1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> 2 <html> 3 <head> 4 5 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/> 6 <title>Ogg Vorbis Documentation</title> 7 8 <style type="text/css"> 9 body { 10 margin: 0 18px 0 18px; 11 padding-bottom: 30px; 12 font-family: Verdana, Arial, Helvetica, sans-serif; 13 color: #333333; 14 font-size: .8em; 15 } 16 17 a { 18 color: #3366cc; 19 } 20 21 img { 22 border: 0; 23 } 24 25 #xiphlogo { 26 margin: 30px 0 16px 0; 27 } 28 29 #content p { 30 line-height: 1.4; 31 } 32 33 h1, h1 a, h2, h2 a, h3, h3 a { 34 font-weight: bold; 35 color: #ff9900; 36 margin: 1.3em 0 8px 0; 37 } 38 39 h1 { 40 font-size: 1.3em; 41 } 42 43 h2 { 44 font-size: 1.2em; 45 } 46 47 h3 { 48 font-size: 1.1em; 49 } 50 51 li { 52 line-height: 1.4; 53 } 54 55 #copyright { 56 margin-top: 30px; 57 line-height: 1.5em; 58 text-align: center; 59 font-size: .8em; 60 color: #888888; 61 clear: both; 62 } 63 </style> 64 65 </head> 66 67 <body> 68 69 <div id="xiphlogo"> 70 <a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.org"/></a> 71 </div> 72 73 <h1>Ogg Vorbis encoding format documentation</h1> 74 75 <p><img src="wait.png" alt="wait"/>As of writing, not all the below document 76 links are live. They will be populated as we complete the documents.</p> 77 78 <h2>Documents</h2> 79 80 <ul> 81 <li><a href="packet.html">Vorbis packet structure</a></li> 82 <li><a href="envelope.html">Temporal envelope shaping and blocksize</a></li> 83 <li><a href="mdct.html">Time domain segmentation and MDCT transform</a></li> 84 <li><a href="resolution.html">The resolution floor</a></li> 85 <li><a href="residuals.html">MDCT-domain fine structure</a></li> 86 </ul> 87 88 <ul> 89 <li><a href="probmodel.html">The Vorbis probability model</a></li> 90 <li><a href="bitpack.html">The Vorbis bitpacker</a></li> 91 </ul> 92 93 <ul> 94 <li><a href="oggstream.html">Ogg bitstream overview</a></li> 95 <li><a href="framing.html">Ogg logical bitstream and framing spec</a></li> 96 <li><a href="vorbis-stream.html">Vorbis packet->Ogg bitstream mapping</a></li> 97 </ul> 98 99 <ul> 100 <li><a href="programming.html">Programming with libvorbis</a></li> 101 </ul> 102 103 <h2>Description</h2> 104 105 <p>Ogg Vorbis is a general purpose compressed audio format 106 for high quality (44.1-48.0kHz, 16+ bit, polyphonic) audio and music 107 at moderate fixed and variable bitrates (40-80 kb/s/channel). This 108 places Vorbis in the same class as audio representations including 109 MPEG-1 audio layer 3, MPEG-4 audio (AAC and TwinVQ), and PAC.</p> 110 111 <p>Vorbis is the first of a planned family of Ogg multimedia coding 112 formats being developed as part of the Xiph.org Foundation's Ogg multimedia 113 project. See <a href="http://www.xiph.org/">http://www.xiph.org/</a> 114 for more information.</p> 115 116 <h2>Vorbis technical documents</h2> 117 118 <p>A Vorbis encoder takes in overlapping (but contiguous) short-time 119 segments of audio data. The encoder analyzes the content of the audio 120 to determine an optimal compact representation; this phase of encoding 121 is known as <em>analysis</em>. For each short-time block of sound, 122 the encoder then packs an efficient representation of the signal, as 123 determined by analysis, into a raw packet much smaller than the size 124 required by the original signal; this phase is <em>coding</em>. 125 Lastly, in a streaming environment, the raw packets are then 126 structured into a continuous stream of octets; this last phase is 127 <em>streaming</em>. Note that the stream of octets is referred to both 128 as a 'byte-' and 'bit-'stream; the latter usage is acceptible as the 129 stream of octets is a physical representation of a true logical 130 bit-by-bit stream.</p> 131 132 <p>A Vorbis decoder performs a mirror image process of extracting the 133 original sequence of raw packets from an Ogg stream (<em>stream 134 decomposition</em>), reconstructing the signal representation from the 135 raw data in the packet (<em>decoding</em>) and them reconstituting an 136 audio signal from the decoded representation (<em>synthesis</em>).</p> 137 138 <p>The <a href="programming.html">Programming with libvorbis</a> 139 documents discuss use of the reference Vorbis codec library 140 (libvorbis) produced by the Xiph.org Foundation.</p> 141 142 <p>The data representations and algorithms necessary at each step to 143 encode and decode Ogg Vorbis bitstreams are described by the below 144 documents in sufficient detail to construct a complete Vorbis codec. 145 Note that at the time of writing, Vorbis is still in a 'Request For 146 Comments' stage of development; despite being in advanced stages of 147 development, input from the multimedia community is welcome.</p> 148 149 <h3>Vorbis analysis and synthesis</h3> 150 151 <p>Analysis begins by seperating an input audio stream into individual, 152 overlapping short-time segments of audio data. These segments are 153 then transformed into an alternate representation, seeking to 154 represent the original signal in a more efficient form that codes into 155 a smaller number of bytes. The analysis and transformation stage is 156 the most complex element of producing a Vorbis bitstream.</p> 157 158 <p>The corresponding synthesis step in the decoder is simpler; there is 159 no analysis to perform, merely a mechanical, deterministic 160 reconstruction of the original audio data from the transform-domain 161 representation.</p> 162 163 <ul> 164 <li><a href="packet.html">Vorbis packet structure</a>: 165 Describes the basic analysis components necessary to produce Vorbis 166 packets and the structure of the packet itself.</li> 167 <li><a href="envelope.html">Temporal envelope shaping and blocksize</a>: 168 Use of temporal envelope shaping and variable blocksize to minimize 169 time-domain energy leakage during wide dynamic range and spectral energy 170 swings. Also discusses time-related principles of psychoacoustics.</li> 171 <li><a href="mdct.html">Time domain segmentation and MDCT transform</a>: 172 Division of time domain data into individual overlapped, windowed 173 short-time vectors and transformation using the MDCT</li> 174 <li><a href="resolution.html">The resolution floor</a>: Use of frequency 175 doamin psychoacoustics, and the MDCT-domain noise, masking and resolution 176 floors</li> 177 <li><a href="residuals.html">MDCT-domain fine structure</a>: Production, 178 quantization and massaging of MDCT-spectrum fine structure</li> 179 </ul> 180 181 <h3>Vorbis coding and decoding</h3> 182 183 <p>Coding and decoding converts the transform-domain representation of 184 the original audio produced by analysis to and from a bitwise packed 185 raw data packet. Coding and decoding consist of two logically 186 orthogonal concepts, <em>back-end coding</em> and <em>bitpacking</em>.</p> 187 188 <p><em>Back-end coding</em> uses a probability model to represent the raw numbers 189 of the audio representation in as few physical bits as possible; 190 familiar examples of back-end coding include Huffman coding and Vector 191 Quantization.</p> 192 193 <p><em>Bitpacking</em> arranges the variable sized words of the back-end 194 coding into a vector of octets without wasting space. The octets 195 produced by coding a single short-time audio segment is one raw Vorbis 196 packet.</p> 197 198 <ul> 199 <li><a href="probmodel.html">The Vorbis probability model</a></li> 200 <li><a href="bitpack.html">The Vorbis bitpacker</a>: Arrangement of 201 variable bit-length words into an octet-aligned packet.</li> 202 </ul> 203 204 <h3>Vorbis streaming and stream decomposition</h3> 205 206 <p>Vorbis packets contain the raw, bitwise-compressed representation of a 207 snippet of audio. These packets contain no structure and cannot be 208 strung together directly into a stream; for streamed transmission and 209 storage, Vorbis packets are encoded into an Ogg bitstream.</p> 210 211 <ul> 212 <li><a href="oggstream.html">Ogg bitstream overview</a>: High-level 213 description of Ogg logical bitstreams, how logical bitstreams 214 (of mixed media types) can be combined into physical bitstreams, and 215 restrictions on logical-to-physical mapping. Note that this document is 216 not specific only to Ogg Vorbis.</li> 217 <li><a href="framing.html">Ogg logical bitstream and framing 218 spec</a>: Low level, complete specification of Ogg logical 219 bitstream pages. Note that this document is not specific only to Ogg 220 Vorbis.</li> 221 <li><a href="vorbis-stream.html">Vorbis bitstream mapping</a>: 222 Specifically describes mapping Vorbis data into an 223 Ogg physical bitstream.</li> 224 </ul> 225 226 <div id="copyright"> 227 The Xiph Fish Logo is a 228 trademark (™) of Xiph.Org.<br/> 229 230 These pages © 1994 - 2005 Xiph.Org. All rights reserved. 231 </div> 232 233 </body> 234 </html> 235