Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 
     12 #include <limits.h>
     13 
     14 #include "vpx_mem/vpx_mem.h"
     15 
     16 #include "vp9/common/vp9_pred_common.h"
     17 #include "vp9/common/vp9_tile_common.h"
     18 
     19 #include "vp9/encoder/vp9_cost.h"
     20 #include "vp9/encoder/vp9_segmentation.h"
     21 
     22 void vp9_enable_segmentation(struct segmentation *seg) {
     23   seg->enabled = 1;
     24   seg->update_map = 1;
     25   seg->update_data = 1;
     26 }
     27 
     28 void vp9_disable_segmentation(struct segmentation *seg) {
     29   seg->enabled = 0;
     30 }
     31 
     32 void vp9_set_segmentation_map(VP9_COMP *cpi, unsigned char *segmentation_map) {
     33   struct segmentation *const seg = &cpi->common.seg;
     34 
     35   // Copy in the new segmentation map
     36   vpx_memcpy(cpi->segmentation_map, segmentation_map,
     37              (cpi->common.mi_rows * cpi->common.mi_cols));
     38 
     39   // Signal that the map should be updated.
     40   seg->update_map = 1;
     41   seg->update_data = 1;
     42 }
     43 
     44 void vp9_set_segment_data(struct segmentation *seg,
     45                           signed char *feature_data,
     46                           unsigned char abs_delta) {
     47   seg->abs_delta = abs_delta;
     48 
     49   vpx_memcpy(seg->feature_data, feature_data, sizeof(seg->feature_data));
     50 
     51   // TBD ?? Set the feature mask
     52   // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
     53   //            sizeof(cpi->mb.e_mbd.segment_feature_mask));
     54 }
     55 void vp9_disable_segfeature(struct segmentation *seg, int segment_id,
     56                             SEG_LVL_FEATURES feature_id) {
     57   seg->feature_mask[segment_id] &= ~(1 << feature_id);
     58 }
     59 
     60 void vp9_clear_segdata(struct segmentation *seg, int segment_id,
     61                        SEG_LVL_FEATURES feature_id) {
     62   seg->feature_data[segment_id][feature_id] = 0;
     63 }
     64 
     65 // Based on set of segment counts calculate a probability tree
     66 static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) {
     67   // Work out probabilities of each segment
     68   const int c01 = segcounts[0] + segcounts[1];
     69   const int c23 = segcounts[2] + segcounts[3];
     70   const int c45 = segcounts[4] + segcounts[5];
     71   const int c67 = segcounts[6] + segcounts[7];
     72 
     73   segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67);
     74   segment_tree_probs[1] = get_binary_prob(c01, c23);
     75   segment_tree_probs[2] = get_binary_prob(c45, c67);
     76   segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
     77   segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]);
     78   segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]);
     79   segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]);
     80 }
     81 
     82 // Based on set of segment counts and probabilities calculate a cost estimate
     83 static int cost_segmap(int *segcounts, vp9_prob *probs) {
     84   const int c01 = segcounts[0] + segcounts[1];
     85   const int c23 = segcounts[2] + segcounts[3];
     86   const int c45 = segcounts[4] + segcounts[5];
     87   const int c67 = segcounts[6] + segcounts[7];
     88   const int c0123 = c01 + c23;
     89   const int c4567 = c45 + c67;
     90 
     91   // Cost the top node of the tree
     92   int cost = c0123 * vp9_cost_zero(probs[0]) +
     93              c4567 * vp9_cost_one(probs[0]);
     94 
     95   // Cost subsequent levels
     96   if (c0123 > 0) {
     97     cost += c01 * vp9_cost_zero(probs[1]) +
     98             c23 * vp9_cost_one(probs[1]);
     99 
    100     if (c01 > 0)
    101       cost += segcounts[0] * vp9_cost_zero(probs[3]) +
    102               segcounts[1] * vp9_cost_one(probs[3]);
    103     if (c23 > 0)
    104       cost += segcounts[2] * vp9_cost_zero(probs[4]) +
    105               segcounts[3] * vp9_cost_one(probs[4]);
    106   }
    107 
    108   if (c4567 > 0) {
    109     cost += c45 * vp9_cost_zero(probs[2]) +
    110             c67 * vp9_cost_one(probs[2]);
    111 
    112     if (c45 > 0)
    113       cost += segcounts[4] * vp9_cost_zero(probs[5]) +
    114               segcounts[5] * vp9_cost_one(probs[5]);
    115     if (c67 > 0)
    116       cost += segcounts[6] * vp9_cost_zero(probs[6]) +
    117               segcounts[7] * vp9_cost_one(probs[6]);
    118   }
    119 
    120   return cost;
    121 }
    122 
    123 static void count_segs(VP9_COMP *cpi, const TileInfo *const tile,
    124                        MODE_INFO **mi_8x8,
    125                        int *no_pred_segcounts,
    126                        int (*temporal_predictor_count)[2],
    127                        int *t_unpred_seg_counts,
    128                        int bw, int bh, int mi_row, int mi_col) {
    129   VP9_COMMON *const cm = &cpi->common;
    130   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
    131   int segment_id;
    132 
    133   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    134     return;
    135 
    136   xd->mi = mi_8x8;
    137   segment_id = xd->mi[0]->mbmi.segment_id;
    138 
    139   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
    140 
    141   // Count the number of hits on each segment with no prediction
    142   no_pred_segcounts[segment_id]++;
    143 
    144   // Temporal prediction not allowed on key frames
    145   if (cm->frame_type != KEY_FRAME) {
    146     const BLOCK_SIZE bsize = mi_8x8[0]->mbmi.sb_type;
    147     // Test to see if the segment id matches the predicted value.
    148     const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
    149                                                    bsize, mi_row, mi_col);
    150     const int pred_flag = pred_segment_id == segment_id;
    151     const int pred_context = vp9_get_pred_context_seg_id(xd);
    152 
    153     // Store the prediction status for this mb and update counts
    154     // as appropriate
    155     xd->mi[0]->mbmi.seg_id_predicted = pred_flag;
    156     temporal_predictor_count[pred_context][pred_flag]++;
    157 
    158     if (!pred_flag)
    159       // Update the "unpredicted" segment count
    160       t_unpred_seg_counts[segment_id]++;
    161   }
    162 }
    163 
    164 static void count_segs_sb(VP9_COMP *cpi, const TileInfo *const tile,
    165                           MODE_INFO **mi_8x8,
    166                           int *no_pred_segcounts,
    167                           int (*temporal_predictor_count)[2],
    168                           int *t_unpred_seg_counts,
    169                           int mi_row, int mi_col,
    170                           BLOCK_SIZE bsize) {
    171   const VP9_COMMON *const cm = &cpi->common;
    172   const int mis = cm->mi_stride;
    173   int bw, bh;
    174   const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2;
    175 
    176   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
    177     return;
    178 
    179   bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type];
    180   bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type];
    181 
    182   if (bw == bs && bh == bs) {
    183     count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
    184                t_unpred_seg_counts, bs, bs, mi_row, mi_col);
    185   } else if (bw == bs && bh < bs) {
    186     count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
    187                t_unpred_seg_counts, bs, hbs, mi_row, mi_col);
    188     count_segs(cpi, tile, mi_8x8 + hbs * mis, no_pred_segcounts,
    189                temporal_predictor_count, t_unpred_seg_counts, bs, hbs,
    190                mi_row + hbs, mi_col);
    191   } else if (bw < bs && bh == bs) {
    192     count_segs(cpi, tile, mi_8x8, no_pred_segcounts, temporal_predictor_count,
    193                t_unpred_seg_counts, hbs, bs, mi_row, mi_col);
    194     count_segs(cpi, tile, mi_8x8 + hbs,
    195                no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts,
    196                hbs, bs, mi_row, mi_col + hbs);
    197   } else {
    198     const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize];
    199     int n;
    200 
    201     assert(bw < bs && bh < bs);
    202 
    203     for (n = 0; n < 4; n++) {
    204       const int mi_dc = hbs * (n & 1);
    205       const int mi_dr = hbs * (n >> 1);
    206 
    207       count_segs_sb(cpi, tile, &mi_8x8[mi_dr * mis + mi_dc],
    208                     no_pred_segcounts, temporal_predictor_count,
    209                     t_unpred_seg_counts,
    210                     mi_row + mi_dr, mi_col + mi_dc, subsize);
    211     }
    212   }
    213 }
    214 
    215 void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
    216   VP9_COMMON *const cm = &cpi->common;
    217   struct segmentation *seg = &cm->seg;
    218 
    219   int no_pred_cost;
    220   int t_pred_cost = INT_MAX;
    221 
    222   int i, tile_col, mi_row, mi_col;
    223 
    224   int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
    225   int no_pred_segcounts[MAX_SEGMENTS] = { 0 };
    226   int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
    227 
    228   vp9_prob no_pred_tree[SEG_TREE_PROBS];
    229   vp9_prob t_pred_tree[SEG_TREE_PROBS];
    230   vp9_prob t_nopred_prob[PREDICTION_PROBS];
    231 
    232   const int mis = cm->mi_stride;
    233   MODE_INFO **mi_ptr, **mi;
    234 
    235   // Set default state for the segment tree probabilities and the
    236   // temporal coding probabilities
    237   vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
    238   vpx_memset(seg->pred_probs, 255, sizeof(seg->pred_probs));
    239 
    240   // First of all generate stats regarding how well the last segment map
    241   // predicts this one
    242   for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
    243     TileInfo tile;
    244 
    245     vp9_tile_init(&tile, cm, 0, tile_col);
    246     mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
    247     for (mi_row = 0; mi_row < cm->mi_rows;
    248          mi_row += 8, mi_ptr += 8 * mis) {
    249       mi = mi_ptr;
    250       for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
    251            mi_col += 8, mi += 8)
    252         count_segs_sb(cpi, &tile, mi, no_pred_segcounts,
    253                       temporal_predictor_count, t_unpred_seg_counts,
    254                       mi_row, mi_col, BLOCK_64X64);
    255     }
    256   }
    257 
    258   // Work out probability tree for coding segments without prediction
    259   // and the cost.
    260   calc_segtree_probs(no_pred_segcounts, no_pred_tree);
    261   no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);
    262 
    263   // Key frames cannot use temporal prediction
    264   if (!frame_is_intra_only(cm)) {
    265     // Work out probability tree for coding those segments not
    266     // predicted using the temporal method and the cost.
    267     calc_segtree_probs(t_unpred_seg_counts, t_pred_tree);
    268     t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);
    269 
    270     // Add in the cost of the signaling for each prediction context.
    271     for (i = 0; i < PREDICTION_PROBS; i++) {
    272       const int count0 = temporal_predictor_count[i][0];
    273       const int count1 = temporal_predictor_count[i][1];
    274 
    275       t_nopred_prob[i] = get_binary_prob(count0, count1);
    276 
    277       // Add in the predictor signaling cost
    278       t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
    279                      count1 * vp9_cost_one(t_nopred_prob[i]);
    280     }
    281   }
    282 
    283   // Now choose which coding method to use.
    284   if (t_pred_cost < no_pred_cost) {
    285     seg->temporal_update = 1;
    286     vpx_memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree));
    287     vpx_memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
    288   } else {
    289     seg->temporal_update = 0;
    290     vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
    291   }
    292 }
    293 
    294 void vp9_reset_segment_features(struct segmentation *seg) {
    295   // Set up default state for MB feature flags
    296   seg->enabled = 0;
    297   seg->update_map = 0;
    298   seg->update_data = 0;
    299   vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
    300   vp9_clearall_segfeatures(seg);
    301 }
    302