Home | History | Annotate | Download | only in Analysis
      1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements uninitialized values analysis for source-level CFGs.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/Attr.h"
     16 #include "clang/AST/Decl.h"
     17 #include "clang/AST/StmtVisitor.h"
     18 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
     19 #include "clang/Analysis/Analyses/UninitializedValues.h"
     20 #include "clang/Analysis/AnalysisContext.h"
     21 #include "clang/Analysis/CFG.h"
     22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/Optional.h"
     25 #include "llvm/ADT/PackedVector.h"
     26 #include "llvm/ADT/SmallBitVector.h"
     27 #include "llvm/ADT/SmallVector.h"
     28 #include "llvm/Support/SaveAndRestore.h"
     29 #include <utility>
     30 
     31 using namespace clang;
     32 
     33 #define DEBUG_LOGGING 0
     34 
     35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
     36   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
     37       !vd->isExceptionVariable() && !vd->isInitCapture() &&
     38       vd->getDeclContext() == dc) {
     39     QualType ty = vd->getType();
     40     return ty->isScalarType() || ty->isVectorType();
     41   }
     42   return false;
     43 }
     44 
     45 //------------------------------------------------------------------------====//
     46 // DeclToIndex: a mapping from Decls we track to value indices.
     47 //====------------------------------------------------------------------------//
     48 
     49 namespace {
     50 class DeclToIndex {
     51   llvm::DenseMap<const VarDecl *, unsigned> map;
     52 public:
     53   DeclToIndex() {}
     54 
     55   /// Compute the actual mapping from declarations to bits.
     56   void computeMap(const DeclContext &dc);
     57 
     58   /// Return the number of declarations in the map.
     59   unsigned size() const { return map.size(); }
     60 
     61   /// Returns the bit vector index for a given declaration.
     62   Optional<unsigned> getValueIndex(const VarDecl *d) const;
     63 };
     64 }
     65 
     66 void DeclToIndex::computeMap(const DeclContext &dc) {
     67   unsigned count = 0;
     68   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
     69                                                E(dc.decls_end());
     70   for ( ; I != E; ++I) {
     71     const VarDecl *vd = *I;
     72     if (isTrackedVar(vd, &dc))
     73       map[vd] = count++;
     74   }
     75 }
     76 
     77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
     78   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
     79   if (I == map.end())
     80     return None;
     81   return I->second;
     82 }
     83 
     84 //------------------------------------------------------------------------====//
     85 // CFGBlockValues: dataflow values for CFG blocks.
     86 //====------------------------------------------------------------------------//
     87 
     88 // These values are defined in such a way that a merge can be done using
     89 // a bitwise OR.
     90 enum Value { Unknown = 0x0,         /* 00 */
     91              Initialized = 0x1,     /* 01 */
     92              Uninitialized = 0x2,   /* 10 */
     93              MayUninitialized = 0x3 /* 11 */ };
     94 
     95 static bool isUninitialized(const Value v) {
     96   return v >= Uninitialized;
     97 }
     98 static bool isAlwaysUninit(const Value v) {
     99   return v == Uninitialized;
    100 }
    101 
    102 namespace {
    103 
    104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
    105 
    106 class CFGBlockValues {
    107   const CFG &cfg;
    108   SmallVector<ValueVector, 8> vals;
    109   ValueVector scratch;
    110   DeclToIndex declToIndex;
    111 public:
    112   CFGBlockValues(const CFG &cfg);
    113 
    114   unsigned getNumEntries() const { return declToIndex.size(); }
    115 
    116   void computeSetOfDeclarations(const DeclContext &dc);
    117   ValueVector &getValueVector(const CFGBlock *block) {
    118     return vals[block->getBlockID()];
    119   }
    120 
    121   void setAllScratchValues(Value V);
    122   void mergeIntoScratch(ValueVector const &source, bool isFirst);
    123   bool updateValueVectorWithScratch(const CFGBlock *block);
    124 
    125   bool hasNoDeclarations() const {
    126     return declToIndex.size() == 0;
    127   }
    128 
    129   void resetScratch();
    130 
    131   ValueVector::reference operator[](const VarDecl *vd);
    132 
    133   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
    134                  const VarDecl *vd) {
    135     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
    136     assert(idx.hasValue());
    137     return getValueVector(block)[idx.getValue()];
    138   }
    139 };
    140 } // end anonymous namespace
    141 
    142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
    143 
    144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
    145   declToIndex.computeMap(dc);
    146   unsigned decls = declToIndex.size();
    147   scratch.resize(decls);
    148   unsigned n = cfg.getNumBlockIDs();
    149   if (!n)
    150     return;
    151   vals.resize(n);
    152   for (unsigned i = 0; i < n; ++i)
    153     vals[i].resize(decls);
    154 }
    155 
    156 #if DEBUG_LOGGING
    157 static void printVector(const CFGBlock *block, ValueVector &bv,
    158                         unsigned num) {
    159   llvm::errs() << block->getBlockID() << " :";
    160   for (unsigned i = 0; i < bv.size(); ++i) {
    161     llvm::errs() << ' ' << bv[i];
    162   }
    163   llvm::errs() << " : " << num << '\n';
    164 }
    165 #endif
    166 
    167 void CFGBlockValues::setAllScratchValues(Value V) {
    168   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
    169     scratch[I] = V;
    170 }
    171 
    172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
    173                                       bool isFirst) {
    174   if (isFirst)
    175     scratch = source;
    176   else
    177     scratch |= source;
    178 }
    179 
    180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
    181   ValueVector &dst = getValueVector(block);
    182   bool changed = (dst != scratch);
    183   if (changed)
    184     dst = scratch;
    185 #if DEBUG_LOGGING
    186   printVector(block, scratch, 0);
    187 #endif
    188   return changed;
    189 }
    190 
    191 void CFGBlockValues::resetScratch() {
    192   scratch.reset();
    193 }
    194 
    195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
    196   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
    197   assert(idx.hasValue());
    198   return scratch[idx.getValue()];
    199 }
    200 
    201 //------------------------------------------------------------------------====//
    202 // Worklist: worklist for dataflow analysis.
    203 //====------------------------------------------------------------------------//
    204 
    205 namespace {
    206 class DataflowWorklist {
    207   PostOrderCFGView::iterator PO_I, PO_E;
    208   SmallVector<const CFGBlock *, 20> worklist;
    209   llvm::BitVector enqueuedBlocks;
    210 public:
    211   DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
    212     : PO_I(view.begin()), PO_E(view.end()),
    213       enqueuedBlocks(cfg.getNumBlockIDs(), true) {
    214         // Treat the first block as already analyzed.
    215         if (PO_I != PO_E) {
    216           assert(*PO_I == &cfg.getEntry());
    217           enqueuedBlocks[(*PO_I)->getBlockID()] = false;
    218           ++PO_I;
    219         }
    220       }
    221 
    222   void enqueueSuccessors(const CFGBlock *block);
    223   const CFGBlock *dequeue();
    224 };
    225 }
    226 
    227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
    228   for (CFGBlock::const_succ_iterator I = block->succ_begin(),
    229        E = block->succ_end(); I != E; ++I) {
    230     const CFGBlock *Successor = *I;
    231     if (!Successor || enqueuedBlocks[Successor->getBlockID()])
    232       continue;
    233     worklist.push_back(Successor);
    234     enqueuedBlocks[Successor->getBlockID()] = true;
    235   }
    236 }
    237 
    238 const CFGBlock *DataflowWorklist::dequeue() {
    239   const CFGBlock *B = nullptr;
    240 
    241   // First dequeue from the worklist.  This can represent
    242   // updates along backedges that we want propagated as quickly as possible.
    243   if (!worklist.empty())
    244     B = worklist.pop_back_val();
    245 
    246   // Next dequeue from the initial reverse post order.  This is the
    247   // theoretical ideal in the presence of no back edges.
    248   else if (PO_I != PO_E) {
    249     B = *PO_I;
    250     ++PO_I;
    251   }
    252   else {
    253     return nullptr;
    254   }
    255 
    256   assert(enqueuedBlocks[B->getBlockID()] == true);
    257   enqueuedBlocks[B->getBlockID()] = false;
    258   return B;
    259 }
    260 
    261 //------------------------------------------------------------------------====//
    262 // Classification of DeclRefExprs as use or initialization.
    263 //====------------------------------------------------------------------------//
    264 
    265 namespace {
    266 class FindVarResult {
    267   const VarDecl *vd;
    268   const DeclRefExpr *dr;
    269 public:
    270   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
    271 
    272   const DeclRefExpr *getDeclRefExpr() const { return dr; }
    273   const VarDecl *getDecl() const { return vd; }
    274 };
    275 
    276 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
    277   while (Ex) {
    278     Ex = Ex->IgnoreParenNoopCasts(C);
    279     if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
    280       if (CE->getCastKind() == CK_LValueBitCast) {
    281         Ex = CE->getSubExpr();
    282         continue;
    283       }
    284     }
    285     break;
    286   }
    287   return Ex;
    288 }
    289 
    290 /// If E is an expression comprising a reference to a single variable, find that
    291 /// variable.
    292 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
    293   if (const DeclRefExpr *DRE =
    294         dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
    295     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
    296       if (isTrackedVar(VD, DC))
    297         return FindVarResult(VD, DRE);
    298   return FindVarResult(nullptr, nullptr);
    299 }
    300 
    301 /// \brief Classify each DeclRefExpr as an initialization or a use. Any
    302 /// DeclRefExpr which isn't explicitly classified will be assumed to have
    303 /// escaped the analysis and will be treated as an initialization.
    304 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
    305 public:
    306   enum Class {
    307     Init,
    308     Use,
    309     SelfInit,
    310     Ignore
    311   };
    312 
    313 private:
    314   const DeclContext *DC;
    315   llvm::DenseMap<const DeclRefExpr*, Class> Classification;
    316 
    317   bool isTrackedVar(const VarDecl *VD) const {
    318     return ::isTrackedVar(VD, DC);
    319   }
    320 
    321   void classify(const Expr *E, Class C);
    322 
    323 public:
    324   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
    325 
    326   void VisitDeclStmt(DeclStmt *DS);
    327   void VisitUnaryOperator(UnaryOperator *UO);
    328   void VisitBinaryOperator(BinaryOperator *BO);
    329   void VisitCallExpr(CallExpr *CE);
    330   void VisitCastExpr(CastExpr *CE);
    331 
    332   void operator()(Stmt *S) { Visit(S); }
    333 
    334   Class get(const DeclRefExpr *DRE) const {
    335     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
    336         = Classification.find(DRE);
    337     if (I != Classification.end())
    338       return I->second;
    339 
    340     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
    341     if (!VD || !isTrackedVar(VD))
    342       return Ignore;
    343 
    344     return Init;
    345   }
    346 };
    347 }
    348 
    349 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
    350   if (Expr *Init = VD->getInit()) {
    351     const DeclRefExpr *DRE
    352       = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
    353     if (DRE && DRE->getDecl() == VD)
    354       return DRE;
    355   }
    356   return nullptr;
    357 }
    358 
    359 void ClassifyRefs::classify(const Expr *E, Class C) {
    360   // The result of a ?: could also be an lvalue.
    361   E = E->IgnoreParens();
    362   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
    363     const Expr *TrueExpr = CO->getTrueExpr();
    364     if (!isa<OpaqueValueExpr>(TrueExpr))
    365       classify(TrueExpr, C);
    366     classify(CO->getFalseExpr(), C);
    367     return;
    368   }
    369 
    370   FindVarResult Var = findVar(E, DC);
    371   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
    372     Classification[DRE] = std::max(Classification[DRE], C);
    373 }
    374 
    375 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
    376   for (auto *DI : DS->decls()) {
    377     VarDecl *VD = dyn_cast<VarDecl>(DI);
    378     if (VD && isTrackedVar(VD))
    379       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
    380         Classification[DRE] = SelfInit;
    381   }
    382 }
    383 
    384 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
    385   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
    386   // is not a compound-assignment, we will treat it as initializing the variable
    387   // when TransferFunctions visits it. A compound-assignment does not affect
    388   // whether a variable is uninitialized, and there's no point counting it as a
    389   // use.
    390   if (BO->isCompoundAssignmentOp())
    391     classify(BO->getLHS(), Use);
    392   else if (BO->getOpcode() == BO_Assign)
    393     classify(BO->getLHS(), Ignore);
    394 }
    395 
    396 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
    397   // Increment and decrement are uses despite there being no lvalue-to-rvalue
    398   // conversion.
    399   if (UO->isIncrementDecrementOp())
    400     classify(UO->getSubExpr(), Use);
    401 }
    402 
    403 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
    404   // If a value is passed by const reference to a function, we should not assume
    405   // that it is initialized by the call, and we conservatively do not assume
    406   // that it is used.
    407   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
    408        I != E; ++I)
    409     if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
    410       classify(*I, Ignore);
    411 }
    412 
    413 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
    414   if (CE->getCastKind() == CK_LValueToRValue)
    415     classify(CE->getSubExpr(), Use);
    416   else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
    417     if (CSE->getType()->isVoidType()) {
    418       // Squelch any detected load of an uninitialized value if
    419       // we cast it to void.
    420       // e.g. (void) x;
    421       classify(CSE->getSubExpr(), Ignore);
    422     }
    423   }
    424 }
    425 
    426 //------------------------------------------------------------------------====//
    427 // Transfer function for uninitialized values analysis.
    428 //====------------------------------------------------------------------------//
    429 
    430 namespace {
    431 class TransferFunctions : public StmtVisitor<TransferFunctions> {
    432   CFGBlockValues &vals;
    433   const CFG &cfg;
    434   const CFGBlock *block;
    435   AnalysisDeclContext &ac;
    436   const ClassifyRefs &classification;
    437   ObjCNoReturn objCNoRet;
    438   UninitVariablesHandler &handler;
    439 
    440 public:
    441   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
    442                     const CFGBlock *block, AnalysisDeclContext &ac,
    443                     const ClassifyRefs &classification,
    444                     UninitVariablesHandler &handler)
    445     : vals(vals), cfg(cfg), block(block), ac(ac),
    446       classification(classification), objCNoRet(ac.getASTContext()),
    447       handler(handler) {}
    448 
    449   void reportUse(const Expr *ex, const VarDecl *vd);
    450 
    451   void VisitBinaryOperator(BinaryOperator *bo);
    452   void VisitBlockExpr(BlockExpr *be);
    453   void VisitCallExpr(CallExpr *ce);
    454   void VisitDeclRefExpr(DeclRefExpr *dr);
    455   void VisitDeclStmt(DeclStmt *ds);
    456   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
    457   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
    458 
    459   bool isTrackedVar(const VarDecl *vd) {
    460     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
    461   }
    462 
    463   FindVarResult findVar(const Expr *ex) {
    464     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
    465   }
    466 
    467   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
    468     UninitUse Use(ex, isAlwaysUninit(v));
    469 
    470     assert(isUninitialized(v));
    471     if (Use.getKind() == UninitUse::Always)
    472       return Use;
    473 
    474     // If an edge which leads unconditionally to this use did not initialize
    475     // the variable, we can say something stronger than 'may be uninitialized':
    476     // we can say 'either it's used uninitialized or you have dead code'.
    477     //
    478     // We track the number of successors of a node which have been visited, and
    479     // visit a node once we have visited all of its successors. Only edges where
    480     // the variable might still be uninitialized are followed. Since a variable
    481     // can't transfer from being initialized to being uninitialized, this will
    482     // trace out the subgraph which inevitably leads to the use and does not
    483     // initialize the variable. We do not want to skip past loops, since their
    484     // non-termination might be correlated with the initialization condition.
    485     //
    486     // For example:
    487     //
    488     //         void f(bool a, bool b) {
    489     // block1:   int n;
    490     //           if (a) {
    491     // block2:     if (b)
    492     // block3:       n = 1;
    493     // block4:   } else if (b) {
    494     // block5:     while (!a) {
    495     // block6:       do_work(&a);
    496     //               n = 2;
    497     //             }
    498     //           }
    499     // block7:   if (a)
    500     // block8:     g();
    501     // block9:   return n;
    502     //         }
    503     //
    504     // Starting from the maybe-uninitialized use in block 9:
    505     //  * Block 7 is not visited because we have only visited one of its two
    506     //    successors.
    507     //  * Block 8 is visited because we've visited its only successor.
    508     // From block 8:
    509     //  * Block 7 is visited because we've now visited both of its successors.
    510     // From block 7:
    511     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
    512     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
    513     //  * Block 3 is not visited because it initializes 'n'.
    514     // Now the algorithm terminates, having visited blocks 7 and 8, and having
    515     // found the frontier is blocks 2, 4, and 5.
    516     //
    517     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
    518     // and 4), so we report that any time either of those edges is taken (in
    519     // each case when 'b == false'), 'n' is used uninitialized.
    520     SmallVector<const CFGBlock*, 32> Queue;
    521     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
    522     Queue.push_back(block);
    523     // Specify that we've already visited all successors of the starting block.
    524     // This has the dual purpose of ensuring we never add it to the queue, and
    525     // of marking it as not being a candidate element of the frontier.
    526     SuccsVisited[block->getBlockID()] = block->succ_size();
    527     while (!Queue.empty()) {
    528       const CFGBlock *B = Queue.pop_back_val();
    529 
    530       // If the use is always reached from the entry block, make a note of that.
    531       if (B == &cfg.getEntry())
    532         Use.setUninitAfterCall();
    533 
    534       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
    535            I != E; ++I) {
    536         const CFGBlock *Pred = *I;
    537         if (!Pred)
    538           continue;
    539 
    540         Value AtPredExit = vals.getValue(Pred, B, vd);
    541         if (AtPredExit == Initialized)
    542           // This block initializes the variable.
    543           continue;
    544         if (AtPredExit == MayUninitialized &&
    545             vals.getValue(B, nullptr, vd) == Uninitialized) {
    546           // This block declares the variable (uninitialized), and is reachable
    547           // from a block that initializes the variable. We can't guarantee to
    548           // give an earlier location for the diagnostic (and it appears that
    549           // this code is intended to be reachable) so give a diagnostic here
    550           // and go no further down this path.
    551           Use.setUninitAfterDecl();
    552           continue;
    553         }
    554 
    555         unsigned &SV = SuccsVisited[Pred->getBlockID()];
    556         if (!SV) {
    557           // When visiting the first successor of a block, mark all NULL
    558           // successors as having been visited.
    559           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
    560                                              SE = Pred->succ_end();
    561                SI != SE; ++SI)
    562             if (!*SI)
    563               ++SV;
    564         }
    565 
    566         if (++SV == Pred->succ_size())
    567           // All paths from this block lead to the use and don't initialize the
    568           // variable.
    569           Queue.push_back(Pred);
    570       }
    571     }
    572 
    573     // Scan the frontier, looking for blocks where the variable was
    574     // uninitialized.
    575     for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
    576       const CFGBlock *Block = *BI;
    577       unsigned BlockID = Block->getBlockID();
    578       const Stmt *Term = Block->getTerminator();
    579       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
    580           Term) {
    581         // This block inevitably leads to the use. If we have an edge from here
    582         // to a post-dominator block, and the variable is uninitialized on that
    583         // edge, we have found a bug.
    584         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
    585              E = Block->succ_end(); I != E; ++I) {
    586           const CFGBlock *Succ = *I;
    587           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
    588               vals.getValue(Block, Succ, vd) == Uninitialized) {
    589             // Switch cases are a special case: report the label to the caller
    590             // as the 'terminator', not the switch statement itself. Suppress
    591             // situations where no label matched: we can't be sure that's
    592             // possible.
    593             if (isa<SwitchStmt>(Term)) {
    594               const Stmt *Label = Succ->getLabel();
    595               if (!Label || !isa<SwitchCase>(Label))
    596                 // Might not be possible.
    597                 continue;
    598               UninitUse::Branch Branch;
    599               Branch.Terminator = Label;
    600               Branch.Output = 0; // Ignored.
    601               Use.addUninitBranch(Branch);
    602             } else {
    603               UninitUse::Branch Branch;
    604               Branch.Terminator = Term;
    605               Branch.Output = I - Block->succ_begin();
    606               Use.addUninitBranch(Branch);
    607             }
    608           }
    609         }
    610       }
    611     }
    612 
    613     return Use;
    614   }
    615 };
    616 }
    617 
    618 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
    619   Value v = vals[vd];
    620   if (isUninitialized(v))
    621     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
    622 }
    623 
    624 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
    625   // This represents an initialization of the 'element' value.
    626   if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
    627     const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
    628     if (isTrackedVar(VD))
    629       vals[VD] = Initialized;
    630   }
    631 }
    632 
    633 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
    634   const BlockDecl *bd = be->getBlockDecl();
    635   for (const auto &I : bd->captures()) {
    636     const VarDecl *vd = I.getVariable();
    637     if (!isTrackedVar(vd))
    638       continue;
    639     if (I.isByRef()) {
    640       vals[vd] = Initialized;
    641       continue;
    642     }
    643     reportUse(be, vd);
    644   }
    645 }
    646 
    647 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
    648   if (Decl *Callee = ce->getCalleeDecl()) {
    649     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
    650       // After a call to a function like setjmp or vfork, any variable which is
    651       // initialized anywhere within this function may now be initialized. For
    652       // now, just assume such a call initializes all variables.  FIXME: Only
    653       // mark variables as initialized if they have an initializer which is
    654       // reachable from here.
    655       vals.setAllScratchValues(Initialized);
    656     }
    657     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
    658       // Functions labeled like "analyzer_noreturn" are often used to denote
    659       // "panic" functions that in special debug situations can still return,
    660       // but for the most part should not be treated as returning.  This is a
    661       // useful annotation borrowed from the static analyzer that is useful for
    662       // suppressing branch-specific false positives when we call one of these
    663       // functions but keep pretending the path continues (when in reality the
    664       // user doesn't care).
    665       vals.setAllScratchValues(Unknown);
    666     }
    667   }
    668 }
    669 
    670 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
    671   switch (classification.get(dr)) {
    672   case ClassifyRefs::Ignore:
    673     break;
    674   case ClassifyRefs::Use:
    675     reportUse(dr, cast<VarDecl>(dr->getDecl()));
    676     break;
    677   case ClassifyRefs::Init:
    678     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
    679     break;
    680   case ClassifyRefs::SelfInit:
    681       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
    682     break;
    683   }
    684 }
    685 
    686 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
    687   if (BO->getOpcode() == BO_Assign) {
    688     FindVarResult Var = findVar(BO->getLHS());
    689     if (const VarDecl *VD = Var.getDecl())
    690       vals[VD] = Initialized;
    691   }
    692 }
    693 
    694 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
    695   for (auto *DI : DS->decls()) {
    696     VarDecl *VD = dyn_cast<VarDecl>(DI);
    697     if (VD && isTrackedVar(VD)) {
    698       if (getSelfInitExpr(VD)) {
    699         // If the initializer consists solely of a reference to itself, we
    700         // explicitly mark the variable as uninitialized. This allows code
    701         // like the following:
    702         //
    703         //   int x = x;
    704         //
    705         // to deliberately leave a variable uninitialized. Different analysis
    706         // clients can detect this pattern and adjust their reporting
    707         // appropriately, but we need to continue to analyze subsequent uses
    708         // of the variable.
    709         vals[VD] = Uninitialized;
    710       } else if (VD->getInit()) {
    711         // Treat the new variable as initialized.
    712         vals[VD] = Initialized;
    713       } else {
    714         // No initializer: the variable is now uninitialized. This matters
    715         // for cases like:
    716         //   while (...) {
    717         //     int n;
    718         //     use(n);
    719         //     n = 0;
    720         //   }
    721         // FIXME: Mark the variable as uninitialized whenever its scope is
    722         // left, since its scope could be re-entered by a jump over the
    723         // declaration.
    724         vals[VD] = Uninitialized;
    725       }
    726     }
    727   }
    728 }
    729 
    730 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
    731   // If the Objective-C message expression is an implicit no-return that
    732   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
    733   if (objCNoRet.isImplicitNoReturn(ME)) {
    734     vals.setAllScratchValues(Unknown);
    735   }
    736 }
    737 
    738 //------------------------------------------------------------------------====//
    739 // High-level "driver" logic for uninitialized values analysis.
    740 //====------------------------------------------------------------------------//
    741 
    742 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
    743                        AnalysisDeclContext &ac, CFGBlockValues &vals,
    744                        const ClassifyRefs &classification,
    745                        llvm::BitVector &wasAnalyzed,
    746                        UninitVariablesHandler &handler) {
    747   wasAnalyzed[block->getBlockID()] = true;
    748   vals.resetScratch();
    749   // Merge in values of predecessor blocks.
    750   bool isFirst = true;
    751   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
    752        E = block->pred_end(); I != E; ++I) {
    753     const CFGBlock *pred = *I;
    754     if (!pred)
    755       continue;
    756     if (wasAnalyzed[pred->getBlockID()]) {
    757       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
    758       isFirst = false;
    759     }
    760   }
    761   // Apply the transfer function.
    762   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
    763   for (CFGBlock::const_iterator I = block->begin(), E = block->end();
    764        I != E; ++I) {
    765     if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
    766       tf.Visit(const_cast<Stmt*>(cs->getStmt()));
    767   }
    768   return vals.updateValueVectorWithScratch(block);
    769 }
    770 
    771 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
    772 /// to detect when a CFGBlock has any *potential* use of an uninitialized
    773 /// variable.  It is mainly used to prune out work during the final
    774 /// reporting pass.
    775 namespace {
    776 struct PruneBlocksHandler : public UninitVariablesHandler {
    777   PruneBlocksHandler(unsigned numBlocks)
    778     : hadUse(numBlocks, false), hadAnyUse(false),
    779       currentBlock(0) {}
    780 
    781   virtual ~PruneBlocksHandler() {}
    782 
    783   /// Records if a CFGBlock had a potential use of an uninitialized variable.
    784   llvm::BitVector hadUse;
    785 
    786   /// Records if any CFGBlock had a potential use of an uninitialized variable.
    787   bool hadAnyUse;
    788 
    789   /// The current block to scribble use information.
    790   unsigned currentBlock;
    791 
    792   void handleUseOfUninitVariable(const VarDecl *vd,
    793                                  const UninitUse &use) override {
    794     hadUse[currentBlock] = true;
    795     hadAnyUse = true;
    796   }
    797 
    798   /// Called when the uninitialized variable analysis detects the
    799   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
    800   /// are handled by handleUseOfUninitVariable.
    801   void handleSelfInit(const VarDecl *vd) override {
    802     hadUse[currentBlock] = true;
    803     hadAnyUse = true;
    804   }
    805 };
    806 }
    807 
    808 void clang::runUninitializedVariablesAnalysis(
    809     const DeclContext &dc,
    810     const CFG &cfg,
    811     AnalysisDeclContext &ac,
    812     UninitVariablesHandler &handler,
    813     UninitVariablesAnalysisStats &stats) {
    814   CFGBlockValues vals(cfg);
    815   vals.computeSetOfDeclarations(dc);
    816   if (vals.hasNoDeclarations())
    817     return;
    818 
    819   stats.NumVariablesAnalyzed = vals.getNumEntries();
    820 
    821   // Precompute which expressions are uses and which are initializations.
    822   ClassifyRefs classification(ac);
    823   cfg.VisitBlockStmts(classification);
    824 
    825   // Mark all variables uninitialized at the entry.
    826   const CFGBlock &entry = cfg.getEntry();
    827   ValueVector &vec = vals.getValueVector(&entry);
    828   const unsigned n = vals.getNumEntries();
    829   for (unsigned j = 0; j < n ; ++j) {
    830     vec[j] = Uninitialized;
    831   }
    832 
    833   // Proceed with the workist.
    834   DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
    835   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
    836   worklist.enqueueSuccessors(&cfg.getEntry());
    837   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
    838   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
    839   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
    840 
    841   while (const CFGBlock *block = worklist.dequeue()) {
    842     PBH.currentBlock = block->getBlockID();
    843 
    844     // Did the block change?
    845     bool changed = runOnBlock(block, cfg, ac, vals,
    846                               classification, wasAnalyzed, PBH);
    847     ++stats.NumBlockVisits;
    848     if (changed || !previouslyVisited[block->getBlockID()])
    849       worklist.enqueueSuccessors(block);
    850     previouslyVisited[block->getBlockID()] = true;
    851   }
    852 
    853   if (!PBH.hadAnyUse)
    854     return;
    855 
    856   // Run through the blocks one more time, and report uninitialized variables.
    857   for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
    858     const CFGBlock *block = *BI;
    859     if (PBH.hadUse[block->getBlockID()]) {
    860       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
    861       ++stats.NumBlockVisits;
    862     }
    863   }
    864 }
    865 
    866 UninitVariablesHandler::~UninitVariablesHandler() {}
    867