Home | History | Annotate | Download | only in Sema
      1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements C++ semantic analysis for scope specifiers.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/NestedNameSpecifier.h"
     20 #include "clang/Basic/PartialDiagnostic.h"
     21 #include "clang/Sema/DeclSpec.h"
     22 #include "clang/Sema/Lookup.h"
     23 #include "clang/Sema/Template.h"
     24 #include "llvm/ADT/STLExtras.h"
     25 #include "llvm/Support/raw_ostream.h"
     26 using namespace clang;
     27 
     28 /// \brief Find the current instantiation that associated with the given type.
     29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
     30                                                 DeclContext *CurContext) {
     31   if (T.isNull())
     32     return nullptr;
     33 
     34   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
     35   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
     36     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
     37     if (!Record->isDependentContext() ||
     38         Record->isCurrentInstantiation(CurContext))
     39       return Record;
     40 
     41     return nullptr;
     42   } else if (isa<InjectedClassNameType>(Ty))
     43     return cast<InjectedClassNameType>(Ty)->getDecl();
     44   else
     45     return nullptr;
     46 }
     47 
     48 /// \brief Compute the DeclContext that is associated with the given type.
     49 ///
     50 /// \param T the type for which we are attempting to find a DeclContext.
     51 ///
     52 /// \returns the declaration context represented by the type T,
     53 /// or NULL if the declaration context cannot be computed (e.g., because it is
     54 /// dependent and not the current instantiation).
     55 DeclContext *Sema::computeDeclContext(QualType T) {
     56   if (!T->isDependentType())
     57     if (const TagType *Tag = T->getAs<TagType>())
     58       return Tag->getDecl();
     59 
     60   return ::getCurrentInstantiationOf(T, CurContext);
     61 }
     62 
     63 /// \brief Compute the DeclContext that is associated with the given
     64 /// scope specifier.
     65 ///
     66 /// \param SS the C++ scope specifier as it appears in the source
     67 ///
     68 /// \param EnteringContext when true, we will be entering the context of
     69 /// this scope specifier, so we can retrieve the declaration context of a
     70 /// class template or class template partial specialization even if it is
     71 /// not the current instantiation.
     72 ///
     73 /// \returns the declaration context represented by the scope specifier @p SS,
     74 /// or NULL if the declaration context cannot be computed (e.g., because it is
     75 /// dependent and not the current instantiation).
     76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
     77                                       bool EnteringContext) {
     78   if (!SS.isSet() || SS.isInvalid())
     79     return nullptr;
     80 
     81   NestedNameSpecifier *NNS = SS.getScopeRep();
     82   if (NNS->isDependent()) {
     83     // If this nested-name-specifier refers to the current
     84     // instantiation, return its DeclContext.
     85     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
     86       return Record;
     87 
     88     if (EnteringContext) {
     89       const Type *NNSType = NNS->getAsType();
     90       if (!NNSType) {
     91         return nullptr;
     92       }
     93 
     94       // Look through type alias templates, per C++0x [temp.dep.type]p1.
     95       NNSType = Context.getCanonicalType(NNSType);
     96       if (const TemplateSpecializationType *SpecType
     97             = NNSType->getAs<TemplateSpecializationType>()) {
     98         // We are entering the context of the nested name specifier, so try to
     99         // match the nested name specifier to either a primary class template
    100         // or a class template partial specialization.
    101         if (ClassTemplateDecl *ClassTemplate
    102               = dyn_cast_or_null<ClassTemplateDecl>(
    103                             SpecType->getTemplateName().getAsTemplateDecl())) {
    104           QualType ContextType
    105             = Context.getCanonicalType(QualType(SpecType, 0));
    106 
    107           // If the type of the nested name specifier is the same as the
    108           // injected class name of the named class template, we're entering
    109           // into that class template definition.
    110           QualType Injected
    111             = ClassTemplate->getInjectedClassNameSpecialization();
    112           if (Context.hasSameType(Injected, ContextType))
    113             return ClassTemplate->getTemplatedDecl();
    114 
    115           // If the type of the nested name specifier is the same as the
    116           // type of one of the class template's class template partial
    117           // specializations, we're entering into the definition of that
    118           // class template partial specialization.
    119           if (ClassTemplatePartialSpecializationDecl *PartialSpec
    120                 = ClassTemplate->findPartialSpecialization(ContextType))
    121             return PartialSpec;
    122         }
    123       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
    124         // The nested name specifier refers to a member of a class template.
    125         return RecordT->getDecl();
    126       }
    127     }
    128 
    129     return nullptr;
    130   }
    131 
    132   switch (NNS->getKind()) {
    133   case NestedNameSpecifier::Identifier:
    134     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
    135 
    136   case NestedNameSpecifier::Namespace:
    137     return NNS->getAsNamespace();
    138 
    139   case NestedNameSpecifier::NamespaceAlias:
    140     return NNS->getAsNamespaceAlias()->getNamespace();
    141 
    142   case NestedNameSpecifier::TypeSpec:
    143   case NestedNameSpecifier::TypeSpecWithTemplate: {
    144     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
    145     assert(Tag && "Non-tag type in nested-name-specifier");
    146     return Tag->getDecl();
    147   }
    148 
    149   case NestedNameSpecifier::Global:
    150     return Context.getTranslationUnitDecl();
    151   }
    152 
    153   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
    154 }
    155 
    156 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
    157   if (!SS.isSet() || SS.isInvalid())
    158     return false;
    159 
    160   return SS.getScopeRep()->isDependent();
    161 }
    162 
    163 /// \brief If the given nested name specifier refers to the current
    164 /// instantiation, return the declaration that corresponds to that
    165 /// current instantiation (C++0x [temp.dep.type]p1).
    166 ///
    167 /// \param NNS a dependent nested name specifier.
    168 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
    169   assert(getLangOpts().CPlusPlus && "Only callable in C++");
    170   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
    171 
    172   if (!NNS->getAsType())
    173     return nullptr;
    174 
    175   QualType T = QualType(NNS->getAsType(), 0);
    176   return ::getCurrentInstantiationOf(T, CurContext);
    177 }
    178 
    179 /// \brief Require that the context specified by SS be complete.
    180 ///
    181 /// If SS refers to a type, this routine checks whether the type is
    182 /// complete enough (or can be made complete enough) for name lookup
    183 /// into the DeclContext. A type that is not yet completed can be
    184 /// considered "complete enough" if it is a class/struct/union/enum
    185 /// that is currently being defined. Or, if we have a type that names
    186 /// a class template specialization that is not a complete type, we
    187 /// will attempt to instantiate that class template.
    188 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
    189                                       DeclContext *DC) {
    190   assert(DC && "given null context");
    191 
    192   TagDecl *tag = dyn_cast<TagDecl>(DC);
    193 
    194   // If this is a dependent type, then we consider it complete.
    195   if (!tag || tag->isDependentContext())
    196     return false;
    197 
    198   // If we're currently defining this type, then lookup into the
    199   // type is okay: don't complain that it isn't complete yet.
    200   QualType type = Context.getTypeDeclType(tag);
    201   const TagType *tagType = type->getAs<TagType>();
    202   if (tagType && tagType->isBeingDefined())
    203     return false;
    204 
    205   SourceLocation loc = SS.getLastQualifierNameLoc();
    206   if (loc.isInvalid()) loc = SS.getRange().getBegin();
    207 
    208   // The type must be complete.
    209   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
    210                           SS.getRange())) {
    211     SS.SetInvalid(SS.getRange());
    212     return true;
    213   }
    214 
    215   // Fixed enum types are complete, but they aren't valid as scopes
    216   // until we see a definition, so awkwardly pull out this special
    217   // case.
    218   const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType);
    219   if (!enumType || enumType->getDecl()->isCompleteDefinition())
    220     return false;
    221 
    222   // Try to instantiate the definition, if this is a specialization of an
    223   // enumeration temploid.
    224   EnumDecl *ED = enumType->getDecl();
    225   if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
    226     MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo();
    227     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
    228       if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED),
    229                           TSK_ImplicitInstantiation)) {
    230         SS.SetInvalid(SS.getRange());
    231         return true;
    232       }
    233       return false;
    234     }
    235   }
    236 
    237   Diag(loc, diag::err_incomplete_nested_name_spec)
    238     << type << SS.getRange();
    239   SS.SetInvalid(SS.getRange());
    240   return true;
    241 }
    242 
    243 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
    244                                         CXXScopeSpec &SS) {
    245   SS.MakeGlobal(Context, CCLoc);
    246   return false;
    247 }
    248 
    249 /// \brief Determines whether the given declaration is an valid acceptable
    250 /// result for name lookup of a nested-name-specifier.
    251 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) {
    252   if (!SD)
    253     return false;
    254 
    255   // Namespace and namespace aliases are fine.
    256   if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
    257     return true;
    258 
    259   if (!isa<TypeDecl>(SD))
    260     return false;
    261 
    262   // Determine whether we have a class (or, in C++11, an enum) or
    263   // a typedef thereof. If so, build the nested-name-specifier.
    264   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    265   if (T->isDependentType())
    266     return true;
    267   else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
    268     if (TD->getUnderlyingType()->isRecordType() ||
    269         (Context.getLangOpts().CPlusPlus11 &&
    270          TD->getUnderlyingType()->isEnumeralType()))
    271       return true;
    272   } else if (isa<RecordDecl>(SD) ||
    273              (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD)))
    274     return true;
    275 
    276   return false;
    277 }
    278 
    279 /// \brief If the given nested-name-specifier begins with a bare identifier
    280 /// (e.g., Base::), perform name lookup for that identifier as a
    281 /// nested-name-specifier within the given scope, and return the result of that
    282 /// name lookup.
    283 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
    284   if (!S || !NNS)
    285     return nullptr;
    286 
    287   while (NNS->getPrefix())
    288     NNS = NNS->getPrefix();
    289 
    290   if (NNS->getKind() != NestedNameSpecifier::Identifier)
    291     return nullptr;
    292 
    293   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
    294                      LookupNestedNameSpecifierName);
    295   LookupName(Found, S);
    296   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
    297 
    298   if (!Found.isSingleResult())
    299     return nullptr;
    300 
    301   NamedDecl *Result = Found.getFoundDecl();
    302   if (isAcceptableNestedNameSpecifier(Result))
    303     return Result;
    304 
    305   return nullptr;
    306 }
    307 
    308 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
    309                                         SourceLocation IdLoc,
    310                                         IdentifierInfo &II,
    311                                         ParsedType ObjectTypePtr) {
    312   QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
    313   LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
    314 
    315   // Determine where to perform name lookup
    316   DeclContext *LookupCtx = nullptr;
    317   bool isDependent = false;
    318   if (!ObjectType.isNull()) {
    319     // This nested-name-specifier occurs in a member access expression, e.g.,
    320     // x->B::f, and we are looking into the type of the object.
    321     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    322     LookupCtx = computeDeclContext(ObjectType);
    323     isDependent = ObjectType->isDependentType();
    324   } else if (SS.isSet()) {
    325     // This nested-name-specifier occurs after another nested-name-specifier,
    326     // so long into the context associated with the prior nested-name-specifier.
    327     LookupCtx = computeDeclContext(SS, false);
    328     isDependent = isDependentScopeSpecifier(SS);
    329     Found.setContextRange(SS.getRange());
    330   }
    331 
    332   if (LookupCtx) {
    333     // Perform "qualified" name lookup into the declaration context we
    334     // computed, which is either the type of the base of a member access
    335     // expression or the declaration context associated with a prior
    336     // nested-name-specifier.
    337 
    338     // The declaration context must be complete.
    339     if (!LookupCtx->isDependentContext() &&
    340         RequireCompleteDeclContext(SS, LookupCtx))
    341       return false;
    342 
    343     LookupQualifiedName(Found, LookupCtx);
    344   } else if (isDependent) {
    345     return false;
    346   } else {
    347     LookupName(Found, S);
    348   }
    349   Found.suppressDiagnostics();
    350 
    351   if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    352     return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
    353 
    354   return false;
    355 }
    356 
    357 namespace {
    358 
    359 // Callback to only accept typo corrections that can be a valid C++ member
    360 // intializer: either a non-static field member or a base class.
    361 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback {
    362  public:
    363   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
    364       : SRef(SRef) {}
    365 
    366   bool ValidateCandidate(const TypoCorrection &candidate) override {
    367     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
    368   }
    369 
    370  private:
    371   Sema &SRef;
    372 };
    373 
    374 }
    375 
    376 /// \brief Build a new nested-name-specifier for "identifier::", as described
    377 /// by ActOnCXXNestedNameSpecifier.
    378 ///
    379 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
    380 /// that it contains an extra parameter \p ScopeLookupResult.
    381 ///
    382 /// \param S Scope in which the nested-name-specifier occurs.
    383 /// \param Identifier Identifier in the sequence "identifier" "::".
    384 /// \param IdentifierLoc Location of the \p Identifier.
    385 /// \param CCLoc Location of "::" following Identifier.
    386 /// \param ObjectType Type of postfix expression if the nested-name-specifier
    387 ///        occurs in construct like: <tt>ptr->nns::f</tt>.
    388 /// \param EnteringContext If true, enter the context specified by the
    389 ///        nested-name-specifier.
    390 /// \param SS Optional nested name specifier preceding the identifier.
    391 /// \param ScopeLookupResult Provides the result of name lookup within the
    392 ///        scope of the nested-name-specifier that was computed at template
    393 ///        definition time.
    394 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
    395 ///        error recovery and what kind of recovery is performed.
    396 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
    397 ///        are allowed.  The bool value pointed by this parameter is set to
    398 ///       'true' if the identifier is treated as if it was followed by ':',
    399 ///        not '::'.
    400 ///
    401 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
    402 /// that it contains an extra parameter \p ScopeLookupResult, which provides
    403 /// the result of name lookup within the scope of the nested-name-specifier
    404 /// that was computed at template definition time.
    405 ///
    406 /// If ErrorRecoveryLookup is true, then this call is used to improve error
    407 /// recovery.  This means that it should not emit diagnostics, it should
    408 /// just return true on failure.  It also means it should only return a valid
    409 /// scope if it *knows* that the result is correct.  It should not return in a
    410 /// dependent context, for example. Nor will it extend \p SS with the scope
    411 /// specifier.
    412 bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
    413                                        IdentifierInfo &Identifier,
    414                                        SourceLocation IdentifierLoc,
    415                                        SourceLocation CCLoc,
    416                                        QualType ObjectType,
    417                                        bool EnteringContext,
    418                                        CXXScopeSpec &SS,
    419                                        NamedDecl *ScopeLookupResult,
    420                                        bool ErrorRecoveryLookup,
    421                                        bool *IsCorrectedToColon) {
    422   LookupResult Found(*this, &Identifier, IdentifierLoc,
    423                      LookupNestedNameSpecifierName);
    424 
    425   // Determine where to perform name lookup
    426   DeclContext *LookupCtx = nullptr;
    427   bool isDependent = false;
    428   if (IsCorrectedToColon)
    429     *IsCorrectedToColon = false;
    430   if (!ObjectType.isNull()) {
    431     // This nested-name-specifier occurs in a member access expression, e.g.,
    432     // x->B::f, and we are looking into the type of the object.
    433     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
    434     LookupCtx = computeDeclContext(ObjectType);
    435     isDependent = ObjectType->isDependentType();
    436   } else if (SS.isSet()) {
    437     // This nested-name-specifier occurs after another nested-name-specifier,
    438     // so look into the context associated with the prior nested-name-specifier.
    439     LookupCtx = computeDeclContext(SS, EnteringContext);
    440     isDependent = isDependentScopeSpecifier(SS);
    441     Found.setContextRange(SS.getRange());
    442   }
    443 
    444   bool ObjectTypeSearchedInScope = false;
    445   if (LookupCtx) {
    446     // Perform "qualified" name lookup into the declaration context we
    447     // computed, which is either the type of the base of a member access
    448     // expression or the declaration context associated with a prior
    449     // nested-name-specifier.
    450 
    451     // The declaration context must be complete.
    452     if (!LookupCtx->isDependentContext() &&
    453         RequireCompleteDeclContext(SS, LookupCtx))
    454       return true;
    455 
    456     LookupQualifiedName(Found, LookupCtx);
    457 
    458     if (!ObjectType.isNull() && Found.empty()) {
    459       // C++ [basic.lookup.classref]p4:
    460       //   If the id-expression in a class member access is a qualified-id of
    461       //   the form
    462       //
    463       //        class-name-or-namespace-name::...
    464       //
    465       //   the class-name-or-namespace-name following the . or -> operator is
    466       //   looked up both in the context of the entire postfix-expression and in
    467       //   the scope of the class of the object expression. If the name is found
    468       //   only in the scope of the class of the object expression, the name
    469       //   shall refer to a class-name. If the name is found only in the
    470       //   context of the entire postfix-expression, the name shall refer to a
    471       //   class-name or namespace-name. [...]
    472       //
    473       // Qualified name lookup into a class will not find a namespace-name,
    474       // so we do not need to diagnose that case specifically. However,
    475       // this qualified name lookup may find nothing. In that case, perform
    476       // unqualified name lookup in the given scope (if available) or
    477       // reconstruct the result from when name lookup was performed at template
    478       // definition time.
    479       if (S)
    480         LookupName(Found, S);
    481       else if (ScopeLookupResult)
    482         Found.addDecl(ScopeLookupResult);
    483 
    484       ObjectTypeSearchedInScope = true;
    485     }
    486   } else if (!isDependent) {
    487     // Perform unqualified name lookup in the current scope.
    488     LookupName(Found, S);
    489   }
    490 
    491   // If we performed lookup into a dependent context and did not find anything,
    492   // that's fine: just build a dependent nested-name-specifier.
    493   if (Found.empty() && isDependent &&
    494       !(LookupCtx && LookupCtx->isRecord() &&
    495         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
    496          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
    497     // Don't speculate if we're just trying to improve error recovery.
    498     if (ErrorRecoveryLookup)
    499       return true;
    500 
    501     // We were not able to compute the declaration context for a dependent
    502     // base object type or prior nested-name-specifier, so this
    503     // nested-name-specifier refers to an unknown specialization. Just build
    504     // a dependent nested-name-specifier.
    505     SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    506     return false;
    507   }
    508 
    509   // FIXME: Deal with ambiguities cleanly.
    510 
    511   if (Found.empty() && !ErrorRecoveryLookup) {
    512     // If identifier is not found as class-name-or-namespace-name, but is found
    513     // as other entity, don't look for typos.
    514     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
    515     if (LookupCtx)
    516       LookupQualifiedName(R, LookupCtx);
    517     else if (S && !isDependent)
    518       LookupName(R, S);
    519     if (!R.empty()) {
    520       // The identifier is found in ordinary lookup. If correction to colon is
    521       // allowed, suggest replacement to ':'.
    522       if (IsCorrectedToColon) {
    523         *IsCorrectedToColon = true;
    524         Diag(CCLoc, diag::err_nested_name_spec_is_not_class)
    525             << &Identifier << getLangOpts().CPlusPlus
    526             << FixItHint::CreateReplacement(CCLoc, ":");
    527         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
    528           Diag(ND->getLocation(), diag::note_declared_at);
    529         return true;
    530       }
    531       // Replacement '::' -> ':' is not allowed, just issue respective error.
    532       Diag(R.getNameLoc(), diag::err_expected_class_or_namespace)
    533           << &Identifier << getLangOpts().CPlusPlus;
    534       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
    535         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
    536       return true;
    537     }
    538   }
    539 
    540   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
    541     // We haven't found anything, and we're not recovering from a
    542     // different kind of error, so look for typos.
    543     DeclarationName Name = Found.getLookupName();
    544     NestedNameSpecifierValidatorCCC Validator(*this);
    545     Found.clear();
    546     if (TypoCorrection Corrected =
    547             CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
    548                         &SS, Validator, CTK_ErrorRecovery, LookupCtx,
    549                         EnteringContext)) {
    550       if (LookupCtx) {
    551         bool DroppedSpecifier =
    552             Corrected.WillReplaceSpecifier() &&
    553             Name.getAsString() == Corrected.getAsString(getLangOpts());
    554         if (DroppedSpecifier)
    555           SS.clear();
    556         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
    557                                   << Name << LookupCtx << DroppedSpecifier
    558                                   << SS.getRange());
    559       } else
    560         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
    561                                   << Name);
    562 
    563       if (NamedDecl *ND = Corrected.getCorrectionDecl())
    564         Found.addDecl(ND);
    565       Found.setLookupName(Corrected.getCorrection());
    566     } else {
    567       Found.setLookupName(&Identifier);
    568     }
    569   }
    570 
    571   NamedDecl *SD = Found.getAsSingle<NamedDecl>();
    572   if (isAcceptableNestedNameSpecifier(SD)) {
    573     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
    574         !getLangOpts().CPlusPlus11) {
    575       // C++03 [basic.lookup.classref]p4:
    576       //   [...] If the name is found in both contexts, the
    577       //   class-name-or-namespace-name shall refer to the same entity.
    578       //
    579       // We already found the name in the scope of the object. Now, look
    580       // into the current scope (the scope of the postfix-expression) to
    581       // see if we can find the same name there. As above, if there is no
    582       // scope, reconstruct the result from the template instantiation itself.
    583       //
    584       // Note that C++11 does *not* perform this redundant lookup.
    585       NamedDecl *OuterDecl;
    586       if (S) {
    587         LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
    588                                 LookupNestedNameSpecifierName);
    589         LookupName(FoundOuter, S);
    590         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
    591       } else
    592         OuterDecl = ScopeLookupResult;
    593 
    594       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
    595           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
    596           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
    597            !Context.hasSameType(
    598                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
    599                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
    600         if (ErrorRecoveryLookup)
    601           return true;
    602 
    603          Diag(IdentifierLoc,
    604               diag::err_nested_name_member_ref_lookup_ambiguous)
    605            << &Identifier;
    606          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
    607            << ObjectType;
    608          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
    609 
    610          // Fall through so that we'll pick the name we found in the object
    611          // type, since that's probably what the user wanted anyway.
    612        }
    613     }
    614 
    615     // If we're just performing this lookup for error-recovery purposes,
    616     // don't extend the nested-name-specifier. Just return now.
    617     if (ErrorRecoveryLookup)
    618       return false;
    619 
    620     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
    621       SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
    622       return false;
    623     }
    624 
    625     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
    626       SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
    627       return false;
    628     }
    629 
    630     QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
    631     TypeLocBuilder TLB;
    632     if (isa<InjectedClassNameType>(T)) {
    633       InjectedClassNameTypeLoc InjectedTL
    634         = TLB.push<InjectedClassNameTypeLoc>(T);
    635       InjectedTL.setNameLoc(IdentifierLoc);
    636     } else if (isa<RecordType>(T)) {
    637       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
    638       RecordTL.setNameLoc(IdentifierLoc);
    639     } else if (isa<TypedefType>(T)) {
    640       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
    641       TypedefTL.setNameLoc(IdentifierLoc);
    642     } else if (isa<EnumType>(T)) {
    643       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
    644       EnumTL.setNameLoc(IdentifierLoc);
    645     } else if (isa<TemplateTypeParmType>(T)) {
    646       TemplateTypeParmTypeLoc TemplateTypeTL
    647         = TLB.push<TemplateTypeParmTypeLoc>(T);
    648       TemplateTypeTL.setNameLoc(IdentifierLoc);
    649     } else if (isa<UnresolvedUsingType>(T)) {
    650       UnresolvedUsingTypeLoc UnresolvedTL
    651         = TLB.push<UnresolvedUsingTypeLoc>(T);
    652       UnresolvedTL.setNameLoc(IdentifierLoc);
    653     } else if (isa<SubstTemplateTypeParmType>(T)) {
    654       SubstTemplateTypeParmTypeLoc TL
    655         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
    656       TL.setNameLoc(IdentifierLoc);
    657     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
    658       SubstTemplateTypeParmPackTypeLoc TL
    659         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
    660       TL.setNameLoc(IdentifierLoc);
    661     } else {
    662       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
    663     }
    664 
    665     if (T->isEnumeralType())
    666       Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
    667 
    668     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    669               CCLoc);
    670     return false;
    671   }
    672 
    673   // Otherwise, we have an error case.  If we don't want diagnostics, just
    674   // return an error now.
    675   if (ErrorRecoveryLookup)
    676     return true;
    677 
    678   // If we didn't find anything during our lookup, try again with
    679   // ordinary name lookup, which can help us produce better error
    680   // messages.
    681   if (Found.empty()) {
    682     Found.clear(LookupOrdinaryName);
    683     LookupName(Found, S);
    684   }
    685 
    686   // In Microsoft mode, if we are within a templated function and we can't
    687   // resolve Identifier, then extend the SS with Identifier. This will have
    688   // the effect of resolving Identifier during template instantiation.
    689   // The goal is to be able to resolve a function call whose
    690   // nested-name-specifier is located inside a dependent base class.
    691   // Example:
    692   //
    693   // class C {
    694   // public:
    695   //    static void foo2() {  }
    696   // };
    697   // template <class T> class A { public: typedef C D; };
    698   //
    699   // template <class T> class B : public A<T> {
    700   // public:
    701   //   void foo() { D::foo2(); }
    702   // };
    703   if (getLangOpts().MSVCCompat) {
    704     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
    705     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
    706       SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
    707       return false;
    708     }
    709   }
    710 
    711   if (!Found.empty()) {
    712     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
    713       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
    714           << QualType(TD->getTypeForDecl(), 0) << getLangOpts().CPlusPlus;
    715     else {
    716       Diag(IdentifierLoc, diag::err_expected_class_or_namespace)
    717           << &Identifier << getLangOpts().CPlusPlus;
    718       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
    719         Diag(ND->getLocation(), diag::note_entity_declared_at) << &Identifier;
    720     }
    721   } else if (SS.isSet())
    722     Diag(IdentifierLoc, diag::err_no_member) << &Identifier << LookupCtx
    723                                              << SS.getRange();
    724   else
    725     Diag(IdentifierLoc, diag::err_undeclared_var_use) << &Identifier;
    726 
    727   return true;
    728 }
    729 
    730 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    731                                        IdentifierInfo &Identifier,
    732                                        SourceLocation IdentifierLoc,
    733                                        SourceLocation CCLoc,
    734                                        ParsedType ObjectType,
    735                                        bool EnteringContext,
    736                                        CXXScopeSpec &SS,
    737                                        bool ErrorRecoveryLookup,
    738                                        bool *IsCorrectedToColon) {
    739   if (SS.isInvalid())
    740     return true;
    741 
    742   return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
    743                                      GetTypeFromParser(ObjectType),
    744                                      EnteringContext, SS,
    745                                      /*ScopeLookupResult=*/nullptr, false,
    746                                      IsCorrectedToColon);
    747 }
    748 
    749 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
    750                                                const DeclSpec &DS,
    751                                                SourceLocation ColonColonLoc) {
    752   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
    753     return true;
    754 
    755   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
    756 
    757   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
    758   if (!T->isDependentType() && !T->getAs<TagType>()) {
    759     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
    760       << T << getLangOpts().CPlusPlus;
    761     return true;
    762   }
    763 
    764   TypeLocBuilder TLB;
    765   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
    766   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
    767   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
    768             ColonColonLoc);
    769   return false;
    770 }
    771 
    772 /// IsInvalidUnlessNestedName - This method is used for error recovery
    773 /// purposes to determine whether the specified identifier is only valid as
    774 /// a nested name specifier, for example a namespace name.  It is
    775 /// conservatively correct to always return false from this method.
    776 ///
    777 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
    778 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
    779                                      IdentifierInfo &Identifier,
    780                                      SourceLocation IdentifierLoc,
    781                                      SourceLocation ColonLoc,
    782                                      ParsedType ObjectType,
    783                                      bool EnteringContext) {
    784   if (SS.isInvalid())
    785     return false;
    786 
    787   return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
    788                                       GetTypeFromParser(ObjectType),
    789                                       EnteringContext, SS,
    790                                       /*ScopeLookupResult=*/nullptr, true);
    791 }
    792 
    793 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
    794                                        CXXScopeSpec &SS,
    795                                        SourceLocation TemplateKWLoc,
    796                                        TemplateTy Template,
    797                                        SourceLocation TemplateNameLoc,
    798                                        SourceLocation LAngleLoc,
    799                                        ASTTemplateArgsPtr TemplateArgsIn,
    800                                        SourceLocation RAngleLoc,
    801                                        SourceLocation CCLoc,
    802                                        bool EnteringContext) {
    803   if (SS.isInvalid())
    804     return true;
    805 
    806   // Translate the parser's template argument list in our AST format.
    807   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
    808   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
    809 
    810   DependentTemplateName *DTN = Template.get().getAsDependentTemplateName();
    811   if (DTN && DTN->isIdentifier()) {
    812     // Handle a dependent template specialization for which we cannot resolve
    813     // the template name.
    814     assert(DTN->getQualifier() == SS.getScopeRep());
    815     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
    816                                                           DTN->getQualifier(),
    817                                                           DTN->getIdentifier(),
    818                                                                 TemplateArgs);
    819 
    820     // Create source-location information for this type.
    821     TypeLocBuilder Builder;
    822     DependentTemplateSpecializationTypeLoc SpecTL
    823       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
    824     SpecTL.setElaboratedKeywordLoc(SourceLocation());
    825     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
    826     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    827     SpecTL.setTemplateNameLoc(TemplateNameLoc);
    828     SpecTL.setLAngleLoc(LAngleLoc);
    829     SpecTL.setRAngleLoc(RAngleLoc);
    830     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    831       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    832 
    833     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    834               CCLoc);
    835     return false;
    836   }
    837 
    838   TemplateDecl *TD = Template.get().getAsTemplateDecl();
    839   if (Template.get().getAsOverloadedTemplate() || DTN ||
    840       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
    841     SourceRange R(TemplateNameLoc, RAngleLoc);
    842     if (SS.getRange().isValid())
    843       R.setBegin(SS.getRange().getBegin());
    844 
    845     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
    846       << (TD && isa<VarTemplateDecl>(TD)) << Template.get() << R;
    847     NoteAllFoundTemplates(Template.get());
    848     return true;
    849   }
    850 
    851   // We were able to resolve the template name to an actual template.
    852   // Build an appropriate nested-name-specifier.
    853   QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
    854                                    TemplateArgs);
    855   if (T.isNull())
    856     return true;
    857 
    858   // Alias template specializations can produce types which are not valid
    859   // nested name specifiers.
    860   if (!T->isDependentType() && !T->getAs<TagType>()) {
    861     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
    862     NoteAllFoundTemplates(Template.get());
    863     return true;
    864   }
    865 
    866   // Provide source-location information for the template specialization type.
    867   TypeLocBuilder Builder;
    868   TemplateSpecializationTypeLoc SpecTL
    869     = Builder.push<TemplateSpecializationTypeLoc>(T);
    870   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
    871   SpecTL.setTemplateNameLoc(TemplateNameLoc);
    872   SpecTL.setLAngleLoc(LAngleLoc);
    873   SpecTL.setRAngleLoc(RAngleLoc);
    874   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
    875     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
    876 
    877 
    878   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
    879             CCLoc);
    880   return false;
    881 }
    882 
    883 namespace {
    884   /// \brief A structure that stores a nested-name-specifier annotation,
    885   /// including both the nested-name-specifier
    886   struct NestedNameSpecifierAnnotation {
    887     NestedNameSpecifier *NNS;
    888   };
    889 }
    890 
    891 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
    892   if (SS.isEmpty() || SS.isInvalid())
    893     return nullptr;
    894 
    895   void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
    896                                                         SS.location_size()),
    897                                llvm::alignOf<NestedNameSpecifierAnnotation>());
    898   NestedNameSpecifierAnnotation *Annotation
    899     = new (Mem) NestedNameSpecifierAnnotation;
    900   Annotation->NNS = SS.getScopeRep();
    901   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
    902   return Annotation;
    903 }
    904 
    905 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
    906                                                 SourceRange AnnotationRange,
    907                                                 CXXScopeSpec &SS) {
    908   if (!AnnotationPtr) {
    909     SS.SetInvalid(AnnotationRange);
    910     return;
    911   }
    912 
    913   NestedNameSpecifierAnnotation *Annotation
    914     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
    915   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
    916 }
    917 
    918 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    919   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    920 
    921   NestedNameSpecifier *Qualifier = SS.getScopeRep();
    922 
    923   // There are only two places a well-formed program may qualify a
    924   // declarator: first, when defining a namespace or class member
    925   // out-of-line, and second, when naming an explicitly-qualified
    926   // friend function.  The latter case is governed by
    927   // C++03 [basic.lookup.unqual]p10:
    928   //   In a friend declaration naming a member function, a name used
    929   //   in the function declarator and not part of a template-argument
    930   //   in a template-id is first looked up in the scope of the member
    931   //   function's class. If it is not found, or if the name is part of
    932   //   a template-argument in a template-id, the look up is as
    933   //   described for unqualified names in the definition of the class
    934   //   granting friendship.
    935   // i.e. we don't push a scope unless it's a class member.
    936 
    937   switch (Qualifier->getKind()) {
    938   case NestedNameSpecifier::Global:
    939   case NestedNameSpecifier::Namespace:
    940   case NestedNameSpecifier::NamespaceAlias:
    941     // These are always namespace scopes.  We never want to enter a
    942     // namespace scope from anything but a file context.
    943     return CurContext->getRedeclContext()->isFileContext();
    944 
    945   case NestedNameSpecifier::Identifier:
    946   case NestedNameSpecifier::TypeSpec:
    947   case NestedNameSpecifier::TypeSpecWithTemplate:
    948     // These are never namespace scopes.
    949     return true;
    950   }
    951 
    952   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
    953 }
    954 
    955 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
    956 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
    957 /// After this method is called, according to [C++ 3.4.3p3], names should be
    958 /// looked up in the declarator-id's scope, until the declarator is parsed and
    959 /// ActOnCXXExitDeclaratorScope is called.
    960 /// The 'SS' should be a non-empty valid CXXScopeSpec.
    961 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
    962   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    963 
    964   if (SS.isInvalid()) return true;
    965 
    966   DeclContext *DC = computeDeclContext(SS, true);
    967   if (!DC) return true;
    968 
    969   // Before we enter a declarator's context, we need to make sure that
    970   // it is a complete declaration context.
    971   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
    972     return true;
    973 
    974   EnterDeclaratorContext(S, DC);
    975 
    976   // Rebuild the nested name specifier for the new scope.
    977   if (DC->isDependentContext())
    978     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
    979 
    980   return false;
    981 }
    982 
    983 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
    984 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
    985 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
    986 /// Used to indicate that names should revert to being looked up in the
    987 /// defining scope.
    988 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
    989   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
    990   if (SS.isInvalid())
    991     return;
    992   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
    993          "exiting declarator scope we never really entered");
    994   ExitDeclaratorContext(S);
    995 }
    996