1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements uninitialized values analysis for source-level CFGs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/Attr.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 19 #include "clang/Analysis/Analyses/UninitializedValues.h" 20 #include "clang/Analysis/AnalysisContext.h" 21 #include "clang/Analysis/CFG.h" 22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/PackedVector.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/Support/SaveAndRestore.h" 29 #include <utility> 30 31 using namespace clang; 32 33 #define DEBUG_LOGGING 0 34 35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { 36 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && 37 !vd->isExceptionVariable() && !vd->isInitCapture() && 38 vd->getDeclContext() == dc) { 39 QualType ty = vd->getType(); 40 return ty->isScalarType() || ty->isVectorType(); 41 } 42 return false; 43 } 44 45 //------------------------------------------------------------------------====// 46 // DeclToIndex: a mapping from Decls we track to value indices. 47 //====------------------------------------------------------------------------// 48 49 namespace { 50 class DeclToIndex { 51 llvm::DenseMap<const VarDecl *, unsigned> map; 52 public: 53 DeclToIndex() {} 54 55 /// Compute the actual mapping from declarations to bits. 56 void computeMap(const DeclContext &dc); 57 58 /// Return the number of declarations in the map. 59 unsigned size() const { return map.size(); } 60 61 /// Returns the bit vector index for a given declaration. 62 Optional<unsigned> getValueIndex(const VarDecl *d) const; 63 }; 64 } 65 66 void DeclToIndex::computeMap(const DeclContext &dc) { 67 unsigned count = 0; 68 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), 69 E(dc.decls_end()); 70 for ( ; I != E; ++I) { 71 const VarDecl *vd = *I; 72 if (isTrackedVar(vd, &dc)) 73 map[vd] = count++; 74 } 75 } 76 77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { 78 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); 79 if (I == map.end()) 80 return None; 81 return I->second; 82 } 83 84 //------------------------------------------------------------------------====// 85 // CFGBlockValues: dataflow values for CFG blocks. 86 //====------------------------------------------------------------------------// 87 88 // These values are defined in such a way that a merge can be done using 89 // a bitwise OR. 90 enum Value { Unknown = 0x0, /* 00 */ 91 Initialized = 0x1, /* 01 */ 92 Uninitialized = 0x2, /* 10 */ 93 MayUninitialized = 0x3 /* 11 */ }; 94 95 static bool isUninitialized(const Value v) { 96 return v >= Uninitialized; 97 } 98 static bool isAlwaysUninit(const Value v) { 99 return v == Uninitialized; 100 } 101 102 namespace { 103 104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector; 105 106 class CFGBlockValues { 107 const CFG &cfg; 108 SmallVector<ValueVector, 8> vals; 109 ValueVector scratch; 110 DeclToIndex declToIndex; 111 public: 112 CFGBlockValues(const CFG &cfg); 113 114 unsigned getNumEntries() const { return declToIndex.size(); } 115 116 void computeSetOfDeclarations(const DeclContext &dc); 117 ValueVector &getValueVector(const CFGBlock *block) { 118 return vals[block->getBlockID()]; 119 } 120 121 void setAllScratchValues(Value V); 122 void mergeIntoScratch(ValueVector const &source, bool isFirst); 123 bool updateValueVectorWithScratch(const CFGBlock *block); 124 125 bool hasNoDeclarations() const { 126 return declToIndex.size() == 0; 127 } 128 129 void resetScratch(); 130 131 ValueVector::reference operator[](const VarDecl *vd); 132 133 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, 134 const VarDecl *vd) { 135 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 136 assert(idx.hasValue()); 137 return getValueVector(block)[idx.getValue()]; 138 } 139 }; 140 } // end anonymous namespace 141 142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} 143 144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { 145 declToIndex.computeMap(dc); 146 unsigned decls = declToIndex.size(); 147 scratch.resize(decls); 148 unsigned n = cfg.getNumBlockIDs(); 149 if (!n) 150 return; 151 vals.resize(n); 152 for (unsigned i = 0; i < n; ++i) 153 vals[i].resize(decls); 154 } 155 156 #if DEBUG_LOGGING 157 static void printVector(const CFGBlock *block, ValueVector &bv, 158 unsigned num) { 159 llvm::errs() << block->getBlockID() << " :"; 160 for (unsigned i = 0; i < bv.size(); ++i) { 161 llvm::errs() << ' ' << bv[i]; 162 } 163 llvm::errs() << " : " << num << '\n'; 164 } 165 #endif 166 167 void CFGBlockValues::setAllScratchValues(Value V) { 168 for (unsigned I = 0, E = scratch.size(); I != E; ++I) 169 scratch[I] = V; 170 } 171 172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source, 173 bool isFirst) { 174 if (isFirst) 175 scratch = source; 176 else 177 scratch |= source; 178 } 179 180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { 181 ValueVector &dst = getValueVector(block); 182 bool changed = (dst != scratch); 183 if (changed) 184 dst = scratch; 185 #if DEBUG_LOGGING 186 printVector(block, scratch, 0); 187 #endif 188 return changed; 189 } 190 191 void CFGBlockValues::resetScratch() { 192 scratch.reset(); 193 } 194 195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { 196 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd); 197 assert(idx.hasValue()); 198 return scratch[idx.getValue()]; 199 } 200 201 //------------------------------------------------------------------------====// 202 // Worklist: worklist for dataflow analysis. 203 //====------------------------------------------------------------------------// 204 205 namespace { 206 class DataflowWorklist { 207 PostOrderCFGView::iterator PO_I, PO_E; 208 SmallVector<const CFGBlock *, 20> worklist; 209 llvm::BitVector enqueuedBlocks; 210 public: 211 DataflowWorklist(const CFG &cfg, PostOrderCFGView &view) 212 : PO_I(view.begin()), PO_E(view.end()), 213 enqueuedBlocks(cfg.getNumBlockIDs(), true) { 214 // Treat the first block as already analyzed. 215 if (PO_I != PO_E) { 216 assert(*PO_I == &cfg.getEntry()); 217 enqueuedBlocks[(*PO_I)->getBlockID()] = false; 218 ++PO_I; 219 } 220 } 221 222 void enqueueSuccessors(const CFGBlock *block); 223 const CFGBlock *dequeue(); 224 }; 225 } 226 227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) { 228 for (CFGBlock::const_succ_iterator I = block->succ_begin(), 229 E = block->succ_end(); I != E; ++I) { 230 const CFGBlock *Successor = *I; 231 if (!Successor || enqueuedBlocks[Successor->getBlockID()]) 232 continue; 233 worklist.push_back(Successor); 234 enqueuedBlocks[Successor->getBlockID()] = true; 235 } 236 } 237 238 const CFGBlock *DataflowWorklist::dequeue() { 239 const CFGBlock *B = nullptr; 240 241 // First dequeue from the worklist. This can represent 242 // updates along backedges that we want propagated as quickly as possible. 243 if (!worklist.empty()) 244 B = worklist.pop_back_val(); 245 246 // Next dequeue from the initial reverse post order. This is the 247 // theoretical ideal in the presence of no back edges. 248 else if (PO_I != PO_E) { 249 B = *PO_I; 250 ++PO_I; 251 } 252 else { 253 return nullptr; 254 } 255 256 assert(enqueuedBlocks[B->getBlockID()] == true); 257 enqueuedBlocks[B->getBlockID()] = false; 258 return B; 259 } 260 261 //------------------------------------------------------------------------====// 262 // Classification of DeclRefExprs as use or initialization. 263 //====------------------------------------------------------------------------// 264 265 namespace { 266 class FindVarResult { 267 const VarDecl *vd; 268 const DeclRefExpr *dr; 269 public: 270 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} 271 272 const DeclRefExpr *getDeclRefExpr() const { return dr; } 273 const VarDecl *getDecl() const { return vd; } 274 }; 275 276 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { 277 while (Ex) { 278 Ex = Ex->IgnoreParenNoopCasts(C); 279 if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { 280 if (CE->getCastKind() == CK_LValueBitCast) { 281 Ex = CE->getSubExpr(); 282 continue; 283 } 284 } 285 break; 286 } 287 return Ex; 288 } 289 290 /// If E is an expression comprising a reference to a single variable, find that 291 /// variable. 292 static FindVarResult findVar(const Expr *E, const DeclContext *DC) { 293 if (const DeclRefExpr *DRE = 294 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) 295 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) 296 if (isTrackedVar(VD, DC)) 297 return FindVarResult(VD, DRE); 298 return FindVarResult(nullptr, nullptr); 299 } 300 301 /// \brief Classify each DeclRefExpr as an initialization or a use. Any 302 /// DeclRefExpr which isn't explicitly classified will be assumed to have 303 /// escaped the analysis and will be treated as an initialization. 304 class ClassifyRefs : public StmtVisitor<ClassifyRefs> { 305 public: 306 enum Class { 307 Init, 308 Use, 309 SelfInit, 310 Ignore 311 }; 312 313 private: 314 const DeclContext *DC; 315 llvm::DenseMap<const DeclRefExpr*, Class> Classification; 316 317 bool isTrackedVar(const VarDecl *VD) const { 318 return ::isTrackedVar(VD, DC); 319 } 320 321 void classify(const Expr *E, Class C); 322 323 public: 324 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} 325 326 void VisitDeclStmt(DeclStmt *DS); 327 void VisitUnaryOperator(UnaryOperator *UO); 328 void VisitBinaryOperator(BinaryOperator *BO); 329 void VisitCallExpr(CallExpr *CE); 330 void VisitCastExpr(CastExpr *CE); 331 332 void operator()(Stmt *S) { Visit(S); } 333 334 Class get(const DeclRefExpr *DRE) const { 335 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I 336 = Classification.find(DRE); 337 if (I != Classification.end()) 338 return I->second; 339 340 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 341 if (!VD || !isTrackedVar(VD)) 342 return Ignore; 343 344 return Init; 345 } 346 }; 347 } 348 349 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { 350 if (Expr *Init = VD->getInit()) { 351 const DeclRefExpr *DRE 352 = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); 353 if (DRE && DRE->getDecl() == VD) 354 return DRE; 355 } 356 return nullptr; 357 } 358 359 void ClassifyRefs::classify(const Expr *E, Class C) { 360 // The result of a ?: could also be an lvalue. 361 E = E->IgnoreParens(); 362 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 363 const Expr *TrueExpr = CO->getTrueExpr(); 364 if (!isa<OpaqueValueExpr>(TrueExpr)) 365 classify(TrueExpr, C); 366 classify(CO->getFalseExpr(), C); 367 return; 368 } 369 370 FindVarResult Var = findVar(E, DC); 371 if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) 372 Classification[DRE] = std::max(Classification[DRE], C); 373 } 374 375 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { 376 for (auto *DI : DS->decls()) { 377 VarDecl *VD = dyn_cast<VarDecl>(DI); 378 if (VD && isTrackedVar(VD)) 379 if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) 380 Classification[DRE] = SelfInit; 381 } 382 } 383 384 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { 385 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this 386 // is not a compound-assignment, we will treat it as initializing the variable 387 // when TransferFunctions visits it. A compound-assignment does not affect 388 // whether a variable is uninitialized, and there's no point counting it as a 389 // use. 390 if (BO->isCompoundAssignmentOp()) 391 classify(BO->getLHS(), Use); 392 else if (BO->getOpcode() == BO_Assign) 393 classify(BO->getLHS(), Ignore); 394 } 395 396 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { 397 // Increment and decrement are uses despite there being no lvalue-to-rvalue 398 // conversion. 399 if (UO->isIncrementDecrementOp()) 400 classify(UO->getSubExpr(), Use); 401 } 402 403 void ClassifyRefs::VisitCallExpr(CallExpr *CE) { 404 // If a value is passed by const reference to a function, we should not assume 405 // that it is initialized by the call, and we conservatively do not assume 406 // that it is used. 407 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); 408 I != E; ++I) 409 if ((*I)->getType().isConstQualified() && (*I)->isGLValue()) 410 classify(*I, Ignore); 411 } 412 413 void ClassifyRefs::VisitCastExpr(CastExpr *CE) { 414 if (CE->getCastKind() == CK_LValueToRValue) 415 classify(CE->getSubExpr(), Use); 416 else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) { 417 if (CSE->getType()->isVoidType()) { 418 // Squelch any detected load of an uninitialized value if 419 // we cast it to void. 420 // e.g. (void) x; 421 classify(CSE->getSubExpr(), Ignore); 422 } 423 } 424 } 425 426 //------------------------------------------------------------------------====// 427 // Transfer function for uninitialized values analysis. 428 //====------------------------------------------------------------------------// 429 430 namespace { 431 class TransferFunctions : public StmtVisitor<TransferFunctions> { 432 CFGBlockValues &vals; 433 const CFG &cfg; 434 const CFGBlock *block; 435 AnalysisDeclContext ∾ 436 const ClassifyRefs &classification; 437 ObjCNoReturn objCNoRet; 438 UninitVariablesHandler &handler; 439 440 public: 441 TransferFunctions(CFGBlockValues &vals, const CFG &cfg, 442 const CFGBlock *block, AnalysisDeclContext &ac, 443 const ClassifyRefs &classification, 444 UninitVariablesHandler &handler) 445 : vals(vals), cfg(cfg), block(block), ac(ac), 446 classification(classification), objCNoRet(ac.getASTContext()), 447 handler(handler) {} 448 449 void reportUse(const Expr *ex, const VarDecl *vd); 450 451 void VisitBinaryOperator(BinaryOperator *bo); 452 void VisitBlockExpr(BlockExpr *be); 453 void VisitCallExpr(CallExpr *ce); 454 void VisitDeclRefExpr(DeclRefExpr *dr); 455 void VisitDeclStmt(DeclStmt *ds); 456 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); 457 void VisitObjCMessageExpr(ObjCMessageExpr *ME); 458 459 bool isTrackedVar(const VarDecl *vd) { 460 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); 461 } 462 463 FindVarResult findVar(const Expr *ex) { 464 return ::findVar(ex, cast<DeclContext>(ac.getDecl())); 465 } 466 467 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { 468 UninitUse Use(ex, isAlwaysUninit(v)); 469 470 assert(isUninitialized(v)); 471 if (Use.getKind() == UninitUse::Always) 472 return Use; 473 474 // If an edge which leads unconditionally to this use did not initialize 475 // the variable, we can say something stronger than 'may be uninitialized': 476 // we can say 'either it's used uninitialized or you have dead code'. 477 // 478 // We track the number of successors of a node which have been visited, and 479 // visit a node once we have visited all of its successors. Only edges where 480 // the variable might still be uninitialized are followed. Since a variable 481 // can't transfer from being initialized to being uninitialized, this will 482 // trace out the subgraph which inevitably leads to the use and does not 483 // initialize the variable. We do not want to skip past loops, since their 484 // non-termination might be correlated with the initialization condition. 485 // 486 // For example: 487 // 488 // void f(bool a, bool b) { 489 // block1: int n; 490 // if (a) { 491 // block2: if (b) 492 // block3: n = 1; 493 // block4: } else if (b) { 494 // block5: while (!a) { 495 // block6: do_work(&a); 496 // n = 2; 497 // } 498 // } 499 // block7: if (a) 500 // block8: g(); 501 // block9: return n; 502 // } 503 // 504 // Starting from the maybe-uninitialized use in block 9: 505 // * Block 7 is not visited because we have only visited one of its two 506 // successors. 507 // * Block 8 is visited because we've visited its only successor. 508 // From block 8: 509 // * Block 7 is visited because we've now visited both of its successors. 510 // From block 7: 511 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all 512 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). 513 // * Block 3 is not visited because it initializes 'n'. 514 // Now the algorithm terminates, having visited blocks 7 and 8, and having 515 // found the frontier is blocks 2, 4, and 5. 516 // 517 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 518 // and 4), so we report that any time either of those edges is taken (in 519 // each case when 'b == false'), 'n' is used uninitialized. 520 SmallVector<const CFGBlock*, 32> Queue; 521 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); 522 Queue.push_back(block); 523 // Specify that we've already visited all successors of the starting block. 524 // This has the dual purpose of ensuring we never add it to the queue, and 525 // of marking it as not being a candidate element of the frontier. 526 SuccsVisited[block->getBlockID()] = block->succ_size(); 527 while (!Queue.empty()) { 528 const CFGBlock *B = Queue.pop_back_val(); 529 530 // If the use is always reached from the entry block, make a note of that. 531 if (B == &cfg.getEntry()) 532 Use.setUninitAfterCall(); 533 534 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); 535 I != E; ++I) { 536 const CFGBlock *Pred = *I; 537 if (!Pred) 538 continue; 539 540 Value AtPredExit = vals.getValue(Pred, B, vd); 541 if (AtPredExit == Initialized) 542 // This block initializes the variable. 543 continue; 544 if (AtPredExit == MayUninitialized && 545 vals.getValue(B, nullptr, vd) == Uninitialized) { 546 // This block declares the variable (uninitialized), and is reachable 547 // from a block that initializes the variable. We can't guarantee to 548 // give an earlier location for the diagnostic (and it appears that 549 // this code is intended to be reachable) so give a diagnostic here 550 // and go no further down this path. 551 Use.setUninitAfterDecl(); 552 continue; 553 } 554 555 unsigned &SV = SuccsVisited[Pred->getBlockID()]; 556 if (!SV) { 557 // When visiting the first successor of a block, mark all NULL 558 // successors as having been visited. 559 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), 560 SE = Pred->succ_end(); 561 SI != SE; ++SI) 562 if (!*SI) 563 ++SV; 564 } 565 566 if (++SV == Pred->succ_size()) 567 // All paths from this block lead to the use and don't initialize the 568 // variable. 569 Queue.push_back(Pred); 570 } 571 } 572 573 // Scan the frontier, looking for blocks where the variable was 574 // uninitialized. 575 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { 576 const CFGBlock *Block = *BI; 577 unsigned BlockID = Block->getBlockID(); 578 const Stmt *Term = Block->getTerminator(); 579 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && 580 Term) { 581 // This block inevitably leads to the use. If we have an edge from here 582 // to a post-dominator block, and the variable is uninitialized on that 583 // edge, we have found a bug. 584 for (CFGBlock::const_succ_iterator I = Block->succ_begin(), 585 E = Block->succ_end(); I != E; ++I) { 586 const CFGBlock *Succ = *I; 587 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && 588 vals.getValue(Block, Succ, vd) == Uninitialized) { 589 // Switch cases are a special case: report the label to the caller 590 // as the 'terminator', not the switch statement itself. Suppress 591 // situations where no label matched: we can't be sure that's 592 // possible. 593 if (isa<SwitchStmt>(Term)) { 594 const Stmt *Label = Succ->getLabel(); 595 if (!Label || !isa<SwitchCase>(Label)) 596 // Might not be possible. 597 continue; 598 UninitUse::Branch Branch; 599 Branch.Terminator = Label; 600 Branch.Output = 0; // Ignored. 601 Use.addUninitBranch(Branch); 602 } else { 603 UninitUse::Branch Branch; 604 Branch.Terminator = Term; 605 Branch.Output = I - Block->succ_begin(); 606 Use.addUninitBranch(Branch); 607 } 608 } 609 } 610 } 611 } 612 613 return Use; 614 } 615 }; 616 } 617 618 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { 619 Value v = vals[vd]; 620 if (isUninitialized(v)) 621 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); 622 } 623 624 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { 625 // This represents an initialization of the 'element' value. 626 if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) { 627 const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); 628 if (isTrackedVar(VD)) 629 vals[VD] = Initialized; 630 } 631 } 632 633 void TransferFunctions::VisitBlockExpr(BlockExpr *be) { 634 const BlockDecl *bd = be->getBlockDecl(); 635 for (const auto &I : bd->captures()) { 636 const VarDecl *vd = I.getVariable(); 637 if (!isTrackedVar(vd)) 638 continue; 639 if (I.isByRef()) { 640 vals[vd] = Initialized; 641 continue; 642 } 643 reportUse(be, vd); 644 } 645 } 646 647 void TransferFunctions::VisitCallExpr(CallExpr *ce) { 648 if (Decl *Callee = ce->getCalleeDecl()) { 649 if (Callee->hasAttr<ReturnsTwiceAttr>()) { 650 // After a call to a function like setjmp or vfork, any variable which is 651 // initialized anywhere within this function may now be initialized. For 652 // now, just assume such a call initializes all variables. FIXME: Only 653 // mark variables as initialized if they have an initializer which is 654 // reachable from here. 655 vals.setAllScratchValues(Initialized); 656 } 657 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { 658 // Functions labeled like "analyzer_noreturn" are often used to denote 659 // "panic" functions that in special debug situations can still return, 660 // but for the most part should not be treated as returning. This is a 661 // useful annotation borrowed from the static analyzer that is useful for 662 // suppressing branch-specific false positives when we call one of these 663 // functions but keep pretending the path continues (when in reality the 664 // user doesn't care). 665 vals.setAllScratchValues(Unknown); 666 } 667 } 668 } 669 670 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { 671 switch (classification.get(dr)) { 672 case ClassifyRefs::Ignore: 673 break; 674 case ClassifyRefs::Use: 675 reportUse(dr, cast<VarDecl>(dr->getDecl())); 676 break; 677 case ClassifyRefs::Init: 678 vals[cast<VarDecl>(dr->getDecl())] = Initialized; 679 break; 680 case ClassifyRefs::SelfInit: 681 handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); 682 break; 683 } 684 } 685 686 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { 687 if (BO->getOpcode() == BO_Assign) { 688 FindVarResult Var = findVar(BO->getLHS()); 689 if (const VarDecl *VD = Var.getDecl()) 690 vals[VD] = Initialized; 691 } 692 } 693 694 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { 695 for (auto *DI : DS->decls()) { 696 VarDecl *VD = dyn_cast<VarDecl>(DI); 697 if (VD && isTrackedVar(VD)) { 698 if (getSelfInitExpr(VD)) { 699 // If the initializer consists solely of a reference to itself, we 700 // explicitly mark the variable as uninitialized. This allows code 701 // like the following: 702 // 703 // int x = x; 704 // 705 // to deliberately leave a variable uninitialized. Different analysis 706 // clients can detect this pattern and adjust their reporting 707 // appropriately, but we need to continue to analyze subsequent uses 708 // of the variable. 709 vals[VD] = Uninitialized; 710 } else if (VD->getInit()) { 711 // Treat the new variable as initialized. 712 vals[VD] = Initialized; 713 } else { 714 // No initializer: the variable is now uninitialized. This matters 715 // for cases like: 716 // while (...) { 717 // int n; 718 // use(n); 719 // n = 0; 720 // } 721 // FIXME: Mark the variable as uninitialized whenever its scope is 722 // left, since its scope could be re-entered by a jump over the 723 // declaration. 724 vals[VD] = Uninitialized; 725 } 726 } 727 } 728 } 729 730 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { 731 // If the Objective-C message expression is an implicit no-return that 732 // is not modeled in the CFG, set the tracked dataflow values to Unknown. 733 if (objCNoRet.isImplicitNoReturn(ME)) { 734 vals.setAllScratchValues(Unknown); 735 } 736 } 737 738 //------------------------------------------------------------------------====// 739 // High-level "driver" logic for uninitialized values analysis. 740 //====------------------------------------------------------------------------// 741 742 static bool runOnBlock(const CFGBlock *block, const CFG &cfg, 743 AnalysisDeclContext &ac, CFGBlockValues &vals, 744 const ClassifyRefs &classification, 745 llvm::BitVector &wasAnalyzed, 746 UninitVariablesHandler &handler) { 747 wasAnalyzed[block->getBlockID()] = true; 748 vals.resetScratch(); 749 // Merge in values of predecessor blocks. 750 bool isFirst = true; 751 for (CFGBlock::const_pred_iterator I = block->pred_begin(), 752 E = block->pred_end(); I != E; ++I) { 753 const CFGBlock *pred = *I; 754 if (!pred) 755 continue; 756 if (wasAnalyzed[pred->getBlockID()]) { 757 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); 758 isFirst = false; 759 } 760 } 761 // Apply the transfer function. 762 TransferFunctions tf(vals, cfg, block, ac, classification, handler); 763 for (CFGBlock::const_iterator I = block->begin(), E = block->end(); 764 I != E; ++I) { 765 if (Optional<CFGStmt> cs = I->getAs<CFGStmt>()) 766 tf.Visit(const_cast<Stmt*>(cs->getStmt())); 767 } 768 return vals.updateValueVectorWithScratch(block); 769 } 770 771 /// PruneBlocksHandler is a special UninitVariablesHandler that is used 772 /// to detect when a CFGBlock has any *potential* use of an uninitialized 773 /// variable. It is mainly used to prune out work during the final 774 /// reporting pass. 775 namespace { 776 struct PruneBlocksHandler : public UninitVariablesHandler { 777 PruneBlocksHandler(unsigned numBlocks) 778 : hadUse(numBlocks, false), hadAnyUse(false), 779 currentBlock(0) {} 780 781 virtual ~PruneBlocksHandler() {} 782 783 /// Records if a CFGBlock had a potential use of an uninitialized variable. 784 llvm::BitVector hadUse; 785 786 /// Records if any CFGBlock had a potential use of an uninitialized variable. 787 bool hadAnyUse; 788 789 /// The current block to scribble use information. 790 unsigned currentBlock; 791 792 void handleUseOfUninitVariable(const VarDecl *vd, 793 const UninitUse &use) override { 794 hadUse[currentBlock] = true; 795 hadAnyUse = true; 796 } 797 798 /// Called when the uninitialized variable analysis detects the 799 /// idiom 'int x = x'. All other uses of 'x' within the initializer 800 /// are handled by handleUseOfUninitVariable. 801 void handleSelfInit(const VarDecl *vd) override { 802 hadUse[currentBlock] = true; 803 hadAnyUse = true; 804 } 805 }; 806 } 807 808 void clang::runUninitializedVariablesAnalysis( 809 const DeclContext &dc, 810 const CFG &cfg, 811 AnalysisDeclContext &ac, 812 UninitVariablesHandler &handler, 813 UninitVariablesAnalysisStats &stats) { 814 CFGBlockValues vals(cfg); 815 vals.computeSetOfDeclarations(dc); 816 if (vals.hasNoDeclarations()) 817 return; 818 819 stats.NumVariablesAnalyzed = vals.getNumEntries(); 820 821 // Precompute which expressions are uses and which are initializations. 822 ClassifyRefs classification(ac); 823 cfg.VisitBlockStmts(classification); 824 825 // Mark all variables uninitialized at the entry. 826 const CFGBlock &entry = cfg.getEntry(); 827 ValueVector &vec = vals.getValueVector(&entry); 828 const unsigned n = vals.getNumEntries(); 829 for (unsigned j = 0; j < n ; ++j) { 830 vec[j] = Uninitialized; 831 } 832 833 // Proceed with the workist. 834 DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>()); 835 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); 836 worklist.enqueueSuccessors(&cfg.getEntry()); 837 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); 838 wasAnalyzed[cfg.getEntry().getBlockID()] = true; 839 PruneBlocksHandler PBH(cfg.getNumBlockIDs()); 840 841 while (const CFGBlock *block = worklist.dequeue()) { 842 PBH.currentBlock = block->getBlockID(); 843 844 // Did the block change? 845 bool changed = runOnBlock(block, cfg, ac, vals, 846 classification, wasAnalyzed, PBH); 847 ++stats.NumBlockVisits; 848 if (changed || !previouslyVisited[block->getBlockID()]) 849 worklist.enqueueSuccessors(block); 850 previouslyVisited[block->getBlockID()] = true; 851 } 852 853 if (!PBH.hadAnyUse) 854 return; 855 856 // Run through the blocks one more time, and report uninitialized variables. 857 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) { 858 const CFGBlock *block = *BI; 859 if (PBH.hadUse[block->getBlockID()]) { 860 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); 861 ++stats.NumBlockVisits; 862 } 863 } 864 } 865 866 UninitVariablesHandler::~UninitVariablesHandler() {} 867