Home | History | Annotate | Download | only in Core
      1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines BugReporter, a utility class for generating
     11 //  PathDiagnostics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ParentMap.h"
     21 #include "clang/AST/StmtCXX.h"
     22 #include "clang/AST/StmtObjC.h"
     23 #include "clang/Analysis/CFG.h"
     24 #include "clang/Analysis/ProgramPoint.h"
     25 #include "clang/Basic/SourceManager.h"
     26 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
     27 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
     28 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     31 #include "llvm/ADT/STLExtras.h"
     32 #include "llvm/ADT/SmallString.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include <memory>
     36 #include <queue>
     37 
     38 using namespace clang;
     39 using namespace ento;
     40 
     41 #define DEBUG_TYPE "BugReporter"
     42 
     43 STATISTIC(MaxBugClassSize,
     44           "The maximum number of bug reports in the same equivalence class");
     45 STATISTIC(MaxValidBugClassSize,
     46           "The maximum number of bug reports in the same equivalence class "
     47           "where at least one report is valid (not suppressed)");
     48 
     49 BugReporterVisitor::~BugReporterVisitor() {}
     50 
     51 void BugReporterContext::anchor() {}
     52 
     53 //===----------------------------------------------------------------------===//
     54 // Helper routines for walking the ExplodedGraph and fetching statements.
     55 //===----------------------------------------------------------------------===//
     56 
     57 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
     58   for (N = N->getFirstPred(); N; N = N->getFirstPred())
     59     if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
     60       return S;
     61 
     62   return nullptr;
     63 }
     64 
     65 static inline const Stmt*
     66 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
     67   if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
     68     return S;
     69 
     70   return GetPreviousStmt(N);
     71 }
     72 
     73 //===----------------------------------------------------------------------===//
     74 // Diagnostic cleanup.
     75 //===----------------------------------------------------------------------===//
     76 
     77 static PathDiagnosticEventPiece *
     78 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
     79                             PathDiagnosticEventPiece *Y) {
     80   // Prefer diagnostics that come from ConditionBRVisitor over
     81   // those that came from TrackConstraintBRVisitor.
     82   const void *tagPreferred = ConditionBRVisitor::getTag();
     83   const void *tagLesser = TrackConstraintBRVisitor::getTag();
     84 
     85   if (X->getLocation() != Y->getLocation())
     86     return nullptr;
     87 
     88   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
     89     return X;
     90 
     91   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
     92     return Y;
     93 
     94   return nullptr;
     95 }
     96 
     97 /// An optimization pass over PathPieces that removes redundant diagnostics
     98 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
     99 /// BugReporterVisitors use different methods to generate diagnostics, with
    100 /// one capable of emitting diagnostics in some cases but not in others.  This
    101 /// can lead to redundant diagnostic pieces at the same point in a path.
    102 static void removeRedundantMsgs(PathPieces &path) {
    103   unsigned N = path.size();
    104   if (N < 2)
    105     return;
    106   // NOTE: this loop intentionally is not using an iterator.  Instead, we
    107   // are streaming the path and modifying it in place.  This is done by
    108   // grabbing the front, processing it, and if we decide to keep it append
    109   // it to the end of the path.  The entire path is processed in this way.
    110   for (unsigned i = 0; i < N; ++i) {
    111     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
    112     path.pop_front();
    113 
    114     switch (piece->getKind()) {
    115       case clang::ento::PathDiagnosticPiece::Call:
    116         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
    117         break;
    118       case clang::ento::PathDiagnosticPiece::Macro:
    119         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
    120         break;
    121       case clang::ento::PathDiagnosticPiece::ControlFlow:
    122         break;
    123       case clang::ento::PathDiagnosticPiece::Event: {
    124         if (i == N-1)
    125           break;
    126 
    127         if (PathDiagnosticEventPiece *nextEvent =
    128             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
    129           PathDiagnosticEventPiece *event =
    130             cast<PathDiagnosticEventPiece>(piece);
    131           // Check to see if we should keep one of the two pieces.  If we
    132           // come up with a preference, record which piece to keep, and consume
    133           // another piece from the path.
    134           if (PathDiagnosticEventPiece *pieceToKeep =
    135               eventsDescribeSameCondition(event, nextEvent)) {
    136             piece = pieceToKeep;
    137             path.pop_front();
    138             ++i;
    139           }
    140         }
    141         break;
    142       }
    143     }
    144     path.push_back(piece);
    145   }
    146 }
    147 
    148 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
    149 /// function call it represents.
    150 typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
    151         LocationContextMap;
    152 
    153 /// Recursively scan through a path and prune out calls and macros pieces
    154 /// that aren't needed.  Return true if afterwards the path contains
    155 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
    156 static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
    157                                 LocationContextMap &LCM) {
    158   bool containsSomethingInteresting = false;
    159   const unsigned N = pieces.size();
    160 
    161   for (unsigned i = 0 ; i < N ; ++i) {
    162     // Remove the front piece from the path.  If it is still something we
    163     // want to keep once we are done, we will push it back on the end.
    164     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
    165     pieces.pop_front();
    166 
    167     switch (piece->getKind()) {
    168       case PathDiagnosticPiece::Call: {
    169         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
    170         // Check if the location context is interesting.
    171         assert(LCM.count(&call->path));
    172         if (R->isInteresting(LCM[&call->path])) {
    173           containsSomethingInteresting = true;
    174           break;
    175         }
    176 
    177         if (!removeUnneededCalls(call->path, R, LCM))
    178           continue;
    179 
    180         containsSomethingInteresting = true;
    181         break;
    182       }
    183       case PathDiagnosticPiece::Macro: {
    184         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
    185         if (!removeUnneededCalls(macro->subPieces, R, LCM))
    186           continue;
    187         containsSomethingInteresting = true;
    188         break;
    189       }
    190       case PathDiagnosticPiece::Event: {
    191         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
    192 
    193         // We never throw away an event, but we do throw it away wholesale
    194         // as part of a path if we throw the entire path away.
    195         containsSomethingInteresting |= !event->isPrunable();
    196         break;
    197       }
    198       case PathDiagnosticPiece::ControlFlow:
    199         break;
    200     }
    201 
    202     pieces.push_back(piece);
    203   }
    204 
    205   return containsSomethingInteresting;
    206 }
    207 
    208 /// Returns true if the given decl has been implicitly given a body, either by
    209 /// the analyzer or by the compiler proper.
    210 static bool hasImplicitBody(const Decl *D) {
    211   assert(D);
    212   return D->isImplicit() || !D->hasBody();
    213 }
    214 
    215 /// Recursively scan through a path and make sure that all call pieces have
    216 /// valid locations.
    217 static void
    218 adjustCallLocations(PathPieces &Pieces,
    219                     PathDiagnosticLocation *LastCallLocation = nullptr) {
    220   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
    221     PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
    222 
    223     if (!Call) {
    224       assert((*I)->getLocation().asLocation().isValid());
    225       continue;
    226     }
    227 
    228     if (LastCallLocation) {
    229       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
    230       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
    231         Call->callEnter = *LastCallLocation;
    232       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
    233         Call->callReturn = *LastCallLocation;
    234     }
    235 
    236     // Recursively clean out the subclass.  Keep this call around if
    237     // it contains any informative diagnostics.
    238     PathDiagnosticLocation *ThisCallLocation;
    239     if (Call->callEnterWithin.asLocation().isValid() &&
    240         !hasImplicitBody(Call->getCallee()))
    241       ThisCallLocation = &Call->callEnterWithin;
    242     else
    243       ThisCallLocation = &Call->callEnter;
    244 
    245     assert(ThisCallLocation && "Outermost call has an invalid location");
    246     adjustCallLocations(Call->path, ThisCallLocation);
    247   }
    248 }
    249 
    250 /// Remove edges in and out of C++ default initializer expressions. These are
    251 /// for fields that have in-class initializers, as opposed to being initialized
    252 /// explicitly in a constructor or braced list.
    253 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
    254   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
    255     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
    256       removeEdgesToDefaultInitializers(C->path);
    257 
    258     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
    259       removeEdgesToDefaultInitializers(M->subPieces);
    260 
    261     if (PathDiagnosticControlFlowPiece *CF =
    262           dyn_cast<PathDiagnosticControlFlowPiece>(*I)) {
    263       const Stmt *Start = CF->getStartLocation().asStmt();
    264       const Stmt *End = CF->getEndLocation().asStmt();
    265       if (Start && isa<CXXDefaultInitExpr>(Start)) {
    266         I = Pieces.erase(I);
    267         continue;
    268       } else if (End && isa<CXXDefaultInitExpr>(End)) {
    269         PathPieces::iterator Next = std::next(I);
    270         if (Next != E) {
    271           if (PathDiagnosticControlFlowPiece *NextCF =
    272                 dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) {
    273             NextCF->setStartLocation(CF->getStartLocation());
    274           }
    275         }
    276         I = Pieces.erase(I);
    277         continue;
    278       }
    279     }
    280 
    281     I++;
    282   }
    283 }
    284 
    285 /// Remove all pieces with invalid locations as these cannot be serialized.
    286 /// We might have pieces with invalid locations as a result of inlining Body
    287 /// Farm generated functions.
    288 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
    289   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
    290     if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
    291       removePiecesWithInvalidLocations(C->path);
    292 
    293     if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
    294       removePiecesWithInvalidLocations(M->subPieces);
    295 
    296     if (!(*I)->getLocation().isValid() ||
    297         !(*I)->getLocation().asLocation().isValid()) {
    298       I = Pieces.erase(I);
    299       continue;
    300     }
    301     I++;
    302   }
    303 }
    304 
    305 //===----------------------------------------------------------------------===//
    306 // PathDiagnosticBuilder and its associated routines and helper objects.
    307 //===----------------------------------------------------------------------===//
    308 
    309 namespace {
    310 class NodeMapClosure : public BugReport::NodeResolver {
    311   InterExplodedGraphMap &M;
    312 public:
    313   NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
    314 
    315   const ExplodedNode *getOriginalNode(const ExplodedNode *N) override {
    316     return M.lookup(N);
    317   }
    318 };
    319 
    320 class PathDiagnosticBuilder : public BugReporterContext {
    321   BugReport *R;
    322   PathDiagnosticConsumer *PDC;
    323   NodeMapClosure NMC;
    324 public:
    325   const LocationContext *LC;
    326 
    327   PathDiagnosticBuilder(GRBugReporter &br,
    328                         BugReport *r, InterExplodedGraphMap &Backmap,
    329                         PathDiagnosticConsumer *pdc)
    330     : BugReporterContext(br),
    331       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
    332   {}
    333 
    334   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
    335 
    336   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
    337                                             const ExplodedNode *N);
    338 
    339   BugReport *getBugReport() { return R; }
    340 
    341   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
    342 
    343   ParentMap& getParentMap() { return LC->getParentMap(); }
    344 
    345   const Stmt *getParent(const Stmt *S) {
    346     return getParentMap().getParent(S);
    347   }
    348 
    349   NodeMapClosure& getNodeResolver() override { return NMC; }
    350 
    351   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
    352 
    353   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
    354     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
    355   }
    356 
    357   bool supportsLogicalOpControlFlow() const {
    358     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
    359   }
    360 };
    361 } // end anonymous namespace
    362 
    363 PathDiagnosticLocation
    364 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
    365   if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
    366     return PathDiagnosticLocation(S, getSourceManager(), LC);
    367 
    368   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
    369                                                getSourceManager());
    370 }
    371 
    372 PathDiagnosticLocation
    373 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
    374                                           const ExplodedNode *N) {
    375 
    376   // Slow, but probably doesn't matter.
    377   if (os.str().empty())
    378     os << ' ';
    379 
    380   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
    381 
    382   if (Loc.asStmt())
    383     os << "Execution continues on line "
    384        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
    385        << '.';
    386   else {
    387     os << "Execution jumps to the end of the ";
    388     const Decl *D = N->getLocationContext()->getDecl();
    389     if (isa<ObjCMethodDecl>(D))
    390       os << "method";
    391     else if (isa<FunctionDecl>(D))
    392       os << "function";
    393     else {
    394       assert(isa<BlockDecl>(D));
    395       os << "anonymous block";
    396     }
    397     os << '.';
    398   }
    399 
    400   return Loc;
    401 }
    402 
    403 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
    404   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
    405     return PM.getParentIgnoreParens(S);
    406 
    407   const Stmt *Parent = PM.getParentIgnoreParens(S);
    408   if (!Parent)
    409     return nullptr;
    410 
    411   switch (Parent->getStmtClass()) {
    412   case Stmt::ForStmtClass:
    413   case Stmt::DoStmtClass:
    414   case Stmt::WhileStmtClass:
    415   case Stmt::ObjCForCollectionStmtClass:
    416   case Stmt::CXXForRangeStmtClass:
    417     return Parent;
    418   default:
    419     break;
    420   }
    421 
    422   return nullptr;
    423 }
    424 
    425 static PathDiagnosticLocation
    426 getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
    427                          const LocationContext *LC, bool allowNestedContexts) {
    428   if (!S)
    429     return PathDiagnosticLocation();
    430 
    431   while (const Stmt *Parent = getEnclosingParent(S, P)) {
    432     switch (Parent->getStmtClass()) {
    433       case Stmt::BinaryOperatorClass: {
    434         const BinaryOperator *B = cast<BinaryOperator>(Parent);
    435         if (B->isLogicalOp())
    436           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
    437         break;
    438       }
    439       case Stmt::CompoundStmtClass:
    440       case Stmt::StmtExprClass:
    441         return PathDiagnosticLocation(S, SMgr, LC);
    442       case Stmt::ChooseExprClass:
    443         // Similar to '?' if we are referring to condition, just have the edge
    444         // point to the entire choose expression.
    445         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
    446           return PathDiagnosticLocation(Parent, SMgr, LC);
    447         else
    448           return PathDiagnosticLocation(S, SMgr, LC);
    449       case Stmt::BinaryConditionalOperatorClass:
    450       case Stmt::ConditionalOperatorClass:
    451         // For '?', if we are referring to condition, just have the edge point
    452         // to the entire '?' expression.
    453         if (allowNestedContexts ||
    454             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
    455           return PathDiagnosticLocation(Parent, SMgr, LC);
    456         else
    457           return PathDiagnosticLocation(S, SMgr, LC);
    458       case Stmt::CXXForRangeStmtClass:
    459         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
    460           return PathDiagnosticLocation(S, SMgr, LC);
    461         break;
    462       case Stmt::DoStmtClass:
    463           return PathDiagnosticLocation(S, SMgr, LC);
    464       case Stmt::ForStmtClass:
    465         if (cast<ForStmt>(Parent)->getBody() == S)
    466           return PathDiagnosticLocation(S, SMgr, LC);
    467         break;
    468       case Stmt::IfStmtClass:
    469         if (cast<IfStmt>(Parent)->getCond() != S)
    470           return PathDiagnosticLocation(S, SMgr, LC);
    471         break;
    472       case Stmt::ObjCForCollectionStmtClass:
    473         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
    474           return PathDiagnosticLocation(S, SMgr, LC);
    475         break;
    476       case Stmt::WhileStmtClass:
    477         if (cast<WhileStmt>(Parent)->getCond() != S)
    478           return PathDiagnosticLocation(S, SMgr, LC);
    479         break;
    480       default:
    481         break;
    482     }
    483 
    484     S = Parent;
    485   }
    486 
    487   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
    488 
    489   return PathDiagnosticLocation(S, SMgr, LC);
    490 }
    491 
    492 PathDiagnosticLocation
    493 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
    494   assert(S && "Null Stmt passed to getEnclosingStmtLocation");
    495   return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
    496                                     /*allowNestedContexts=*/false);
    497 }
    498 
    499 //===----------------------------------------------------------------------===//
    500 // "Visitors only" path diagnostic generation algorithm.
    501 //===----------------------------------------------------------------------===//
    502 static bool GenerateVisitorsOnlyPathDiagnostic(PathDiagnostic &PD,
    503                                                PathDiagnosticBuilder &PDB,
    504                                                const ExplodedNode *N,
    505                                       ArrayRef<BugReporterVisitor *> visitors) {
    506   // All path generation skips the very first node (the error node).
    507   // This is because there is special handling for the end-of-path note.
    508   N = N->getFirstPred();
    509   if (!N)
    510     return true;
    511 
    512   BugReport *R = PDB.getBugReport();
    513   while (const ExplodedNode *Pred = N->getFirstPred()) {
    514     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
    515                                                   E = visitors.end();
    516          I != E; ++I) {
    517       // Visit all the node pairs, but throw the path pieces away.
    518       PathDiagnosticPiece *Piece = (*I)->VisitNode(N, Pred, PDB, *R);
    519       delete Piece;
    520     }
    521 
    522     N = Pred;
    523   }
    524 
    525   return R->isValid();
    526 }
    527 
    528 //===----------------------------------------------------------------------===//
    529 // "Minimal" path diagnostic generation algorithm.
    530 //===----------------------------------------------------------------------===//
    531 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
    532 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
    533 
    534 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
    535                                          StackDiagVector &CallStack) {
    536   // If the piece contains a special message, add it to all the call
    537   // pieces on the active stack.
    538   if (PathDiagnosticEventPiece *ep =
    539         dyn_cast<PathDiagnosticEventPiece>(P)) {
    540 
    541     if (ep->hasCallStackHint())
    542       for (StackDiagVector::iterator I = CallStack.begin(),
    543                                      E = CallStack.end(); I != E; ++I) {
    544         PathDiagnosticCallPiece *CP = I->first;
    545         const ExplodedNode *N = I->second;
    546         std::string stackMsg = ep->getCallStackMessage(N);
    547 
    548         // The last message on the path to final bug is the most important
    549         // one. Since we traverse the path backwards, do not add the message
    550         // if one has been previously added.
    551         if  (!CP->hasCallStackMessage())
    552           CP->setCallStackMessage(stackMsg);
    553       }
    554   }
    555 }
    556 
    557 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
    558 
    559 static bool GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
    560                                           PathDiagnosticBuilder &PDB,
    561                                           const ExplodedNode *N,
    562                                           LocationContextMap &LCM,
    563                                       ArrayRef<BugReporterVisitor *> visitors) {
    564 
    565   SourceManager& SMgr = PDB.getSourceManager();
    566   const LocationContext *LC = PDB.LC;
    567   const ExplodedNode *NextNode = N->pred_empty()
    568                                         ? nullptr : *(N->pred_begin());
    569 
    570   StackDiagVector CallStack;
    571 
    572   while (NextNode) {
    573     N = NextNode;
    574     PDB.LC = N->getLocationContext();
    575     NextNode = N->getFirstPred();
    576 
    577     ProgramPoint P = N->getLocation();
    578 
    579     do {
    580       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
    581         PathDiagnosticCallPiece *C =
    582             PathDiagnosticCallPiece::construct(N, *CE, SMgr);
    583         // Record the mapping from call piece to LocationContext.
    584         LCM[&C->path] = CE->getCalleeContext();
    585         PD.getActivePath().push_front(C);
    586         PD.pushActivePath(&C->path);
    587         CallStack.push_back(StackDiagPair(C, N));
    588         break;
    589       }
    590 
    591       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
    592         // Flush all locations, and pop the active path.
    593         bool VisitedEntireCall = PD.isWithinCall();
    594         PD.popActivePath();
    595 
    596         // Either we just added a bunch of stuff to the top-level path, or
    597         // we have a previous CallExitEnd.  If the former, it means that the
    598         // path terminated within a function call.  We must then take the
    599         // current contents of the active path and place it within
    600         // a new PathDiagnosticCallPiece.
    601         PathDiagnosticCallPiece *C;
    602         if (VisitedEntireCall) {
    603           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
    604         } else {
    605           const Decl *Caller = CE->getLocationContext()->getDecl();
    606           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
    607           // Record the mapping from call piece to LocationContext.
    608           LCM[&C->path] = CE->getCalleeContext();
    609         }
    610 
    611         C->setCallee(*CE, SMgr);
    612         if (!CallStack.empty()) {
    613           assert(CallStack.back().first == C);
    614           CallStack.pop_back();
    615         }
    616         break;
    617       }
    618 
    619       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
    620         const CFGBlock *Src = BE->getSrc();
    621         const CFGBlock *Dst = BE->getDst();
    622         const Stmt *T = Src->getTerminator();
    623 
    624         if (!T)
    625           break;
    626 
    627         PathDiagnosticLocation Start =
    628             PathDiagnosticLocation::createBegin(T, SMgr,
    629                 N->getLocationContext());
    630 
    631         switch (T->getStmtClass()) {
    632         default:
    633           break;
    634 
    635         case Stmt::GotoStmtClass:
    636         case Stmt::IndirectGotoStmtClass: {
    637           const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
    638 
    639           if (!S)
    640             break;
    641 
    642           std::string sbuf;
    643           llvm::raw_string_ostream os(sbuf);
    644           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
    645 
    646           os << "Control jumps to line "
    647               << End.asLocation().getExpansionLineNumber();
    648           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    649               Start, End, os.str()));
    650           break;
    651         }
    652 
    653         case Stmt::SwitchStmtClass: {
    654           // Figure out what case arm we took.
    655           std::string sbuf;
    656           llvm::raw_string_ostream os(sbuf);
    657 
    658           if (const Stmt *S = Dst->getLabel()) {
    659             PathDiagnosticLocation End(S, SMgr, LC);
    660 
    661             switch (S->getStmtClass()) {
    662             default:
    663               os << "No cases match in the switch statement. "
    664               "Control jumps to line "
    665               << End.asLocation().getExpansionLineNumber();
    666               break;
    667             case Stmt::DefaultStmtClass:
    668               os << "Control jumps to the 'default' case at line "
    669               << End.asLocation().getExpansionLineNumber();
    670               break;
    671 
    672             case Stmt::CaseStmtClass: {
    673               os << "Control jumps to 'case ";
    674               const CaseStmt *Case = cast<CaseStmt>(S);
    675               const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
    676 
    677               // Determine if it is an enum.
    678               bool GetRawInt = true;
    679 
    680               if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
    681                 // FIXME: Maybe this should be an assertion.  Are there cases
    682                 // were it is not an EnumConstantDecl?
    683                 const EnumConstantDecl *D =
    684                     dyn_cast<EnumConstantDecl>(DR->getDecl());
    685 
    686                 if (D) {
    687                   GetRawInt = false;
    688                   os << *D;
    689                 }
    690               }
    691 
    692               if (GetRawInt)
    693                 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
    694 
    695               os << ":'  at line "
    696                   << End.asLocation().getExpansionLineNumber();
    697               break;
    698             }
    699             }
    700             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    701                 Start, End, os.str()));
    702           }
    703           else {
    704             os << "'Default' branch taken. ";
    705             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
    706             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    707                 Start, End, os.str()));
    708           }
    709 
    710           break;
    711         }
    712 
    713         case Stmt::BreakStmtClass:
    714         case Stmt::ContinueStmtClass: {
    715           std::string sbuf;
    716           llvm::raw_string_ostream os(sbuf);
    717           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    718           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    719               Start, End, os.str()));
    720           break;
    721         }
    722 
    723         // Determine control-flow for ternary '?'.
    724         case Stmt::BinaryConditionalOperatorClass:
    725         case Stmt::ConditionalOperatorClass: {
    726           std::string sbuf;
    727           llvm::raw_string_ostream os(sbuf);
    728           os << "'?' condition is ";
    729 
    730           if (*(Src->succ_begin()+1) == Dst)
    731             os << "false";
    732           else
    733             os << "true";
    734 
    735           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    736 
    737           if (const Stmt *S = End.asStmt())
    738             End = PDB.getEnclosingStmtLocation(S);
    739 
    740           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    741               Start, End, os.str()));
    742           break;
    743         }
    744 
    745         // Determine control-flow for short-circuited '&&' and '||'.
    746         case Stmt::BinaryOperatorClass: {
    747           if (!PDB.supportsLogicalOpControlFlow())
    748             break;
    749 
    750           const BinaryOperator *B = cast<BinaryOperator>(T);
    751           std::string sbuf;
    752           llvm::raw_string_ostream os(sbuf);
    753           os << "Left side of '";
    754 
    755           if (B->getOpcode() == BO_LAnd) {
    756             os << "&&" << "' is ";
    757 
    758             if (*(Src->succ_begin()+1) == Dst) {
    759               os << "false";
    760               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
    761               PathDiagnosticLocation Start =
    762                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
    763               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    764                   Start, End, os.str()));
    765             }
    766             else {
    767               os << "true";
    768               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
    769               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    770               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    771                   Start, End, os.str()));
    772             }
    773           }
    774           else {
    775             assert(B->getOpcode() == BO_LOr);
    776             os << "||" << "' is ";
    777 
    778             if (*(Src->succ_begin()+1) == Dst) {
    779               os << "false";
    780               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
    781               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    782               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    783                   Start, End, os.str()));
    784             }
    785             else {
    786               os << "true";
    787               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
    788               PathDiagnosticLocation Start =
    789                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
    790               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    791                   Start, End, os.str()));
    792             }
    793           }
    794 
    795           break;
    796         }
    797 
    798         case Stmt::DoStmtClass:  {
    799           if (*(Src->succ_begin()) == Dst) {
    800             std::string sbuf;
    801             llvm::raw_string_ostream os(sbuf);
    802 
    803             os << "Loop condition is true. ";
    804             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    805 
    806             if (const Stmt *S = End.asStmt())
    807               End = PDB.getEnclosingStmtLocation(S);
    808 
    809             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    810                 Start, End, os.str()));
    811           }
    812           else {
    813             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    814 
    815             if (const Stmt *S = End.asStmt())
    816               End = PDB.getEnclosingStmtLocation(S);
    817 
    818             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    819                 Start, End, "Loop condition is false.  Exiting loop"));
    820           }
    821 
    822           break;
    823         }
    824 
    825         case Stmt::WhileStmtClass:
    826         case Stmt::ForStmtClass: {
    827           if (*(Src->succ_begin()+1) == Dst) {
    828             std::string sbuf;
    829             llvm::raw_string_ostream os(sbuf);
    830 
    831             os << "Loop condition is false. ";
    832             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    833             if (const Stmt *S = End.asStmt())
    834               End = PDB.getEnclosingStmtLocation(S);
    835 
    836             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    837                 Start, End, os.str()));
    838           }
    839           else {
    840             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    841             if (const Stmt *S = End.asStmt())
    842               End = PDB.getEnclosingStmtLocation(S);
    843 
    844             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    845                 Start, End, "Loop condition is true.  Entering loop body"));
    846           }
    847 
    848           break;
    849         }
    850 
    851         case Stmt::IfStmtClass: {
    852           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    853 
    854           if (const Stmt *S = End.asStmt())
    855             End = PDB.getEnclosingStmtLocation(S);
    856 
    857           if (*(Src->succ_begin()+1) == Dst)
    858             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    859                 Start, End, "Taking false branch"));
    860           else
    861             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    862                 Start, End, "Taking true branch"));
    863 
    864           break;
    865         }
    866         }
    867       }
    868     } while(0);
    869 
    870     if (NextNode) {
    871       // Add diagnostic pieces from custom visitors.
    872       BugReport *R = PDB.getBugReport();
    873       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
    874                                                     E = visitors.end();
    875            I != E; ++I) {
    876         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
    877           PD.getActivePath().push_front(p);
    878           updateStackPiecesWithMessage(p, CallStack);
    879         }
    880       }
    881     }
    882   }
    883 
    884   if (!PDB.getBugReport()->isValid())
    885     return false;
    886 
    887   // After constructing the full PathDiagnostic, do a pass over it to compact
    888   // PathDiagnosticPieces that occur within a macro.
    889   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
    890   return true;
    891 }
    892 
    893 //===----------------------------------------------------------------------===//
    894 // "Extensive" PathDiagnostic generation.
    895 //===----------------------------------------------------------------------===//
    896 
    897 static bool IsControlFlowExpr(const Stmt *S) {
    898   const Expr *E = dyn_cast<Expr>(S);
    899 
    900   if (!E)
    901     return false;
    902 
    903   E = E->IgnoreParenCasts();
    904 
    905   if (isa<AbstractConditionalOperator>(E))
    906     return true;
    907 
    908   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
    909     if (B->isLogicalOp())
    910       return true;
    911 
    912   return false;
    913 }
    914 
    915 namespace {
    916 class ContextLocation : public PathDiagnosticLocation {
    917   bool IsDead;
    918 public:
    919   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
    920     : PathDiagnosticLocation(L), IsDead(isdead) {}
    921 
    922   void markDead() { IsDead = true; }
    923   bool isDead() const { return IsDead; }
    924 };
    925 
    926 static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
    927                                               const LocationContext *LC,
    928                                               bool firstCharOnly = false) {
    929   if (const Stmt *S = L.asStmt()) {
    930     const Stmt *Original = S;
    931     while (1) {
    932       // Adjust the location for some expressions that are best referenced
    933       // by one of their subexpressions.
    934       switch (S->getStmtClass()) {
    935         default:
    936           break;
    937         case Stmt::ParenExprClass:
    938         case Stmt::GenericSelectionExprClass:
    939           S = cast<Expr>(S)->IgnoreParens();
    940           firstCharOnly = true;
    941           continue;
    942         case Stmt::BinaryConditionalOperatorClass:
    943         case Stmt::ConditionalOperatorClass:
    944           S = cast<AbstractConditionalOperator>(S)->getCond();
    945           firstCharOnly = true;
    946           continue;
    947         case Stmt::ChooseExprClass:
    948           S = cast<ChooseExpr>(S)->getCond();
    949           firstCharOnly = true;
    950           continue;
    951         case Stmt::BinaryOperatorClass:
    952           S = cast<BinaryOperator>(S)->getLHS();
    953           firstCharOnly = true;
    954           continue;
    955       }
    956 
    957       break;
    958     }
    959 
    960     if (S != Original)
    961       L = PathDiagnosticLocation(S, L.getManager(), LC);
    962   }
    963 
    964   if (firstCharOnly)
    965     L  = PathDiagnosticLocation::createSingleLocation(L);
    966 
    967   return L;
    968 }
    969 
    970 class EdgeBuilder {
    971   std::vector<ContextLocation> CLocs;
    972   typedef std::vector<ContextLocation>::iterator iterator;
    973   PathDiagnostic &PD;
    974   PathDiagnosticBuilder &PDB;
    975   PathDiagnosticLocation PrevLoc;
    976 
    977   bool IsConsumedExpr(const PathDiagnosticLocation &L);
    978 
    979   bool containsLocation(const PathDiagnosticLocation &Container,
    980                         const PathDiagnosticLocation &Containee);
    981 
    982   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
    983 
    984 
    985 
    986   void popLocation() {
    987     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
    988       // For contexts, we only one the first character as the range.
    989       rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
    990     }
    991     CLocs.pop_back();
    992   }
    993 
    994 public:
    995   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
    996     : PD(pd), PDB(pdb) {
    997 
    998       // If the PathDiagnostic already has pieces, add the enclosing statement
    999       // of the first piece as a context as well.
   1000       if (!PD.path.empty()) {
   1001         PrevLoc = (*PD.path.begin())->getLocation();
   1002 
   1003         if (const Stmt *S = PrevLoc.asStmt())
   1004           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
   1005       }
   1006   }
   1007 
   1008   ~EdgeBuilder() {
   1009     while (!CLocs.empty()) popLocation();
   1010 
   1011     // Finally, add an initial edge from the start location of the first
   1012     // statement (if it doesn't already exist).
   1013     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
   1014                                                        PDB.LC,
   1015                                                        PDB.getSourceManager());
   1016     if (L.isValid())
   1017       rawAddEdge(L);
   1018   }
   1019 
   1020   void flushLocations() {
   1021     while (!CLocs.empty())
   1022       popLocation();
   1023     PrevLoc = PathDiagnosticLocation();
   1024   }
   1025 
   1026   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
   1027                bool IsPostJump = false);
   1028 
   1029   void rawAddEdge(PathDiagnosticLocation NewLoc);
   1030 
   1031   void addContext(const Stmt *S);
   1032   void addContext(const PathDiagnosticLocation &L);
   1033   void addExtendedContext(const Stmt *S);
   1034 };
   1035 } // end anonymous namespace
   1036 
   1037 
   1038 PathDiagnosticLocation
   1039 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
   1040   if (const Stmt *S = L.asStmt()) {
   1041     if (IsControlFlowExpr(S))
   1042       return L;
   1043 
   1044     return PDB.getEnclosingStmtLocation(S);
   1045   }
   1046 
   1047   return L;
   1048 }
   1049 
   1050 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
   1051                                    const PathDiagnosticLocation &Containee) {
   1052 
   1053   if (Container == Containee)
   1054     return true;
   1055 
   1056   if (Container.asDecl())
   1057     return true;
   1058 
   1059   if (const Stmt *S = Containee.asStmt())
   1060     if (const Stmt *ContainerS = Container.asStmt()) {
   1061       while (S) {
   1062         if (S == ContainerS)
   1063           return true;
   1064         S = PDB.getParent(S);
   1065       }
   1066       return false;
   1067     }
   1068 
   1069   // Less accurate: compare using source ranges.
   1070   SourceRange ContainerR = Container.asRange();
   1071   SourceRange ContaineeR = Containee.asRange();
   1072 
   1073   SourceManager &SM = PDB.getSourceManager();
   1074   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
   1075   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
   1076   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
   1077   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
   1078 
   1079   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
   1080   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
   1081   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
   1082   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
   1083 
   1084   assert(ContainerBegLine <= ContainerEndLine);
   1085   assert(ContaineeBegLine <= ContaineeEndLine);
   1086 
   1087   return (ContainerBegLine <= ContaineeBegLine &&
   1088           ContainerEndLine >= ContaineeEndLine &&
   1089           (ContainerBegLine != ContaineeBegLine ||
   1090            SM.getExpansionColumnNumber(ContainerRBeg) <=
   1091            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
   1092           (ContainerEndLine != ContaineeEndLine ||
   1093            SM.getExpansionColumnNumber(ContainerREnd) >=
   1094            SM.getExpansionColumnNumber(ContaineeREnd)));
   1095 }
   1096 
   1097 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
   1098   if (!PrevLoc.isValid()) {
   1099     PrevLoc = NewLoc;
   1100     return;
   1101   }
   1102 
   1103   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
   1104   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
   1105 
   1106   if (PrevLocClean.asLocation().isInvalid()) {
   1107     PrevLoc = NewLoc;
   1108     return;
   1109   }
   1110 
   1111   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
   1112     return;
   1113 
   1114   // FIXME: Ignore intra-macro edges for now.
   1115   if (NewLocClean.asLocation().getExpansionLoc() ==
   1116       PrevLocClean.asLocation().getExpansionLoc())
   1117     return;
   1118 
   1119   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
   1120   PrevLoc = NewLoc;
   1121 }
   1122 
   1123 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
   1124                           bool IsPostJump) {
   1125 
   1126   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
   1127     return;
   1128 
   1129   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
   1130 
   1131   while (!CLocs.empty()) {
   1132     ContextLocation &TopContextLoc = CLocs.back();
   1133 
   1134     // Is the top location context the same as the one for the new location?
   1135     if (TopContextLoc == CLoc) {
   1136       if (alwaysAdd) {
   1137         if (IsConsumedExpr(TopContextLoc))
   1138           TopContextLoc.markDead();
   1139 
   1140         rawAddEdge(NewLoc);
   1141       }
   1142 
   1143       if (IsPostJump)
   1144         TopContextLoc.markDead();
   1145       return;
   1146     }
   1147 
   1148     if (containsLocation(TopContextLoc, CLoc)) {
   1149       if (alwaysAdd) {
   1150         rawAddEdge(NewLoc);
   1151 
   1152         if (IsConsumedExpr(CLoc)) {
   1153           CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
   1154           return;
   1155         }
   1156       }
   1157 
   1158       CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
   1159       return;
   1160     }
   1161 
   1162     // Context does not contain the location.  Flush it.
   1163     popLocation();
   1164   }
   1165 
   1166   // If we reach here, there is no enclosing context.  Just add the edge.
   1167   rawAddEdge(NewLoc);
   1168 }
   1169 
   1170 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
   1171   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
   1172     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
   1173 
   1174   return false;
   1175 }
   1176 
   1177 void EdgeBuilder::addExtendedContext(const Stmt *S) {
   1178   if (!S)
   1179     return;
   1180 
   1181   const Stmt *Parent = PDB.getParent(S);
   1182   while (Parent) {
   1183     if (isa<CompoundStmt>(Parent))
   1184       Parent = PDB.getParent(Parent);
   1185     else
   1186       break;
   1187   }
   1188 
   1189   if (Parent) {
   1190     switch (Parent->getStmtClass()) {
   1191       case Stmt::DoStmtClass:
   1192       case Stmt::ObjCAtSynchronizedStmtClass:
   1193         addContext(Parent);
   1194       default:
   1195         break;
   1196     }
   1197   }
   1198 
   1199   addContext(S);
   1200 }
   1201 
   1202 void EdgeBuilder::addContext(const Stmt *S) {
   1203   if (!S)
   1204     return;
   1205 
   1206   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
   1207   addContext(L);
   1208 }
   1209 
   1210 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
   1211   while (!CLocs.empty()) {
   1212     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
   1213 
   1214     // Is the top location context the same as the one for the new location?
   1215     if (TopContextLoc == L)
   1216       return;
   1217 
   1218     if (containsLocation(TopContextLoc, L)) {
   1219       CLocs.push_back(L);
   1220       return;
   1221     }
   1222 
   1223     // Context does not contain the location.  Flush it.
   1224     popLocation();
   1225   }
   1226 
   1227   CLocs.push_back(L);
   1228 }
   1229 
   1230 // Cone-of-influence: support the reverse propagation of "interesting" symbols
   1231 // and values by tracing interesting calculations backwards through evaluated
   1232 // expressions along a path.  This is probably overly complicated, but the idea
   1233 // is that if an expression computed an "interesting" value, the child
   1234 // expressions are are also likely to be "interesting" as well (which then
   1235 // propagates to the values they in turn compute).  This reverse propagation
   1236 // is needed to track interesting correlations across function call boundaries,
   1237 // where formal arguments bind to actual arguments, etc.  This is also needed
   1238 // because the constraint solver sometimes simplifies certain symbolic values
   1239 // into constants when appropriate, and this complicates reasoning about
   1240 // interesting values.
   1241 typedef llvm::DenseSet<const Expr *> InterestingExprs;
   1242 
   1243 static void reversePropagateIntererstingSymbols(BugReport &R,
   1244                                                 InterestingExprs &IE,
   1245                                                 const ProgramState *State,
   1246                                                 const Expr *Ex,
   1247                                                 const LocationContext *LCtx) {
   1248   SVal V = State->getSVal(Ex, LCtx);
   1249   if (!(R.isInteresting(V) || IE.count(Ex)))
   1250     return;
   1251 
   1252   switch (Ex->getStmtClass()) {
   1253     default:
   1254       if (!isa<CastExpr>(Ex))
   1255         break;
   1256       // Fall through.
   1257     case Stmt::BinaryOperatorClass:
   1258     case Stmt::UnaryOperatorClass: {
   1259       for (Stmt::const_child_iterator CI = Ex->child_begin(),
   1260             CE = Ex->child_end();
   1261             CI != CE; ++CI) {
   1262         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
   1263           IE.insert(child);
   1264           SVal ChildV = State->getSVal(child, LCtx);
   1265           R.markInteresting(ChildV);
   1266         }
   1267       }
   1268       break;
   1269     }
   1270   }
   1271 
   1272   R.markInteresting(V);
   1273 }
   1274 
   1275 static void reversePropagateInterestingSymbols(BugReport &R,
   1276                                                InterestingExprs &IE,
   1277                                                const ProgramState *State,
   1278                                                const LocationContext *CalleeCtx,
   1279                                                const LocationContext *CallerCtx)
   1280 {
   1281   // FIXME: Handle non-CallExpr-based CallEvents.
   1282   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
   1283   const Stmt *CallSite = Callee->getCallSite();
   1284   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
   1285     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
   1286       FunctionDecl::param_const_iterator PI = FD->param_begin(),
   1287                                          PE = FD->param_end();
   1288       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
   1289       for (; AI != AE && PI != PE; ++AI, ++PI) {
   1290         if (const Expr *ArgE = *AI) {
   1291           if (const ParmVarDecl *PD = *PI) {
   1292             Loc LV = State->getLValue(PD, CalleeCtx);
   1293             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
   1294               IE.insert(ArgE);
   1295           }
   1296         }
   1297       }
   1298     }
   1299   }
   1300 }
   1301 
   1302 //===----------------------------------------------------------------------===//
   1303 // Functions for determining if a loop was executed 0 times.
   1304 //===----------------------------------------------------------------------===//
   1305 
   1306 static bool isLoop(const Stmt *Term) {
   1307   switch (Term->getStmtClass()) {
   1308     case Stmt::ForStmtClass:
   1309     case Stmt::WhileStmtClass:
   1310     case Stmt::ObjCForCollectionStmtClass:
   1311     case Stmt::CXXForRangeStmtClass:
   1312       return true;
   1313     default:
   1314       // Note that we intentionally do not include do..while here.
   1315       return false;
   1316   }
   1317 }
   1318 
   1319 static bool isJumpToFalseBranch(const BlockEdge *BE) {
   1320   const CFGBlock *Src = BE->getSrc();
   1321   assert(Src->succ_size() == 2);
   1322   return (*(Src->succ_begin()+1) == BE->getDst());
   1323 }
   1324 
   1325 /// Return true if the terminator is a loop and the destination is the
   1326 /// false branch.
   1327 static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
   1328   if (!isLoop(Term))
   1329     return false;
   1330 
   1331   // Did we take the false branch?
   1332   return isJumpToFalseBranch(BE);
   1333 }
   1334 
   1335 static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
   1336   while (SubS) {
   1337     if (SubS == S)
   1338       return true;
   1339     SubS = PM.getParent(SubS);
   1340   }
   1341   return false;
   1342 }
   1343 
   1344 static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
   1345                                      const ExplodedNode *N) {
   1346   while (N) {
   1347     Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
   1348     if (SP) {
   1349       const Stmt *S = SP->getStmt();
   1350       if (!isContainedByStmt(PM, Term, S))
   1351         return S;
   1352     }
   1353     N = N->getFirstPred();
   1354   }
   1355   return nullptr;
   1356 }
   1357 
   1358 static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
   1359   const Stmt *LoopBody = nullptr;
   1360   switch (Term->getStmtClass()) {
   1361     case Stmt::CXXForRangeStmtClass: {
   1362       const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
   1363       if (isContainedByStmt(PM, FR->getInc(), S))
   1364         return true;
   1365       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
   1366         return true;
   1367       LoopBody = FR->getBody();
   1368       break;
   1369     }
   1370     case Stmt::ForStmtClass: {
   1371       const ForStmt *FS = cast<ForStmt>(Term);
   1372       if (isContainedByStmt(PM, FS->getInc(), S))
   1373         return true;
   1374       LoopBody = FS->getBody();
   1375       break;
   1376     }
   1377     case Stmt::ObjCForCollectionStmtClass: {
   1378       const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
   1379       LoopBody = FC->getBody();
   1380       break;
   1381     }
   1382     case Stmt::WhileStmtClass:
   1383       LoopBody = cast<WhileStmt>(Term)->getBody();
   1384       break;
   1385     default:
   1386       return false;
   1387   }
   1388   return isContainedByStmt(PM, LoopBody, S);
   1389 }
   1390 
   1391 //===----------------------------------------------------------------------===//
   1392 // Top-level logic for generating extensive path diagnostics.
   1393 //===----------------------------------------------------------------------===//
   1394 
   1395 static bool GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
   1396                                             PathDiagnosticBuilder &PDB,
   1397                                             const ExplodedNode *N,
   1398                                             LocationContextMap &LCM,
   1399                                       ArrayRef<BugReporterVisitor *> visitors) {
   1400   EdgeBuilder EB(PD, PDB);
   1401   const SourceManager& SM = PDB.getSourceManager();
   1402   StackDiagVector CallStack;
   1403   InterestingExprs IE;
   1404 
   1405   const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin());
   1406   while (NextNode) {
   1407     N = NextNode;
   1408     NextNode = N->getFirstPred();
   1409     ProgramPoint P = N->getLocation();
   1410 
   1411     do {
   1412       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
   1413         if (const Expr *Ex = PS->getStmtAs<Expr>())
   1414           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1415                                               N->getState().get(), Ex,
   1416                                               N->getLocationContext());
   1417       }
   1418 
   1419       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
   1420         const Stmt *S = CE->getCalleeContext()->getCallSite();
   1421         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
   1422             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1423                                                 N->getState().get(), Ex,
   1424                                                 N->getLocationContext());
   1425         }
   1426 
   1427         PathDiagnosticCallPiece *C =
   1428           PathDiagnosticCallPiece::construct(N, *CE, SM);
   1429         LCM[&C->path] = CE->getCalleeContext();
   1430 
   1431         EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
   1432         EB.flushLocations();
   1433 
   1434         PD.getActivePath().push_front(C);
   1435         PD.pushActivePath(&C->path);
   1436         CallStack.push_back(StackDiagPair(C, N));
   1437         break;
   1438       }
   1439 
   1440       // Pop the call hierarchy if we are done walking the contents
   1441       // of a function call.
   1442       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
   1443         // Add an edge to the start of the function.
   1444         const Decl *D = CE->getCalleeContext()->getDecl();
   1445         PathDiagnosticLocation pos =
   1446           PathDiagnosticLocation::createBegin(D, SM);
   1447         EB.addEdge(pos);
   1448 
   1449         // Flush all locations, and pop the active path.
   1450         bool VisitedEntireCall = PD.isWithinCall();
   1451         EB.flushLocations();
   1452         PD.popActivePath();
   1453         PDB.LC = N->getLocationContext();
   1454 
   1455         // Either we just added a bunch of stuff to the top-level path, or
   1456         // we have a previous CallExitEnd.  If the former, it means that the
   1457         // path terminated within a function call.  We must then take the
   1458         // current contents of the active path and place it within
   1459         // a new PathDiagnosticCallPiece.
   1460         PathDiagnosticCallPiece *C;
   1461         if (VisitedEntireCall) {
   1462           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
   1463         } else {
   1464           const Decl *Caller = CE->getLocationContext()->getDecl();
   1465           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
   1466           LCM[&C->path] = CE->getCalleeContext();
   1467         }
   1468 
   1469         C->setCallee(*CE, SM);
   1470         EB.addContext(C->getLocation());
   1471 
   1472         if (!CallStack.empty()) {
   1473           assert(CallStack.back().first == C);
   1474           CallStack.pop_back();
   1475         }
   1476         break;
   1477       }
   1478 
   1479       // Note that is important that we update the LocationContext
   1480       // after looking at CallExits.  CallExit basically adds an
   1481       // edge in the *caller*, so we don't want to update the LocationContext
   1482       // too soon.
   1483       PDB.LC = N->getLocationContext();
   1484 
   1485       // Block edges.
   1486       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
   1487         // Does this represent entering a call?  If so, look at propagating
   1488         // interesting symbols across call boundaries.
   1489         if (NextNode) {
   1490           const LocationContext *CallerCtx = NextNode->getLocationContext();
   1491           const LocationContext *CalleeCtx = PDB.LC;
   1492           if (CallerCtx != CalleeCtx) {
   1493             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
   1494                                                N->getState().get(),
   1495                                                CalleeCtx, CallerCtx);
   1496           }
   1497         }
   1498 
   1499         // Are we jumping to the head of a loop?  Add a special diagnostic.
   1500         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
   1501           PathDiagnosticLocation L(Loop, SM, PDB.LC);
   1502           const CompoundStmt *CS = nullptr;
   1503 
   1504           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
   1505             CS = dyn_cast<CompoundStmt>(FS->getBody());
   1506           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
   1507             CS = dyn_cast<CompoundStmt>(WS->getBody());
   1508 
   1509           PathDiagnosticEventPiece *p =
   1510             new PathDiagnosticEventPiece(L,
   1511                                         "Looping back to the head of the loop");
   1512           p->setPrunable(true);
   1513 
   1514           EB.addEdge(p->getLocation(), true);
   1515           PD.getActivePath().push_front(p);
   1516 
   1517           if (CS) {
   1518             PathDiagnosticLocation BL =
   1519               PathDiagnosticLocation::createEndBrace(CS, SM);
   1520             EB.addEdge(BL);
   1521           }
   1522         }
   1523 
   1524         const CFGBlock *BSrc = BE->getSrc();
   1525         ParentMap &PM = PDB.getParentMap();
   1526 
   1527         if (const Stmt *Term = BSrc->getTerminator()) {
   1528           // Are we jumping past the loop body without ever executing the
   1529           // loop (because the condition was false)?
   1530           if (isLoopJumpPastBody(Term, &*BE) &&
   1531               !isInLoopBody(PM,
   1532                             getStmtBeforeCond(PM,
   1533                                               BSrc->getTerminatorCondition(),
   1534                                               N),
   1535                             Term)) {
   1536             PathDiagnosticLocation L(Term, SM, PDB.LC);
   1537             PathDiagnosticEventPiece *PE =
   1538                 new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
   1539             PE->setPrunable(true);
   1540 
   1541             EB.addEdge(PE->getLocation(), true);
   1542             PD.getActivePath().push_front(PE);
   1543           }
   1544 
   1545           // In any case, add the terminator as the current statement
   1546           // context for control edges.
   1547           EB.addContext(Term);
   1548         }
   1549 
   1550         break;
   1551       }
   1552 
   1553       if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
   1554         Optional<CFGElement> First = BE->getFirstElement();
   1555         if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
   1556           const Stmt *stmt = S->getStmt();
   1557           if (IsControlFlowExpr(stmt)) {
   1558             // Add the proper context for '&&', '||', and '?'.
   1559             EB.addContext(stmt);
   1560           }
   1561           else
   1562             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
   1563         }
   1564 
   1565         break;
   1566       }
   1567 
   1568 
   1569     } while (0);
   1570 
   1571     if (!NextNode)
   1572       continue;
   1573 
   1574     // Add pieces from custom visitors.
   1575     BugReport *R = PDB.getBugReport();
   1576     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
   1577                                                   E = visitors.end();
   1578          I != E; ++I) {
   1579       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
   1580         const PathDiagnosticLocation &Loc = p->getLocation();
   1581         EB.addEdge(Loc, true);
   1582         PD.getActivePath().push_front(p);
   1583         updateStackPiecesWithMessage(p, CallStack);
   1584 
   1585         if (const Stmt *S = Loc.asStmt())
   1586           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
   1587       }
   1588     }
   1589   }
   1590 
   1591   return PDB.getBugReport()->isValid();
   1592 }
   1593 
   1594 /// \brief Adds a sanitized control-flow diagnostic edge to a path.
   1595 static void addEdgeToPath(PathPieces &path,
   1596                           PathDiagnosticLocation &PrevLoc,
   1597                           PathDiagnosticLocation NewLoc,
   1598                           const LocationContext *LC) {
   1599   if (!NewLoc.isValid())
   1600     return;
   1601 
   1602   SourceLocation NewLocL = NewLoc.asLocation();
   1603   if (NewLocL.isInvalid())
   1604     return;
   1605 
   1606   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
   1607     PrevLoc = NewLoc;
   1608     return;
   1609   }
   1610 
   1611   // Ignore self-edges, which occur when there are multiple nodes at the same
   1612   // statement.
   1613   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
   1614     return;
   1615 
   1616   path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
   1617                                                      PrevLoc));
   1618   PrevLoc = NewLoc;
   1619 }
   1620 
   1621 /// A customized wrapper for CFGBlock::getTerminatorCondition()
   1622 /// which returns the element for ObjCForCollectionStmts.
   1623 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
   1624   const Stmt *S = B->getTerminatorCondition();
   1625   if (const ObjCForCollectionStmt *FS =
   1626       dyn_cast_or_null<ObjCForCollectionStmt>(S))
   1627     return FS->getElement();
   1628   return S;
   1629 }
   1630 
   1631 static const char StrEnteringLoop[] = "Entering loop body";
   1632 static const char StrLoopBodyZero[] = "Loop body executed 0 times";
   1633 static const char StrLoopRangeEmpty[] =
   1634   "Loop body skipped when range is empty";
   1635 static const char StrLoopCollectionEmpty[] =
   1636   "Loop body skipped when collection is empty";
   1637 
   1638 static bool
   1639 GenerateAlternateExtensivePathDiagnostic(PathDiagnostic& PD,
   1640                                          PathDiagnosticBuilder &PDB,
   1641                                          const ExplodedNode *N,
   1642                                          LocationContextMap &LCM,
   1643                                       ArrayRef<BugReporterVisitor *> visitors) {
   1644 
   1645   BugReport *report = PDB.getBugReport();
   1646   const SourceManager& SM = PDB.getSourceManager();
   1647   StackDiagVector CallStack;
   1648   InterestingExprs IE;
   1649 
   1650   PathDiagnosticLocation PrevLoc = PD.getLocation();
   1651 
   1652   const ExplodedNode *NextNode = N->getFirstPred();
   1653   while (NextNode) {
   1654     N = NextNode;
   1655     NextNode = N->getFirstPred();
   1656     ProgramPoint P = N->getLocation();
   1657 
   1658     do {
   1659       // Have we encountered an entrance to a call?  It may be
   1660       // the case that we have not encountered a matching
   1661       // call exit before this point.  This means that the path
   1662       // terminated within the call itself.
   1663       if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
   1664         // Add an edge to the start of the function.
   1665         const StackFrameContext *CalleeLC = CE->getCalleeContext();
   1666         const Decl *D = CalleeLC->getDecl();
   1667         addEdgeToPath(PD.getActivePath(), PrevLoc,
   1668                       PathDiagnosticLocation::createBegin(D, SM),
   1669                       CalleeLC);
   1670 
   1671         // Did we visit an entire call?
   1672         bool VisitedEntireCall = PD.isWithinCall();
   1673         PD.popActivePath();
   1674 
   1675         PathDiagnosticCallPiece *C;
   1676         if (VisitedEntireCall) {
   1677           PathDiagnosticPiece *P = PD.getActivePath().front().get();
   1678           C = cast<PathDiagnosticCallPiece>(P);
   1679         } else {
   1680           const Decl *Caller = CE->getLocationContext()->getDecl();
   1681           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
   1682 
   1683           // Since we just transferred the path over to the call piece,
   1684           // reset the mapping from active to location context.
   1685           assert(PD.getActivePath().size() == 1 &&
   1686                  PD.getActivePath().front() == C);
   1687           LCM[&PD.getActivePath()] = nullptr;
   1688 
   1689           // Record the location context mapping for the path within
   1690           // the call.
   1691           assert(LCM[&C->path] == nullptr ||
   1692                  LCM[&C->path] == CE->getCalleeContext());
   1693           LCM[&C->path] = CE->getCalleeContext();
   1694 
   1695           // If this is the first item in the active path, record
   1696           // the new mapping from active path to location context.
   1697           const LocationContext *&NewLC = LCM[&PD.getActivePath()];
   1698           if (!NewLC)
   1699             NewLC = N->getLocationContext();
   1700 
   1701           PDB.LC = NewLC;
   1702         }
   1703         C->setCallee(*CE, SM);
   1704 
   1705         // Update the previous location in the active path.
   1706         PrevLoc = C->getLocation();
   1707 
   1708         if (!CallStack.empty()) {
   1709           assert(CallStack.back().first == C);
   1710           CallStack.pop_back();
   1711         }
   1712         break;
   1713       }
   1714 
   1715       // Query the location context here and the previous location
   1716       // as processing CallEnter may change the active path.
   1717       PDB.LC = N->getLocationContext();
   1718 
   1719       // Record the mapping from the active path to the location
   1720       // context.
   1721       assert(!LCM[&PD.getActivePath()] ||
   1722              LCM[&PD.getActivePath()] == PDB.LC);
   1723       LCM[&PD.getActivePath()] = PDB.LC;
   1724 
   1725       // Have we encountered an exit from a function call?
   1726       if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
   1727         const Stmt *S = CE->getCalleeContext()->getCallSite();
   1728         // Propagate the interesting symbols accordingly.
   1729         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
   1730           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1731                                               N->getState().get(), Ex,
   1732                                               N->getLocationContext());
   1733         }
   1734 
   1735         // We are descending into a call (backwards).  Construct
   1736         // a new call piece to contain the path pieces for that call.
   1737         PathDiagnosticCallPiece *C =
   1738           PathDiagnosticCallPiece::construct(N, *CE, SM);
   1739 
   1740         // Record the location context for this call piece.
   1741         LCM[&C->path] = CE->getCalleeContext();
   1742 
   1743         // Add the edge to the return site.
   1744         addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
   1745         PD.getActivePath().push_front(C);
   1746         PrevLoc.invalidate();
   1747 
   1748         // Make the contents of the call the active path for now.
   1749         PD.pushActivePath(&C->path);
   1750         CallStack.push_back(StackDiagPair(C, N));
   1751         break;
   1752       }
   1753 
   1754       if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
   1755         // For expressions, make sure we propagate the
   1756         // interesting symbols correctly.
   1757         if (const Expr *Ex = PS->getStmtAs<Expr>())
   1758           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1759                                               N->getState().get(), Ex,
   1760                                               N->getLocationContext());
   1761 
   1762         // Add an edge.  If this is an ObjCForCollectionStmt do
   1763         // not add an edge here as it appears in the CFG both
   1764         // as a terminator and as a terminator condition.
   1765         if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
   1766           PathDiagnosticLocation L =
   1767             PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
   1768           addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
   1769         }
   1770         break;
   1771       }
   1772 
   1773       // Block edges.
   1774       if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
   1775         // Does this represent entering a call?  If so, look at propagating
   1776         // interesting symbols across call boundaries.
   1777         if (NextNode) {
   1778           const LocationContext *CallerCtx = NextNode->getLocationContext();
   1779           const LocationContext *CalleeCtx = PDB.LC;
   1780           if (CallerCtx != CalleeCtx) {
   1781             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
   1782                                                N->getState().get(),
   1783                                                CalleeCtx, CallerCtx);
   1784           }
   1785         }
   1786 
   1787         // Are we jumping to the head of a loop?  Add a special diagnostic.
   1788         if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
   1789           PathDiagnosticLocation L(Loop, SM, PDB.LC);
   1790           const Stmt *Body = nullptr;
   1791 
   1792           if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
   1793             Body = FS->getBody();
   1794           else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
   1795             Body = WS->getBody();
   1796           else if (const ObjCForCollectionStmt *OFS =
   1797                      dyn_cast<ObjCForCollectionStmt>(Loop)) {
   1798             Body = OFS->getBody();
   1799           } else if (const CXXForRangeStmt *FRS =
   1800                        dyn_cast<CXXForRangeStmt>(Loop)) {
   1801             Body = FRS->getBody();
   1802           }
   1803           // do-while statements are explicitly excluded here
   1804 
   1805           PathDiagnosticEventPiece *p =
   1806             new PathDiagnosticEventPiece(L, "Looping back to the head "
   1807                                             "of the loop");
   1808           p->setPrunable(true);
   1809 
   1810           addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
   1811           PD.getActivePath().push_front(p);
   1812 
   1813           if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
   1814             addEdgeToPath(PD.getActivePath(), PrevLoc,
   1815                           PathDiagnosticLocation::createEndBrace(CS, SM),
   1816                           PDB.LC);
   1817           }
   1818         }
   1819 
   1820         const CFGBlock *BSrc = BE->getSrc();
   1821         ParentMap &PM = PDB.getParentMap();
   1822 
   1823         if (const Stmt *Term = BSrc->getTerminator()) {
   1824           // Are we jumping past the loop body without ever executing the
   1825           // loop (because the condition was false)?
   1826           if (isLoop(Term)) {
   1827             const Stmt *TermCond = getTerminatorCondition(BSrc);
   1828             bool IsInLoopBody =
   1829               isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
   1830 
   1831             const char *str = nullptr;
   1832 
   1833             if (isJumpToFalseBranch(&*BE)) {
   1834               if (!IsInLoopBody) {
   1835                 if (isa<ObjCForCollectionStmt>(Term)) {
   1836                   str = StrLoopCollectionEmpty;
   1837                 } else if (isa<CXXForRangeStmt>(Term)) {
   1838                   str = StrLoopRangeEmpty;
   1839                 } else {
   1840                   str = StrLoopBodyZero;
   1841                 }
   1842               }
   1843             } else {
   1844               str = StrEnteringLoop;
   1845             }
   1846 
   1847             if (str) {
   1848               PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
   1849               PathDiagnosticEventPiece *PE =
   1850                 new PathDiagnosticEventPiece(L, str);
   1851               PE->setPrunable(true);
   1852               addEdgeToPath(PD.getActivePath(), PrevLoc,
   1853                             PE->getLocation(), PDB.LC);
   1854               PD.getActivePath().push_front(PE);
   1855             }
   1856           } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
   1857                      isa<GotoStmt>(Term)) {
   1858             PathDiagnosticLocation L(Term, SM, PDB.LC);
   1859             addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
   1860           }
   1861         }
   1862         break;
   1863       }
   1864     } while (0);
   1865 
   1866     if (!NextNode)
   1867       continue;
   1868 
   1869     // Add pieces from custom visitors.
   1870     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
   1871          E = visitors.end();
   1872          I != E; ++I) {
   1873       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *report)) {
   1874         addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
   1875         PD.getActivePath().push_front(p);
   1876         updateStackPiecesWithMessage(p, CallStack);
   1877       }
   1878     }
   1879   }
   1880 
   1881   // Add an edge to the start of the function.
   1882   // We'll prune it out later, but it helps make diagnostics more uniform.
   1883   const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
   1884   const Decl *D = CalleeLC->getDecl();
   1885   addEdgeToPath(PD.getActivePath(), PrevLoc,
   1886                 PathDiagnosticLocation::createBegin(D, SM),
   1887                 CalleeLC);
   1888 
   1889   return report->isValid();
   1890 }
   1891 
   1892 static const Stmt *getLocStmt(PathDiagnosticLocation L) {
   1893   if (!L.isValid())
   1894     return nullptr;
   1895   return L.asStmt();
   1896 }
   1897 
   1898 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
   1899   if (!S)
   1900     return nullptr;
   1901 
   1902   while (true) {
   1903     S = PM.getParentIgnoreParens(S);
   1904 
   1905     if (!S)
   1906       break;
   1907 
   1908     if (isa<ExprWithCleanups>(S) ||
   1909         isa<CXXBindTemporaryExpr>(S) ||
   1910         isa<SubstNonTypeTemplateParmExpr>(S))
   1911       continue;
   1912 
   1913     break;
   1914   }
   1915 
   1916   return S;
   1917 }
   1918 
   1919 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
   1920   switch (S->getStmtClass()) {
   1921     case Stmt::BinaryOperatorClass: {
   1922       const BinaryOperator *BO = cast<BinaryOperator>(S);
   1923       if (!BO->isLogicalOp())
   1924         return false;
   1925       return BO->getLHS() == Cond || BO->getRHS() == Cond;
   1926     }
   1927     case Stmt::IfStmtClass:
   1928       return cast<IfStmt>(S)->getCond() == Cond;
   1929     case Stmt::ForStmtClass:
   1930       return cast<ForStmt>(S)->getCond() == Cond;
   1931     case Stmt::WhileStmtClass:
   1932       return cast<WhileStmt>(S)->getCond() == Cond;
   1933     case Stmt::DoStmtClass:
   1934       return cast<DoStmt>(S)->getCond() == Cond;
   1935     case Stmt::ChooseExprClass:
   1936       return cast<ChooseExpr>(S)->getCond() == Cond;
   1937     case Stmt::IndirectGotoStmtClass:
   1938       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
   1939     case Stmt::SwitchStmtClass:
   1940       return cast<SwitchStmt>(S)->getCond() == Cond;
   1941     case Stmt::BinaryConditionalOperatorClass:
   1942       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
   1943     case Stmt::ConditionalOperatorClass: {
   1944       const ConditionalOperator *CO = cast<ConditionalOperator>(S);
   1945       return CO->getCond() == Cond ||
   1946              CO->getLHS() == Cond ||
   1947              CO->getRHS() == Cond;
   1948     }
   1949     case Stmt::ObjCForCollectionStmtClass:
   1950       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
   1951     case Stmt::CXXForRangeStmtClass: {
   1952       const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
   1953       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
   1954     }
   1955     default:
   1956       return false;
   1957   }
   1958 }
   1959 
   1960 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
   1961   if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
   1962     return FS->getInc() == S || FS->getInit() == S;
   1963   if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
   1964     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
   1965            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
   1966   return false;
   1967 }
   1968 
   1969 typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
   1970         OptimizedCallsSet;
   1971 
   1972 /// Adds synthetic edges from top-level statements to their subexpressions.
   1973 ///
   1974 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
   1975 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
   1976 /// we'd like to see an edge from A to B, then another one from B to B.1.
   1977 static void addContextEdges(PathPieces &pieces, SourceManager &SM,
   1978                             const ParentMap &PM, const LocationContext *LCtx) {
   1979   PathPieces::iterator Prev = pieces.end();
   1980   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
   1981        Prev = I, ++I) {
   1982     PathDiagnosticControlFlowPiece *Piece =
   1983       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   1984 
   1985     if (!Piece)
   1986       continue;
   1987 
   1988     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
   1989     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
   1990 
   1991     PathDiagnosticLocation NextSrcContext = SrcLoc;
   1992     const Stmt *InnerStmt = nullptr;
   1993     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
   1994       SrcContexts.push_back(NextSrcContext);
   1995       InnerStmt = NextSrcContext.asStmt();
   1996       NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
   1997                                                 /*allowNested=*/true);
   1998     }
   1999 
   2000     // Repeatedly split the edge as necessary.
   2001     // This is important for nested logical expressions (||, &&, ?:) where we
   2002     // want to show all the levels of context.
   2003     while (true) {
   2004       const Stmt *Dst = getLocStmt(Piece->getEndLocation());
   2005 
   2006       // We are looking at an edge. Is the destination within a larger
   2007       // expression?
   2008       PathDiagnosticLocation DstContext =
   2009         getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
   2010       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
   2011         break;
   2012 
   2013       // If the source is in the same context, we're already good.
   2014       if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
   2015           SrcContexts.end())
   2016         break;
   2017 
   2018       // Update the subexpression node to point to the context edge.
   2019       Piece->setStartLocation(DstContext);
   2020 
   2021       // Try to extend the previous edge if it's at the same level as the source
   2022       // context.
   2023       if (Prev != E) {
   2024         PathDiagnosticControlFlowPiece *PrevPiece =
   2025           dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
   2026 
   2027         if (PrevPiece) {
   2028           if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
   2029             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
   2030             if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
   2031               PrevPiece->setEndLocation(DstContext);
   2032               break;
   2033             }
   2034           }
   2035         }
   2036       }
   2037 
   2038       // Otherwise, split the current edge into a context edge and a
   2039       // subexpression edge. Note that the context statement may itself have
   2040       // context.
   2041       Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
   2042       I = pieces.insert(I, Piece);
   2043     }
   2044   }
   2045 }
   2046 
   2047 /// \brief Move edges from a branch condition to a branch target
   2048 ///        when the condition is simple.
   2049 ///
   2050 /// This restructures some of the work of addContextEdges.  That function
   2051 /// creates edges this may destroy, but they work together to create a more
   2052 /// aesthetically set of edges around branches.  After the call to
   2053 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
   2054 /// the branch to the branch condition, and (3) an edge from the branch
   2055 /// condition to the branch target.  We keep (1), but may wish to remove (2)
   2056 /// and move the source of (3) to the branch if the branch condition is simple.
   2057 ///
   2058 static void simplifySimpleBranches(PathPieces &pieces) {
   2059   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
   2060 
   2061     PathDiagnosticControlFlowPiece *PieceI =
   2062       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2063 
   2064     if (!PieceI)
   2065       continue;
   2066 
   2067     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
   2068     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
   2069 
   2070     if (!s1Start || !s1End)
   2071       continue;
   2072 
   2073     PathPieces::iterator NextI = I; ++NextI;
   2074     if (NextI == E)
   2075       break;
   2076 
   2077     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
   2078 
   2079     while (true) {
   2080       if (NextI == E)
   2081         break;
   2082 
   2083       PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
   2084       if (EV) {
   2085         StringRef S = EV->getString();
   2086         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
   2087             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
   2088           ++NextI;
   2089           continue;
   2090         }
   2091         break;
   2092       }
   2093 
   2094       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2095       break;
   2096     }
   2097 
   2098     if (!PieceNextI)
   2099       continue;
   2100 
   2101     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
   2102     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
   2103 
   2104     if (!s2Start || !s2End || s1End != s2Start)
   2105       continue;
   2106 
   2107     // We only perform this transformation for specific branch kinds.
   2108     // We don't want to do this for do..while, for example.
   2109     if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
   2110           isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
   2111           isa<CXXForRangeStmt>(s1Start)))
   2112       continue;
   2113 
   2114     // Is s1End the branch condition?
   2115     if (!isConditionForTerminator(s1Start, s1End))
   2116       continue;
   2117 
   2118     // Perform the hoisting by eliminating (2) and changing the start
   2119     // location of (3).
   2120     PieceNextI->setStartLocation(PieceI->getStartLocation());
   2121     I = pieces.erase(I);
   2122   }
   2123 }
   2124 
   2125 /// Returns the number of bytes in the given (character-based) SourceRange.
   2126 ///
   2127 /// If the locations in the range are not on the same line, returns None.
   2128 ///
   2129 /// Note that this does not do a precise user-visible character or column count.
   2130 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
   2131                                               SourceRange Range) {
   2132   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
   2133                              SM.getExpansionRange(Range.getEnd()).second);
   2134 
   2135   FileID FID = SM.getFileID(ExpansionRange.getBegin());
   2136   if (FID != SM.getFileID(ExpansionRange.getEnd()))
   2137     return None;
   2138 
   2139   bool Invalid;
   2140   const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
   2141   if (Invalid)
   2142     return None;
   2143 
   2144   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
   2145   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
   2146   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
   2147 
   2148   // We're searching the raw bytes of the buffer here, which might include
   2149   // escaped newlines and such. That's okay; we're trying to decide whether the
   2150   // SourceRange is covering a large or small amount of space in the user's
   2151   // editor.
   2152   if (Snippet.find_first_of("\r\n") != StringRef::npos)
   2153     return None;
   2154 
   2155   // This isn't Unicode-aware, but it doesn't need to be.
   2156   return Snippet.size();
   2157 }
   2158 
   2159 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
   2160 static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
   2161                                               const Stmt *S) {
   2162   return getLengthOnSingleLine(SM, S->getSourceRange());
   2163 }
   2164 
   2165 /// Eliminate two-edge cycles created by addContextEdges().
   2166 ///
   2167 /// Once all the context edges are in place, there are plenty of cases where
   2168 /// there's a single edge from a top-level statement to a subexpression,
   2169 /// followed by a single path note, and then a reverse edge to get back out to
   2170 /// the top level. If the statement is simple enough, the subexpression edges
   2171 /// just add noise and make it harder to understand what's going on.
   2172 ///
   2173 /// This function only removes edges in pairs, because removing only one edge
   2174 /// might leave other edges dangling.
   2175 ///
   2176 /// This will not remove edges in more complicated situations:
   2177 /// - if there is more than one "hop" leading to or from a subexpression.
   2178 /// - if there is an inlined call between the edges instead of a single event.
   2179 /// - if the whole statement is large enough that having subexpression arrows
   2180 ///   might be helpful.
   2181 static void removeContextCycles(PathPieces &Path, SourceManager &SM,
   2182                                 ParentMap &PM) {
   2183   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
   2184     // Pattern match the current piece and its successor.
   2185     PathDiagnosticControlFlowPiece *PieceI =
   2186       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2187 
   2188     if (!PieceI) {
   2189       ++I;
   2190       continue;
   2191     }
   2192 
   2193     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
   2194     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
   2195 
   2196     PathPieces::iterator NextI = I; ++NextI;
   2197     if (NextI == E)
   2198       break;
   2199 
   2200     PathDiagnosticControlFlowPiece *PieceNextI =
   2201       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2202 
   2203     if (!PieceNextI) {
   2204       if (isa<PathDiagnosticEventPiece>(*NextI)) {
   2205         ++NextI;
   2206         if (NextI == E)
   2207           break;
   2208         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2209       }
   2210 
   2211       if (!PieceNextI) {
   2212         ++I;
   2213         continue;
   2214       }
   2215     }
   2216 
   2217     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
   2218     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
   2219 
   2220     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
   2221       const size_t MAX_SHORT_LINE_LENGTH = 80;
   2222       Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
   2223       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
   2224         Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
   2225         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
   2226           Path.erase(I);
   2227           I = Path.erase(NextI);
   2228           continue;
   2229         }
   2230       }
   2231     }
   2232 
   2233     ++I;
   2234   }
   2235 }
   2236 
   2237 /// \brief Return true if X is contained by Y.
   2238 static bool lexicalContains(ParentMap &PM,
   2239                             const Stmt *X,
   2240                             const Stmt *Y) {
   2241   while (X) {
   2242     if (X == Y)
   2243       return true;
   2244     X = PM.getParent(X);
   2245   }
   2246   return false;
   2247 }
   2248 
   2249 // Remove short edges on the same line less than 3 columns in difference.
   2250 static void removePunyEdges(PathPieces &path,
   2251                             SourceManager &SM,
   2252                             ParentMap &PM) {
   2253 
   2254   bool erased = false;
   2255 
   2256   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
   2257        erased ? I : ++I) {
   2258 
   2259     erased = false;
   2260 
   2261     PathDiagnosticControlFlowPiece *PieceI =
   2262       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2263 
   2264     if (!PieceI)
   2265       continue;
   2266 
   2267     const Stmt *start = getLocStmt(PieceI->getStartLocation());
   2268     const Stmt *end   = getLocStmt(PieceI->getEndLocation());
   2269 
   2270     if (!start || !end)
   2271       continue;
   2272 
   2273     const Stmt *endParent = PM.getParent(end);
   2274     if (!endParent)
   2275       continue;
   2276 
   2277     if (isConditionForTerminator(end, endParent))
   2278       continue;
   2279 
   2280     SourceLocation FirstLoc = start->getLocStart();
   2281     SourceLocation SecondLoc = end->getLocStart();
   2282 
   2283     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
   2284       continue;
   2285     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
   2286       std::swap(SecondLoc, FirstLoc);
   2287 
   2288     SourceRange EdgeRange(FirstLoc, SecondLoc);
   2289     Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
   2290 
   2291     // If the statements are on different lines, continue.
   2292     if (!ByteWidth)
   2293       continue;
   2294 
   2295     const size_t MAX_PUNY_EDGE_LENGTH = 2;
   2296     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
   2297       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
   2298       // there might not be enough /columns/. A proper user-visible column count
   2299       // is probably too expensive, though.
   2300       I = path.erase(I);
   2301       erased = true;
   2302       continue;
   2303     }
   2304   }
   2305 }
   2306 
   2307 static void removeIdenticalEvents(PathPieces &path) {
   2308   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
   2309     PathDiagnosticEventPiece *PieceI =
   2310       dyn_cast<PathDiagnosticEventPiece>(*I);
   2311 
   2312     if (!PieceI)
   2313       continue;
   2314 
   2315     PathPieces::iterator NextI = I; ++NextI;
   2316     if (NextI == E)
   2317       return;
   2318 
   2319     PathDiagnosticEventPiece *PieceNextI =
   2320       dyn_cast<PathDiagnosticEventPiece>(*NextI);
   2321 
   2322     if (!PieceNextI)
   2323       continue;
   2324 
   2325     // Erase the second piece if it has the same exact message text.
   2326     if (PieceI->getString() == PieceNextI->getString()) {
   2327       path.erase(NextI);
   2328     }
   2329   }
   2330 }
   2331 
   2332 static bool optimizeEdges(PathPieces &path, SourceManager &SM,
   2333                           OptimizedCallsSet &OCS,
   2334                           LocationContextMap &LCM) {
   2335   bool hasChanges = false;
   2336   const LocationContext *LC = LCM[&path];
   2337   assert(LC);
   2338   ParentMap &PM = LC->getParentMap();
   2339 
   2340   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
   2341     // Optimize subpaths.
   2342     if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
   2343       // Record the fact that a call has been optimized so we only do the
   2344       // effort once.
   2345       if (!OCS.count(CallI)) {
   2346         while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
   2347         OCS.insert(CallI);
   2348       }
   2349       ++I;
   2350       continue;
   2351     }
   2352 
   2353     // Pattern match the current piece and its successor.
   2354     PathDiagnosticControlFlowPiece *PieceI =
   2355       dyn_cast<PathDiagnosticControlFlowPiece>(*I);
   2356 
   2357     if (!PieceI) {
   2358       ++I;
   2359       continue;
   2360     }
   2361 
   2362     const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
   2363     const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
   2364     const Stmt *level1 = getStmtParent(s1Start, PM);
   2365     const Stmt *level2 = getStmtParent(s1End, PM);
   2366 
   2367     PathPieces::iterator NextI = I; ++NextI;
   2368     if (NextI == E)
   2369       break;
   2370 
   2371     PathDiagnosticControlFlowPiece *PieceNextI =
   2372       dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
   2373 
   2374     if (!PieceNextI) {
   2375       ++I;
   2376       continue;
   2377     }
   2378 
   2379     const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
   2380     const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
   2381     const Stmt *level3 = getStmtParent(s2Start, PM);
   2382     const Stmt *level4 = getStmtParent(s2End, PM);
   2383 
   2384     // Rule I.
   2385     //
   2386     // If we have two consecutive control edges whose end/begin locations
   2387     // are at the same level (e.g. statements or top-level expressions within
   2388     // a compound statement, or siblings share a single ancestor expression),
   2389     // then merge them if they have no interesting intermediate event.
   2390     //
   2391     // For example:
   2392     //
   2393     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
   2394     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
   2395     //
   2396     // NOTE: this will be limited later in cases where we add barriers
   2397     // to prevent this optimization.
   2398     //
   2399     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
   2400       PieceI->setEndLocation(PieceNextI->getEndLocation());
   2401       path.erase(NextI);
   2402       hasChanges = true;
   2403       continue;
   2404     }
   2405 
   2406     // Rule II.
   2407     //
   2408     // Eliminate edges between subexpressions and parent expressions
   2409     // when the subexpression is consumed.
   2410     //
   2411     // NOTE: this will be limited later in cases where we add barriers
   2412     // to prevent this optimization.
   2413     //
   2414     if (s1End && s1End == s2Start && level2) {
   2415       bool removeEdge = false;
   2416       // Remove edges into the increment or initialization of a
   2417       // loop that have no interleaving event.  This means that
   2418       // they aren't interesting.
   2419       if (isIncrementOrInitInForLoop(s1End, level2))
   2420         removeEdge = true;
   2421       // Next only consider edges that are not anchored on
   2422       // the condition of a terminator.  This are intermediate edges
   2423       // that we might want to trim.
   2424       else if (!isConditionForTerminator(level2, s1End)) {
   2425         // Trim edges on expressions that are consumed by
   2426         // the parent expression.
   2427         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
   2428           removeEdge = true;
   2429         }
   2430         // Trim edges where a lexical containment doesn't exist.
   2431         // For example:
   2432         //
   2433         //  X -> Y -> Z
   2434         //
   2435         // If 'Z' lexically contains Y (it is an ancestor) and
   2436         // 'X' does not lexically contain Y (it is a descendant OR
   2437         // it has no lexical relationship at all) then trim.
   2438         //
   2439         // This can eliminate edges where we dive into a subexpression
   2440         // and then pop back out, etc.
   2441         else if (s1Start && s2End &&
   2442                  lexicalContains(PM, s2Start, s2End) &&
   2443                  !lexicalContains(PM, s1End, s1Start)) {
   2444           removeEdge = true;
   2445         }
   2446         // Trim edges from a subexpression back to the top level if the
   2447         // subexpression is on a different line.
   2448         //
   2449         // A.1 -> A -> B
   2450         // becomes
   2451         // A.1 -> B
   2452         //
   2453         // These edges just look ugly and don't usually add anything.
   2454         else if (s1Start && s2End &&
   2455                  lexicalContains(PM, s1Start, s1End)) {
   2456           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
   2457                                 PieceI->getStartLocation().asLocation());
   2458           if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
   2459             removeEdge = true;
   2460         }
   2461       }
   2462 
   2463       if (removeEdge) {
   2464         PieceI->setEndLocation(PieceNextI->getEndLocation());
   2465         path.erase(NextI);
   2466         hasChanges = true;
   2467         continue;
   2468       }
   2469     }
   2470 
   2471     // Optimize edges for ObjC fast-enumeration loops.
   2472     //
   2473     // (X -> collection) -> (collection -> element)
   2474     //
   2475     // becomes:
   2476     //
   2477     // (X -> element)
   2478     if (s1End == s2Start) {
   2479       const ObjCForCollectionStmt *FS =
   2480         dyn_cast_or_null<ObjCForCollectionStmt>(level3);
   2481       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
   2482           s2End == FS->getElement()) {
   2483         PieceI->setEndLocation(PieceNextI->getEndLocation());
   2484         path.erase(NextI);
   2485         hasChanges = true;
   2486         continue;
   2487       }
   2488     }
   2489 
   2490     // No changes at this index?  Move to the next one.
   2491     ++I;
   2492   }
   2493 
   2494   if (!hasChanges) {
   2495     // Adjust edges into subexpressions to make them more uniform
   2496     // and aesthetically pleasing.
   2497     addContextEdges(path, SM, PM, LC);
   2498     // Remove "cyclical" edges that include one or more context edges.
   2499     removeContextCycles(path, SM, PM);
   2500     // Hoist edges originating from branch conditions to branches
   2501     // for simple branches.
   2502     simplifySimpleBranches(path);
   2503     // Remove any puny edges left over after primary optimization pass.
   2504     removePunyEdges(path, SM, PM);
   2505     // Remove identical events.
   2506     removeIdenticalEvents(path);
   2507   }
   2508 
   2509   return hasChanges;
   2510 }
   2511 
   2512 /// Drop the very first edge in a path, which should be a function entry edge.
   2513 ///
   2514 /// If the first edge is not a function entry edge (say, because the first
   2515 /// statement had an invalid source location), this function does nothing.
   2516 // FIXME: We should just generate invalid edges anyway and have the optimizer
   2517 // deal with them.
   2518 static void dropFunctionEntryEdge(PathPieces &Path,
   2519                                   LocationContextMap &LCM,
   2520                                   SourceManager &SM) {
   2521   const PathDiagnosticControlFlowPiece *FirstEdge =
   2522     dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
   2523   if (!FirstEdge)
   2524     return;
   2525 
   2526   const Decl *D = LCM[&Path]->getDecl();
   2527   PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
   2528   if (FirstEdge->getStartLocation() != EntryLoc)
   2529     return;
   2530 
   2531   Path.pop_front();
   2532 }
   2533 
   2534 
   2535 //===----------------------------------------------------------------------===//
   2536 // Methods for BugType and subclasses.
   2537 //===----------------------------------------------------------------------===//
   2538 void BugType::anchor() { }
   2539 
   2540 void BugType::FlushReports(BugReporter &BR) {}
   2541 
   2542 void BuiltinBug::anchor() {}
   2543 
   2544 //===----------------------------------------------------------------------===//
   2545 // Methods for BugReport and subclasses.
   2546 //===----------------------------------------------------------------------===//
   2547 
   2548 void BugReport::NodeResolver::anchor() {}
   2549 
   2550 void BugReport::addVisitor(BugReporterVisitor* visitor) {
   2551   if (!visitor)
   2552     return;
   2553 
   2554   llvm::FoldingSetNodeID ID;
   2555   visitor->Profile(ID);
   2556   void *InsertPos;
   2557 
   2558   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
   2559     delete visitor;
   2560     return;
   2561   }
   2562 
   2563   CallbacksSet.InsertNode(visitor, InsertPos);
   2564   Callbacks.push_back(visitor);
   2565   ++ConfigurationChangeToken;
   2566 }
   2567 
   2568 BugReport::~BugReport() {
   2569   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
   2570     delete *I;
   2571   }
   2572   while (!interestingSymbols.empty()) {
   2573     popInterestingSymbolsAndRegions();
   2574   }
   2575 }
   2576 
   2577 const Decl *BugReport::getDeclWithIssue() const {
   2578   if (DeclWithIssue)
   2579     return DeclWithIssue;
   2580 
   2581   const ExplodedNode *N = getErrorNode();
   2582   if (!N)
   2583     return nullptr;
   2584 
   2585   const LocationContext *LC = N->getLocationContext();
   2586   return LC->getCurrentStackFrame()->getDecl();
   2587 }
   2588 
   2589 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
   2590   hash.AddPointer(&BT);
   2591   hash.AddString(Description);
   2592   PathDiagnosticLocation UL = getUniqueingLocation();
   2593   if (UL.isValid()) {
   2594     UL.Profile(hash);
   2595   } else if (Location.isValid()) {
   2596     Location.Profile(hash);
   2597   } else {
   2598     assert(ErrorNode);
   2599     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
   2600   }
   2601 
   2602   for (SmallVectorImpl<SourceRange>::const_iterator I =
   2603       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
   2604     const SourceRange range = *I;
   2605     if (!range.isValid())
   2606       continue;
   2607     hash.AddInteger(range.getBegin().getRawEncoding());
   2608     hash.AddInteger(range.getEnd().getRawEncoding());
   2609   }
   2610 }
   2611 
   2612 void BugReport::markInteresting(SymbolRef sym) {
   2613   if (!sym)
   2614     return;
   2615 
   2616   // If the symbol wasn't already in our set, note a configuration change.
   2617   if (getInterestingSymbols().insert(sym).second)
   2618     ++ConfigurationChangeToken;
   2619 
   2620   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
   2621     getInterestingRegions().insert(meta->getRegion());
   2622 }
   2623 
   2624 void BugReport::markInteresting(const MemRegion *R) {
   2625   if (!R)
   2626     return;
   2627 
   2628   // If the base region wasn't already in our set, note a configuration change.
   2629   R = R->getBaseRegion();
   2630   if (getInterestingRegions().insert(R).second)
   2631     ++ConfigurationChangeToken;
   2632 
   2633   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   2634     getInterestingSymbols().insert(SR->getSymbol());
   2635 }
   2636 
   2637 void BugReport::markInteresting(SVal V) {
   2638   markInteresting(V.getAsRegion());
   2639   markInteresting(V.getAsSymbol());
   2640 }
   2641 
   2642 void BugReport::markInteresting(const LocationContext *LC) {
   2643   if (!LC)
   2644     return;
   2645   InterestingLocationContexts.insert(LC);
   2646 }
   2647 
   2648 bool BugReport::isInteresting(SVal V) {
   2649   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
   2650 }
   2651 
   2652 bool BugReport::isInteresting(SymbolRef sym) {
   2653   if (!sym)
   2654     return false;
   2655   // We don't currently consider metadata symbols to be interesting
   2656   // even if we know their region is interesting. Is that correct behavior?
   2657   return getInterestingSymbols().count(sym);
   2658 }
   2659 
   2660 bool BugReport::isInteresting(const MemRegion *R) {
   2661   if (!R)
   2662     return false;
   2663   R = R->getBaseRegion();
   2664   bool b = getInterestingRegions().count(R);
   2665   if (b)
   2666     return true;
   2667   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   2668     return getInterestingSymbols().count(SR->getSymbol());
   2669   return false;
   2670 }
   2671 
   2672 bool BugReport::isInteresting(const LocationContext *LC) {
   2673   if (!LC)
   2674     return false;
   2675   return InterestingLocationContexts.count(LC);
   2676 }
   2677 
   2678 void BugReport::lazyInitializeInterestingSets() {
   2679   if (interestingSymbols.empty()) {
   2680     interestingSymbols.push_back(new Symbols());
   2681     interestingRegions.push_back(new Regions());
   2682   }
   2683 }
   2684 
   2685 BugReport::Symbols &BugReport::getInterestingSymbols() {
   2686   lazyInitializeInterestingSets();
   2687   return *interestingSymbols.back();
   2688 }
   2689 
   2690 BugReport::Regions &BugReport::getInterestingRegions() {
   2691   lazyInitializeInterestingSets();
   2692   return *interestingRegions.back();
   2693 }
   2694 
   2695 void BugReport::pushInterestingSymbolsAndRegions() {
   2696   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
   2697   interestingRegions.push_back(new Regions(getInterestingRegions()));
   2698 }
   2699 
   2700 void BugReport::popInterestingSymbolsAndRegions() {
   2701   delete interestingSymbols.pop_back_val();
   2702   delete interestingRegions.pop_back_val();
   2703 }
   2704 
   2705 const Stmt *BugReport::getStmt() const {
   2706   if (!ErrorNode)
   2707     return nullptr;
   2708 
   2709   ProgramPoint ProgP = ErrorNode->getLocation();
   2710   const Stmt *S = nullptr;
   2711 
   2712   if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
   2713     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
   2714     if (BE->getBlock() == &Exit)
   2715       S = GetPreviousStmt(ErrorNode);
   2716   }
   2717   if (!S)
   2718     S = PathDiagnosticLocation::getStmt(ErrorNode);
   2719 
   2720   return S;
   2721 }
   2722 
   2723 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
   2724 BugReport::getRanges() {
   2725     // If no custom ranges, add the range of the statement corresponding to
   2726     // the error node.
   2727     if (Ranges.empty()) {
   2728       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
   2729         addRange(E->getSourceRange());
   2730       else
   2731         return std::make_pair(ranges_iterator(), ranges_iterator());
   2732     }
   2733 
   2734     // User-specified absence of range info.
   2735     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
   2736       return std::make_pair(ranges_iterator(), ranges_iterator());
   2737 
   2738     return std::make_pair(Ranges.begin(), Ranges.end());
   2739 }
   2740 
   2741 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
   2742   if (ErrorNode) {
   2743     assert(!Location.isValid() &&
   2744      "Either Location or ErrorNode should be specified but not both.");
   2745     return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
   2746   }
   2747 
   2748   assert(Location.isValid());
   2749   return Location;
   2750 }
   2751 
   2752 //===----------------------------------------------------------------------===//
   2753 // Methods for BugReporter and subclasses.
   2754 //===----------------------------------------------------------------------===//
   2755 
   2756 BugReportEquivClass::~BugReportEquivClass() { }
   2757 GRBugReporter::~GRBugReporter() { }
   2758 BugReporterData::~BugReporterData() {}
   2759 
   2760 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
   2761 
   2762 ProgramStateManager&
   2763 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
   2764 
   2765 BugReporter::~BugReporter() {
   2766   FlushReports();
   2767 
   2768   // Free the bug reports we are tracking.
   2769   typedef std::vector<BugReportEquivClass *> ContTy;
   2770   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
   2771        I != E; ++I) {
   2772     delete *I;
   2773   }
   2774 }
   2775 
   2776 void BugReporter::FlushReports() {
   2777   if (BugTypes.isEmpty())
   2778     return;
   2779 
   2780   // First flush the warnings for each BugType.  This may end up creating new
   2781   // warnings and new BugTypes.
   2782   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
   2783   // Turn NSErrorChecker into a proper checker and remove this.
   2784   SmallVector<const BugType*, 16> bugTypes;
   2785   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
   2786     bugTypes.push_back(*I);
   2787   for (SmallVectorImpl<const BugType *>::iterator
   2788          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
   2789     const_cast<BugType*>(*I)->FlushReports(*this);
   2790 
   2791   // We need to flush reports in deterministic order to ensure the order
   2792   // of the reports is consistent between runs.
   2793   typedef std::vector<BugReportEquivClass *> ContVecTy;
   2794   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
   2795        EI != EE; ++EI){
   2796     BugReportEquivClass& EQ = **EI;
   2797     FlushReport(EQ);
   2798   }
   2799 
   2800   // BugReporter owns and deletes only BugTypes created implicitly through
   2801   // EmitBasicReport.
   2802   // FIXME: There are leaks from checkers that assume that the BugTypes they
   2803   // create will be destroyed by the BugReporter.
   2804   llvm::DeleteContainerSeconds(StrBugTypes);
   2805 
   2806   // Remove all references to the BugType objects.
   2807   BugTypes = F.getEmptySet();
   2808 }
   2809 
   2810 //===----------------------------------------------------------------------===//
   2811 // PathDiagnostics generation.
   2812 //===----------------------------------------------------------------------===//
   2813 
   2814 namespace {
   2815 /// A wrapper around a report graph, which contains only a single path, and its
   2816 /// node maps.
   2817 class ReportGraph {
   2818 public:
   2819   InterExplodedGraphMap BackMap;
   2820   std::unique_ptr<ExplodedGraph> Graph;
   2821   const ExplodedNode *ErrorNode;
   2822   size_t Index;
   2823 };
   2824 
   2825 /// A wrapper around a trimmed graph and its node maps.
   2826 class TrimmedGraph {
   2827   InterExplodedGraphMap InverseMap;
   2828 
   2829   typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
   2830   PriorityMapTy PriorityMap;
   2831 
   2832   typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
   2833   SmallVector<NodeIndexPair, 32> ReportNodes;
   2834 
   2835   std::unique_ptr<ExplodedGraph> G;
   2836 
   2837   /// A helper class for sorting ExplodedNodes by priority.
   2838   template <bool Descending>
   2839   class PriorityCompare {
   2840     const PriorityMapTy &PriorityMap;
   2841 
   2842   public:
   2843     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
   2844 
   2845     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
   2846       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
   2847       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
   2848       PriorityMapTy::const_iterator E = PriorityMap.end();
   2849 
   2850       if (LI == E)
   2851         return Descending;
   2852       if (RI == E)
   2853         return !Descending;
   2854 
   2855       return Descending ? LI->second > RI->second
   2856                         : LI->second < RI->second;
   2857     }
   2858 
   2859     bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
   2860       return (*this)(LHS.first, RHS.first);
   2861     }
   2862   };
   2863 
   2864 public:
   2865   TrimmedGraph(const ExplodedGraph *OriginalGraph,
   2866                ArrayRef<const ExplodedNode *> Nodes);
   2867 
   2868   bool popNextReportGraph(ReportGraph &GraphWrapper);
   2869 };
   2870 }
   2871 
   2872 TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
   2873                            ArrayRef<const ExplodedNode *> Nodes) {
   2874   // The trimmed graph is created in the body of the constructor to ensure
   2875   // that the DenseMaps have been initialized already.
   2876   InterExplodedGraphMap ForwardMap;
   2877   G.reset(OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap));
   2878 
   2879   // Find the (first) error node in the trimmed graph.  We just need to consult
   2880   // the node map which maps from nodes in the original graph to nodes
   2881   // in the new graph.
   2882   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
   2883 
   2884   for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
   2885     if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
   2886       ReportNodes.push_back(std::make_pair(NewNode, i));
   2887       RemainingNodes.insert(NewNode);
   2888     }
   2889   }
   2890 
   2891   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
   2892 
   2893   // Perform a forward BFS to find all the shortest paths.
   2894   std::queue<const ExplodedNode *> WS;
   2895 
   2896   assert(G->num_roots() == 1);
   2897   WS.push(*G->roots_begin());
   2898   unsigned Priority = 0;
   2899 
   2900   while (!WS.empty()) {
   2901     const ExplodedNode *Node = WS.front();
   2902     WS.pop();
   2903 
   2904     PriorityMapTy::iterator PriorityEntry;
   2905     bool IsNew;
   2906     std::tie(PriorityEntry, IsNew) =
   2907       PriorityMap.insert(std::make_pair(Node, Priority));
   2908     ++Priority;
   2909 
   2910     if (!IsNew) {
   2911       assert(PriorityEntry->second <= Priority);
   2912       continue;
   2913     }
   2914 
   2915     if (RemainingNodes.erase(Node))
   2916       if (RemainingNodes.empty())
   2917         break;
   2918 
   2919     for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
   2920                                            E = Node->succ_end();
   2921          I != E; ++I)
   2922       WS.push(*I);
   2923   }
   2924 
   2925   // Sort the error paths from longest to shortest.
   2926   std::sort(ReportNodes.begin(), ReportNodes.end(),
   2927             PriorityCompare<true>(PriorityMap));
   2928 }
   2929 
   2930 bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
   2931   if (ReportNodes.empty())
   2932     return false;
   2933 
   2934   const ExplodedNode *OrigN;
   2935   std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
   2936   assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
   2937          "error node not accessible from root");
   2938 
   2939   // Create a new graph with a single path.  This is the graph
   2940   // that will be returned to the caller.
   2941   ExplodedGraph *GNew = new ExplodedGraph();
   2942   GraphWrapper.Graph.reset(GNew);
   2943   GraphWrapper.BackMap.clear();
   2944 
   2945   // Now walk from the error node up the BFS path, always taking the
   2946   // predeccessor with the lowest number.
   2947   ExplodedNode *Succ = nullptr;
   2948   while (true) {
   2949     // Create the equivalent node in the new graph with the same state
   2950     // and location.
   2951     ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
   2952                                        OrigN->isSink());
   2953 
   2954     // Store the mapping to the original node.
   2955     InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
   2956     assert(IMitr != InverseMap.end() && "No mapping to original node.");
   2957     GraphWrapper.BackMap[NewN] = IMitr->second;
   2958 
   2959     // Link up the new node with the previous node.
   2960     if (Succ)
   2961       Succ->addPredecessor(NewN, *GNew);
   2962     else
   2963       GraphWrapper.ErrorNode = NewN;
   2964 
   2965     Succ = NewN;
   2966 
   2967     // Are we at the final node?
   2968     if (OrigN->pred_empty()) {
   2969       GNew->addRoot(NewN);
   2970       break;
   2971     }
   2972 
   2973     // Find the next predeccessor node.  We choose the node that is marked
   2974     // with the lowest BFS number.
   2975     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
   2976                           PriorityCompare<false>(PriorityMap));
   2977   }
   2978 
   2979   return true;
   2980 }
   2981 
   2982 
   2983 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
   2984 ///  and collapses PathDiagosticPieces that are expanded by macros.
   2985 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
   2986   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
   2987                                 SourceLocation> > MacroStackTy;
   2988 
   2989   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
   2990           PiecesTy;
   2991 
   2992   MacroStackTy MacroStack;
   2993   PiecesTy Pieces;
   2994 
   2995   for (PathPieces::const_iterator I = path.begin(), E = path.end();
   2996        I!=E; ++I) {
   2997 
   2998     PathDiagnosticPiece *piece = I->get();
   2999 
   3000     // Recursively compact calls.
   3001     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
   3002       CompactPathDiagnostic(call->path, SM);
   3003     }
   3004 
   3005     // Get the location of the PathDiagnosticPiece.
   3006     const FullSourceLoc Loc = piece->getLocation().asLocation();
   3007 
   3008     // Determine the instantiation location, which is the location we group
   3009     // related PathDiagnosticPieces.
   3010     SourceLocation InstantiationLoc = Loc.isMacroID() ?
   3011                                       SM.getExpansionLoc(Loc) :
   3012                                       SourceLocation();
   3013 
   3014     if (Loc.isFileID()) {
   3015       MacroStack.clear();
   3016       Pieces.push_back(piece);
   3017       continue;
   3018     }
   3019 
   3020     assert(Loc.isMacroID());
   3021 
   3022     // Is the PathDiagnosticPiece within the same macro group?
   3023     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
   3024       MacroStack.back().first->subPieces.push_back(piece);
   3025       continue;
   3026     }
   3027 
   3028     // We aren't in the same group.  Are we descending into a new macro
   3029     // or are part of an old one?
   3030     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
   3031 
   3032     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
   3033                                           SM.getExpansionLoc(Loc) :
   3034                                           SourceLocation();
   3035 
   3036     // Walk the entire macro stack.
   3037     while (!MacroStack.empty()) {
   3038       if (InstantiationLoc == MacroStack.back().second) {
   3039         MacroGroup = MacroStack.back().first;
   3040         break;
   3041       }
   3042 
   3043       if (ParentInstantiationLoc == MacroStack.back().second) {
   3044         MacroGroup = MacroStack.back().first;
   3045         break;
   3046       }
   3047 
   3048       MacroStack.pop_back();
   3049     }
   3050 
   3051     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
   3052       // Create a new macro group and add it to the stack.
   3053       PathDiagnosticMacroPiece *NewGroup =
   3054         new PathDiagnosticMacroPiece(
   3055           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
   3056 
   3057       if (MacroGroup)
   3058         MacroGroup->subPieces.push_back(NewGroup);
   3059       else {
   3060         assert(InstantiationLoc.isFileID());
   3061         Pieces.push_back(NewGroup);
   3062       }
   3063 
   3064       MacroGroup = NewGroup;
   3065       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
   3066     }
   3067 
   3068     // Finally, add the PathDiagnosticPiece to the group.
   3069     MacroGroup->subPieces.push_back(piece);
   3070   }
   3071 
   3072   // Now take the pieces and construct a new PathDiagnostic.
   3073   path.clear();
   3074 
   3075   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
   3076     path.push_back(*I);
   3077 }
   3078 
   3079 bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
   3080                                            PathDiagnosticConsumer &PC,
   3081                                            ArrayRef<BugReport *> &bugReports) {
   3082   assert(!bugReports.empty());
   3083 
   3084   bool HasValid = false;
   3085   bool HasInvalid = false;
   3086   SmallVector<const ExplodedNode *, 32> errorNodes;
   3087   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
   3088                                       E = bugReports.end(); I != E; ++I) {
   3089     if ((*I)->isValid()) {
   3090       HasValid = true;
   3091       errorNodes.push_back((*I)->getErrorNode());
   3092     } else {
   3093       // Keep the errorNodes list in sync with the bugReports list.
   3094       HasInvalid = true;
   3095       errorNodes.push_back(nullptr);
   3096     }
   3097   }
   3098 
   3099   // If all the reports have been marked invalid by a previous path generation,
   3100   // we're done.
   3101   if (!HasValid)
   3102     return false;
   3103 
   3104   typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
   3105   PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
   3106 
   3107   if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
   3108     AnalyzerOptions &options = getAnalyzerOptions();
   3109     if (options.getBooleanOption("path-diagnostics-alternate", true)) {
   3110       ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
   3111     }
   3112   }
   3113 
   3114   TrimmedGraph TrimG(&getGraph(), errorNodes);
   3115   ReportGraph ErrorGraph;
   3116 
   3117   while (TrimG.popNextReportGraph(ErrorGraph)) {
   3118     // Find the BugReport with the original location.
   3119     assert(ErrorGraph.Index < bugReports.size());
   3120     BugReport *R = bugReports[ErrorGraph.Index];
   3121     assert(R && "No original report found for sliced graph.");
   3122     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
   3123 
   3124     // Start building the path diagnostic...
   3125     PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
   3126     const ExplodedNode *N = ErrorGraph.ErrorNode;
   3127 
   3128     // Register additional node visitors.
   3129     R->addVisitor(new NilReceiverBRVisitor());
   3130     R->addVisitor(new ConditionBRVisitor());
   3131     R->addVisitor(new LikelyFalsePositiveSuppressionBRVisitor());
   3132 
   3133     BugReport::VisitorList visitors;
   3134     unsigned origReportConfigToken, finalReportConfigToken;
   3135     LocationContextMap LCM;
   3136 
   3137     // While generating diagnostics, it's possible the visitors will decide
   3138     // new symbols and regions are interesting, or add other visitors based on
   3139     // the information they find. If they do, we need to regenerate the path
   3140     // based on our new report configuration.
   3141     do {
   3142       // Get a clean copy of all the visitors.
   3143       for (BugReport::visitor_iterator I = R->visitor_begin(),
   3144                                        E = R->visitor_end(); I != E; ++I)
   3145         visitors.push_back((*I)->clone());
   3146 
   3147       // Clear out the active path from any previous work.
   3148       PD.resetPath();
   3149       origReportConfigToken = R->getConfigurationChangeToken();
   3150 
   3151       // Generate the very last diagnostic piece - the piece is visible before
   3152       // the trace is expanded.
   3153       std::unique_ptr<PathDiagnosticPiece> LastPiece;
   3154       for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
   3155           I != E; ++I) {
   3156         if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
   3157           assert (!LastPiece &&
   3158               "There can only be one final piece in a diagnostic.");
   3159           LastPiece.reset(Piece);
   3160         }
   3161       }
   3162 
   3163       if (ActiveScheme != PathDiagnosticConsumer::None) {
   3164         if (!LastPiece)
   3165           LastPiece.reset(BugReporterVisitor::getDefaultEndPath(PDB, N, *R));
   3166         assert(LastPiece);
   3167         PD.setEndOfPath(LastPiece.release());
   3168       }
   3169 
   3170       // Make sure we get a clean location context map so we don't
   3171       // hold onto old mappings.
   3172       LCM.clear();
   3173 
   3174       switch (ActiveScheme) {
   3175       case PathDiagnosticConsumer::AlternateExtensive:
   3176         GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
   3177         break;
   3178       case PathDiagnosticConsumer::Extensive:
   3179         GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
   3180         break;
   3181       case PathDiagnosticConsumer::Minimal:
   3182         GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
   3183         break;
   3184       case PathDiagnosticConsumer::None:
   3185         GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
   3186         break;
   3187       }
   3188 
   3189       // Clean up the visitors we used.
   3190       llvm::DeleteContainerPointers(visitors);
   3191 
   3192       // Did anything change while generating this path?
   3193       finalReportConfigToken = R->getConfigurationChangeToken();
   3194     } while (finalReportConfigToken != origReportConfigToken);
   3195 
   3196     if (!R->isValid())
   3197       continue;
   3198 
   3199     // Finally, prune the diagnostic path of uninteresting stuff.
   3200     if (!PD.path.empty()) {
   3201       if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
   3202         bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
   3203         assert(stillHasNotes);
   3204         (void)stillHasNotes;
   3205       }
   3206 
   3207       // Redirect all call pieces to have valid locations.
   3208       adjustCallLocations(PD.getMutablePieces());
   3209       removePiecesWithInvalidLocations(PD.getMutablePieces());
   3210 
   3211       if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
   3212         SourceManager &SM = getSourceManager();
   3213 
   3214         // Reduce the number of edges from a very conservative set
   3215         // to an aesthetically pleasing subset that conveys the
   3216         // necessary information.
   3217         OptimizedCallsSet OCS;
   3218         while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
   3219 
   3220         // Drop the very first function-entry edge. It's not really necessary
   3221         // for top-level functions.
   3222         dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
   3223       }
   3224 
   3225       // Remove messages that are basically the same, and edges that may not
   3226       // make sense.
   3227       // We have to do this after edge optimization in the Extensive mode.
   3228       removeRedundantMsgs(PD.getMutablePieces());
   3229       removeEdgesToDefaultInitializers(PD.getMutablePieces());
   3230     }
   3231 
   3232     // We found a report and didn't suppress it.
   3233     return true;
   3234   }
   3235 
   3236   // We suppressed all the reports in this equivalence class.
   3237   assert(!HasInvalid && "Inconsistent suppression");
   3238   (void)HasInvalid;
   3239   return false;
   3240 }
   3241 
   3242 void BugReporter::Register(BugType *BT) {
   3243   BugTypes = F.add(BugTypes, BT);
   3244 }
   3245 
   3246 void BugReporter::emitReport(BugReport* R) {
   3247   // To guarantee memory release.
   3248   std::unique_ptr<BugReport> UniqueR(R);
   3249 
   3250   // Defensive checking: throw the bug away if it comes from a BodyFarm-
   3251   // generated body. We do this very early because report processing relies
   3252   // on the report's location being valid.
   3253   // FIXME: Valid bugs can occur in BodyFarm-generated bodies, so really we
   3254   // need to just find a reasonable location like we do later on with the path
   3255   // pieces.
   3256   if (const ExplodedNode *E = R->getErrorNode()) {
   3257     const LocationContext *LCtx = E->getLocationContext();
   3258     if (LCtx->getAnalysisDeclContext()->isBodyAutosynthesized())
   3259       return;
   3260   }
   3261 
   3262   bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
   3263   assert(ValidSourceLoc);
   3264   // If we mess up in a release build, we'd still prefer to just drop the bug
   3265   // instead of trying to go on.
   3266   if (!ValidSourceLoc)
   3267     return;
   3268 
   3269   // Compute the bug report's hash to determine its equivalence class.
   3270   llvm::FoldingSetNodeID ID;
   3271   R->Profile(ID);
   3272 
   3273   // Lookup the equivance class.  If there isn't one, create it.
   3274   BugType& BT = R->getBugType();
   3275   Register(&BT);
   3276   void *InsertPos;
   3277   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
   3278 
   3279   if (!EQ) {
   3280     EQ = new BugReportEquivClass(UniqueR.release());
   3281     EQClasses.InsertNode(EQ, InsertPos);
   3282     EQClassesVector.push_back(EQ);
   3283   }
   3284   else
   3285     EQ->AddReport(UniqueR.release());
   3286 }
   3287 
   3288 
   3289 //===----------------------------------------------------------------------===//
   3290 // Emitting reports in equivalence classes.
   3291 //===----------------------------------------------------------------------===//
   3292 
   3293 namespace {
   3294 struct FRIEC_WLItem {
   3295   const ExplodedNode *N;
   3296   ExplodedNode::const_succ_iterator I, E;
   3297 
   3298   FRIEC_WLItem(const ExplodedNode *n)
   3299   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
   3300 };
   3301 }
   3302 
   3303 static BugReport *
   3304 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
   3305                              SmallVectorImpl<BugReport*> &bugReports) {
   3306 
   3307   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
   3308   assert(I != E);
   3309   BugType& BT = I->getBugType();
   3310 
   3311   // If we don't need to suppress any of the nodes because they are
   3312   // post-dominated by a sink, simply add all the nodes in the equivalence class
   3313   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
   3314   if (!BT.isSuppressOnSink()) {
   3315     BugReport *R = I;
   3316     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
   3317       const ExplodedNode *N = I->getErrorNode();
   3318       if (N) {
   3319         R = I;
   3320         bugReports.push_back(R);
   3321       }
   3322     }
   3323     return R;
   3324   }
   3325 
   3326   // For bug reports that should be suppressed when all paths are post-dominated
   3327   // by a sink node, iterate through the reports in the equivalence class
   3328   // until we find one that isn't post-dominated (if one exists).  We use a
   3329   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
   3330   // this as a recursive function, but we don't want to risk blowing out the
   3331   // stack for very long paths.
   3332   BugReport *exampleReport = nullptr;
   3333 
   3334   for (; I != E; ++I) {
   3335     const ExplodedNode *errorNode = I->getErrorNode();
   3336 
   3337     if (!errorNode)
   3338       continue;
   3339     if (errorNode->isSink()) {
   3340       llvm_unreachable(
   3341            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
   3342     }
   3343     // No successors?  By definition this nodes isn't post-dominated by a sink.
   3344     if (errorNode->succ_empty()) {
   3345       bugReports.push_back(I);
   3346       if (!exampleReport)
   3347         exampleReport = I;
   3348       continue;
   3349     }
   3350 
   3351     // At this point we know that 'N' is not a sink and it has at least one
   3352     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
   3353     typedef FRIEC_WLItem WLItem;
   3354     typedef SmallVector<WLItem, 10> DFSWorkList;
   3355     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
   3356 
   3357     DFSWorkList WL;
   3358     WL.push_back(errorNode);
   3359     Visited[errorNode] = 1;
   3360 
   3361     while (!WL.empty()) {
   3362       WLItem &WI = WL.back();
   3363       assert(!WI.N->succ_empty());
   3364 
   3365       for (; WI.I != WI.E; ++WI.I) {
   3366         const ExplodedNode *Succ = *WI.I;
   3367         // End-of-path node?
   3368         if (Succ->succ_empty()) {
   3369           // If we found an end-of-path node that is not a sink.
   3370           if (!Succ->isSink()) {
   3371             bugReports.push_back(I);
   3372             if (!exampleReport)
   3373               exampleReport = I;
   3374             WL.clear();
   3375             break;
   3376           }
   3377           // Found a sink?  Continue on to the next successor.
   3378           continue;
   3379         }
   3380         // Mark the successor as visited.  If it hasn't been explored,
   3381         // enqueue it to the DFS worklist.
   3382         unsigned &mark = Visited[Succ];
   3383         if (!mark) {
   3384           mark = 1;
   3385           WL.push_back(Succ);
   3386           break;
   3387         }
   3388       }
   3389 
   3390       // The worklist may have been cleared at this point.  First
   3391       // check if it is empty before checking the last item.
   3392       if (!WL.empty() && &WL.back() == &WI)
   3393         WL.pop_back();
   3394     }
   3395   }
   3396 
   3397   // ExampleReport will be NULL if all the nodes in the equivalence class
   3398   // were post-dominated by sinks.
   3399   return exampleReport;
   3400 }
   3401 
   3402 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
   3403   SmallVector<BugReport*, 10> bugReports;
   3404   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
   3405   if (exampleReport) {
   3406     for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) {
   3407       FlushReport(exampleReport, *PDC, bugReports);
   3408     }
   3409   }
   3410 }
   3411 
   3412 void BugReporter::FlushReport(BugReport *exampleReport,
   3413                               PathDiagnosticConsumer &PD,
   3414                               ArrayRef<BugReport*> bugReports) {
   3415 
   3416   // FIXME: Make sure we use the 'R' for the path that was actually used.
   3417   // Probably doesn't make a difference in practice.
   3418   BugType& BT = exampleReport->getBugType();
   3419 
   3420   std::unique_ptr<PathDiagnostic> D(new PathDiagnostic(
   3421       exampleReport->getBugType().getCheckName(),
   3422       exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(),
   3423       exampleReport->getDescription(),
   3424       exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(),
   3425       exampleReport->getUniqueingLocation(),
   3426       exampleReport->getUniqueingDecl()));
   3427 
   3428   MaxBugClassSize = std::max(bugReports.size(),
   3429                              static_cast<size_t>(MaxBugClassSize));
   3430 
   3431   // Generate the full path diagnostic, using the generation scheme
   3432   // specified by the PathDiagnosticConsumer. Note that we have to generate
   3433   // path diagnostics even for consumers which do not support paths, because
   3434   // the BugReporterVisitors may mark this bug as a false positive.
   3435   if (!bugReports.empty())
   3436     if (!generatePathDiagnostic(*D.get(), PD, bugReports))
   3437       return;
   3438 
   3439   MaxValidBugClassSize = std::max(bugReports.size(),
   3440                                   static_cast<size_t>(MaxValidBugClassSize));
   3441 
   3442   // Examine the report and see if the last piece is in a header. Reset the
   3443   // report location to the last piece in the main source file.
   3444   AnalyzerOptions& Opts = getAnalyzerOptions();
   3445   if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
   3446     D->resetDiagnosticLocationToMainFile();
   3447 
   3448   // If the path is empty, generate a single step path with the location
   3449   // of the issue.
   3450   if (D->path.empty()) {
   3451     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
   3452     PathDiagnosticPiece *piece =
   3453       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
   3454     BugReport::ranges_iterator Beg, End;
   3455     std::tie(Beg, End) = exampleReport->getRanges();
   3456     for ( ; Beg != End; ++Beg)
   3457       piece->addRange(*Beg);
   3458     D->setEndOfPath(piece);
   3459   }
   3460 
   3461   // Get the meta data.
   3462   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
   3463   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
   3464                                                 e = Meta.end(); i != e; ++i) {
   3465     D->addMeta(*i);
   3466   }
   3467 
   3468   PD.HandlePathDiagnostic(D.release());
   3469 }
   3470 
   3471 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
   3472                                   const CheckerBase *Checker,
   3473                                   StringRef Name, StringRef Category,
   3474                                   StringRef Str, PathDiagnosticLocation Loc,
   3475                                   ArrayRef<SourceRange> Ranges) {
   3476   EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
   3477                   Loc, Ranges);
   3478 }
   3479 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
   3480                                   CheckName CheckName,
   3481                                   StringRef name, StringRef category,
   3482                                   StringRef str, PathDiagnosticLocation Loc,
   3483                                   ArrayRef<SourceRange> Ranges) {
   3484 
   3485   // 'BT' is owned by BugReporter.
   3486   BugType *BT = getBugTypeForName(CheckName, name, category);
   3487   BugReport *R = new BugReport(*BT, str, Loc);
   3488   R->setDeclWithIssue(DeclWithIssue);
   3489   for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
   3490        I != E; ++I)
   3491     R->addRange(*I);
   3492   emitReport(R);
   3493 }
   3494 
   3495 BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
   3496                                         StringRef category) {
   3497   SmallString<136> fullDesc;
   3498   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
   3499                                       << ":" << category;
   3500   llvm::StringMapEntry<BugType *> &
   3501       entry = StrBugTypes.GetOrCreateValue(fullDesc);
   3502   BugType *BT = entry.getValue();
   3503   if (!BT) {
   3504     BT = new BugType(CheckName, name, category);
   3505     entry.setValue(BT);
   3506   }
   3507   return BT;
   3508 }
   3509 
   3510 LLVM_DUMP_METHOD void PathPieces::dump() const {
   3511   unsigned index = 0;
   3512   for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
   3513     llvm::errs() << "[" << index++ << "]  ";
   3514     (*I)->dump();
   3515     llvm::errs() << "\n";
   3516   }
   3517 }
   3518 
   3519 void PathDiagnosticCallPiece::dump() const {
   3520   llvm::errs() << "CALL\n--------------\n";
   3521 
   3522   if (const Stmt *SLoc = getLocStmt(getLocation()))
   3523     SLoc->dump();
   3524   else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
   3525     llvm::errs() << *ND << "\n";
   3526   else
   3527     getLocation().dump();
   3528 }
   3529 
   3530 void PathDiagnosticEventPiece::dump() const {
   3531   llvm::errs() << "EVENT\n--------------\n";
   3532   llvm::errs() << getString() << "\n";
   3533   llvm::errs() << " ---- at ----\n";
   3534   getLocation().dump();
   3535 }
   3536 
   3537 void PathDiagnosticControlFlowPiece::dump() const {
   3538   llvm::errs() << "CONTROL\n--------------\n";
   3539   getStartLocation().dump();
   3540   llvm::errs() << " ---- to ----\n";
   3541   getEndLocation().dump();
   3542 }
   3543 
   3544 void PathDiagnosticMacroPiece::dump() const {
   3545   llvm::errs() << "MACRO\n--------------\n";
   3546   // FIXME: Print which macro is being invoked.
   3547 }
   3548 
   3549 void PathDiagnosticLocation::dump() const {
   3550   if (!isValid()) {
   3551     llvm::errs() << "<INVALID>\n";
   3552     return;
   3553   }
   3554 
   3555   switch (K) {
   3556   case RangeK:
   3557     // FIXME: actually print the range.
   3558     llvm::errs() << "<range>\n";
   3559     break;
   3560   case SingleLocK:
   3561     asLocation().dump();
   3562     llvm::errs() << "\n";
   3563     break;
   3564   case StmtK:
   3565     if (S)
   3566       S->dump();
   3567     else
   3568       llvm::errs() << "<NULL STMT>\n";
   3569     break;
   3570   case DeclK:
   3571     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
   3572       llvm::errs() << *ND << "\n";
   3573     else if (isa<BlockDecl>(D))
   3574       // FIXME: Make this nicer.
   3575       llvm::errs() << "<block>\n";
   3576     else if (D)
   3577       llvm::errs() << "<unknown decl>\n";
   3578     else
   3579       llvm::errs() << "<NULL DECL>\n";
   3580     break;
   3581   }
   3582 }
   3583