Home | History | Annotate | Download | only in rand.dist.pois.poisson
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // <random>
     11 
     12 // template<class IntType = int>
     13 // class poisson_distribution
     14 
     15 // template<class _URNG> result_type operator()(_URNG& g);
     16 
     17 #include <random>
     18 #include <cassert>
     19 #include <vector>
     20 #include <numeric>
     21 
     22 template <class T>
     23 inline
     24 T
     25 sqr(T x)
     26 {
     27     return x * x;
     28 }
     29 
     30 int main()
     31 {
     32     {
     33         typedef std::poisson_distribution<> D;
     34         typedef std::minstd_rand G;
     35         G g;
     36         D d(2);
     37         const int N = 100000;
     38         std::vector<double> u;
     39         for (int i = 0; i < N; ++i)
     40         {
     41             D::result_type v = d(g);
     42             assert(d.min() <= v && v <= d.max());
     43             u.push_back(v);
     44         }
     45         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     46         double var = 0;
     47         double skew = 0;
     48         double kurtosis = 0;
     49         for (int i = 0; i < u.size(); ++i)
     50         {
     51             double d = (u[i] - mean);
     52             double d2 = sqr(d);
     53             var += d2;
     54             skew += d * d2;
     55             kurtosis += d2 * d2;
     56         }
     57         var /= u.size();
     58         double dev = std::sqrt(var);
     59         skew /= u.size() * dev * var;
     60         kurtosis /= u.size() * var * var;
     61         kurtosis -= 3;
     62         double x_mean = d.mean();
     63         double x_var = d.mean();
     64         double x_skew = 1 / std::sqrt(x_var);
     65         double x_kurtosis = 1 / x_var;
     66         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     67         assert(std::abs((var - x_var) / x_var) < 0.01);
     68         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     69         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
     70     }
     71     {
     72         typedef std::poisson_distribution<> D;
     73         typedef std::minstd_rand G;
     74         G g;
     75         D d(0.75);
     76         const int N = 100000;
     77         std::vector<double> u;
     78         for (int i = 0; i < N; ++i)
     79         {
     80             D::result_type v = d(g);
     81             assert(d.min() <= v && v <= d.max());
     82             u.push_back(v);
     83         }
     84         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     85         double var = 0;
     86         double skew = 0;
     87         double kurtosis = 0;
     88         for (int i = 0; i < u.size(); ++i)
     89         {
     90             double d = (u[i] - mean);
     91             double d2 = sqr(d);
     92             var += d2;
     93             skew += d * d2;
     94             kurtosis += d2 * d2;
     95         }
     96         var /= u.size();
     97         double dev = std::sqrt(var);
     98         skew /= u.size() * dev * var;
     99         kurtosis /= u.size() * var * var;
    100         kurtosis -= 3;
    101         double x_mean = d.mean();
    102         double x_var = d.mean();
    103         double x_skew = 1 / std::sqrt(x_var);
    104         double x_kurtosis = 1 / x_var;
    105         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    106         assert(std::abs((var - x_var) / x_var) < 0.01);
    107         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    108         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
    109     }
    110     {
    111         typedef std::poisson_distribution<> D;
    112         typedef std::mt19937 G;
    113         G g;
    114         D d(20);
    115         const int N = 1000000;
    116         std::vector<double> u;
    117         for (int i = 0; i < N; ++i)
    118         {
    119             D::result_type v = d(g);
    120             assert(d.min() <= v && v <= d.max());
    121             u.push_back(v);
    122         }
    123         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    124         double var = 0;
    125         double skew = 0;
    126         double kurtosis = 0;
    127         for (int i = 0; i < u.size(); ++i)
    128         {
    129             double d = (u[i] - mean);
    130             double d2 = sqr(d);
    131             var += d2;
    132             skew += d * d2;
    133             kurtosis += d2 * d2;
    134         }
    135         var /= u.size();
    136         double dev = std::sqrt(var);
    137         skew /= u.size() * dev * var;
    138         kurtosis /= u.size() * var * var;
    139         kurtosis -= 3;
    140         double x_mean = d.mean();
    141         double x_var = d.mean();
    142         double x_skew = 1 / std::sqrt(x_var);
    143         double x_kurtosis = 1 / x_var;
    144         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    145         assert(std::abs((var - x_var) / x_var) < 0.01);
    146         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    147         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    148     }
    149 }
    150