Home | History | Annotate | Download | only in rand.dist.pois.weibull
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // <random>
     11 
     12 // template<class RealType = double>
     13 // class weibull_distribution
     14 
     15 // template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
     16 
     17 #include <random>
     18 #include <cassert>
     19 #include <vector>
     20 #include <numeric>
     21 
     22 template <class T>
     23 inline
     24 T
     25 sqr(T x)
     26 {
     27     return x * x;
     28 }
     29 
     30 int main()
     31 {
     32     {
     33         typedef std::weibull_distribution<> D;
     34         typedef D::param_type P;
     35         typedef std::mt19937 G;
     36         G g;
     37         D d(0.5, 2);
     38         P p(1, .5);
     39         const int N = 1000000;
     40         std::vector<D::result_type> u;
     41         for (int i = 0; i < N; ++i)
     42         {
     43             D::result_type v = d(g, p);
     44             assert(d.min() <= v);
     45             u.push_back(v);
     46         }
     47         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     48         double var = 0;
     49         double skew = 0;
     50         double kurtosis = 0;
     51         for (int i = 0; i < u.size(); ++i)
     52         {
     53             double d = (u[i] - mean);
     54             double d2 = sqr(d);
     55             var += d2;
     56             skew += d * d2;
     57             kurtosis += d2 * d2;
     58         }
     59         var /= u.size();
     60         double dev = std::sqrt(var);
     61         skew /= u.size() * dev * var;
     62         kurtosis /= u.size() * var * var;
     63         kurtosis -= 3;
     64         double x_mean = p.b() * std::tgamma(1 + 1/p.a());
     65         double x_var = sqr(p.b()) * std::tgamma(1 + 2/p.a()) - sqr(x_mean);
     66         double x_skew = (sqr(p.b())*p.b() * std::tgamma(1 + 3/p.a()) -
     67                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
     68                         (std::sqrt(x_var)*x_var);
     69         double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) -
     70                        4*x_skew*x_var*sqrt(x_var)*x_mean -
     71                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
     72         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     73         assert(std::abs((var - x_var) / x_var) < 0.01);
     74         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
     75         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
     76     }
     77     {
     78         typedef std::weibull_distribution<> D;
     79         typedef D::param_type P;
     80         typedef std::mt19937 G;
     81         G g;
     82         D d(1, .5);
     83         P p(2, 3);
     84         const int N = 1000000;
     85         std::vector<D::result_type> u;
     86         for (int i = 0; i < N; ++i)
     87         {
     88             D::result_type v = d(g, p);
     89             assert(d.min() <= v);
     90             u.push_back(v);
     91         }
     92         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
     93         double var = 0;
     94         double skew = 0;
     95         double kurtosis = 0;
     96         for (int i = 0; i < u.size(); ++i)
     97         {
     98             double d = (u[i] - mean);
     99             double d2 = sqr(d);
    100             var += d2;
    101             skew += d * d2;
    102             kurtosis += d2 * d2;
    103         }
    104         var /= u.size();
    105         double dev = std::sqrt(var);
    106         skew /= u.size() * dev * var;
    107         kurtosis /= u.size() * var * var;
    108         kurtosis -= 3;
    109         double x_mean = p.b() * std::tgamma(1 + 1/p.a());
    110         double x_var = sqr(p.b()) * std::tgamma(1 + 2/p.a()) - sqr(x_mean);
    111         double x_skew = (sqr(p.b())*p.b() * std::tgamma(1 + 3/p.a()) -
    112                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
    113                         (std::sqrt(x_var)*x_var);
    114         double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) -
    115                        4*x_skew*x_var*sqrt(x_var)*x_mean -
    116                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
    117         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    118         assert(std::abs((var - x_var) / x_var) < 0.01);
    119         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    120         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
    121     }
    122     {
    123         typedef std::weibull_distribution<> D;
    124         typedef D::param_type P;
    125         typedef std::mt19937 G;
    126         G g;
    127         D d(2, 3);
    128         P p(.5, 2);
    129         const int N = 1000000;
    130         std::vector<D::result_type> u;
    131         for (int i = 0; i < N; ++i)
    132         {
    133             D::result_type v = d(g, p);
    134             assert(d.min() <= v);
    135             u.push_back(v);
    136         }
    137         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
    138         double var = 0;
    139         double skew = 0;
    140         double kurtosis = 0;
    141         for (int i = 0; i < u.size(); ++i)
    142         {
    143             double d = (u[i] - mean);
    144             double d2 = sqr(d);
    145             var += d2;
    146             skew += d * d2;
    147             kurtosis += d2 * d2;
    148         }
    149         var /= u.size();
    150         double dev = std::sqrt(var);
    151         skew /= u.size() * dev * var;
    152         kurtosis /= u.size() * var * var;
    153         kurtosis -= 3;
    154         double x_mean = p.b() * std::tgamma(1 + 1/p.a());
    155         double x_var = sqr(p.b()) * std::tgamma(1 + 2/p.a()) - sqr(x_mean);
    156         double x_skew = (sqr(p.b())*p.b() * std::tgamma(1 + 3/p.a()) -
    157                         3*x_mean*x_var - sqr(x_mean)*x_mean) /
    158                         (std::sqrt(x_var)*x_var);
    159         double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) -
    160                        4*x_skew*x_var*sqrt(x_var)*x_mean -
    161                        6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
    162         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    163         assert(std::abs((var - x_var) / x_var) < 0.01);
    164         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
    165         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
    166     }
    167 }
    168