Home | History | Annotate | Download | only in rand.dist.uni.real
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 // <random>
     11 
     12 // template<class RealType = double>
     13 // class uniform_real_distribution
     14 
     15 // template<class _URNG> result_type operator()(_URNG& g);
     16 
     17 #include <random>
     18 #include <cassert>
     19 #include <vector>
     20 #include <numeric>
     21 
     22 template <class T>
     23 inline
     24 T
     25 sqr(T x)
     26 {
     27     return x * x;
     28 }
     29 
     30 int main()
     31 {
     32     {
     33         typedef std::uniform_real_distribution<> D;
     34         typedef std::minstd_rand0 G;
     35         G g;
     36         D d;
     37         const int N = 100000;
     38         std::vector<D::result_type> u;
     39         for (int i = 0; i < N; ++i)
     40         {
     41             D::result_type v = d(g);
     42             assert(d.a() <= v && v < d.b());
     43             u.push_back(v);
     44         }
     45         D::result_type mean = std::accumulate(u.begin(), u.end(),
     46                                               D::result_type(0)) / u.size();
     47         D::result_type var = 0;
     48         D::result_type skew = 0;
     49         D::result_type kurtosis = 0;
     50         for (int i = 0; i < u.size(); ++i)
     51         {
     52             D::result_type d = (u[i] - mean);
     53             D::result_type d2 = sqr(d);
     54             var += d2;
     55             skew += d * d2;
     56             kurtosis += d2 * d2;
     57         }
     58         var /= u.size();
     59         D::result_type dev = std::sqrt(var);
     60         skew /= u.size() * dev * var;
     61         kurtosis /= u.size() * var * var;
     62         kurtosis -= 3;
     63         D::result_type x_mean = (d.a() + d.b()) / 2;
     64         D::result_type x_var = sqr(d.b() - d.a()) / 12;
     65         D::result_type x_skew = 0;
     66         D::result_type x_kurtosis = -6./5;
     67         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
     68         assert(std::abs((var - x_var) / x_var) < 0.01);
     69         assert(std::abs(skew - x_skew) < 0.01);
     70         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
     71     }
     72     {
     73         typedef std::uniform_real_distribution<> D;
     74         typedef std::minstd_rand G;
     75         G g;
     76         D d;
     77         const int N = 100000;
     78         std::vector<D::result_type> u;
     79         for (int i = 0; i < N; ++i)
     80         {
     81             D::result_type v = d(g);
     82             assert(d.a() <= v && v < d.b());
     83             u.push_back(v);
     84         }
     85         D::result_type mean = std::accumulate(u.begin(), u.end(),
     86                                               D::result_type(0)) / u.size();
     87         D::result_type var = 0;
     88         D::result_type skew = 0;
     89         D::result_type kurtosis = 0;
     90         for (int i = 0; i < u.size(); ++i)
     91         {
     92             D::result_type d = (u[i] - mean);
     93             D::result_type d2 = sqr(d);
     94             var += d2;
     95             skew += d * d2;
     96             kurtosis += d2 * d2;
     97         }
     98         var /= u.size();
     99         D::result_type dev = std::sqrt(var);
    100         skew /= u.size() * dev * var;
    101         kurtosis /= u.size() * var * var;
    102         kurtosis -= 3;
    103         D::result_type x_mean = (d.a() + d.b()) / 2;
    104         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    105         D::result_type x_skew = 0;
    106         D::result_type x_kurtosis = -6./5;
    107         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    108         assert(std::abs((var - x_var) / x_var) < 0.01);
    109         assert(std::abs(skew - x_skew) < 0.01);
    110         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    111     }
    112     {
    113         typedef std::uniform_real_distribution<> D;
    114         typedef std::mt19937 G;
    115         G g;
    116         D d;
    117         const int N = 100000;
    118         std::vector<D::result_type> u;
    119         for (int i = 0; i < N; ++i)
    120         {
    121             D::result_type v = d(g);
    122             assert(d.a() <= v && v < d.b());
    123             u.push_back(v);
    124         }
    125         D::result_type mean = std::accumulate(u.begin(), u.end(),
    126                                               D::result_type(0)) / u.size();
    127         D::result_type var = 0;
    128         D::result_type skew = 0;
    129         D::result_type kurtosis = 0;
    130         for (int i = 0; i < u.size(); ++i)
    131         {
    132             D::result_type d = (u[i] - mean);
    133             D::result_type d2 = sqr(d);
    134             var += d2;
    135             skew += d * d2;
    136             kurtosis += d2 * d2;
    137         }
    138         var /= u.size();
    139         D::result_type dev = std::sqrt(var);
    140         skew /= u.size() * dev * var;
    141         kurtosis /= u.size() * var * var;
    142         kurtosis -= 3;
    143         D::result_type x_mean = (d.a() + d.b()) / 2;
    144         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    145         D::result_type x_skew = 0;
    146         D::result_type x_kurtosis = -6./5;
    147         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    148         assert(std::abs((var - x_var) / x_var) < 0.01);
    149         assert(std::abs(skew - x_skew) < 0.01);
    150         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    151     }
    152     {
    153         typedef std::uniform_real_distribution<> D;
    154         typedef std::mt19937_64 G;
    155         G g;
    156         D d;
    157         const int N = 100000;
    158         std::vector<D::result_type> u;
    159         for (int i = 0; i < N; ++i)
    160         {
    161             D::result_type v = d(g);
    162             assert(d.a() <= v && v < d.b());
    163             u.push_back(v);
    164         }
    165         D::result_type mean = std::accumulate(u.begin(), u.end(),
    166                                               D::result_type(0)) / u.size();
    167         D::result_type var = 0;
    168         D::result_type skew = 0;
    169         D::result_type kurtosis = 0;
    170         for (int i = 0; i < u.size(); ++i)
    171         {
    172             D::result_type d = (u[i] - mean);
    173             D::result_type d2 = sqr(d);
    174             var += d2;
    175             skew += d * d2;
    176             kurtosis += d2 * d2;
    177         }
    178         var /= u.size();
    179         D::result_type dev = std::sqrt(var);
    180         skew /= u.size() * dev * var;
    181         kurtosis /= u.size() * var * var;
    182         kurtosis -= 3;
    183         D::result_type x_mean = (d.a() + d.b()) / 2;
    184         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    185         D::result_type x_skew = 0;
    186         D::result_type x_kurtosis = -6./5;
    187         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    188         assert(std::abs((var - x_var) / x_var) < 0.01);
    189         assert(std::abs(skew - x_skew) < 0.01);
    190         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    191     }
    192     {
    193         typedef std::uniform_real_distribution<> D;
    194         typedef std::ranlux24_base G;
    195         G g;
    196         D d;
    197         const int N = 100000;
    198         std::vector<D::result_type> u;
    199         for (int i = 0; i < N; ++i)
    200         {
    201             D::result_type v = d(g);
    202             assert(d.a() <= v && v < d.b());
    203             u.push_back(v);
    204         }
    205         D::result_type mean = std::accumulate(u.begin(), u.end(),
    206                                               D::result_type(0)) / u.size();
    207         D::result_type var = 0;
    208         D::result_type skew = 0;
    209         D::result_type kurtosis = 0;
    210         for (int i = 0; i < u.size(); ++i)
    211         {
    212             D::result_type d = (u[i] - mean);
    213             D::result_type d2 = sqr(d);
    214             var += d2;
    215             skew += d * d2;
    216             kurtosis += d2 * d2;
    217         }
    218         var /= u.size();
    219         D::result_type dev = std::sqrt(var);
    220         skew /= u.size() * dev * var;
    221         kurtosis /= u.size() * var * var;
    222         kurtosis -= 3;
    223         D::result_type x_mean = (d.a() + d.b()) / 2;
    224         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    225         D::result_type x_skew = 0;
    226         D::result_type x_kurtosis = -6./5;
    227         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    228         assert(std::abs((var - x_var) / x_var) < 0.01);
    229         assert(std::abs(skew - x_skew) < 0.02);
    230         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    231     }
    232     {
    233         typedef std::uniform_real_distribution<> D;
    234         typedef std::ranlux48_base G;
    235         G g;
    236         D d;
    237         const int N = 100000;
    238         std::vector<D::result_type> u;
    239         for (int i = 0; i < N; ++i)
    240         {
    241             D::result_type v = d(g);
    242             assert(d.a() <= v && v < d.b());
    243             u.push_back(v);
    244         }
    245         D::result_type mean = std::accumulate(u.begin(), u.end(),
    246                                               D::result_type(0)) / u.size();
    247         D::result_type var = 0;
    248         D::result_type skew = 0;
    249         D::result_type kurtosis = 0;
    250         for (int i = 0; i < u.size(); ++i)
    251         {
    252             D::result_type d = (u[i] - mean);
    253             D::result_type d2 = sqr(d);
    254             var += d2;
    255             skew += d * d2;
    256             kurtosis += d2 * d2;
    257         }
    258         var /= u.size();
    259         D::result_type dev = std::sqrt(var);
    260         skew /= u.size() * dev * var;
    261         kurtosis /= u.size() * var * var;
    262         kurtosis -= 3;
    263         D::result_type x_mean = (d.a() + d.b()) / 2;
    264         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    265         D::result_type x_skew = 0;
    266         D::result_type x_kurtosis = -6./5;
    267         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    268         assert(std::abs((var - x_var) / x_var) < 0.01);
    269         assert(std::abs(skew - x_skew) < 0.01);
    270         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    271     }
    272     {
    273         typedef std::uniform_real_distribution<> D;
    274         typedef std::ranlux24 G;
    275         G g;
    276         D d;
    277         const int N = 100000;
    278         std::vector<D::result_type> u;
    279         for (int i = 0; i < N; ++i)
    280         {
    281             D::result_type v = d(g);
    282             assert(d.a() <= v && v < d.b());
    283             u.push_back(v);
    284         }
    285         D::result_type mean = std::accumulate(u.begin(), u.end(),
    286                                               D::result_type(0)) / u.size();
    287         D::result_type var = 0;
    288         D::result_type skew = 0;
    289         D::result_type kurtosis = 0;
    290         for (int i = 0; i < u.size(); ++i)
    291         {
    292             D::result_type d = (u[i] - mean);
    293             D::result_type d2 = sqr(d);
    294             var += d2;
    295             skew += d * d2;
    296             kurtosis += d2 * d2;
    297         }
    298         var /= u.size();
    299         D::result_type dev = std::sqrt(var);
    300         skew /= u.size() * dev * var;
    301         kurtosis /= u.size() * var * var;
    302         kurtosis -= 3;
    303         D::result_type x_mean = (d.a() + d.b()) / 2;
    304         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    305         D::result_type x_skew = 0;
    306         D::result_type x_kurtosis = -6./5;
    307         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    308         assert(std::abs((var - x_var) / x_var) < 0.01);
    309         assert(std::abs(skew - x_skew) < 0.01);
    310         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    311     }
    312     {
    313         typedef std::uniform_real_distribution<> D;
    314         typedef std::ranlux48 G;
    315         G g;
    316         D d;
    317         const int N = 100000;
    318         std::vector<D::result_type> u;
    319         for (int i = 0; i < N; ++i)
    320         {
    321             D::result_type v = d(g);
    322             assert(d.a() <= v && v < d.b());
    323             u.push_back(v);
    324         }
    325         D::result_type mean = std::accumulate(u.begin(), u.end(),
    326                                               D::result_type(0)) / u.size();
    327         D::result_type var = 0;
    328         D::result_type skew = 0;
    329         D::result_type kurtosis = 0;
    330         for (int i = 0; i < u.size(); ++i)
    331         {
    332             D::result_type d = (u[i] - mean);
    333             D::result_type d2 = sqr(d);
    334             var += d2;
    335             skew += d * d2;
    336             kurtosis += d2 * d2;
    337         }
    338         var /= u.size();
    339         D::result_type dev = std::sqrt(var);
    340         skew /= u.size() * dev * var;
    341         kurtosis /= u.size() * var * var;
    342         kurtosis -= 3;
    343         D::result_type x_mean = (d.a() + d.b()) / 2;
    344         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    345         D::result_type x_skew = 0;
    346         D::result_type x_kurtosis = -6./5;
    347         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    348         assert(std::abs((var - x_var) / x_var) < 0.01);
    349         assert(std::abs(skew - x_skew) < 0.01);
    350         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    351     }
    352     {
    353         typedef std::uniform_real_distribution<> D;
    354         typedef std::knuth_b G;
    355         G g;
    356         D d;
    357         const int N = 100000;
    358         std::vector<D::result_type> u;
    359         for (int i = 0; i < N; ++i)
    360         {
    361             D::result_type v = d(g);
    362             assert(d.a() <= v && v < d.b());
    363             u.push_back(v);
    364         }
    365         D::result_type mean = std::accumulate(u.begin(), u.end(),
    366                                               D::result_type(0)) / u.size();
    367         D::result_type var = 0;
    368         D::result_type skew = 0;
    369         D::result_type kurtosis = 0;
    370         for (int i = 0; i < u.size(); ++i)
    371         {
    372             D::result_type d = (u[i] - mean);
    373             D::result_type d2 = sqr(d);
    374             var += d2;
    375             skew += d * d2;
    376             kurtosis += d2 * d2;
    377         }
    378         var /= u.size();
    379         D::result_type dev = std::sqrt(var);
    380         skew /= u.size() * dev * var;
    381         kurtosis /= u.size() * var * var;
    382         kurtosis -= 3;
    383         D::result_type x_mean = (d.a() + d.b()) / 2;
    384         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    385         D::result_type x_skew = 0;
    386         D::result_type x_kurtosis = -6./5;
    387         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    388         assert(std::abs((var - x_var) / x_var) < 0.01);
    389         assert(std::abs(skew - x_skew) < 0.01);
    390         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    391     }
    392     {
    393         typedef std::uniform_real_distribution<> D;
    394         typedef std::minstd_rand G;
    395         G g;
    396         D d(-1, 1);
    397         const int N = 100000;
    398         std::vector<D::result_type> u;
    399         for (int i = 0; i < N; ++i)
    400         {
    401             D::result_type v = d(g);
    402             assert(d.a() <= v && v < d.b());
    403             u.push_back(v);
    404         }
    405         D::result_type mean = std::accumulate(u.begin(), u.end(),
    406                                               D::result_type(0)) / u.size();
    407         D::result_type var = 0;
    408         D::result_type skew = 0;
    409         D::result_type kurtosis = 0;
    410         for (int i = 0; i < u.size(); ++i)
    411         {
    412             D::result_type d = (u[i] - mean);
    413             D::result_type d2 = sqr(d);
    414             var += d2;
    415             skew += d * d2;
    416             kurtosis += d2 * d2;
    417         }
    418         var /= u.size();
    419         D::result_type dev = std::sqrt(var);
    420         skew /= u.size() * dev * var;
    421         kurtosis /= u.size() * var * var;
    422         kurtosis -= 3;
    423         D::result_type x_mean = (d.a() + d.b()) / 2;
    424         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    425         D::result_type x_skew = 0;
    426         D::result_type x_kurtosis = -6./5;
    427         assert(std::abs(mean - x_mean) < 0.01);
    428         assert(std::abs((var - x_var) / x_var) < 0.01);
    429         assert(std::abs(skew - x_skew) < 0.01);
    430         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    431     }
    432     {
    433         typedef std::uniform_real_distribution<> D;
    434         typedef std::minstd_rand G;
    435         G g;
    436         D d(5.5, 25);
    437         const int N = 100000;
    438         std::vector<D::result_type> u;
    439         for (int i = 0; i < N; ++i)
    440         {
    441             D::result_type v = d(g);
    442             assert(d.a() <= v && v < d.b());
    443             u.push_back(v);
    444         }
    445         D::result_type mean = std::accumulate(u.begin(), u.end(),
    446                                               D::result_type(0)) / u.size();
    447         D::result_type var = 0;
    448         D::result_type skew = 0;
    449         D::result_type kurtosis = 0;
    450         for (int i = 0; i < u.size(); ++i)
    451         {
    452             D::result_type d = (u[i] - mean);
    453             D::result_type d2 = sqr(d);
    454             var += d2;
    455             skew += d * d2;
    456             kurtosis += d2 * d2;
    457         }
    458         var /= u.size();
    459         D::result_type dev = std::sqrt(var);
    460         skew /= u.size() * dev * var;
    461         kurtosis /= u.size() * var * var;
    462         kurtosis -= 3;
    463         D::result_type x_mean = (d.a() + d.b()) / 2;
    464         D::result_type x_var = sqr(d.b() - d.a()) / 12;
    465         D::result_type x_skew = 0;
    466         D::result_type x_kurtosis = -6./5;
    467         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
    468         assert(std::abs((var - x_var) / x_var) < 0.01);
    469         assert(std::abs(skew - x_skew) < 0.01);
    470         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
    471     }
    472 }
    473