_number_of_static_properties > 0) { 2270 array = NewFixedArray(max_number_of_static_properties); 2271 } 2272 2273 while (true) { 2274 // Install instance descriptors 2275 if (!obj->instance_template()->IsUndefined()) { 2276 Handle<ObjectTemplateInfo> instance = 2277 Handle<ObjectTemplateInfo>( 2278 ObjectTemplateInfo::cast(obj->instance_template()), isolate()); 2279 Handle<Object> props = Handle<Object>(instance->property_accessors(), 2280 isolate()); 2281 if (!props->IsUndefined()) { 2282 Map::AppendCallbackDescriptors(map, props); 2283 } 2284 } 2285 // Accumulate static accessors 2286 if (!obj->property_accessors()->IsUndefined()) { 2287 Handle<Object> props = Handle<Object>(obj->property_accessors(), 2288 isolate()); 2289 valid_descriptors = 2290 AccessorInfo::AppendUnique(props, array, valid_descriptors); 2291 } 2292 // Climb parent chain 2293 Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate()); 2294 if (parent->IsUndefined()) break; 2295 obj = Handle<FunctionTemplateInfo>::cast(parent); 2296 } 2297 2298 // Install accumulated static accessors 2299 for (int i = 0; i < valid_descriptors; i++) { 2300 Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i))); 2301 JSObject::SetAccessor(result, accessor).Assert(); 2302 } 2303 2304 DCHECK(result->shared()->IsApiFunction()); 2305 return result; 2306 } 2307 2308 2309 Handle<MapCache> Factory::AddToMapCache(Handle<Context> context, 2310 Handle<FixedArray> keys, 2311 Handle<Map> map) { 2312 Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache())); 2313 Handle<MapCache> result = MapCache::Put(map_cache, keys, map); 2314 context->set_map_cache(*result); 2315 return result; 2316 } 2317 2318 2319 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context, 2320 Handle<FixedArray> keys) { 2321 if (context->map_cache()->IsUndefined()) { 2322 // Allocate the new map cache for the native context. 2323 Handle<MapCache> new_cache = MapCache::New(isolate(), 24); 2324 context->set_map_cache(*new_cache); 2325 } 2326 // Check to see whether there is a matching element in the cache. 2327 Handle<MapCache> cache = 2328 Handle<MapCache>(MapCache::cast(context->map_cache())); 2329 Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate()); 2330 if (result->IsMap()) return Handle<Map>::cast(result); 2331 int length = keys->length(); 2332 // Create a new map and add it to the cache. Reuse the initial map of the 2333 // Object function if the literal has no predeclared properties. 2334 Handle<Map> map = length == 0 2335 ? handle(context->object_function()->initial_map()) 2336 : Map::Create(isolate(), length); 2337 AddToMapCache(context, keys, map); 2338 return map; 2339 } 2340 2341 2342 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, 2343 JSRegExp::Type type, 2344 Handle<String> source, 2345 JSRegExp::Flags flags, 2346 Handle<Object> data) { 2347 Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize); 2348 2349 store->set(JSRegExp::kTagIndex, Smi::FromInt(type)); 2350 store->set(JSRegExp::kSourceIndex, *source); 2351 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value())); 2352 store->set(JSRegExp::kAtomPatternIndex, *data); 2353 regexp->set_data(*store); 2354 } 2355 2356 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp, 2357 JSRegExp::Type type, 2358 Handle<String> source, 2359 JSRegExp::Flags flags, 2360 int capture_count) { 2361 Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize); 2362 Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue); 2363 store->set(JSRegExp::kTagIndex, Smi::FromInt(type)); 2364 store->set(JSRegExp::kSourceIndex, *source); 2365 store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value())); 2366 store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized); 2367 store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized); 2368 store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized); 2369 store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized); 2370 store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0)); 2371 store->set(JSRegExp::kIrregexpCaptureCountIndex, 2372 Smi::FromInt(capture_count)); 2373 regexp->set_data(*store); 2374 } 2375 2376 2377 2378 MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance( 2379 Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) { 2380 // Configure the instance by adding the properties specified by the 2381 // instance template. 2382 Handle<Object> instance_template(desc->instance_template(), isolate()); 2383 if (!instance_template->IsUndefined()) { 2384 RETURN_ON_EXCEPTION( 2385 isolate(), 2386 Execution::ConfigureInstance(isolate(), instance, instance_template), 2387 FunctionTemplateInfo); 2388 } 2389 return desc; 2390 } 2391 2392 2393 Handle<Object> Factory::GlobalConstantFor(Handle<String> name) { 2394 if (String::Equals(name, undefined_string())) return undefined_value(); 2395 if (String::Equals(name, nan_string())) return nan_value(); 2396 if (String::Equals(name, infinity_string())) return infinity_value(); 2397 return Handle<Object>::null(); 2398 } 2399 2400 2401 Handle<Object> Factory::ToBoolean(bool value) { 2402 return value ? true_value() : false_value(); 2403 } 2404 2405 2406 } } // namespace v8::internal 2407