1 ============================== 2 LLVM Language Reference Manual 3 ============================== 4 5 .. contents:: 6 :local: 7 :depth: 4 8 9 Abstract 10 ======== 11 12 This document is a reference manual for the LLVM assembly language. LLVM 13 is a Static Single Assignment (SSA) based representation that provides 14 type safety, low-level operations, flexibility, and the capability of 15 representing 'all' high-level languages cleanly. It is the common code 16 representation used throughout all phases of the LLVM compilation 17 strategy. 18 19 Introduction 20 ============ 21 22 The LLVM code representation is designed to be used in three different 23 forms: as an in-memory compiler IR, as an on-disk bitcode representation 24 (suitable for fast loading by a Just-In-Time compiler), and as a human 25 readable assembly language representation. This allows LLVM to provide a 26 powerful intermediate representation for efficient compiler 27 transformations and analysis, while providing a natural means to debug 28 and visualize the transformations. The three different forms of LLVM are 29 all equivalent. This document describes the human readable 30 representation and notation. 31 32 The LLVM representation aims to be light-weight and low-level while 33 being expressive, typed, and extensible at the same time. It aims to be 34 a "universal IR" of sorts, by being at a low enough level that 35 high-level ideas may be cleanly mapped to it (similar to how 36 microprocessors are "universal IR's", allowing many source languages to 37 be mapped to them). By providing type information, LLVM can be used as 38 the target of optimizations: for example, through pointer analysis, it 39 can be proven that a C automatic variable is never accessed outside of 40 the current function, allowing it to be promoted to a simple SSA value 41 instead of a memory location. 42 43 .. _wellformed: 44 45 Well-Formedness 46 --------------- 47 48 It is important to note that this document describes 'well formed' LLVM 49 assembly language. There is a difference between what the parser accepts 50 and what is considered 'well formed'. For example, the following 51 instruction is syntactically okay, but not well formed: 52 53 .. code-block:: llvm 54 55 %x = add i32 1, %x 56 57 because the definition of ``%x`` does not dominate all of its uses. The 58 LLVM infrastructure provides a verification pass that may be used to 59 verify that an LLVM module is well formed. This pass is automatically 60 run by the parser after parsing input assembly and by the optimizer 61 before it outputs bitcode. The violations pointed out by the verifier 62 pass indicate bugs in transformation passes or input to the parser. 63 64 .. _identifiers: 65 66 Identifiers 67 =========== 68 69 LLVM identifiers come in two basic types: global and local. Global 70 identifiers (functions, global variables) begin with the ``'@'`` 71 character. Local identifiers (register names, types) begin with the 72 ``'%'`` character. Additionally, there are three different formats for 73 identifiers, for different purposes: 74 75 #. Named values are represented as a string of characters with their 76 prefix. For example, ``%foo``, ``@DivisionByZero``, 77 ``%a.really.long.identifier``. The actual regular expression used is 78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other 79 characters in their names can be surrounded with quotes. Special 80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII 81 code for the character in hexadecimal. In this way, any character can 82 be used in a name value, even quotes themselves. 83 #. Unnamed values are represented as an unsigned numeric value with 84 their prefix. For example, ``%12``, ``@2``, ``%44``. 85 #. Constants, which are described in the section Constants_ below. 86 87 LLVM requires that values start with a prefix for two reasons: Compilers 88 don't need to worry about name clashes with reserved words, and the set 89 of reserved words may be expanded in the future without penalty. 90 Additionally, unnamed identifiers allow a compiler to quickly come up 91 with a temporary variable without having to avoid symbol table 92 conflicts. 93 94 Reserved words in LLVM are very similar to reserved words in other 95 languages. There are keywords for different opcodes ('``add``', 96 '``bitcast``', '``ret``', etc...), for primitive type names ('``void``', 97 '``i32``', etc...), and others. These reserved words cannot conflict 98 with variable names, because none of them start with a prefix character 99 (``'%'`` or ``'@'``). 100 101 Here is an example of LLVM code to multiply the integer variable 102 '``%X``' by 8: 103 104 The easy way: 105 106 .. code-block:: llvm 107 108 %result = mul i32 %X, 8 109 110 After strength reduction: 111 112 .. code-block:: llvm 113 114 %result = shl i32 %X, 3 115 116 And the hard way: 117 118 .. code-block:: llvm 119 120 %0 = add i32 %X, %X ; yields i32:%0 121 %1 = add i32 %0, %0 ; yields i32:%1 122 %result = add i32 %1, %1 123 124 This last way of multiplying ``%X`` by 8 illustrates several important 125 lexical features of LLVM: 126 127 #. Comments are delimited with a '``;``' and go until the end of line. 128 #. Unnamed temporaries are created when the result of a computation is 129 not assigned to a named value. 130 #. Unnamed temporaries are numbered sequentially (using a per-function 131 incrementing counter, starting with 0). Note that basic blocks are 132 included in this numbering. For example, if the entry basic block is not 133 given a label name, then it will get number 0. 134 135 It also shows a convention that we follow in this document. When 136 demonstrating instructions, we will follow an instruction with a comment 137 that defines the type and name of value produced. 138 139 High Level Structure 140 ==================== 141 142 Module Structure 143 ---------------- 144 145 LLVM programs are composed of ``Module``'s, each of which is a 146 translation unit of the input programs. Each module consists of 147 functions, global variables, and symbol table entries. Modules may be 148 combined together with the LLVM linker, which merges function (and 149 global variable) definitions, resolves forward declarations, and merges 150 symbol table entries. Here is an example of the "hello world" module: 151 152 .. code-block:: llvm 153 154 ; Declare the string constant as a global constant. 155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 156 157 ; External declaration of the puts function 158 declare i32 @puts(i8* nocapture) nounwind 159 160 ; Definition of main function 161 define i32 @main() { ; i32()* 162 ; Convert [13 x i8]* to i8 *... 163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0 164 165 ; Call puts function to write out the string to stdout. 166 call i32 @puts(i8* %cast210) 167 ret i32 0 168 } 169 170 ; Named metadata 171 !1 = metadata !{i32 42} 172 !foo = !{!1, null} 173 174 This example is made up of a :ref:`global variable <globalvars>` named 175 "``.str``", an external declaration of the "``puts``" function, a 176 :ref:`function definition <functionstructure>` for "``main``" and 177 :ref:`named metadata <namedmetadatastructure>` "``foo``". 178 179 In general, a module is made up of a list of global values (where both 180 functions and global variables are global values). Global values are 181 represented by a pointer to a memory location (in this case, a pointer 182 to an array of char, and a pointer to a function), and have one of the 183 following :ref:`linkage types <linkage>`. 184 185 .. _linkage: 186 187 Linkage Types 188 ------------- 189 190 All Global Variables and Functions have one of the following types of 191 linkage: 192 193 ``private`` 194 Global values with "``private``" linkage are only directly 195 accessible by objects in the current module. In particular, linking 196 code into a module with an private global value may cause the 197 private to be renamed as necessary to avoid collisions. Because the 198 symbol is private to the module, all references can be updated. This 199 doesn't show up in any symbol table in the object file. 200 ``internal`` 201 Similar to private, but the value shows as a local symbol 202 (``STB_LOCAL`` in the case of ELF) in the object file. This 203 corresponds to the notion of the '``static``' keyword in C. 204 ``available_externally`` 205 Globals with "``available_externally``" linkage are never emitted 206 into the object file corresponding to the LLVM module. They exist to 207 allow inlining and other optimizations to take place given knowledge 208 of the definition of the global, which is known to be somewhere 209 outside the module. Globals with ``available_externally`` linkage 210 are allowed to be discarded at will, and are otherwise the same as 211 ``linkonce_odr``. This linkage type is only allowed on definitions, 212 not declarations. 213 ``linkonce`` 214 Globals with "``linkonce``" linkage are merged with other globals of 215 the same name when linkage occurs. This can be used to implement 216 some forms of inline functions, templates, or other code which must 217 be generated in each translation unit that uses it, but where the 218 body may be overridden with a more definitive definition later. 219 Unreferenced ``linkonce`` globals are allowed to be discarded. Note 220 that ``linkonce`` linkage does not actually allow the optimizer to 221 inline the body of this function into callers because it doesn't 222 know if this definition of the function is the definitive definition 223 within the program or whether it will be overridden by a stronger 224 definition. To enable inlining and other optimizations, use 225 "``linkonce_odr``" linkage. 226 ``weak`` 227 "``weak``" linkage has the same merging semantics as ``linkonce`` 228 linkage, except that unreferenced globals with ``weak`` linkage may 229 not be discarded. This is used for globals that are declared "weak" 230 in C source code. 231 ``common`` 232 "``common``" linkage is most similar to "``weak``" linkage, but they 233 are used for tentative definitions in C, such as "``int X;``" at 234 global scope. Symbols with "``common``" linkage are merged in the 235 same way as ``weak symbols``, and they may not be deleted if 236 unreferenced. ``common`` symbols may not have an explicit section, 237 must have a zero initializer, and may not be marked 238 ':ref:`constant <globalvars>`'. Functions and aliases may not have 239 common linkage. 240 241 .. _linkage_appending: 242 243 ``appending`` 244 "``appending``" linkage may only be applied to global variables of 245 pointer to array type. When two global variables with appending 246 linkage are linked together, the two global arrays are appended 247 together. This is the LLVM, typesafe, equivalent of having the 248 system linker append together "sections" with identical names when 249 .o files are linked. 250 ``extern_weak`` 251 The semantics of this linkage follow the ELF object file model: the 252 symbol is weak until linked, if not linked, the symbol becomes null 253 instead of being an undefined reference. 254 ``linkonce_odr``, ``weak_odr`` 255 Some languages allow differing globals to be merged, such as two 256 functions with different semantics. Other languages, such as 257 ``C++``, ensure that only equivalent globals are ever merged (the 258 "one definition rule" --- "ODR"). Such languages can use the 259 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the 260 global will only be merged with equivalent globals. These linkage 261 types are otherwise the same as their non-``odr`` versions. 262 ``external`` 263 If none of the above identifiers are used, the global is externally 264 visible, meaning that it participates in linkage and can be used to 265 resolve external symbol references. 266 267 It is illegal for a function *declaration* to have any linkage type 268 other than ``external`` or ``extern_weak``. 269 270 .. _callingconv: 271 272 Calling Conventions 273 ------------------- 274 275 LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and 276 :ref:`invokes <i_invoke>` can all have an optional calling convention 277 specified for the call. The calling convention of any pair of dynamic 278 caller/callee must match, or the behavior of the program is undefined. 279 The following calling conventions are supported by LLVM, and more may be 280 added in the future: 281 282 "``ccc``" - The C calling convention 283 This calling convention (the default if no other calling convention 284 is specified) matches the target C calling conventions. This calling 285 convention supports varargs function calls and tolerates some 286 mismatch in the declared prototype and implemented declaration of 287 the function (as does normal C). 288 "``fastcc``" - The fast calling convention 289 This calling convention attempts to make calls as fast as possible 290 (e.g. by passing things in registers). This calling convention 291 allows the target to use whatever tricks it wants to produce fast 292 code for the target, without having to conform to an externally 293 specified ABI (Application Binary Interface). `Tail calls can only 294 be optimized when this, the GHC or the HiPE convention is 295 used. <CodeGenerator.html#id80>`_ This calling convention does not 296 support varargs and requires the prototype of all callees to exactly 297 match the prototype of the function definition. 298 "``coldcc``" - The cold calling convention 299 This calling convention attempts to make code in the caller as 300 efficient as possible under the assumption that the call is not 301 commonly executed. As such, these calls often preserve all registers 302 so that the call does not break any live ranges in the caller side. 303 This calling convention does not support varargs and requires the 304 prototype of all callees to exactly match the prototype of the 305 function definition. Furthermore the inliner doesn't consider such function 306 calls for inlining. 307 "``cc 10``" - GHC convention 308 This calling convention has been implemented specifically for use by 309 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_. 310 It passes everything in registers, going to extremes to achieve this 311 by disabling callee save registers. This calling convention should 312 not be used lightly but only for specific situations such as an 313 alternative to the *register pinning* performance technique often 314 used when implementing functional programming languages. At the 315 moment only X86 supports this convention and it has the following 316 limitations: 317 318 - On *X86-32* only supports up to 4 bit type parameters. No 319 floating point types are supported. 320 - On *X86-64* only supports up to 10 bit type parameters and 6 321 floating point parameters. 322 323 This calling convention supports `tail call 324 optimization <CodeGenerator.html#id80>`_ but requires both the 325 caller and callee are using it. 326 "``cc 11``" - The HiPE calling convention 327 This calling convention has been implemented specifically for use by 328 the `High-Performance Erlang 329 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the* 330 native code compiler of the `Ericsson's Open Source Erlang/OTP 331 system <http://www.erlang.org/download.shtml>`_. It uses more 332 registers for argument passing than the ordinary C calling 333 convention and defines no callee-saved registers. The calling 334 convention properly supports `tail call 335 optimization <CodeGenerator.html#id80>`_ but requires that both the 336 caller and the callee use it. It uses a *register pinning* 337 mechanism, similar to GHC's convention, for keeping frequently 338 accessed runtime components pinned to specific hardware registers. 339 At the moment only X86 supports this convention (both 32 and 64 340 bit). 341 "``webkit_jscc``" - WebKit's JavaScript calling convention 342 This calling convention has been implemented for `WebKit FTL JIT 343 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the 344 stack right to left (as cdecl does), and returns a value in the 345 platform's customary return register. 346 "``anyregcc``" - Dynamic calling convention for code patching 347 This is a special convention that supports patching an arbitrary code 348 sequence in place of a call site. This convention forces the call 349 arguments into registers but allows them to be dynamcially 350 allocated. This can currently only be used with calls to 351 llvm.experimental.patchpoint because only this intrinsic records 352 the location of its arguments in a side table. See :doc:`StackMaps`. 353 "``preserve_mostcc``" - The `PreserveMost` calling convention 354 This calling convention attempts to make the code in the caller as little 355 intrusive as possible. This calling convention behaves identical to the `C` 356 calling convention on how arguments and return values are passed, but it 357 uses a different set of caller/callee-saved registers. This alleviates the 358 burden of saving and recovering a large register set before and after the 359 call in the caller. If the arguments are passed in callee-saved registers, 360 then they will be preserved by the callee across the call. This doesn't 361 apply for values returned in callee-saved registers. 362 363 - On X86-64 the callee preserves all general purpose registers, except for 364 R11. R11 can be used as a scratch register. Floating-point registers 365 (XMMs/YMMs) are not preserved and need to be saved by the caller. 366 367 The idea behind this convention is to support calls to runtime functions 368 that have a hot path and a cold path. The hot path is usually a small piece 369 of code that doesn't many registers. The cold path might need to call out to 370 another function and therefore only needs to preserve the caller-saved 371 registers, which haven't already been saved by the caller. The 372 `PreserveMost` calling convention is very similar to the `cold` calling 373 convention in terms of caller/callee-saved registers, but they are used for 374 different types of function calls. `coldcc` is for function calls that are 375 rarely executed, whereas `preserve_mostcc` function calls are intended to be 376 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc` 377 doesn't prevent the inliner from inlining the function call. 378 379 This calling convention will be used by a future version of the ObjectiveC 380 runtime and should therefore still be considered experimental at this time. 381 Although this convention was created to optimize certain runtime calls to 382 the ObjectiveC runtime, it is not limited to this runtime and might be used 383 by other runtimes in the future too. The current implementation only 384 supports X86-64, but the intention is to support more architectures in the 385 future. 386 "``preserve_allcc``" - The `PreserveAll` calling convention 387 This calling convention attempts to make the code in the caller even less 388 intrusive than the `PreserveMost` calling convention. This calling 389 convention also behaves identical to the `C` calling convention on how 390 arguments and return values are passed, but it uses a different set of 391 caller/callee-saved registers. This removes the burden of saving and 392 recovering a large register set before and after the call in the caller. If 393 the arguments are passed in callee-saved registers, then they will be 394 preserved by the callee across the call. This doesn't apply for values 395 returned in callee-saved registers. 396 397 - On X86-64 the callee preserves all general purpose registers, except for 398 R11. R11 can be used as a scratch register. Furthermore it also preserves 399 all floating-point registers (XMMs/YMMs). 400 401 The idea behind this convention is to support calls to runtime functions 402 that don't need to call out to any other functions. 403 404 This calling convention, like the `PreserveMost` calling convention, will be 405 used by a future version of the ObjectiveC runtime and should be considered 406 experimental at this time. 407 "``cc <n>``" - Numbered convention 408 Any calling convention may be specified by number, allowing 409 target-specific calling conventions to be used. Target specific 410 calling conventions start at 64. 411 412 More calling conventions can be added/defined on an as-needed basis, to 413 support Pascal conventions or any other well-known target-independent 414 convention. 415 416 .. _visibilitystyles: 417 418 Visibility Styles 419 ----------------- 420 421 All Global Variables and Functions have one of the following visibility 422 styles: 423 424 "``default``" - Default style 425 On targets that use the ELF object file format, default visibility 426 means that the declaration is visible to other modules and, in 427 shared libraries, means that the declared entity may be overridden. 428 On Darwin, default visibility means that the declaration is visible 429 to other modules. Default visibility corresponds to "external 430 linkage" in the language. 431 "``hidden``" - Hidden style 432 Two declarations of an object with hidden visibility refer to the 433 same object if they are in the same shared object. Usually, hidden 434 visibility indicates that the symbol will not be placed into the 435 dynamic symbol table, so no other module (executable or shared 436 library) can reference it directly. 437 "``protected``" - Protected style 438 On ELF, protected visibility indicates that the symbol will be 439 placed in the dynamic symbol table, but that references within the 440 defining module will bind to the local symbol. That is, the symbol 441 cannot be overridden by another module. 442 443 A symbol with ``internal`` or ``private`` linkage must have ``default`` 444 visibility. 445 446 .. _dllstorageclass: 447 448 DLL Storage Classes 449 ------------------- 450 451 All Global Variables, Functions and Aliases can have one of the following 452 DLL storage class: 453 454 ``dllimport`` 455 "``dllimport``" causes the compiler to reference a function or variable via 456 a global pointer to a pointer that is set up by the DLL exporting the 457 symbol. On Microsoft Windows targets, the pointer name is formed by 458 combining ``__imp_`` and the function or variable name. 459 ``dllexport`` 460 "``dllexport``" causes the compiler to provide a global pointer to a pointer 461 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On 462 Microsoft Windows targets, the pointer name is formed by combining 463 ``__imp_`` and the function or variable name. Since this storage class 464 exists for defining a dll interface, the compiler, assembler and linker know 465 it is externally referenced and must refrain from deleting the symbol. 466 467 .. _tls_model: 468 469 Thread Local Storage Models 470 --------------------------- 471 472 A variable may be defined as ``thread_local``, which means that it will 473 not be shared by threads (each thread will have a separated copy of the 474 variable). Not all targets support thread-local variables. Optionally, a 475 TLS model may be specified: 476 477 ``localdynamic`` 478 For variables that are only used within the current shared library. 479 ``initialexec`` 480 For variables in modules that will not be loaded dynamically. 481 ``localexec`` 482 For variables defined in the executable and only used within it. 483 484 If no explicit model is given, the "general dynamic" model is used. 485 486 The models correspond to the ELF TLS models; see `ELF Handling For 487 Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for 488 more information on under which circumstances the different models may 489 be used. The target may choose a different TLS model if the specified 490 model is not supported, or if a better choice of model can be made. 491 492 A model can also be specified in a alias, but then it only governs how 493 the alias is accessed. It will not have any effect in the aliasee. 494 495 .. _namedtypes: 496 497 Structure Types 498 --------------- 499 500 LLVM IR allows you to specify both "identified" and "literal" :ref:`structure 501 types <t_struct>`. Literal types are uniqued structurally, but identified types 502 are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used 503 to forward declare a type which is not yet available. 504 505 An example of a identified structure specification is: 506 507 .. code-block:: llvm 508 509 %mytype = type { %mytype*, i32 } 510 511 Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only 512 literal types are uniqued in recent versions of LLVM. 513 514 .. _globalvars: 515 516 Global Variables 517 ---------------- 518 519 Global variables define regions of memory allocated at compilation time 520 instead of run-time. 521 522 Global variables definitions must be initialized. 523 524 Global variables in other translation units can also be declared, in which 525 case they don't have an initializer. 526 527 Either global variable definitions or declarations may have an explicit section 528 to be placed in and may have an optional explicit alignment specified. 529 530 A variable may be defined as a global ``constant``, which indicates that 531 the contents of the variable will **never** be modified (enabling better 532 optimization, allowing the global data to be placed in the read-only 533 section of an executable, etc). Note that variables that need runtime 534 initialization cannot be marked ``constant`` as there is a store to the 535 variable. 536 537 LLVM explicitly allows *declarations* of global variables to be marked 538 constant, even if the final definition of the global is not. This 539 capability can be used to enable slightly better optimization of the 540 program, but requires the language definition to guarantee that 541 optimizations based on the 'constantness' are valid for the translation 542 units that do not include the definition. 543 544 As SSA values, global variables define pointer values that are in scope 545 (i.e. they dominate) all basic blocks in the program. Global variables 546 always define a pointer to their "content" type because they describe a 547 region of memory, and all memory objects in LLVM are accessed through 548 pointers. 549 550 Global variables can be marked with ``unnamed_addr`` which indicates 551 that the address is not significant, only the content. Constants marked 552 like this can be merged with other constants if they have the same 553 initializer. Note that a constant with significant address *can* be 554 merged with a ``unnamed_addr`` constant, the result being a constant 555 whose address is significant. 556 557 A global variable may be declared to reside in a target-specific 558 numbered address space. For targets that support them, address spaces 559 may affect how optimizations are performed and/or what target 560 instructions are used to access the variable. The default address space 561 is zero. The address space qualifier must precede any other attributes. 562 563 LLVM allows an explicit section to be specified for globals. If the 564 target supports it, it will emit globals to the section specified. 565 Additionally, the global can placed in a comdat if the target has the necessary 566 support. 567 568 By default, global initializers are optimized by assuming that global 569 variables defined within the module are not modified from their 570 initial values before the start of the global initializer. This is 571 true even for variables potentially accessible from outside the 572 module, including those with external linkage or appearing in 573 ``@llvm.used`` or dllexported variables. This assumption may be suppressed 574 by marking the variable with ``externally_initialized``. 575 576 An explicit alignment may be specified for a global, which must be a 577 power of 2. If not present, or if the alignment is set to zero, the 578 alignment of the global is set by the target to whatever it feels 579 convenient. If an explicit alignment is specified, the global is forced 580 to have exactly that alignment. Targets and optimizers are not allowed 581 to over-align the global if the global has an assigned section. In this 582 case, the extra alignment could be observable: for example, code could 583 assume that the globals are densely packed in their section and try to 584 iterate over them as an array, alignment padding would break this 585 iteration. 586 587 Globals can also have a :ref:`DLL storage class <dllstorageclass>`. 588 589 Variables and aliasaes can have a 590 :ref:`Thread Local Storage Model <tls_model>`. 591 592 Syntax:: 593 594 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] 595 [unnamed_addr] [AddrSpace] [ExternallyInitialized] 596 <global | constant> <Type> [<InitializerConstant>] 597 [, section "name"] [, align <Alignment>] 598 599 For example, the following defines a global in a numbered address space 600 with an initializer, section, and alignment: 601 602 .. code-block:: llvm 603 604 @G = addrspace(5) constant float 1.0, section "foo", align 4 605 606 The following example just declares a global variable 607 608 .. code-block:: llvm 609 610 @G = external global i32 611 612 The following example defines a thread-local global with the 613 ``initialexec`` TLS model: 614 615 .. code-block:: llvm 616 617 @G = thread_local(initialexec) global i32 0, align 4 618 619 .. _functionstructure: 620 621 Functions 622 --------- 623 624 LLVM function definitions consist of the "``define``" keyword, an 625 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility 626 style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, 627 an optional :ref:`calling convention <callingconv>`, 628 an optional ``unnamed_addr`` attribute, a return type, an optional 629 :ref:`parameter attribute <paramattrs>` for the return type, a function 630 name, a (possibly empty) argument list (each with optional :ref:`parameter 631 attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`, 632 an optional section, an optional alignment, 633 an optional :ref:`comdat <langref_comdats>`, 634 an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening 635 curly brace, a list of basic blocks, and a closing curly brace. 636 637 LLVM function declarations consist of the "``declare``" keyword, an 638 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility 639 style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, 640 an optional :ref:`calling convention <callingconv>`, 641 an optional ``unnamed_addr`` attribute, a return type, an optional 642 :ref:`parameter attribute <paramattrs>` for the return type, a function 643 name, a possibly empty list of arguments, an optional alignment, an optional 644 :ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`. 645 646 A function definition contains a list of basic blocks, forming the CFG (Control 647 Flow Graph) for the function. Each basic block may optionally start with a label 648 (giving the basic block a symbol table entry), contains a list of instructions, 649 and ends with a :ref:`terminator <terminators>` instruction (such as a branch or 650 function return). If an explicit label is not provided, a block is assigned an 651 implicit numbered label, using the next value from the same counter as used for 652 unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function 653 entry block does not have an explicit label, it will be assigned label "%0", 654 then the first unnamed temporary in that block will be "%1", etc. 655 656 The first basic block in a function is special in two ways: it is 657 immediately executed on entrance to the function, and it is not allowed 658 to have predecessor basic blocks (i.e. there can not be any branches to 659 the entry block of a function). Because the block can have no 660 predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`. 661 662 LLVM allows an explicit section to be specified for functions. If the 663 target supports it, it will emit functions to the section specified. 664 Additionally, the function can placed in a COMDAT. 665 666 An explicit alignment may be specified for a function. If not present, 667 or if the alignment is set to zero, the alignment of the function is set 668 by the target to whatever it feels convenient. If an explicit alignment 669 is specified, the function is forced to have at least that much 670 alignment. All alignments must be a power of 2. 671 672 If the ``unnamed_addr`` attribute is given, the address is know to not 673 be significant and two identical functions can be merged. 674 675 Syntax:: 676 677 define [linkage] [visibility] [DLLStorageClass] 678 [cconv] [ret attrs] 679 <ResultType> @<FunctionName> ([argument list]) 680 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>] 681 [align N] [gc] [prefix Constant] { ... } 682 683 .. _langref_aliases: 684 685 Aliases 686 ------- 687 688 Aliases, unlike function or variables, don't create any new data. They 689 are just a new symbol and metadata for an existing position. 690 691 Aliases have a name and an aliasee that is either a global value or a 692 constant expression. 693 694 Aliases may have an optional :ref:`linkage type <linkage>`, an optional 695 :ref:`visibility style <visibility>`, an optional :ref:`DLL storage class 696 <dllstorageclass>` and an optional :ref:`tls model <tls_model>`. 697 698 Syntax:: 699 700 @<Name> = [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias [Linkage] <AliaseeTy> @<Aliasee> 701 702 The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``, 703 ``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers 704 might not correctly handle dropping a weak symbol that is aliased. 705 706 Alias that are not ``unnamed_addr`` are guaranteed to have the same address as 707 the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point 708 to the same content. 709 710 Since aliases are only a second name, some restrictions apply, of which 711 some can only be checked when producing an object file: 712 713 * The expression defining the aliasee must be computable at assembly 714 time. Since it is just a name, no relocations can be used. 715 716 * No alias in the expression can be weak as the possibility of the 717 intermediate alias being overridden cannot be represented in an 718 object file. 719 720 * No global value in the expression can be a declaration, since that 721 would require a relocation, which is not possible. 722 723 .. _langref_comdats: 724 725 Comdats 726 ------- 727 728 Comdat IR provides access to COFF and ELF object file COMDAT functionality. 729 730 Comdats have a name which represents the COMDAT key. All global objects which 731 specify this key will only end up in the final object file if the linker chooses 732 that key over some other key. Aliases are placed in the same COMDAT that their 733 aliasee computes to, if any. 734 735 Comdats have a selection kind to provide input on how the linker should 736 choose between keys in two different object files. 737 738 Syntax:: 739 740 $<Name> = comdat SelectionKind 741 742 The selection kind must be one of the following: 743 744 ``any`` 745 The linker may choose any COMDAT key, the choice is arbitrary. 746 ``exactmatch`` 747 The linker may choose any COMDAT key but the sections must contain the 748 same data. 749 ``largest`` 750 The linker will choose the section containing the largest COMDAT key. 751 ``noduplicates`` 752 The linker requires that only section with this COMDAT key exist. 753 ``samesize`` 754 The linker may choose any COMDAT key but the sections must contain the 755 same amount of data. 756 757 Note that the Mach-O platform doesn't support COMDATs and ELF only supports 758 ``any`` as a selection kind. 759 760 Here is an example of a COMDAT group where a function will only be selected if 761 the COMDAT key's section is the largest: 762 763 .. code-block:: llvm 764 765 $foo = comdat largest 766 @foo = global i32 2, comdat $foo 767 768 define void @bar() comdat $foo { 769 ret void 770 } 771 772 In a COFF object file, this will create a COMDAT section with selection kind 773 ``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol 774 and another COMDAT section with selection kind 775 ``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT 776 section and contains the contents of the ``@baz`` symbol. 777 778 There are some restrictions on the properties of the global object. 779 It, or an alias to it, must have the same name as the COMDAT group when 780 targeting COFF. 781 The contents and size of this object may be used during link-time to determine 782 which COMDAT groups get selected depending on the selection kind. 783 Because the name of the object must match the name of the COMDAT group, the 784 linkage of the global object must not be local; local symbols can get renamed 785 if a collision occurs in the symbol table. 786 787 The combined use of COMDATS and section attributes may yield surprising results. 788 For example: 789 790 .. code-block:: llvm 791 792 $foo = comdat any 793 $bar = comdat any 794 @g1 = global i32 42, section "sec", comdat $foo 795 @g2 = global i32 42, section "sec", comdat $bar 796 797 From the object file perspective, this requires the creation of two sections 798 with the same name. This is necessary because both globals belong to different 799 COMDAT groups and COMDATs, at the object file level, are represented by 800 sections. 801 802 Note that certain IR constructs like global variables and functions may create 803 COMDATs in the object file in addition to any which are specified using COMDAT 804 IR. This arises, for example, when a global variable has linkonce_odr linkage. 805 806 .. _namedmetadatastructure: 807 808 Named Metadata 809 -------------- 810 811 Named metadata is a collection of metadata. :ref:`Metadata 812 nodes <metadata>` (but not metadata strings) are the only valid 813 operands for a named metadata. 814 815 Syntax:: 816 817 ; Some unnamed metadata nodes, which are referenced by the named metadata. 818 !0 = metadata !{metadata !"zero"} 819 !1 = metadata !{metadata !"one"} 820 !2 = metadata !{metadata !"two"} 821 ; A named metadata. 822 !name = !{!0, !1, !2} 823 824 .. _paramattrs: 825 826 Parameter Attributes 827 -------------------- 828 829 The return type and each parameter of a function type may have a set of 830 *parameter attributes* associated with them. Parameter attributes are 831 used to communicate additional information about the result or 832 parameters of a function. Parameter attributes are considered to be part 833 of the function, not of the function type, so functions with different 834 parameter attributes can have the same function type. 835 836 Parameter attributes are simple keywords that follow the type specified. 837 If multiple parameter attributes are needed, they are space separated. 838 For example: 839 840 .. code-block:: llvm 841 842 declare i32 @printf(i8* noalias nocapture, ...) 843 declare i32 @atoi(i8 zeroext) 844 declare signext i8 @returns_signed_char() 845 846 Note that any attributes for the function result (``nounwind``, 847 ``readonly``) come immediately after the argument list. 848 849 Currently, only the following parameter attributes are defined: 850 851 ``zeroext`` 852 This indicates to the code generator that the parameter or return 853 value should be zero-extended to the extent required by the target's 854 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by 855 the caller (for a parameter) or the callee (for a return value). 856 ``signext`` 857 This indicates to the code generator that the parameter or return 858 value should be sign-extended to the extent required by the target's 859 ABI (which is usually 32-bits) by the caller (for a parameter) or 860 the callee (for a return value). 861 ``inreg`` 862 This indicates that this parameter or return value should be treated 863 in a special target-dependent fashion during while emitting code for 864 a function call or return (usually, by putting it in a register as 865 opposed to memory, though some targets use it to distinguish between 866 two different kinds of registers). Use of this attribute is 867 target-specific. 868 ``byval`` 869 This indicates that the pointer parameter should really be passed by 870 value to the function. The attribute implies that a hidden copy of 871 the pointee is made between the caller and the callee, so the callee 872 is unable to modify the value in the caller. This attribute is only 873 valid on LLVM pointer arguments. It is generally used to pass 874 structs and arrays by value, but is also valid on pointers to 875 scalars. The copy is considered to belong to the caller not the 876 callee (for example, ``readonly`` functions should not write to 877 ``byval`` parameters). This is not a valid attribute for return 878 values. 879 880 The byval attribute also supports specifying an alignment with the 881 align attribute. It indicates the alignment of the stack slot to 882 form and the known alignment of the pointer specified to the call 883 site. If the alignment is not specified, then the code generator 884 makes a target-specific assumption. 885 886 .. _attr_inalloca: 887 888 ``inalloca`` 889 890 The ``inalloca`` argument attribute allows the caller to take the 891 address of outgoing stack arguments. An ``inalloca`` argument must 892 be a pointer to stack memory produced by an ``alloca`` instruction. 893 The alloca, or argument allocation, must also be tagged with the 894 inalloca keyword. Only the past argument may have the ``inalloca`` 895 attribute, and that argument is guaranteed to be passed in memory. 896 897 An argument allocation may be used by a call at most once because 898 the call may deallocate it. The ``inalloca`` attribute cannot be 899 used in conjunction with other attributes that affect argument 900 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The 901 ``inalloca`` attribute also disables LLVM's implicit lowering of 902 large aggregate return values, which means that frontend authors 903 must lower them with ``sret`` pointers. 904 905 When the call site is reached, the argument allocation must have 906 been the most recent stack allocation that is still live, or the 907 results are undefined. It is possible to allocate additional stack 908 space after an argument allocation and before its call site, but it 909 must be cleared off with :ref:`llvm.stackrestore 910 <int_stackrestore>`. 911 912 See :doc:`InAlloca` for more information on how to use this 913 attribute. 914 915 ``sret`` 916 This indicates that the pointer parameter specifies the address of a 917 structure that is the return value of the function in the source 918 program. This pointer must be guaranteed by the caller to be valid: 919 loads and stores to the structure may be assumed by the callee 920 not to trap and to be properly aligned. This may only be applied to 921 the first parameter. This is not a valid attribute for return 922 values. 923 924 .. _noalias: 925 926 ``noalias`` 927 This indicates that pointer values :ref:`based <pointeraliasing>` on 928 the argument or return value do not alias pointer values which are 929 not *based* on it, ignoring certain "irrelevant" dependencies. For a 930 call to the parent function, dependencies between memory references 931 from before or after the call and from those during the call are 932 "irrelevant" to the ``noalias`` keyword for the arguments and return 933 value used in that call. The caller shares the responsibility with 934 the callee for ensuring that these requirements are met. For further 935 details, please see the discussion of the NoAlias response in :ref:`alias 936 analysis <Must, May, or No>`. 937 938 Note that this definition of ``noalias`` is intentionally similar 939 to the definition of ``restrict`` in C99 for function arguments, 940 though it is slightly weaker. 941 942 For function return values, C99's ``restrict`` is not meaningful, 943 while LLVM's ``noalias`` is. 944 ``nocapture`` 945 This indicates that the callee does not make any copies of the 946 pointer that outlive the callee itself. This is not a valid 947 attribute for return values. 948 949 .. _nest: 950 951 ``nest`` 952 This indicates that the pointer parameter can be excised using the 953 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid 954 attribute for return values and can only be applied to one parameter. 955 956 ``returned`` 957 This indicates that the function always returns the argument as its return 958 value. This is an optimization hint to the code generator when generating 959 the caller, allowing tail call optimization and omission of register saves 960 and restores in some cases; it is not checked or enforced when generating 961 the callee. The parameter and the function return type must be valid 962 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a 963 valid attribute for return values and can only be applied to one parameter. 964 965 ``nonnull`` 966 This indicates that the parameter or return pointer is not null. This 967 attribute may only be applied to pointer typed parameters. This is not 968 checked or enforced by LLVM, the caller must ensure that the pointer 969 passed in is non-null, or the callee must ensure that the returned pointer 970 is non-null. 971 972 .. _gc: 973 974 Garbage Collector Names 975 ----------------------- 976 977 Each function may specify a garbage collector name, which is simply a 978 string: 979 980 .. code-block:: llvm 981 982 define void @f() gc "name" { ... } 983 984 The compiler declares the supported values of *name*. Specifying a 985 collector which will cause the compiler to alter its output in order to 986 support the named garbage collection algorithm. 987 988 .. _prefixdata: 989 990 Prefix Data 991 ----------- 992 993 Prefix data is data associated with a function which the code generator 994 will emit immediately before the function body. The purpose of this feature 995 is to allow frontends to associate language-specific runtime metadata with 996 specific functions and make it available through the function pointer while 997 still allowing the function pointer to be called. To access the data for a 998 given function, a program may bitcast the function pointer to a pointer to 999 the constant's type. This implies that the IR symbol points to the start 1000 of the prefix data. 1001 1002 To maintain the semantics of ordinary function calls, the prefix data must 1003 have a particular format. Specifically, it must begin with a sequence of 1004 bytes which decode to a sequence of machine instructions, valid for the 1005 module's target, which transfer control to the point immediately succeeding 1006 the prefix data, without performing any other visible action. This allows 1007 the inliner and other passes to reason about the semantics of the function 1008 definition without needing to reason about the prefix data. Obviously this 1009 makes the format of the prefix data highly target dependent. 1010 1011 Prefix data is laid out as if it were an initializer for a global variable 1012 of the prefix data's type. No padding is automatically placed between the 1013 prefix data and the function body. If padding is required, it must be part 1014 of the prefix data. 1015 1016 A trivial example of valid prefix data for the x86 architecture is ``i8 144``, 1017 which encodes the ``nop`` instruction: 1018 1019 .. code-block:: llvm 1020 1021 define void @f() prefix i8 144 { ... } 1022 1023 Generally prefix data can be formed by encoding a relative branch instruction 1024 which skips the metadata, as in this example of valid prefix data for the 1025 x86_64 architecture, where the first two bytes encode ``jmp .+10``: 1026 1027 .. code-block:: llvm 1028 1029 %0 = type <{ i8, i8, i8* }> 1030 1031 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... } 1032 1033 A function may have prefix data but no body. This has similar semantics 1034 to the ``available_externally`` linkage in that the data may be used by the 1035 optimizers but will not be emitted in the object file. 1036 1037 .. _attrgrp: 1038 1039 Attribute Groups 1040 ---------------- 1041 1042 Attribute groups are groups of attributes that are referenced by objects within 1043 the IR. They are important for keeping ``.ll`` files readable, because a lot of 1044 functions will use the same set of attributes. In the degenerative case of a 1045 ``.ll`` file that corresponds to a single ``.c`` file, the single attribute 1046 group will capture the important command line flags used to build that file. 1047 1048 An attribute group is a module-level object. To use an attribute group, an 1049 object references the attribute group's ID (e.g. ``#37``). An object may refer 1050 to more than one attribute group. In that situation, the attributes from the 1051 different groups are merged. 1052 1053 Here is an example of attribute groups for a function that should always be 1054 inlined, has a stack alignment of 4, and which shouldn't use SSE instructions: 1055 1056 .. code-block:: llvm 1057 1058 ; Target-independent attributes: 1059 attributes #0 = { alwaysinline alignstack=4 } 1060 1061 ; Target-dependent attributes: 1062 attributes #1 = { "no-sse" } 1063 1064 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse". 1065 define void @f() #0 #1 { ... } 1066 1067 .. _fnattrs: 1068 1069 Function Attributes 1070 ------------------- 1071 1072 Function attributes are set to communicate additional information about 1073 a function. Function attributes are considered to be part of the 1074 function, not of the function type, so functions with different function 1075 attributes can have the same function type. 1076 1077 Function attributes are simple keywords that follow the type specified. 1078 If multiple attributes are needed, they are space separated. For 1079 example: 1080 1081 .. code-block:: llvm 1082 1083 define void @f() noinline { ... } 1084 define void @f() alwaysinline { ... } 1085 define void @f() alwaysinline optsize { ... } 1086 define void @f() optsize { ... } 1087 1088 ``alignstack(<n>)`` 1089 This attribute indicates that, when emitting the prologue and 1090 epilogue, the backend should forcibly align the stack pointer. 1091 Specify the desired alignment, which must be a power of two, in 1092 parentheses. 1093 ``alwaysinline`` 1094 This attribute indicates that the inliner should attempt to inline 1095 this function into callers whenever possible, ignoring any active 1096 inlining size threshold for this caller. 1097 ``builtin`` 1098 This indicates that the callee function at a call site should be 1099 recognized as a built-in function, even though the function's declaration 1100 uses the ``nobuiltin`` attribute. This is only valid at call sites for 1101 direct calls to functions which are declared with the ``nobuiltin`` 1102 attribute. 1103 ``cold`` 1104 This attribute indicates that this function is rarely called. When 1105 computing edge weights, basic blocks post-dominated by a cold 1106 function call are also considered to be cold; and, thus, given low 1107 weight. 1108 ``inlinehint`` 1109 This attribute indicates that the source code contained a hint that 1110 inlining this function is desirable (such as the "inline" keyword in 1111 C/C++). It is just a hint; it imposes no requirements on the 1112 inliner. 1113 ``jumptable`` 1114 This attribute indicates that the function should be added to a 1115 jump-instruction table at code-generation time, and that all address-taken 1116 references to this function should be replaced with a reference to the 1117 appropriate jump-instruction-table function pointer. Note that this creates 1118 a new pointer for the original function, which means that code that depends 1119 on function-pointer identity can break. So, any function annotated with 1120 ``jumptable`` must also be ``unnamed_addr``. 1121 ``minsize`` 1122 This attribute suggests that optimization passes and code generator 1123 passes make choices that keep the code size of this function as small 1124 as possible and perform optimizations that may sacrifice runtime 1125 performance in order to minimize the size of the generated code. 1126 ``naked`` 1127 This attribute disables prologue / epilogue emission for the 1128 function. This can have very system-specific consequences. 1129 ``nobuiltin`` 1130 This indicates that the callee function at a call site is not recognized as 1131 a built-in function. LLVM will retain the original call and not replace it 1132 with equivalent code based on the semantics of the built-in function, unless 1133 the call site uses the ``builtin`` attribute. This is valid at call sites 1134 and on function declarations and definitions. 1135 ``noduplicate`` 1136 This attribute indicates that calls to the function cannot be 1137 duplicated. A call to a ``noduplicate`` function may be moved 1138 within its parent function, but may not be duplicated within 1139 its parent function. 1140 1141 A function containing a ``noduplicate`` call may still 1142 be an inlining candidate, provided that the call is not 1143 duplicated by inlining. That implies that the function has 1144 internal linkage and only has one call site, so the original 1145 call is dead after inlining. 1146 ``noimplicitfloat`` 1147 This attributes disables implicit floating point instructions. 1148 ``noinline`` 1149 This attribute indicates that the inliner should never inline this 1150 function in any situation. This attribute may not be used together 1151 with the ``alwaysinline`` attribute. 1152 ``nonlazybind`` 1153 This attribute suppresses lazy symbol binding for the function. This 1154 may make calls to the function faster, at the cost of extra program 1155 startup time if the function is not called during program startup. 1156 ``noredzone`` 1157 This attribute indicates that the code generator should not use a 1158 red zone, even if the target-specific ABI normally permits it. 1159 ``noreturn`` 1160 This function attribute indicates that the function never returns 1161 normally. This produces undefined behavior at runtime if the 1162 function ever does dynamically return. 1163 ``nounwind`` 1164 This function attribute indicates that the function never returns 1165 with an unwind or exceptional control flow. If the function does 1166 unwind, its runtime behavior is undefined. 1167 ``optnone`` 1168 This function attribute indicates that the function is not optimized 1169 by any optimization or code generator passes with the 1170 exception of interprocedural optimization passes. 1171 This attribute cannot be used together with the ``alwaysinline`` 1172 attribute; this attribute is also incompatible 1173 with the ``minsize`` attribute and the ``optsize`` attribute. 1174 1175 This attribute requires the ``noinline`` attribute to be specified on 1176 the function as well, so the function is never inlined into any caller. 1177 Only functions with the ``alwaysinline`` attribute are valid 1178 candidates for inlining into the body of this function. 1179 ``optsize`` 1180 This attribute suggests that optimization passes and code generator 1181 passes make choices that keep the code size of this function low, 1182 and otherwise do optimizations specifically to reduce code size as 1183 long as they do not significantly impact runtime performance. 1184 ``readnone`` 1185 On a function, this attribute indicates that the function computes its 1186 result (or decides to unwind an exception) based strictly on its arguments, 1187 without dereferencing any pointer arguments or otherwise accessing 1188 any mutable state (e.g. memory, control registers, etc) visible to 1189 caller functions. It does not write through any pointer arguments 1190 (including ``byval`` arguments) and never changes any state visible 1191 to callers. This means that it cannot unwind exceptions by calling 1192 the ``C++`` exception throwing methods. 1193 1194 On an argument, this attribute indicates that the function does not 1195 dereference that pointer argument, even though it may read or write the 1196 memory that the pointer points to if accessed through other pointers. 1197 ``readonly`` 1198 On a function, this attribute indicates that the function does not write 1199 through any pointer arguments (including ``byval`` arguments) or otherwise 1200 modify any state (e.g. memory, control registers, etc) visible to 1201 caller functions. It may dereference pointer arguments and read 1202 state that may be set in the caller. A readonly function always 1203 returns the same value (or unwinds an exception identically) when 1204 called with the same set of arguments and global state. It cannot 1205 unwind an exception by calling the ``C++`` exception throwing 1206 methods. 1207 1208 On an argument, this attribute indicates that the function does not write 1209 through this pointer argument, even though it may write to the memory that 1210 the pointer points to. 1211 ``returns_twice`` 1212 This attribute indicates that this function can return twice. The C 1213 ``setjmp`` is an example of such a function. The compiler disables 1214 some optimizations (like tail calls) in the caller of these 1215 functions. 1216 ``sanitize_address`` 1217 This attribute indicates that AddressSanitizer checks 1218 (dynamic address safety analysis) are enabled for this function. 1219 ``sanitize_memory`` 1220 This attribute indicates that MemorySanitizer checks (dynamic detection 1221 of accesses to uninitialized memory) are enabled for this function. 1222 ``sanitize_thread`` 1223 This attribute indicates that ThreadSanitizer checks 1224 (dynamic thread safety analysis) are enabled for this function. 1225 ``ssp`` 1226 This attribute indicates that the function should emit a stack 1227 smashing protector. It is in the form of a "canary" --- a random value 1228 placed on the stack before the local variables that's checked upon 1229 return from the function to see if it has been overwritten. A 1230 heuristic is used to determine if a function needs stack protectors 1231 or not. The heuristic used will enable protectors for functions with: 1232 1233 - Character arrays larger than ``ssp-buffer-size`` (default 8). 1234 - Aggregates containing character arrays larger than ``ssp-buffer-size``. 1235 - Calls to alloca() with variable sizes or constant sizes greater than 1236 ``ssp-buffer-size``. 1237 1238 Variables that are identified as requiring a protector will be arranged 1239 on the stack such that they are adjacent to the stack protector guard. 1240 1241 If a function that has an ``ssp`` attribute is inlined into a 1242 function that doesn't have an ``ssp`` attribute, then the resulting 1243 function will have an ``ssp`` attribute. 1244 ``sspreq`` 1245 This attribute indicates that the function should *always* emit a 1246 stack smashing protector. This overrides the ``ssp`` function 1247 attribute. 1248 1249 Variables that are identified as requiring a protector will be arranged 1250 on the stack such that they are adjacent to the stack protector guard. 1251 The specific layout rules are: 1252 1253 #. Large arrays and structures containing large arrays 1254 (``>= ssp-buffer-size``) are closest to the stack protector. 1255 #. Small arrays and structures containing small arrays 1256 (``< ssp-buffer-size``) are 2nd closest to the protector. 1257 #. Variables that have had their address taken are 3rd closest to the 1258 protector. 1259 1260 If a function that has an ``sspreq`` attribute is inlined into a 1261 function that doesn't have an ``sspreq`` attribute or which has an 1262 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have 1263 an ``sspreq`` attribute. 1264 ``sspstrong`` 1265 This attribute indicates that the function should emit a stack smashing 1266 protector. This attribute causes a strong heuristic to be used when 1267 determining if a function needs stack protectors. The strong heuristic 1268 will enable protectors for functions with: 1269 1270 - Arrays of any size and type 1271 - Aggregates containing an array of any size and type. 1272 - Calls to alloca(). 1273 - Local variables that have had their address taken. 1274 1275 Variables that are identified as requiring a protector will be arranged 1276 on the stack such that they are adjacent to the stack protector guard. 1277 The specific layout rules are: 1278 1279 #. Large arrays and structures containing large arrays 1280 (``>= ssp-buffer-size``) are closest to the stack protector. 1281 #. Small arrays and structures containing small arrays 1282 (``< ssp-buffer-size``) are 2nd closest to the protector. 1283 #. Variables that have had their address taken are 3rd closest to the 1284 protector. 1285 1286 This overrides the ``ssp`` function attribute. 1287 1288 If a function that has an ``sspstrong`` attribute is inlined into a 1289 function that doesn't have an ``sspstrong`` attribute, then the 1290 resulting function will have an ``sspstrong`` attribute. 1291 ``uwtable`` 1292 This attribute indicates that the ABI being targeted requires that 1293 an unwind table entry be produce for this function even if we can 1294 show that no exceptions passes by it. This is normally the case for 1295 the ELF x86-64 abi, but it can be disabled for some compilation 1296 units. 1297 1298 .. _moduleasm: 1299 1300 Module-Level Inline Assembly 1301 ---------------------------- 1302 1303 Modules may contain "module-level inline asm" blocks, which corresponds 1304 to the GCC "file scope inline asm" blocks. These blocks are internally 1305 concatenated by LLVM and treated as a single unit, but may be separated 1306 in the ``.ll`` file if desired. The syntax is very simple: 1307 1308 .. code-block:: llvm 1309 1310 module asm "inline asm code goes here" 1311 module asm "more can go here" 1312 1313 The strings can contain any character by escaping non-printable 1314 characters. The escape sequence used is simply "\\xx" where "xx" is the 1315 two digit hex code for the number. 1316 1317 The inline asm code is simply printed to the machine code .s file when 1318 assembly code is generated. 1319 1320 .. _langref_datalayout: 1321 1322 Data Layout 1323 ----------- 1324 1325 A module may specify a target specific data layout string that specifies 1326 how data is to be laid out in memory. The syntax for the data layout is 1327 simply: 1328 1329 .. code-block:: llvm 1330 1331 target datalayout = "layout specification" 1332 1333 The *layout specification* consists of a list of specifications 1334 separated by the minus sign character ('-'). Each specification starts 1335 with a letter and may include other information after the letter to 1336 define some aspect of the data layout. The specifications accepted are 1337 as follows: 1338 1339 ``E`` 1340 Specifies that the target lays out data in big-endian form. That is, 1341 the bits with the most significance have the lowest address 1342 location. 1343 ``e`` 1344 Specifies that the target lays out data in little-endian form. That 1345 is, the bits with the least significance have the lowest address 1346 location. 1347 ``S<size>`` 1348 Specifies the natural alignment of the stack in bits. Alignment 1349 promotion of stack variables is limited to the natural stack 1350 alignment to avoid dynamic stack realignment. The stack alignment 1351 must be a multiple of 8-bits. If omitted, the natural stack 1352 alignment defaults to "unspecified", which does not prevent any 1353 alignment promotions. 1354 ``p[n]:<size>:<abi>:<pref>`` 1355 This specifies the *size* of a pointer and its ``<abi>`` and 1356 ``<pref>``\erred alignments for address space ``n``. All sizes are in 1357 bits. The address space, ``n`` is optional, and if not specified, 1358 denotes the default address space 0. The value of ``n`` must be 1359 in the range [1,2^23). 1360 ``i<size>:<abi>:<pref>`` 1361 This specifies the alignment for an integer type of a given bit 1362 ``<size>``. The value of ``<size>`` must be in the range [1,2^23). 1363 ``v<size>:<abi>:<pref>`` 1364 This specifies the alignment for a vector type of a given bit 1365 ``<size>``. 1366 ``f<size>:<abi>:<pref>`` 1367 This specifies the alignment for a floating point type of a given bit 1368 ``<size>``. Only values of ``<size>`` that are supported by the target 1369 will work. 32 (float) and 64 (double) are supported on all targets; 80 1370 or 128 (different flavors of long double) are also supported on some 1371 targets. 1372 ``a:<abi>:<pref>`` 1373 This specifies the alignment for an object of aggregate type. 1374 ``m:<mangling>`` 1375 If present, specifies that llvm names are mangled in the output. The 1376 options are 1377 1378 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix. 1379 * ``m``: Mips mangling: Private symbols get a ``$`` prefix. 1380 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other 1381 symbols get a ``_`` prefix. 1382 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall 1383 functions also get a suffix based on the frame size. 1384 ``n<size1>:<size2>:<size3>...`` 1385 This specifies a set of native integer widths for the target CPU in 1386 bits. For example, it might contain ``n32`` for 32-bit PowerPC, 1387 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of 1388 this set are considered to support most general arithmetic operations 1389 efficiently. 1390 1391 On every specification that takes a ``<abi>:<pref>``, specifying the 1392 ``<pref>`` alignment is optional. If omitted, the preceding ``:`` 1393 should be omitted too and ``<pref>`` will be equal to ``<abi>``. 1394 1395 When constructing the data layout for a given target, LLVM starts with a 1396 default set of specifications which are then (possibly) overridden by 1397 the specifications in the ``datalayout`` keyword. The default 1398 specifications are given in this list: 1399 1400 - ``E`` - big endian 1401 - ``p:64:64:64`` - 64-bit pointers with 64-bit alignment. 1402 - ``p[n]:64:64:64`` - Other address spaces are assumed to be the 1403 same as the default address space. 1404 - ``S0`` - natural stack alignment is unspecified 1405 - ``i1:8:8`` - i1 is 8-bit (byte) aligned 1406 - ``i8:8:8`` - i8 is 8-bit (byte) aligned 1407 - ``i16:16:16`` - i16 is 16-bit aligned 1408 - ``i32:32:32`` - i32 is 32-bit aligned 1409 - ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred 1410 alignment of 64-bits 1411 - ``f16:16:16`` - half is 16-bit aligned 1412 - ``f32:32:32`` - float is 32-bit aligned 1413 - ``f64:64:64`` - double is 64-bit aligned 1414 - ``f128:128:128`` - quad is 128-bit aligned 1415 - ``v64:64:64`` - 64-bit vector is 64-bit aligned 1416 - ``v128:128:128`` - 128-bit vector is 128-bit aligned 1417 - ``a:0:64`` - aggregates are 64-bit aligned 1418 1419 When LLVM is determining the alignment for a given type, it uses the 1420 following rules: 1421 1422 #. If the type sought is an exact match for one of the specifications, 1423 that specification is used. 1424 #. If no match is found, and the type sought is an integer type, then 1425 the smallest integer type that is larger than the bitwidth of the 1426 sought type is used. If none of the specifications are larger than 1427 the bitwidth then the largest integer type is used. For example, 1428 given the default specifications above, the i7 type will use the 1429 alignment of i8 (next largest) while both i65 and i256 will use the 1430 alignment of i64 (largest specified). 1431 #. If no match is found, and the type sought is a vector type, then the 1432 largest vector type that is smaller than the sought vector type will 1433 be used as a fall back. This happens because <128 x double> can be 1434 implemented in terms of 64 <2 x double>, for example. 1435 1436 The function of the data layout string may not be what you expect. 1437 Notably, this is not a specification from the frontend of what alignment 1438 the code generator should use. 1439 1440 Instead, if specified, the target data layout is required to match what 1441 the ultimate *code generator* expects. This string is used by the 1442 mid-level optimizers to improve code, and this only works if it matches 1443 what the ultimate code generator uses. If you would like to generate IR 1444 that does not embed this target-specific detail into the IR, then you 1445 don't have to specify the string. This will disable some optimizations 1446 that require precise layout information, but this also prevents those 1447 optimizations from introducing target specificity into the IR. 1448 1449 .. _langref_triple: 1450 1451 Target Triple 1452 ------------- 1453 1454 A module may specify a target triple string that describes the target 1455 host. The syntax for the target triple is simply: 1456 1457 .. code-block:: llvm 1458 1459 target triple = "x86_64-apple-macosx10.7.0" 1460 1461 The *target triple* string consists of a series of identifiers delimited 1462 by the minus sign character ('-'). The canonical forms are: 1463 1464 :: 1465 1466 ARCHITECTURE-VENDOR-OPERATING_SYSTEM 1467 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT 1468 1469 This information is passed along to the backend so that it generates 1470 code for the proper architecture. It's possible to override this on the 1471 command line with the ``-mtriple`` command line option. 1472 1473 .. _pointeraliasing: 1474 1475 Pointer Aliasing Rules 1476 ---------------------- 1477 1478 Any memory access must be done through a pointer value associated with 1479 an address range of the memory access, otherwise the behavior is 1480 undefined. Pointer values are associated with address ranges according 1481 to the following rules: 1482 1483 - A pointer value is associated with the addresses associated with any 1484 value it is *based* on. 1485 - An address of a global variable is associated with the address range 1486 of the variable's storage. 1487 - The result value of an allocation instruction is associated with the 1488 address range of the allocated storage. 1489 - A null pointer in the default address-space is associated with no 1490 address. 1491 - An integer constant other than zero or a pointer value returned from 1492 a function not defined within LLVM may be associated with address 1493 ranges allocated through mechanisms other than those provided by 1494 LLVM. Such ranges shall not overlap with any ranges of addresses 1495 allocated by mechanisms provided by LLVM. 1496 1497 A pointer value is *based* on another pointer value according to the 1498 following rules: 1499 1500 - A pointer value formed from a ``getelementptr`` operation is *based* 1501 on the first operand of the ``getelementptr``. 1502 - The result value of a ``bitcast`` is *based* on the operand of the 1503 ``bitcast``. 1504 - A pointer value formed by an ``inttoptr`` is *based* on all pointer 1505 values that contribute (directly or indirectly) to the computation of 1506 the pointer's value. 1507 - The "*based* on" relationship is transitive. 1508 1509 Note that this definition of *"based"* is intentionally similar to the 1510 definition of *"based"* in C99, though it is slightly weaker. 1511 1512 LLVM IR does not associate types with memory. The result type of a 1513 ``load`` merely indicates the size and alignment of the memory from 1514 which to load, as well as the interpretation of the value. The first 1515 operand type of a ``store`` similarly only indicates the size and 1516 alignment of the store. 1517 1518 Consequently, type-based alias analysis, aka TBAA, aka 1519 ``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR. 1520 :ref:`Metadata <metadata>` may be used to encode additional information 1521 which specialized optimization passes may use to implement type-based 1522 alias analysis. 1523 1524 .. _volatile: 1525 1526 Volatile Memory Accesses 1527 ------------------------ 1528 1529 Certain memory accesses, such as :ref:`load <i_load>`'s, 1530 :ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be 1531 marked ``volatile``. The optimizers must not change the number of 1532 volatile operations or change their order of execution relative to other 1533 volatile operations. The optimizers *may* change the order of volatile 1534 operations relative to non-volatile operations. This is not Java's 1535 "volatile" and has no cross-thread synchronization behavior. 1536 1537 IR-level volatile loads and stores cannot safely be optimized into 1538 llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are 1539 flagged volatile. Likewise, the backend should never split or merge 1540 target-legal volatile load/store instructions. 1541 1542 .. admonition:: Rationale 1543 1544 Platforms may rely on volatile loads and stores of natively supported 1545 data width to be executed as single instruction. For example, in C 1546 this holds for an l-value of volatile primitive type with native 1547 hardware support, but not necessarily for aggregate types. The 1548 frontend upholds these expectations, which are intentionally 1549 unspecified in the IR. The rules above ensure that IR transformation 1550 do not violate the frontend's contract with the language. 1551 1552 .. _memmodel: 1553 1554 Memory Model for Concurrent Operations 1555 -------------------------------------- 1556 1557 The LLVM IR does not define any way to start parallel threads of 1558 execution or to register signal handlers. Nonetheless, there are 1559 platform-specific ways to create them, and we define LLVM IR's behavior 1560 in their presence. This model is inspired by the C++0x memory model. 1561 1562 For a more informal introduction to this model, see the :doc:`Atomics`. 1563 1564 We define a *happens-before* partial order as the least partial order 1565 that 1566 1567 - Is a superset of single-thread program order, and 1568 - When a *synchronizes-with* ``b``, includes an edge from ``a`` to 1569 ``b``. *Synchronizes-with* pairs are introduced by platform-specific 1570 techniques, like pthread locks, thread creation, thread joining, 1571 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering 1572 Constraints <ordering>`). 1573 1574 Note that program order does not introduce *happens-before* edges 1575 between a thread and signals executing inside that thread. 1576 1577 Every (defined) read operation (load instructions, memcpy, atomic 1578 loads/read-modify-writes, etc.) R reads a series of bytes written by 1579 (defined) write operations (store instructions, atomic 1580 stores/read-modify-writes, memcpy, etc.). For the purposes of this 1581 section, initialized globals are considered to have a write of the 1582 initializer which is atomic and happens before any other read or write 1583 of the memory in question. For each byte of a read R, R\ :sub:`byte` 1584 may see any write to the same byte, except: 1585 1586 - If write\ :sub:`1` happens before write\ :sub:`2`, and 1587 write\ :sub:`2` happens before R\ :sub:`byte`, then 1588 R\ :sub:`byte` does not see write\ :sub:`1`. 1589 - If R\ :sub:`byte` happens before write\ :sub:`3`, then 1590 R\ :sub:`byte` does not see write\ :sub:`3`. 1591 1592 Given that definition, R\ :sub:`byte` is defined as follows: 1593 1594 - If R is volatile, the result is target-dependent. (Volatile is 1595 supposed to give guarantees which can support ``sig_atomic_t`` in 1596 C/C++, and may be used for accesses to addresses which do not behave 1597 like normal memory. It does not generally provide cross-thread 1598 synchronization.) 1599 - Otherwise, if there is no write to the same byte that happens before 1600 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte. 1601 - Otherwise, if R\ :sub:`byte` may see exactly one write, 1602 R\ :sub:`byte` returns the value written by that write. 1603 - Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may 1604 see are atomic, it chooses one of the values written. See the :ref:`Atomic 1605 Memory Ordering Constraints <ordering>` section for additional 1606 constraints on how the choice is made. 1607 - Otherwise R\ :sub:`byte` returns ``undef``. 1608 1609 R returns the value composed of the series of bytes it read. This 1610 implies that some bytes within the value may be ``undef`` **without** 1611 the entire value being ``undef``. Note that this only defines the 1612 semantics of the operation; it doesn't mean that targets will emit more 1613 than one instruction to read the series of bytes. 1614 1615 Note that in cases where none of the atomic intrinsics are used, this 1616 model places only one restriction on IR transformations on top of what 1617 is required for single-threaded execution: introducing a store to a byte 1618 which might not otherwise be stored is not allowed in general. 1619 (Specifically, in the case where another thread might write to and read 1620 from an address, introducing a store can change a load that may see 1621 exactly one write into a load that may see multiple writes.) 1622 1623 .. _ordering: 1624 1625 Atomic Memory Ordering Constraints 1626 ---------------------------------- 1627 1628 Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`, 1629 :ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`, 1630 :ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take 1631 ordering parameters that determine which other atomic instructions on 1632 the same address they *synchronize with*. These semantics are borrowed 1633 from Java and C++0x, but are somewhat more colloquial. If these 1634 descriptions aren't precise enough, check those specs (see spec 1635 references in the :doc:`atomics guide <Atomics>`). 1636 :ref:`fence <i_fence>` instructions treat these orderings somewhat 1637 differently since they don't take an address. See that instruction's 1638 documentation for details. 1639 1640 For a simpler introduction to the ordering constraints, see the 1641 :doc:`Atomics`. 1642 1643 ``unordered`` 1644 The set of values that can be read is governed by the happens-before 1645 partial order. A value cannot be read unless some operation wrote 1646 it. This is intended to provide a guarantee strong enough to model 1647 Java's non-volatile shared variables. This ordering cannot be 1648 specified for read-modify-write operations; it is not strong enough 1649 to make them atomic in any interesting way. 1650 ``monotonic`` 1651 In addition to the guarantees of ``unordered``, there is a single 1652 total order for modifications by ``monotonic`` operations on each 1653 address. All modification orders must be compatible with the 1654 happens-before order. There is no guarantee that the modification 1655 orders can be combined to a global total order for the whole program 1656 (and this often will not be possible). The read in an atomic 1657 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and 1658 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification 1659 order immediately before the value it writes. If one atomic read 1660 happens before another atomic read of the same address, the later 1661 read must see the same value or a later value in the address's 1662 modification order. This disallows reordering of ``monotonic`` (or 1663 stronger) operations on the same address. If an address is written 1664 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally 1665 read that address repeatedly, the other threads must eventually see 1666 the write. This corresponds to the C++0x/C1x 1667 ``memory_order_relaxed``. 1668 ``acquire`` 1669 In addition to the guarantees of ``monotonic``, a 1670 *synchronizes-with* edge may be formed with a ``release`` operation. 1671 This is intended to model C++'s ``memory_order_acquire``. 1672 ``release`` 1673 In addition to the guarantees of ``monotonic``, if this operation 1674 writes a value which is subsequently read by an ``acquire`` 1675 operation, it *synchronizes-with* that operation. (This isn't a 1676 complete description; see the C++0x definition of a release 1677 sequence.) This corresponds to the C++0x/C1x 1678 ``memory_order_release``. 1679 ``acq_rel`` (acquire+release) 1680 Acts as both an ``acquire`` and ``release`` operation on its 1681 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``. 1682 ``seq_cst`` (sequentially consistent) 1683 In addition to the guarantees of ``acq_rel`` (``acquire`` for an 1684 operation which only reads, ``release`` for an operation which only 1685 writes), there is a global total order on all 1686 sequentially-consistent operations on all addresses, which is 1687 consistent with the *happens-before* partial order and with the 1688 modification orders of all the affected addresses. Each 1689 sequentially-consistent read sees the last preceding write to the 1690 same address in this global order. This corresponds to the C++0x/C1x 1691 ``memory_order_seq_cst`` and Java volatile. 1692 1693 .. _singlethread: 1694 1695 If an atomic operation is marked ``singlethread``, it only *synchronizes 1696 with* or participates in modification and seq\_cst total orderings with 1697 other operations running in the same thread (for example, in signal 1698 handlers). 1699 1700 .. _fastmath: 1701 1702 Fast-Math Flags 1703 --------------- 1704 1705 LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`, 1706 :ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`, 1707 :ref:`frem <i_frem>`) have the following flags that can set to enable 1708 otherwise unsafe floating point operations 1709 1710 ``nnan`` 1711 No NaNs - Allow optimizations to assume the arguments and result are not 1712 NaN. Such optimizations are required to retain defined behavior over 1713 NaNs, but the value of the result is undefined. 1714 1715 ``ninf`` 1716 No Infs - Allow optimizations to assume the arguments and result are not 1717 +/-Inf. Such optimizations are required to retain defined behavior over 1718 +/-Inf, but the value of the result is undefined. 1719 1720 ``nsz`` 1721 No Signed Zeros - Allow optimizations to treat the sign of a zero 1722 argument or result as insignificant. 1723 1724 ``arcp`` 1725 Allow Reciprocal - Allow optimizations to use the reciprocal of an 1726 argument rather than perform division. 1727 1728 ``fast`` 1729 Fast - Allow algebraically equivalent transformations that may 1730 dramatically change results in floating point (e.g. reassociate). This 1731 flag implies all the others. 1732 1733 .. _typesystem: 1734 1735 Type System 1736 =========== 1737 1738 The LLVM type system is one of the most important features of the 1739 intermediate representation. Being typed enables a number of 1740 optimizations to be performed on the intermediate representation 1741 directly, without having to do extra analyses on the side before the 1742 transformation. A strong type system makes it easier to read the 1743 generated code and enables novel analyses and transformations that are 1744 not feasible to perform on normal three address code representations. 1745 1746 .. _t_void: 1747 1748 Void Type 1749 --------- 1750 1751 :Overview: 1752 1753 1754 The void type does not represent any value and has no size. 1755 1756 :Syntax: 1757 1758 1759 :: 1760 1761 void 1762 1763 1764 .. _t_function: 1765 1766 Function Type 1767 ------------- 1768 1769 :Overview: 1770 1771 1772 The function type can be thought of as a function signature. It consists of a 1773 return type and a list of formal parameter types. The return type of a function 1774 type is a void type or first class type --- except for :ref:`label <t_label>` 1775 and :ref:`metadata <t_metadata>` types. 1776 1777 :Syntax: 1778 1779 :: 1780 1781 <returntype> (<parameter list>) 1782 1783 ...where '``<parameter list>``' is a comma-separated list of type 1784 specifiers. Optionally, the parameter list may include a type ``...``, which 1785 indicates that the function takes a variable number of arguments. Variable 1786 argument functions can access their arguments with the :ref:`variable argument 1787 handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type 1788 except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`. 1789 1790 :Examples: 1791 1792 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1793 | ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` | 1794 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1795 | ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. | 1796 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1797 | ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. | 1798 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1799 | ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values | 1800 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1801 1802 .. _t_firstclass: 1803 1804 First Class Types 1805 ----------------- 1806 1807 The :ref:`first class <t_firstclass>` types are perhaps the most important. 1808 Values of these types are the only ones which can be produced by 1809 instructions. 1810 1811 .. _t_single_value: 1812 1813 Single Value Types 1814 ^^^^^^^^^^^^^^^^^^ 1815 1816 These are the types that are valid in registers from CodeGen's perspective. 1817 1818 .. _t_integer: 1819 1820 Integer Type 1821 """""""""""" 1822 1823 :Overview: 1824 1825 The integer type is a very simple type that simply specifies an 1826 arbitrary bit width for the integer type desired. Any bit width from 1 1827 bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified. 1828 1829 :Syntax: 1830 1831 :: 1832 1833 iN 1834 1835 The number of bits the integer will occupy is specified by the ``N`` 1836 value. 1837 1838 Examples: 1839 ********* 1840 1841 +----------------+------------------------------------------------+ 1842 | ``i1`` | a single-bit integer. | 1843 +----------------+------------------------------------------------+ 1844 | ``i32`` | a 32-bit integer. | 1845 +----------------+------------------------------------------------+ 1846 | ``i1942652`` | a really big integer of over 1 million bits. | 1847 +----------------+------------------------------------------------+ 1848 1849 .. _t_floating: 1850 1851 Floating Point Types 1852 """""""""""""""""""" 1853 1854 .. list-table:: 1855 :header-rows: 1 1856 1857 * - Type 1858 - Description 1859 1860 * - ``half`` 1861 - 16-bit floating point value 1862 1863 * - ``float`` 1864 - 32-bit floating point value 1865 1866 * - ``double`` 1867 - 64-bit floating point value 1868 1869 * - ``fp128`` 1870 - 128-bit floating point value (112-bit mantissa) 1871 1872 * - ``x86_fp80`` 1873 - 80-bit floating point value (X87) 1874 1875 * - ``ppc_fp128`` 1876 - 128-bit floating point value (two 64-bits) 1877 1878 X86_mmx Type 1879 """""""""""" 1880 1881 :Overview: 1882 1883 The x86_mmx type represents a value held in an MMX register on an x86 1884 machine. The operations allowed on it are quite limited: parameters and 1885 return values, load and store, and bitcast. User-specified MMX 1886 instructions are represented as intrinsic or asm calls with arguments 1887 and/or results of this type. There are no arrays, vectors or constants 1888 of this type. 1889 1890 :Syntax: 1891 1892 :: 1893 1894 x86_mmx 1895 1896 1897 .. _t_pointer: 1898 1899 Pointer Type 1900 """""""""""" 1901 1902 :Overview: 1903 1904 The pointer type is used to specify memory locations. Pointers are 1905 commonly used to reference objects in memory. 1906 1907 Pointer types may have an optional address space attribute defining the 1908 numbered address space where the pointed-to object resides. The default 1909 address space is number zero. The semantics of non-zero address spaces 1910 are target-specific. 1911 1912 Note that LLVM does not permit pointers to void (``void*``) nor does it 1913 permit pointers to labels (``label*``). Use ``i8*`` instead. 1914 1915 :Syntax: 1916 1917 :: 1918 1919 <type> * 1920 1921 :Examples: 1922 1923 +-------------------------+--------------------------------------------------------------------------------------------------------------+ 1924 | ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. | 1925 +-------------------------+--------------------------------------------------------------------------------------------------------------+ 1926 | ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. | 1927 +-------------------------+--------------------------------------------------------------------------------------------------------------+ 1928 | ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. | 1929 +-------------------------+--------------------------------------------------------------------------------------------------------------+ 1930 1931 .. _t_vector: 1932 1933 Vector Type 1934 """"""""""" 1935 1936 :Overview: 1937 1938 A vector type is a simple derived type that represents a vector of 1939 elements. Vector types are used when multiple primitive data are 1940 operated in parallel using a single instruction (SIMD). A vector type 1941 requires a size (number of elements) and an underlying primitive data 1942 type. Vector types are considered :ref:`first class <t_firstclass>`. 1943 1944 :Syntax: 1945 1946 :: 1947 1948 < <# elements> x <elementtype> > 1949 1950 The number of elements is a constant integer value larger than 0; 1951 elementtype may be any integer or floating point type, or a pointer to 1952 these types. Vectors of size zero are not allowed. 1953 1954 :Examples: 1955 1956 +-------------------+--------------------------------------------------+ 1957 | ``<4 x i32>`` | Vector of 4 32-bit integer values. | 1958 +-------------------+--------------------------------------------------+ 1959 | ``<8 x float>`` | Vector of 8 32-bit floating-point values. | 1960 +-------------------+--------------------------------------------------+ 1961 | ``<2 x i64>`` | Vector of 2 64-bit integer values. | 1962 +-------------------+--------------------------------------------------+ 1963 | ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. | 1964 +-------------------+--------------------------------------------------+ 1965 1966 .. _t_label: 1967 1968 Label Type 1969 ^^^^^^^^^^ 1970 1971 :Overview: 1972 1973 The label type represents code labels. 1974 1975 :Syntax: 1976 1977 :: 1978 1979 label 1980 1981 .. _t_metadata: 1982 1983 Metadata Type 1984 ^^^^^^^^^^^^^ 1985 1986 :Overview: 1987 1988 The metadata type represents embedded metadata. No derived types may be 1989 created from metadata except for :ref:`function <t_function>` arguments. 1990 1991 :Syntax: 1992 1993 :: 1994 1995 metadata 1996 1997 .. _t_aggregate: 1998 1999 Aggregate Types 2000 ^^^^^^^^^^^^^^^ 2001 2002 Aggregate Types are a subset of derived types that can contain multiple 2003 member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are 2004 aggregate types. :ref:`Vectors <t_vector>` are not considered to be 2005 aggregate types. 2006 2007 .. _t_array: 2008 2009 Array Type 2010 """""""""" 2011 2012 :Overview: 2013 2014 The array type is a very simple derived type that arranges elements 2015 sequentially in memory. The array type requires a size (number of 2016 elements) and an underlying data type. 2017 2018 :Syntax: 2019 2020 :: 2021 2022 [<# elements> x <elementtype>] 2023 2024 The number of elements is a constant integer value; ``elementtype`` may 2025 be any type with a size. 2026 2027 :Examples: 2028 2029 +------------------+--------------------------------------+ 2030 | ``[40 x i32]`` | Array of 40 32-bit integer values. | 2031 +------------------+--------------------------------------+ 2032 | ``[41 x i32]`` | Array of 41 32-bit integer values. | 2033 +------------------+--------------------------------------+ 2034 | ``[4 x i8]`` | Array of 4 8-bit integer values. | 2035 +------------------+--------------------------------------+ 2036 2037 Here are some examples of multidimensional arrays: 2038 2039 +-----------------------------+----------------------------------------------------------+ 2040 | ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. | 2041 +-----------------------------+----------------------------------------------------------+ 2042 | ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. | 2043 +-----------------------------+----------------------------------------------------------+ 2044 | ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. | 2045 +-----------------------------+----------------------------------------------------------+ 2046 2047 There is no restriction on indexing beyond the end of the array implied 2048 by a static type (though there are restrictions on indexing beyond the 2049 bounds of an allocated object in some cases). This means that 2050 single-dimension 'variable sized array' addressing can be implemented in 2051 LLVM with a zero length array type. An implementation of 'pascal style 2052 arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for 2053 example. 2054 2055 .. _t_struct: 2056 2057 Structure Type 2058 """""""""""""" 2059 2060 :Overview: 2061 2062 The structure type is used to represent a collection of data members 2063 together in memory. The elements of a structure may be any type that has 2064 a size. 2065 2066 Structures in memory are accessed using '``load``' and '``store``' by 2067 getting a pointer to a field with the '``getelementptr``' instruction. 2068 Structures in registers are accessed using the '``extractvalue``' and 2069 '``insertvalue``' instructions. 2070 2071 Structures may optionally be "packed" structures, which indicate that 2072 the alignment of the struct is one byte, and that there is no padding 2073 between the elements. In non-packed structs, padding between field types 2074 is inserted as defined by the DataLayout string in the module, which is 2075 required to match what the underlying code generator expects. 2076 2077 Structures can either be "literal" or "identified". A literal structure 2078 is defined inline with other types (e.g. ``{i32, i32}*``) whereas 2079 identified types are always defined at the top level with a name. 2080 Literal types are uniqued by their contents and can never be recursive 2081 or opaque since there is no way to write one. Identified types can be 2082 recursive, can be opaqued, and are never uniqued. 2083 2084 :Syntax: 2085 2086 :: 2087 2088 %T1 = type { <type list> } ; Identified normal struct type 2089 %T2 = type <{ <type list> }> ; Identified packed struct type 2090 2091 :Examples: 2092 2093 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2094 | ``{ i32, i32, i32 }`` | A triple of three ``i32`` values | 2095 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2096 | ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. | 2097 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2098 | ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. | 2099 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2100 2101 .. _t_opaque: 2102 2103 Opaque Structure Types 2104 """""""""""""""""""""" 2105 2106 :Overview: 2107 2108 Opaque structure types are used to represent named structure types that 2109 do not have a body specified. This corresponds (for example) to the C 2110 notion of a forward declared structure. 2111 2112 :Syntax: 2113 2114 :: 2115 2116 %X = type opaque 2117 %52 = type opaque 2118 2119 :Examples: 2120 2121 +--------------+-------------------+ 2122 | ``opaque`` | An opaque type. | 2123 +--------------+-------------------+ 2124 2125 .. _constants: 2126 2127 Constants 2128 ========= 2129 2130 LLVM has several different basic types of constants. This section 2131 describes them all and their syntax. 2132 2133 Simple Constants 2134 ---------------- 2135 2136 **Boolean constants** 2137 The two strings '``true``' and '``false``' are both valid constants 2138 of the ``i1`` type. 2139 **Integer constants** 2140 Standard integers (such as '4') are constants of the 2141 :ref:`integer <t_integer>` type. Negative numbers may be used with 2142 integer types. 2143 **Floating point constants** 2144 Floating point constants use standard decimal notation (e.g. 2145 123.421), exponential notation (e.g. 1.23421e+2), or a more precise 2146 hexadecimal notation (see below). The assembler requires the exact 2147 decimal value of a floating-point constant. For example, the 2148 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating 2149 decimal in binary. Floating point constants must have a :ref:`floating 2150 point <t_floating>` type. 2151 **Null pointer constants** 2152 The identifier '``null``' is recognized as a null pointer constant 2153 and must be of :ref:`pointer type <t_pointer>`. 2154 2155 The one non-intuitive notation for constants is the hexadecimal form of 2156 floating point constants. For example, the form 2157 '``double 0x432ff973cafa8000``' is equivalent to (but harder to read 2158 than) '``double 4.5e+15``'. The only time hexadecimal floating point 2159 constants are required (and the only time that they are generated by the 2160 disassembler) is when a floating point constant must be emitted but it 2161 cannot be represented as a decimal floating point number in a reasonable 2162 number of digits. For example, NaN's, infinities, and other special 2163 values are represented in their IEEE hexadecimal format so that assembly 2164 and disassembly do not cause any bits to change in the constants. 2165 2166 When using the hexadecimal form, constants of types half, float, and 2167 double are represented using the 16-digit form shown above (which 2168 matches the IEEE754 representation for double); half and float values 2169 must, however, be exactly representable as IEEE 754 half and single 2170 precision, respectively. Hexadecimal format is always used for long 2171 double, and there are three forms of long double. The 80-bit format used 2172 by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The 2173 128-bit format used by PowerPC (two adjacent doubles) is represented by 2174 ``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is 2175 represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles 2176 will only work if they match the long double format on your target. 2177 The IEEE 16-bit format (half precision) is represented by ``0xH`` 2178 followed by 4 hexadecimal digits. All hexadecimal formats are big-endian 2179 (sign bit at the left). 2180 2181 There are no constants of type x86_mmx. 2182 2183 .. _complexconstants: 2184 2185 Complex Constants 2186 ----------------- 2187 2188 Complex constants are a (potentially recursive) combination of simple 2189 constants and smaller complex constants. 2190 2191 **Structure constants** 2192 Structure constants are represented with notation similar to 2193 structure type definitions (a comma separated list of elements, 2194 surrounded by braces (``{}``)). For example: 2195 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as 2196 "``@G = external global i32``". Structure constants must have 2197 :ref:`structure type <t_struct>`, and the number and types of elements 2198 must match those specified by the type. 2199 **Array constants** 2200 Array constants are represented with notation similar to array type 2201 definitions (a comma separated list of elements, surrounded by 2202 square brackets (``[]``)). For example: 2203 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have 2204 :ref:`array type <t_array>`, and the number and types of elements must 2205 match those specified by the type. 2206 **Vector constants** 2207 Vector constants are represented with notation similar to vector 2208 type definitions (a comma separated list of elements, surrounded by 2209 less-than/greater-than's (``<>``)). For example: 2210 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants 2211 must have :ref:`vector type <t_vector>`, and the number and types of 2212 elements must match those specified by the type. 2213 **Zero initialization** 2214 The string '``zeroinitializer``' can be used to zero initialize a 2215 value to zero of *any* type, including scalar and 2216 :ref:`aggregate <t_aggregate>` types. This is often used to avoid 2217 having to print large zero initializers (e.g. for large arrays) and 2218 is always exactly equivalent to using explicit zero initializers. 2219 **Metadata node** 2220 A metadata node is a structure-like constant with :ref:`metadata 2221 type <t_metadata>`. For example: 2222 "``metadata !{ i32 0, metadata !"test" }``". Unlike other 2223 constants that are meant to be interpreted as part of the 2224 instruction stream, metadata is a place to attach additional 2225 information such as debug info. 2226 2227 Global Variable and Function Addresses 2228 -------------------------------------- 2229 2230 The addresses of :ref:`global variables <globalvars>` and 2231 :ref:`functions <functionstructure>` are always implicitly valid 2232 (link-time) constants. These constants are explicitly referenced when 2233 the :ref:`identifier for the global <identifiers>` is used and always have 2234 :ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM 2235 file: 2236 2237 .. code-block:: llvm 2238 2239 @X = global i32 17 2240 @Y = global i32 42 2241 @Z = global [2 x i32*] [ i32* @X, i32* @Y ] 2242 2243 .. _undefvalues: 2244 2245 Undefined Values 2246 ---------------- 2247 2248 The string '``undef``' can be used anywhere a constant is expected, and 2249 indicates that the user of the value may receive an unspecified 2250 bit-pattern. Undefined values may be of any type (other than '``label``' 2251 or '``void``') and be used anywhere a constant is permitted. 2252 2253 Undefined values are useful because they indicate to the compiler that 2254 the program is well defined no matter what value is used. This gives the 2255 compiler more freedom to optimize. Here are some examples of 2256 (potentially surprising) transformations that are valid (in pseudo IR): 2257 2258 .. code-block:: llvm 2259 2260 %A = add %X, undef 2261 %B = sub %X, undef 2262 %C = xor %X, undef 2263 Safe: 2264 %A = undef 2265 %B = undef 2266 %C = undef 2267 2268 This is safe because all of the output bits are affected by the undef 2269 bits. Any output bit can have a zero or one depending on the input bits. 2270 2271 .. code-block:: llvm 2272 2273 %A = or %X, undef 2274 %B = and %X, undef 2275 Safe: 2276 %A = -1 2277 %B = 0 2278 Unsafe: 2279 %A = undef 2280 %B = undef 2281 2282 These logical operations have bits that are not always affected by the 2283 input. For example, if ``%X`` has a zero bit, then the output of the 2284 '``and``' operation will always be a zero for that bit, no matter what 2285 the corresponding bit from the '``undef``' is. As such, it is unsafe to 2286 optimize or assume that the result of the '``and``' is '``undef``'. 2287 However, it is safe to assume that all bits of the '``undef``' could be 2288 0, and optimize the '``and``' to 0. Likewise, it is safe to assume that 2289 all the bits of the '``undef``' operand to the '``or``' could be set, 2290 allowing the '``or``' to be folded to -1. 2291 2292 .. code-block:: llvm 2293 2294 %A = select undef, %X, %Y 2295 %B = select undef, 42, %Y 2296 %C = select %X, %Y, undef 2297 Safe: 2298 %A = %X (or %Y) 2299 %B = 42 (or %Y) 2300 %C = %Y 2301 Unsafe: 2302 %A = undef 2303 %B = undef 2304 %C = undef 2305 2306 This set of examples shows that undefined '``select``' (and conditional 2307 branch) conditions can go *either way*, but they have to come from one 2308 of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were 2309 both known to have a clear low bit, then ``%A`` would have to have a 2310 cleared low bit. However, in the ``%C`` example, the optimizer is 2311 allowed to assume that the '``undef``' operand could be the same as 2312 ``%Y``, allowing the whole '``select``' to be eliminated. 2313 2314 .. code-block:: llvm 2315 2316 %A = xor undef, undef 2317 2318 %B = undef 2319 %C = xor %B, %B 2320 2321 %D = undef 2322 %E = icmp lt %D, 4 2323 %F = icmp gte %D, 4 2324 2325 Safe: 2326 %A = undef 2327 %B = undef 2328 %C = undef 2329 %D = undef 2330 %E = undef 2331 %F = undef 2332 2333 This example points out that two '``undef``' operands are not 2334 necessarily the same. This can be surprising to people (and also matches 2335 C semantics) where they assume that "``X^X``" is always zero, even if 2336 ``X`` is undefined. This isn't true for a number of reasons, but the 2337 short answer is that an '``undef``' "variable" can arbitrarily change 2338 its value over its "live range". This is true because the variable 2339 doesn't actually *have a live range*. Instead, the value is logically 2340 read from arbitrary registers that happen to be around when needed, so 2341 the value is not necessarily consistent over time. In fact, ``%A`` and 2342 ``%C`` need to have the same semantics or the core LLVM "replace all 2343 uses with" concept would not hold. 2344 2345 .. code-block:: llvm 2346 2347 %A = fdiv undef, %X 2348 %B = fdiv %X, undef 2349 Safe: 2350 %A = undef 2351 b: unreachable 2352 2353 These examples show the crucial difference between an *undefined value* 2354 and *undefined behavior*. An undefined value (like '``undef``') is 2355 allowed to have an arbitrary bit-pattern. This means that the ``%A`` 2356 operation can be constant folded to '``undef``', because the '``undef``' 2357 could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's. 2358 However, in the second example, we can make a more aggressive 2359 assumption: because the ``undef`` is allowed to be an arbitrary value, 2360 we are allowed to assume that it could be zero. Since a divide by zero 2361 has *undefined behavior*, we are allowed to assume that the operation 2362 does not execute at all. This allows us to delete the divide and all 2363 code after it. Because the undefined operation "can't happen", the 2364 optimizer can assume that it occurs in dead code. 2365 2366 .. code-block:: llvm 2367 2368 a: store undef -> %X 2369 b: store %X -> undef 2370 Safe: 2371 a: <deleted> 2372 b: unreachable 2373 2374 These examples reiterate the ``fdiv`` example: a store *of* an undefined 2375 value can be assumed to not have any effect; we can assume that the 2376 value is overwritten with bits that happen to match what was already 2377 there. However, a store *to* an undefined location could clobber 2378 arbitrary memory, therefore, it has undefined behavior. 2379 2380 .. _poisonvalues: 2381 2382 Poison Values 2383 ------------- 2384 2385 Poison values are similar to :ref:`undef values <undefvalues>`, however 2386 they also represent the fact that an instruction or constant expression 2387 which cannot evoke side effects has nevertheless detected a condition 2388 which results in undefined behavior. 2389 2390 There is currently no way of representing a poison value in the IR; they 2391 only exist when produced by operations such as :ref:`add <i_add>` with 2392 the ``nsw`` flag. 2393 2394 Poison value behavior is defined in terms of value *dependence*: 2395 2396 - Values other than :ref:`phi <i_phi>` nodes depend on their operands. 2397 - :ref:`Phi <i_phi>` nodes depend on the operand corresponding to 2398 their dynamic predecessor basic block. 2399 - Function arguments depend on the corresponding actual argument values 2400 in the dynamic callers of their functions. 2401 - :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>` 2402 instructions that dynamically transfer control back to them. 2403 - :ref:`Invoke <i_invoke>` instructions depend on the 2404 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing 2405 call instructions that dynamically transfer control back to them. 2406 - Non-volatile loads and stores depend on the most recent stores to all 2407 of the referenced memory addresses, following the order in the IR 2408 (including loads and stores implied by intrinsics such as 2409 :ref:`@llvm.memcpy <int_memcpy>`.) 2410 - An instruction with externally visible side effects depends on the 2411 most recent preceding instruction with externally visible side 2412 effects, following the order in the IR. (This includes :ref:`volatile 2413 operations <volatile>`.) 2414 - An instruction *control-depends* on a :ref:`terminator 2415 instruction <terminators>` if the terminator instruction has 2416 multiple successors and the instruction is always executed when 2417 control transfers to one of the successors, and may not be executed 2418 when control is transferred to another. 2419 - Additionally, an instruction also *control-depends* on a terminator 2420 instruction if the set of instructions it otherwise depends on would 2421 be different if the terminator had transferred control to a different 2422 successor. 2423 - Dependence is transitive. 2424 2425 Poison Values have the same behavior as :ref:`undef values <undefvalues>`, 2426 with the additional affect that any instruction which has a *dependence* 2427 on a poison value has undefined behavior. 2428 2429 Here are some examples: 2430 2431 .. code-block:: llvm 2432 2433 entry: 2434 %poison = sub nuw i32 0, 1 ; Results in a poison value. 2435 %still_poison = and i32 %poison, 0 ; 0, but also poison. 2436 %poison_yet_again = getelementptr i32* @h, i32 %still_poison 2437 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned 2438 2439 store i32 %poison, i32* @g ; Poison value stored to memory. 2440 %poison2 = load i32* @g ; Poison value loaded back from memory. 2441 2442 store volatile i32 %poison, i32* @g ; External observation; undefined behavior. 2443 2444 %narrowaddr = bitcast i32* @g to i16* 2445 %wideaddr = bitcast i32* @g to i64* 2446 %poison3 = load i16* %narrowaddr ; Returns a poison value. 2447 %poison4 = load i64* %wideaddr ; Returns a poison value. 2448 2449 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value. 2450 br i1 %cmp, label %true, label %end ; Branch to either destination. 2451 2452 true: 2453 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so 2454 ; it has undefined behavior. 2455 br label %end 2456 2457 end: 2458 %p = phi i32 [ 0, %entry ], [ 1, %true ] 2459 ; Both edges into this PHI are 2460 ; control-dependent on %cmp, so this 2461 ; always results in a poison value. 2462 2463 store volatile i32 0, i32* @g ; This would depend on the store in %true 2464 ; if %cmp is true, or the store in %entry 2465 ; otherwise, so this is undefined behavior. 2466 2467 br i1 %cmp, label %second_true, label %second_end 2468 ; The same branch again, but this time the 2469 ; true block doesn't have side effects. 2470 2471 second_true: 2472 ; No side effects! 2473 ret void 2474 2475 second_end: 2476 store volatile i32 0, i32* @g ; This time, the instruction always depends 2477 ; on the store in %end. Also, it is 2478 ; control-equivalent to %end, so this is 2479 ; well-defined (ignoring earlier undefined 2480 ; behavior in this example). 2481 2482 .. _blockaddress: 2483 2484 Addresses of Basic Blocks 2485 ------------------------- 2486 2487 ``blockaddress(@function, %block)`` 2488 2489 The '``blockaddress``' constant computes the address of the specified 2490 basic block in the specified function, and always has an ``i8*`` type. 2491 Taking the address of the entry block is illegal. 2492 2493 This value only has defined behavior when used as an operand to the 2494 ':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons 2495 against null. Pointer equality tests between labels addresses results in 2496 undefined behavior --- though, again, comparison against null is ok, and 2497 no label is equal to the null pointer. This may be passed around as an 2498 opaque pointer sized value as long as the bits are not inspected. This 2499 allows ``ptrtoint`` and arithmetic to be performed on these values so 2500 long as the original value is reconstituted before the ``indirectbr`` 2501 instruction. 2502 2503 Finally, some targets may provide defined semantics when using the value 2504 as the operand to an inline assembly, but that is target specific. 2505 2506 .. _constantexprs: 2507 2508 Constant Expressions 2509 -------------------- 2510 2511 Constant expressions are used to allow expressions involving other 2512 constants to be used as constants. Constant expressions may be of any 2513 :ref:`first class <t_firstclass>` type and may involve any LLVM operation 2514 that does not have side effects (e.g. load and call are not supported). 2515 The following is the syntax for constant expressions: 2516 2517 ``trunc (CST to TYPE)`` 2518 Truncate a constant to another type. The bit size of CST must be 2519 larger than the bit size of TYPE. Both types must be integers. 2520 ``zext (CST to TYPE)`` 2521 Zero extend a constant to another type. The bit size of CST must be 2522 smaller than the bit size of TYPE. Both types must be integers. 2523 ``sext (CST to TYPE)`` 2524 Sign extend a constant to another type. The bit size of CST must be 2525 smaller than the bit size of TYPE. Both types must be integers. 2526 ``fptrunc (CST to TYPE)`` 2527 Truncate a floating point constant to another floating point type. 2528 The size of CST must be larger than the size of TYPE. Both types 2529 must be floating point. 2530 ``fpext (CST to TYPE)`` 2531 Floating point extend a constant to another type. The size of CST 2532 must be smaller or equal to the size of TYPE. Both types must be 2533 floating point. 2534 ``fptoui (CST to TYPE)`` 2535 Convert a floating point constant to the corresponding unsigned 2536 integer constant. TYPE must be a scalar or vector integer type. CST 2537 must be of scalar or vector floating point type. Both CST and TYPE 2538 must be scalars, or vectors of the same number of elements. If the 2539 value won't fit in the integer type, the results are undefined. 2540 ``fptosi (CST to TYPE)`` 2541 Convert a floating point constant to the corresponding signed 2542 integer constant. TYPE must be a scalar or vector integer type. CST 2543 must be of scalar or vector floating point type. Both CST and TYPE 2544 must be scalars, or vectors of the same number of elements. If the 2545 value won't fit in the integer type, the results are undefined. 2546 ``uitofp (CST to TYPE)`` 2547 Convert an unsigned integer constant to the corresponding floating 2548 point constant. TYPE must be a scalar or vector floating point type. 2549 CST must be of scalar or vector integer type. Both CST and TYPE must 2550 be scalars, or vectors of the same number of elements. If the value 2551 won't fit in the floating point type, the results are undefined. 2552 ``sitofp (CST to TYPE)`` 2553 Convert a signed integer constant to the corresponding floating 2554 point constant. TYPE must be a scalar or vector floating point type. 2555 CST must be of scalar or vector integer type. Both CST and TYPE must 2556 be scalars, or vectors of the same number of elements. If the value 2557 won't fit in the floating point type, the results are undefined. 2558 ``ptrtoint (CST to TYPE)`` 2559 Convert a pointer typed constant to the corresponding integer 2560 constant. ``TYPE`` must be an integer type. ``CST`` must be of 2561 pointer type. The ``CST`` value is zero extended, truncated, or 2562 unchanged to make it fit in ``TYPE``. 2563 ``inttoptr (CST to TYPE)`` 2564 Convert an integer constant to a pointer constant. TYPE must be a 2565 pointer type. CST must be of integer type. The CST value is zero 2566 extended, truncated, or unchanged to make it fit in a pointer size. 2567 This one is *really* dangerous! 2568 ``bitcast (CST to TYPE)`` 2569 Convert a constant, CST, to another TYPE. The constraints of the 2570 operands are the same as those for the :ref:`bitcast 2571 instruction <i_bitcast>`. 2572 ``addrspacecast (CST to TYPE)`` 2573 Convert a constant pointer or constant vector of pointer, CST, to another 2574 TYPE in a different address space. The constraints of the operands are the 2575 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`. 2576 ``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)`` 2577 Perform the :ref:`getelementptr operation <i_getelementptr>` on 2578 constants. As with the :ref:`getelementptr <i_getelementptr>` 2579 instruction, the index list may have zero or more indexes, which are 2580 required to make sense for the type of "CSTPTR". 2581 ``select (COND, VAL1, VAL2)`` 2582 Perform the :ref:`select operation <i_select>` on constants. 2583 ``icmp COND (VAL1, VAL2)`` 2584 Performs the :ref:`icmp operation <i_icmp>` on constants. 2585 ``fcmp COND (VAL1, VAL2)`` 2586 Performs the :ref:`fcmp operation <i_fcmp>` on constants. 2587 ``extractelement (VAL, IDX)`` 2588 Perform the :ref:`extractelement operation <i_extractelement>` on 2589 constants. 2590 ``insertelement (VAL, ELT, IDX)`` 2591 Perform the :ref:`insertelement operation <i_insertelement>` on 2592 constants. 2593 ``shufflevector (VEC1, VEC2, IDXMASK)`` 2594 Perform the :ref:`shufflevector operation <i_shufflevector>` on 2595 constants. 2596 ``extractvalue (VAL, IDX0, IDX1, ...)`` 2597 Perform the :ref:`extractvalue operation <i_extractvalue>` on 2598 constants. The index list is interpreted in a similar manner as 2599 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At 2600 least one index value must be specified. 2601 ``insertvalue (VAL, ELT, IDX0, IDX1, ...)`` 2602 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants. 2603 The index list is interpreted in a similar manner as indices in a 2604 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index 2605 value must be specified. 2606 ``OPCODE (LHS, RHS)`` 2607 Perform the specified operation of the LHS and RHS constants. OPCODE 2608 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise 2609 binary <bitwiseops>` operations. The constraints on operands are 2610 the same as those for the corresponding instruction (e.g. no bitwise 2611 operations on floating point values are allowed). 2612 2613 Other Values 2614 ============ 2615 2616 .. _inlineasmexprs: 2617 2618 Inline Assembler Expressions 2619 ---------------------------- 2620 2621 LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level 2622 Inline Assembly <moduleasm>`) through the use of a special value. This 2623 value represents the inline assembler as a string (containing the 2624 instructions to emit), a list of operand constraints (stored as a 2625 string), a flag that indicates whether or not the inline asm expression 2626 has side effects, and a flag indicating whether the function containing 2627 the asm needs to align its stack conservatively. An example inline 2628 assembler expression is: 2629 2630 .. code-block:: llvm 2631 2632 i32 (i32) asm "bswap $0", "=r,r" 2633 2634 Inline assembler expressions may **only** be used as the callee operand 2635 of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction. 2636 Thus, typically we have: 2637 2638 .. code-block:: llvm 2639 2640 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y) 2641 2642 Inline asms with side effects not visible in the constraint list must be 2643 marked as having side effects. This is done through the use of the 2644 '``sideeffect``' keyword, like so: 2645 2646 .. code-block:: llvm 2647 2648 call void asm sideeffect "eieio", ""() 2649 2650 In some cases inline asms will contain code that will not work unless 2651 the stack is aligned in some way, such as calls or SSE instructions on 2652 x86, yet will not contain code that does that alignment within the asm. 2653 The compiler should make conservative assumptions about what the asm 2654 might contain and should generate its usual stack alignment code in the 2655 prologue if the '``alignstack``' keyword is present: 2656 2657 .. code-block:: llvm 2658 2659 call void asm alignstack "eieio", ""() 2660 2661 Inline asms also support using non-standard assembly dialects. The 2662 assumed dialect is ATT. When the '``inteldialect``' keyword is present, 2663 the inline asm is using the Intel dialect. Currently, ATT and Intel are 2664 the only supported dialects. An example is: 2665 2666 .. code-block:: llvm 2667 2668 call void asm inteldialect "eieio", ""() 2669 2670 If multiple keywords appear the '``sideeffect``' keyword must come 2671 first, the '``alignstack``' keyword second and the '``inteldialect``' 2672 keyword last. 2673 2674 Inline Asm Metadata 2675 ^^^^^^^^^^^^^^^^^^^ 2676 2677 The call instructions that wrap inline asm nodes may have a 2678 "``!srcloc``" MDNode attached to it that contains a list of constant 2679 integers. If present, the code generator will use the integer as the 2680 location cookie value when report errors through the ``LLVMContext`` 2681 error reporting mechanisms. This allows a front-end to correlate backend 2682 errors that occur with inline asm back to the source code that produced 2683 it. For example: 2684 2685 .. code-block:: llvm 2686 2687 call void asm sideeffect "something bad", ""(), !srcloc !42 2688 ... 2689 !42 = !{ i32 1234567 } 2690 2691 It is up to the front-end to make sense of the magic numbers it places 2692 in the IR. If the MDNode contains multiple constants, the code generator 2693 will use the one that corresponds to the line of the asm that the error 2694 occurs on. 2695 2696 .. _metadata: 2697 2698 Metadata Nodes and Metadata Strings 2699 ----------------------------------- 2700 2701 LLVM IR allows metadata to be attached to instructions in the program 2702 that can convey extra information about the code to the optimizers and 2703 code generator. One example application of metadata is source-level 2704 debug information. There are two metadata primitives: strings and nodes. 2705 All metadata has the ``metadata`` type and is identified in syntax by a 2706 preceding exclamation point ('``!``'). 2707 2708 A metadata string is a string surrounded by double quotes. It can 2709 contain any character by escaping non-printable characters with 2710 "``\xx``" where "``xx``" is the two digit hex code. For example: 2711 "``!"test\00"``". 2712 2713 Metadata nodes are represented with notation similar to structure 2714 constants (a comma separated list of elements, surrounded by braces and 2715 preceded by an exclamation point). Metadata nodes can have any values as 2716 their operand. For example: 2717 2718 .. code-block:: llvm 2719 2720 !{ metadata !"test\00", i32 10} 2721 2722 A :ref:`named metadata <namedmetadatastructure>` is a collection of 2723 metadata nodes, which can be looked up in the module symbol table. For 2724 example: 2725 2726 .. code-block:: llvm 2727 2728 !foo = metadata !{!4, !3} 2729 2730 Metadata can be used as function arguments. Here ``llvm.dbg.value`` 2731 function is using two metadata arguments: 2732 2733 .. code-block:: llvm 2734 2735 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25) 2736 2737 Metadata can be attached with an instruction. Here metadata ``!21`` is 2738 attached to the ``add`` instruction using the ``!dbg`` identifier: 2739 2740 .. code-block:: llvm 2741 2742 %indvar.next = add i64 %indvar, 1, !dbg !21 2743 2744 More information about specific metadata nodes recognized by the 2745 optimizers and code generator is found below. 2746 2747 '``tbaa``' Metadata 2748 ^^^^^^^^^^^^^^^^^^^ 2749 2750 In LLVM IR, memory does not have types, so LLVM's own type system is not 2751 suitable for doing TBAA. Instead, metadata is added to the IR to 2752 describe a type system of a higher level language. This can be used to 2753 implement typical C/C++ TBAA, but it can also be used to implement 2754 custom alias analysis behavior for other languages. 2755 2756 The current metadata format is very simple. TBAA metadata nodes have up 2757 to three fields, e.g.: 2758 2759 .. code-block:: llvm 2760 2761 !0 = metadata !{ metadata !"an example type tree" } 2762 !1 = metadata !{ metadata !"int", metadata !0 } 2763 !2 = metadata !{ metadata !"float", metadata !0 } 2764 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 } 2765 2766 The first field is an identity field. It can be any value, usually a 2767 metadata string, which uniquely identifies the type. The most important 2768 name in the tree is the name of the root node. Two trees with different 2769 root node names are entirely disjoint, even if they have leaves with 2770 common names. 2771 2772 The second field identifies the type's parent node in the tree, or is 2773 null or omitted for a root node. A type is considered to alias all of 2774 its descendants and all of its ancestors in the tree. Also, a type is 2775 considered to alias all types in other trees, so that bitcode produced 2776 from multiple front-ends is handled conservatively. 2777 2778 If the third field is present, it's an integer which if equal to 1 2779 indicates that the type is "constant" (meaning 2780 ``pointsToConstantMemory`` should return true; see `other useful 2781 AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_). 2782 2783 '``tbaa.struct``' Metadata 2784 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 2785 2786 The :ref:`llvm.memcpy <int_memcpy>` is often used to implement 2787 aggregate assignment operations in C and similar languages, however it 2788 is defined to copy a contiguous region of memory, which is more than 2789 strictly necessary for aggregate types which contain holes due to 2790 padding. Also, it doesn't contain any TBAA information about the fields 2791 of the aggregate. 2792 2793 ``!tbaa.struct`` metadata can describe which memory subregions in a 2794 memcpy are padding and what the TBAA tags of the struct are. 2795 2796 The current metadata format is very simple. ``!tbaa.struct`` metadata 2797 nodes are a list of operands which are in conceptual groups of three. 2798 For each group of three, the first operand gives the byte offset of a 2799 field in bytes, the second gives its size in bytes, and the third gives 2800 its tbaa tag. e.g.: 2801 2802 .. code-block:: llvm 2803 2804 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 } 2805 2806 This describes a struct with two fields. The first is at offset 0 bytes 2807 with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes 2808 and has size 4 bytes and has tbaa tag !2. 2809 2810 Note that the fields need not be contiguous. In this example, there is a 2811 4 byte gap between the two fields. This gap represents padding which 2812 does not carry useful data and need not be preserved. 2813 2814 '``fpmath``' Metadata 2815 ^^^^^^^^^^^^^^^^^^^^^ 2816 2817 ``fpmath`` metadata may be attached to any instruction of floating point 2818 type. It can be used to express the maximum acceptable error in the 2819 result of that instruction, in ULPs, thus potentially allowing the 2820 compiler to use a more efficient but less accurate method of computing 2821 it. ULP is defined as follows: 2822 2823 If ``x`` is a real number that lies between two finite consecutive 2824 floating-point numbers ``a`` and ``b``, without being equal to one 2825 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the 2826 distance between the two non-equal finite floating-point numbers 2827 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``. 2828 2829 The metadata node shall consist of a single positive floating point 2830 number representing the maximum relative error, for example: 2831 2832 .. code-block:: llvm 2833 2834 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs 2835 2836 '``range``' Metadata 2837 ^^^^^^^^^^^^^^^^^^^^ 2838 2839 ``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of 2840 integer types. It expresses the possible ranges the loaded value or the value 2841 returned by the called function at this call site is in. The ranges are 2842 represented with a flattened list of integers. The loaded value or the value 2843 returned is known to be in the union of the ranges defined by each consecutive 2844 pair. Each pair has the following properties: 2845 2846 - The type must match the type loaded by the instruction. 2847 - The pair ``a,b`` represents the range ``[a,b)``. 2848 - Both ``a`` and ``b`` are constants. 2849 - The range is allowed to wrap. 2850 - The range should not represent the full or empty set. That is, 2851 ``a!=b``. 2852 2853 In addition, the pairs must be in signed order of the lower bound and 2854 they must be non-contiguous. 2855 2856 Examples: 2857 2858 .. code-block:: llvm 2859 2860 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1 2861 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1 2862 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5 2863 %d = invoke i8 @bar() to label %cont 2864 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5 2865 ... 2866 !0 = metadata !{ i8 0, i8 2 } 2867 !1 = metadata !{ i8 255, i8 2 } 2868 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 } 2869 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 } 2870 2871 '``llvm.loop``' 2872 ^^^^^^^^^^^^^^^ 2873 2874 It is sometimes useful to attach information to loop constructs. Currently, 2875 loop metadata is implemented as metadata attached to the branch instruction 2876 in the loop latch block. This type of metadata refer to a metadata node that is 2877 guaranteed to be separate for each loop. The loop identifier metadata is 2878 specified with the name ``llvm.loop``. 2879 2880 The loop identifier metadata is implemented using a metadata that refers to 2881 itself to avoid merging it with any other identifier metadata, e.g., 2882 during module linkage or function inlining. That is, each loop should refer 2883 to their own identification metadata even if they reside in separate functions. 2884 The following example contains loop identifier metadata for two separate loop 2885 constructs: 2886 2887 .. code-block:: llvm 2888 2889 !0 = metadata !{ metadata !0 } 2890 !1 = metadata !{ metadata !1 } 2891 2892 The loop identifier metadata can be used to specify additional per-loop 2893 metadata. Any operands after the first operand can be treated as user-defined 2894 metadata. For example the ``llvm.loop.vectorize.unroll`` metadata is understood 2895 by the loop vectorizer to indicate how many times to unroll the loop: 2896 2897 .. code-block:: llvm 2898 2899 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0 2900 ... 2901 !0 = metadata !{ metadata !0, metadata !1 } 2902 !1 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 2 } 2903 2904 '``llvm.mem``' 2905 ^^^^^^^^^^^^^^^ 2906 2907 Metadata types used to annotate memory accesses with information helpful 2908 for optimizations are prefixed with ``llvm.mem``. 2909 2910 '``llvm.mem.parallel_loop_access``' Metadata 2911 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2912 2913 The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier, 2914 or metadata containing a list of loop identifiers for nested loops. 2915 The metadata is attached to memory accessing instructions and denotes that 2916 no loop carried memory dependence exist between it and other instructions denoted 2917 with the same loop identifier. 2918 2919 Precisely, given two instructions ``m1`` and ``m2`` that both have the 2920 ``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the 2921 set of loops associated with that metadata, respectively, then there is no loop 2922 carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and 2923 ``L2``. 2924 2925 As a special case, if all memory accessing instructions in a loop have 2926 ``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the 2927 loop has no loop carried memory dependences and is considered to be a parallel 2928 loop. 2929 2930 Note that if not all memory access instructions have such metadata referring to 2931 the loop, then the loop is considered not being trivially parallel. Additional 2932 memory dependence analysis is required to make that determination. As a fail 2933 safe mechanism, this causes loops that were originally parallel to be considered 2934 sequential (if optimization passes that are unaware of the parallel semantics 2935 insert new memory instructions into the loop body). 2936 2937 Example of a loop that is considered parallel due to its correct use of 2938 both ``llvm.loop`` and ``llvm.mem.parallel_loop_access`` 2939 metadata types that refer to the same loop identifier metadata. 2940 2941 .. code-block:: llvm 2942 2943 for.body: 2944 ... 2945 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0 2946 ... 2947 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0 2948 ... 2949 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0 2950 2951 for.end: 2952 ... 2953 !0 = metadata !{ metadata !0 } 2954 2955 It is also possible to have nested parallel loops. In that case the 2956 memory accesses refer to a list of loop identifier metadata nodes instead of 2957 the loop identifier metadata node directly: 2958 2959 .. code-block:: llvm 2960 2961 outer.for.body: 2962 ... 2963 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2 2964 ... 2965 br label %inner.for.body 2966 2967 inner.for.body: 2968 ... 2969 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0 2970 ... 2971 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0 2972 ... 2973 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1 2974 2975 inner.for.end: 2976 ... 2977 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2 2978 ... 2979 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2 2980 2981 outer.for.end: ; preds = %for.body 2982 ... 2983 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers 2984 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop 2985 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop 2986 2987 '``llvm.loop.vectorize``' 2988 ^^^^^^^^^^^^^^^^^^^^^^^^^ 2989 2990 Metadata prefixed with ``llvm.loop.vectorize`` is used to control per-loop 2991 vectorization parameters such as vectorization factor and unroll factor. 2992 2993 ``llvm.loop.vectorize`` metadata should be used in conjunction with 2994 ``llvm.loop`` loop identification metadata. 2995 2996 '``llvm.loop.vectorize.unroll``' Metadata 2997 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2998 2999 This metadata instructs the loop vectorizer to unroll the specified 3000 loop exactly ``N`` times. 3001 3002 The first operand is the string ``llvm.loop.vectorize.unroll`` and the second 3003 operand is an integer specifying the unroll factor. For example: 3004 3005 .. code-block:: llvm 3006 3007 !0 = metadata !{ metadata !"llvm.loop.vectorize.unroll", i32 4 } 3008 3009 Note that setting ``llvm.loop.vectorize.unroll`` to 1 disables 3010 unrolling of the loop. 3011 3012 If ``llvm.loop.vectorize.unroll`` is set to 0 then the amount of 3013 unrolling will be determined automatically. 3014 3015 '``llvm.loop.vectorize.width``' Metadata 3016 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3017 3018 This metadata sets the target width of the vectorizer to ``N``. Without 3019 this metadata, the vectorizer will choose a width automatically. 3020 Regardless of this metadata, the vectorizer will only vectorize loops if 3021 it believes it is valid to do so. 3022 3023 The first operand is the string ``llvm.loop.vectorize.width`` and the 3024 second operand is an integer specifying the width. For example: 3025 3026 .. code-block:: llvm 3027 3028 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 } 3029 3030 Note that setting ``llvm.loop.vectorize.width`` to 1 disables 3031 vectorization of the loop. 3032 3033 If ``llvm.loop.vectorize.width`` is set to 0 then the width will be 3034 determined automatically. 3035 3036 Module Flags Metadata 3037 ===================== 3038 3039 Information about the module as a whole is difficult to convey to LLVM's 3040 subsystems. The LLVM IR isn't sufficient to transmit this information. 3041 The ``llvm.module.flags`` named metadata exists in order to facilitate 3042 this. These flags are in the form of key / value pairs --- much like a 3043 dictionary --- making it easy for any subsystem who cares about a flag to 3044 look it up. 3045 3046 The ``llvm.module.flags`` metadata contains a list of metadata triplets. 3047 Each triplet has the following form: 3048 3049 - The first element is a *behavior* flag, which specifies the behavior 3050 when two (or more) modules are merged together, and it encounters two 3051 (or more) metadata with the same ID. The supported behaviors are 3052 described below. 3053 - The second element is a metadata string that is a unique ID for the 3054 metadata. Each module may only have one flag entry for each unique ID (not 3055 including entries with the **Require** behavior). 3056 - The third element is the value of the flag. 3057 3058 When two (or more) modules are merged together, the resulting 3059 ``llvm.module.flags`` metadata is the union of the modules' flags. That is, for 3060 each unique metadata ID string, there will be exactly one entry in the merged 3061 modules ``llvm.module.flags`` metadata table, and the value for that entry will 3062 be determined by the merge behavior flag, as described below. The only exception 3063 is that entries with the *Require* behavior are always preserved. 3064 3065 The following behaviors are supported: 3066 3067 .. list-table:: 3068 :header-rows: 1 3069 :widths: 10 90 3070 3071 * - Value 3072 - Behavior 3073 3074 * - 1 3075 - **Error** 3076 Emits an error if two values disagree, otherwise the resulting value 3077 is that of the operands. 3078 3079 * - 2 3080 - **Warning** 3081 Emits a warning if two values disagree. The result value will be the 3082 operand for the flag from the first module being linked. 3083 3084 * - 3 3085 - **Require** 3086 Adds a requirement that another module flag be present and have a 3087 specified value after linking is performed. The value must be a 3088 metadata pair, where the first element of the pair is the ID of the 3089 module flag to be restricted, and the second element of the pair is 3090 the value the module flag should be restricted to. This behavior can 3091 be used to restrict the allowable results (via triggering of an 3092 error) of linking IDs with the **Override** behavior. 3093 3094 * - 4 3095 - **Override** 3096 Uses the specified value, regardless of the behavior or value of the 3097 other module. If both modules specify **Override**, but the values 3098 differ, an error will be emitted. 3099 3100 * - 5 3101 - **Append** 3102 Appends the two values, which are required to be metadata nodes. 3103 3104 * - 6 3105 - **AppendUnique** 3106 Appends the two values, which are required to be metadata 3107 nodes. However, duplicate entries in the second list are dropped 3108 during the append operation. 3109 3110 It is an error for a particular unique flag ID to have multiple behaviors, 3111 except in the case of **Require** (which adds restrictions on another metadata 3112 value) or **Override**. 3113 3114 An example of module flags: 3115 3116 .. code-block:: llvm 3117 3118 !0 = metadata !{ i32 1, metadata !"foo", i32 1 } 3119 !1 = metadata !{ i32 4, metadata !"bar", i32 37 } 3120 !2 = metadata !{ i32 2, metadata !"qux", i32 42 } 3121 !3 = metadata !{ i32 3, metadata !"qux", 3122 metadata !{ 3123 metadata !"foo", i32 1 3124 } 3125 } 3126 !llvm.module.flags = !{ !0, !1, !2, !3 } 3127 3128 - Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior 3129 if two or more ``!"foo"`` flags are seen is to emit an error if their 3130 values are not equal. 3131 3132 - Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The 3133 behavior if two or more ``!"bar"`` flags are seen is to use the value 3134 '37'. 3135 3136 - Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The 3137 behavior if two or more ``!"qux"`` flags are seen is to emit a 3138 warning if their values are not equal. 3139 3140 - Metadata ``!3`` has the ID ``!"qux"`` and the value: 3141 3142 :: 3143 3144 metadata !{ metadata !"foo", i32 1 } 3145 3146 The behavior is to emit an error if the ``llvm.module.flags`` does not 3147 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is 3148 performed. 3149 3150 Objective-C Garbage Collection Module Flags Metadata 3151 ---------------------------------------------------- 3152 3153 On the Mach-O platform, Objective-C stores metadata about garbage 3154 collection in a special section called "image info". The metadata 3155 consists of a version number and a bitmask specifying what types of 3156 garbage collection are supported (if any) by the file. If two or more 3157 modules are linked together their garbage collection metadata needs to 3158 be merged rather than appended together. 3159 3160 The Objective-C garbage collection module flags metadata consists of the 3161 following key-value pairs: 3162 3163 .. list-table:: 3164 :header-rows: 1 3165 :widths: 30 70 3166 3167 * - Key 3168 - Value 3169 3170 * - ``Objective-C Version`` 3171 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2. 3172 3173 * - ``Objective-C Image Info Version`` 3174 - **[Required]** --- The version of the image info section. Currently 3175 always 0. 3176 3177 * - ``Objective-C Image Info Section`` 3178 - **[Required]** --- The section to place the metadata. Valid values are 3179 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and 3180 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for 3181 Objective-C ABI version 2. 3182 3183 * - ``Objective-C Garbage Collection`` 3184 - **[Required]** --- Specifies whether garbage collection is supported or 3185 not. Valid values are 0, for no garbage collection, and 2, for garbage 3186 collection supported. 3187 3188 * - ``Objective-C GC Only`` 3189 - **[Optional]** --- Specifies that only garbage collection is supported. 3190 If present, its value must be 6. This flag requires that the 3191 ``Objective-C Garbage Collection`` flag have the value 2. 3192 3193 Some important flag interactions: 3194 3195 - If a module with ``Objective-C Garbage Collection`` set to 0 is 3196 merged with a module with ``Objective-C Garbage Collection`` set to 3197 2, then the resulting module has the 3198 ``Objective-C Garbage Collection`` flag set to 0. 3199 - A module with ``Objective-C Garbage Collection`` set to 0 cannot be 3200 merged with a module with ``Objective-C GC Only`` set to 6. 3201 3202 Automatic Linker Flags Module Flags Metadata 3203 -------------------------------------------- 3204 3205 Some targets support embedding flags to the linker inside individual object 3206 files. Typically this is used in conjunction with language extensions which 3207 allow source files to explicitly declare the libraries they depend on, and have 3208 these automatically be transmitted to the linker via object files. 3209 3210 These flags are encoded in the IR using metadata in the module flags section, 3211 using the ``Linker Options`` key. The merge behavior for this flag is required 3212 to be ``AppendUnique``, and the value for the key is expected to be a metadata 3213 node which should be a list of other metadata nodes, each of which should be a 3214 list of metadata strings defining linker options. 3215 3216 For example, the following metadata section specifies two separate sets of 3217 linker options, presumably to link against ``libz`` and the ``Cocoa`` 3218 framework:: 3219 3220 !0 = metadata !{ i32 6, metadata !"Linker Options", 3221 metadata !{ 3222 metadata !{ metadata !"-lz" }, 3223 metadata !{ metadata !"-framework", metadata !"Cocoa" } } } 3224 !llvm.module.flags = !{ !0 } 3225 3226 The metadata encoding as lists of lists of options, as opposed to a collapsed 3227 list of options, is chosen so that the IR encoding can use multiple option 3228 strings to specify e.g., a single library, while still having that specifier be 3229 preserved as an atomic element that can be recognized by a target specific 3230 assembly writer or object file emitter. 3231 3232 Each individual option is required to be either a valid option for the target's 3233 linker, or an option that is reserved by the target specific assembly writer or 3234 object file emitter. No other aspect of these options is defined by the IR. 3235 3236 C type width Module Flags Metadata 3237 ---------------------------------- 3238 3239 The ARM backend emits a section into each generated object file describing the 3240 options that it was compiled with (in a compiler-independent way) to prevent 3241 linking incompatible objects, and to allow automatic library selection. Some 3242 of these options are not visible at the IR level, namely wchar_t width and enum 3243 width. 3244 3245 To pass this information to the backend, these options are encoded in module 3246 flags metadata, using the following key-value pairs: 3247 3248 .. list-table:: 3249 :header-rows: 1 3250 :widths: 30 70 3251 3252 * - Key 3253 - Value 3254 3255 * - short_wchar 3256 - * 0 --- sizeof(wchar_t) == 4 3257 * 1 --- sizeof(wchar_t) == 2 3258 3259 * - short_enum 3260 - * 0 --- Enums are at least as large as an ``int``. 3261 * 1 --- Enums are stored in the smallest integer type which can 3262 represent all of its values. 3263 3264 For example, the following metadata section specifies that the module was 3265 compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an 3266 enum is the smallest type which can represent all of its values:: 3267 3268 !llvm.module.flags = !{!0, !1} 3269 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1} 3270 !1 = metadata !{i32 1, metadata !"short_enum", i32 0} 3271 3272 .. _intrinsicglobalvariables: 3273 3274 Intrinsic Global Variables 3275 ========================== 3276 3277 LLVM has a number of "magic" global variables that contain data that 3278 affect code generation or other IR semantics. These are documented here. 3279 All globals of this sort should have a section specified as 3280 "``llvm.metadata``". This section and all globals that start with 3281 "``llvm.``" are reserved for use by LLVM. 3282 3283 .. _gv_llvmused: 3284 3285 The '``llvm.used``' Global Variable 3286 ----------------------------------- 3287 3288 The ``@llvm.used`` global is an array which has 3289 :ref:`appending linkage <linkage_appending>`. This array contains a list of 3290 pointers to named global variables, functions and aliases which may optionally 3291 have a pointer cast formed of bitcast or getelementptr. For example, a legal 3292 use of it is: 3293 3294 .. code-block:: llvm 3295 3296 @X = global i8 4 3297 @Y = global i32 123 3298 3299 @llvm.used = appending global [2 x i8*] [ 3300 i8* @X, 3301 i8* bitcast (i32* @Y to i8*) 3302 ], section "llvm.metadata" 3303 3304 If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler, 3305 and linker are required to treat the symbol as if there is a reference to the 3306 symbol that it cannot see (which is why they have to be named). For example, if 3307 a variable has internal linkage and no references other than that from the 3308 ``@llvm.used`` list, it cannot be deleted. This is commonly used to represent 3309 references from inline asms and other things the compiler cannot "see", and 3310 corresponds to "``attribute((used))``" in GNU C. 3311 3312 On some targets, the code generator must emit a directive to the 3313 assembler or object file to prevent the assembler and linker from 3314 molesting the symbol. 3315 3316 .. _gv_llvmcompilerused: 3317 3318 The '``llvm.compiler.used``' Global Variable 3319 -------------------------------------------- 3320 3321 The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used`` 3322 directive, except that it only prevents the compiler from touching the 3323 symbol. On targets that support it, this allows an intelligent linker to 3324 optimize references to the symbol without being impeded as it would be 3325 by ``@llvm.used``. 3326 3327 This is a rare construct that should only be used in rare circumstances, 3328 and should not be exposed to source languages. 3329 3330 .. _gv_llvmglobalctors: 3331 3332 The '``llvm.global_ctors``' Global Variable 3333 ------------------------------------------- 3334 3335 .. code-block:: llvm 3336 3337 %0 = type { i32, void ()*, i8* } 3338 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }] 3339 3340 The ``@llvm.global_ctors`` array contains a list of constructor 3341 functions, priorities, and an optional associated global or function. 3342 The functions referenced by this array will be called in ascending order 3343 of priority (i.e. lowest first) when the module is loaded. The order of 3344 functions with the same priority is not defined. 3345 3346 If the third field is present, non-null, and points to a global variable 3347 or function, the initializer function will only run if the associated 3348 data from the current module is not discarded. 3349 3350 .. _llvmglobaldtors: 3351 3352 The '``llvm.global_dtors``' Global Variable 3353 ------------------------------------------- 3354 3355 .. code-block:: llvm 3356 3357 %0 = type { i32, void ()*, i8* } 3358 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }] 3359 3360 The ``@llvm.global_dtors`` array contains a list of destructor 3361 functions, priorities, and an optional associated global or function. 3362 The functions referenced by this array will be called in descending 3363 order of priority (i.e. highest first) when the module is unloaded. The 3364 order of functions with the same priority is not defined. 3365 3366 If the third field is present, non-null, and points to a global variable 3367 or function, the destructor function will only run if the associated 3368 data from the current module is not discarded. 3369 3370 Instruction Reference 3371 ===================== 3372 3373 The LLVM instruction set consists of several different classifications 3374 of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary 3375 instructions <binaryops>`, :ref:`bitwise binary 3376 instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and 3377 :ref:`other instructions <otherops>`. 3378 3379 .. _terminators: 3380 3381 Terminator Instructions 3382 ----------------------- 3383 3384 As mentioned :ref:`previously <functionstructure>`, every basic block in a 3385 program ends with a "Terminator" instruction, which indicates which 3386 block should be executed after the current block is finished. These 3387 terminator instructions typically yield a '``void``' value: they produce 3388 control flow, not values (the one exception being the 3389 ':ref:`invoke <i_invoke>`' instruction). 3390 3391 The terminator instructions are: ':ref:`ret <i_ret>`', 3392 ':ref:`br <i_br>`', ':ref:`switch <i_switch>`', 3393 ':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`', 3394 ':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'. 3395 3396 .. _i_ret: 3397 3398 '``ret``' Instruction 3399 ^^^^^^^^^^^^^^^^^^^^^ 3400 3401 Syntax: 3402 """"""" 3403 3404 :: 3405 3406 ret <type> <value> ; Return a value from a non-void function 3407 ret void ; Return from void function 3408 3409 Overview: 3410 """"""""" 3411 3412 The '``ret``' instruction is used to return control flow (and optionally 3413 a value) from a function back to the caller. 3414 3415 There are two forms of the '``ret``' instruction: one that returns a 3416 value and then causes control flow, and one that just causes control 3417 flow to occur. 3418 3419 Arguments: 3420 """""""""" 3421 3422 The '``ret``' instruction optionally accepts a single argument, the 3423 return value. The type of the return value must be a ':ref:`first 3424 class <t_firstclass>`' type. 3425 3426 A function is not :ref:`well formed <wellformed>` if it it has a non-void 3427 return type and contains a '``ret``' instruction with no return value or 3428 a return value with a type that does not match its type, or if it has a 3429 void return type and contains a '``ret``' instruction with a return 3430 value. 3431 3432 Semantics: 3433 """""""""" 3434 3435 When the '``ret``' instruction is executed, control flow returns back to 3436 the calling function's context. If the caller is a 3437 ":ref:`call <i_call>`" instruction, execution continues at the 3438 instruction after the call. If the caller was an 3439 ":ref:`invoke <i_invoke>`" instruction, execution continues at the 3440 beginning of the "normal" destination block. If the instruction returns 3441 a value, that value shall set the call or invoke instruction's return 3442 value. 3443 3444 Example: 3445 """""""" 3446 3447 .. code-block:: llvm 3448 3449 ret i32 5 ; Return an integer value of 5 3450 ret void ; Return from a void function 3451 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2 3452 3453 .. _i_br: 3454 3455 '``br``' Instruction 3456 ^^^^^^^^^^^^^^^^^^^^ 3457 3458 Syntax: 3459 """"""" 3460 3461 :: 3462 3463 br i1 <cond>, label <iftrue>, label <iffalse> 3464 br label <dest> ; Unconditional branch 3465 3466 Overview: 3467 """"""""" 3468 3469 The '``br``' instruction is used to cause control flow to transfer to a 3470 different basic block in the current function. There are two forms of 3471 this instruction, corresponding to a conditional branch and an 3472 unconditional branch. 3473 3474 Arguments: 3475 """""""""" 3476 3477 The conditional branch form of the '``br``' instruction takes a single 3478 '``i1``' value and two '``label``' values. The unconditional form of the 3479 '``br``' instruction takes a single '``label``' value as a target. 3480 3481 Semantics: 3482 """""""""" 3483 3484 Upon execution of a conditional '``br``' instruction, the '``i1``' 3485 argument is evaluated. If the value is ``true``, control flows to the 3486 '``iftrue``' ``label`` argument. If "cond" is ``false``, control flows 3487 to the '``iffalse``' ``label`` argument. 3488 3489 Example: 3490 """""""" 3491 3492 .. code-block:: llvm 3493 3494 Test: 3495 %cond = icmp eq i32 %a, %b 3496 br i1 %cond, label %IfEqual, label %IfUnequal 3497 IfEqual: 3498 ret i32 1 3499 IfUnequal: 3500 ret i32 0 3501 3502 .. _i_switch: 3503 3504 '``switch``' Instruction 3505 ^^^^^^^^^^^^^^^^^^^^^^^^ 3506 3507 Syntax: 3508 """"""" 3509 3510 :: 3511 3512 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] 3513 3514 Overview: 3515 """"""""" 3516 3517 The '``switch``' instruction is used to transfer control flow to one of 3518 several different places. It is a generalization of the '``br``' 3519 instruction, allowing a branch to occur to one of many possible 3520 destinations. 3521 3522 Arguments: 3523 """""""""" 3524 3525 The '``switch``' instruction uses three parameters: an integer 3526 comparison value '``value``', a default '``label``' destination, and an 3527 array of pairs of comparison value constants and '``label``'s. The table 3528 is not allowed to contain duplicate constant entries. 3529 3530 Semantics: 3531 """""""""" 3532 3533 The ``switch`` instruction specifies a table of values and destinations. 3534 When the '``switch``' instruction is executed, this table is searched 3535 for the given value. If the value is found, control flow is transferred 3536 to the corresponding destination; otherwise, control flow is transferred 3537 to the default destination. 3538 3539 Implementation: 3540 """"""""""""""" 3541 3542 Depending on properties of the target machine and the particular 3543 ``switch`` instruction, this instruction may be code generated in 3544 different ways. For example, it could be generated as a series of 3545 chained conditional branches or with a lookup table. 3546 3547 Example: 3548 """""""" 3549 3550 .. code-block:: llvm 3551 3552 ; Emulate a conditional br instruction 3553 %Val = zext i1 %value to i32 3554 switch i32 %Val, label %truedest [ i32 0, label %falsedest ] 3555 3556 ; Emulate an unconditional br instruction 3557 switch i32 0, label %dest [ ] 3558 3559 ; Implement a jump table: 3560 switch i32 %val, label %otherwise [ i32 0, label %onzero 3561 i32 1, label %onone 3562 i32 2, label %ontwo ] 3563 3564 .. _i_indirectbr: 3565 3566 '``indirectbr``' Instruction 3567 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3568 3569 Syntax: 3570 """"""" 3571 3572 :: 3573 3574 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ] 3575 3576 Overview: 3577 """"""""" 3578 3579 The '``indirectbr``' instruction implements an indirect branch to a 3580 label within the current function, whose address is specified by 3581 "``address``". Address must be derived from a 3582 :ref:`blockaddress <blockaddress>` constant. 3583 3584 Arguments: 3585 """""""""" 3586 3587 The '``address``' argument is the address of the label to jump to. The 3588 rest of the arguments indicate the full set of possible destinations 3589 that the address may point to. Blocks are allowed to occur multiple 3590 times in the destination list, though this isn't particularly useful. 3591 3592 This destination list is required so that dataflow analysis has an 3593 accurate understanding of the CFG. 3594 3595 Semantics: 3596 """""""""" 3597 3598 Control transfers to the block specified in the address argument. All 3599 possible destination blocks must be listed in the label list, otherwise 3600 this instruction has undefined behavior. This implies that jumps to 3601 labels defined in other functions have undefined behavior as well. 3602 3603 Implementation: 3604 """"""""""""""" 3605 3606 This is typically implemented with a jump through a register. 3607 3608 Example: 3609 """""""" 3610 3611 .. code-block:: llvm 3612 3613 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ] 3614 3615 .. _i_invoke: 3616 3617 '``invoke``' Instruction 3618 ^^^^^^^^^^^^^^^^^^^^^^^^ 3619 3620 Syntax: 3621 """"""" 3622 3623 :: 3624 3625 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs] 3626 to label <normal label> unwind label <exception label> 3627 3628 Overview: 3629 """"""""" 3630 3631 The '``invoke``' instruction causes control to transfer to a specified 3632 function, with the possibility of control flow transfer to either the 3633 '``normal``' label or the '``exception``' label. If the callee function 3634 returns with the "``ret``" instruction, control flow will return to the 3635 "normal" label. If the callee (or any indirect callees) returns via the 3636 ":ref:`resume <i_resume>`" instruction or other exception handling 3637 mechanism, control is interrupted and continued at the dynamically 3638 nearest "exception" label. 3639 3640 The '``exception``' label is a `landing 3641 pad <ExceptionHandling.html#overview>`_ for the exception. As such, 3642 '``exception``' label is required to have the 3643 ":ref:`landingpad <i_landingpad>`" instruction, which contains the 3644 information about the behavior of the program after unwinding happens, 3645 as its first non-PHI instruction. The restrictions on the 3646 "``landingpad``" instruction's tightly couples it to the "``invoke``" 3647 instruction, so that the important information contained within the 3648 "``landingpad``" instruction can't be lost through normal code motion. 3649 3650 Arguments: 3651 """""""""" 3652 3653 This instruction requires several arguments: 3654 3655 #. The optional "cconv" marker indicates which :ref:`calling 3656 convention <callingconv>` the call should use. If none is 3657 specified, the call defaults to using C calling conventions. 3658 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return 3659 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes 3660 are valid here. 3661 #. '``ptr to function ty``': shall be the signature of the pointer to 3662 function value being invoked. In most cases, this is a direct 3663 function invocation, but indirect ``invoke``'s are just as possible, 3664 branching off an arbitrary pointer to function value. 3665 #. '``function ptr val``': An LLVM value containing a pointer to a 3666 function to be invoked. 3667 #. '``function args``': argument list whose types match the function 3668 signature argument types and parameter attributes. All arguments must 3669 be of :ref:`first class <t_firstclass>` type. If the function signature 3670 indicates the function accepts a variable number of arguments, the 3671 extra arguments can be specified. 3672 #. '``normal label``': the label reached when the called function 3673 executes a '``ret``' instruction. 3674 #. '``exception label``': the label reached when a callee returns via 3675 the :ref:`resume <i_resume>` instruction or other exception handling 3676 mechanism. 3677 #. The optional :ref:`function attributes <fnattrs>` list. Only 3678 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``' 3679 attributes are valid here. 3680 3681 Semantics: 3682 """""""""" 3683 3684 This instruction is designed to operate as a standard '``call``' 3685 instruction in most regards. The primary difference is that it 3686 establishes an association with a label, which is used by the runtime 3687 library to unwind the stack. 3688 3689 This instruction is used in languages with destructors to ensure that 3690 proper cleanup is performed in the case of either a ``longjmp`` or a 3691 thrown exception. Additionally, this is important for implementation of 3692 '``catch``' clauses in high-level languages that support them. 3693 3694 For the purposes of the SSA form, the definition of the value returned 3695 by the '``invoke``' instruction is deemed to occur on the edge from the 3696 current block to the "normal" label. If the callee unwinds then no 3697 return value is available. 3698 3699 Example: 3700 """""""" 3701 3702 .. code-block:: llvm 3703 3704 %retval = invoke i32 @Test(i32 15) to label %Continue 3705 unwind label %TestCleanup ; i32:retval set 3706 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue 3707 unwind label %TestCleanup ; i32:retval set 3708 3709 .. _i_resume: 3710 3711 '``resume``' Instruction 3712 ^^^^^^^^^^^^^^^^^^^^^^^^ 3713 3714 Syntax: 3715 """"""" 3716 3717 :: 3718 3719 resume <type> <value> 3720 3721 Overview: 3722 """"""""" 3723 3724 The '``resume``' instruction is a terminator instruction that has no 3725 successors. 3726 3727 Arguments: 3728 """""""""" 3729 3730 The '``resume``' instruction requires one argument, which must have the 3731 same type as the result of any '``landingpad``' instruction in the same 3732 function. 3733 3734 Semantics: 3735 """""""""" 3736 3737 The '``resume``' instruction resumes propagation of an existing 3738 (in-flight) exception whose unwinding was interrupted with a 3739 :ref:`landingpad <i_landingpad>` instruction. 3740 3741 Example: 3742 """""""" 3743 3744 .. code-block:: llvm 3745 3746 resume { i8*, i32 } %exn 3747 3748 .. _i_unreachable: 3749 3750 '``unreachable``' Instruction 3751 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3752 3753 Syntax: 3754 """"""" 3755 3756 :: 3757 3758 unreachable 3759 3760 Overview: 3761 """"""""" 3762 3763 The '``unreachable``' instruction has no defined semantics. This 3764 instruction is used to inform the optimizer that a particular portion of 3765 the code is not reachable. This can be used to indicate that the code 3766 after a no-return function cannot be reached, and other facts. 3767 3768 Semantics: 3769 """""""""" 3770 3771 The '``unreachable``' instruction has no defined semantics. 3772 3773 .. _binaryops: 3774 3775 Binary Operations 3776 ----------------- 3777 3778 Binary operators are used to do most of the computation in a program. 3779 They require two operands of the same type, execute an operation on 3780 them, and produce a single value. The operands might represent multiple 3781 data, as is the case with the :ref:`vector <t_vector>` data type. The 3782 result value has the same type as its operands. 3783 3784 There are several different binary operators: 3785 3786 .. _i_add: 3787 3788 '``add``' Instruction 3789 ^^^^^^^^^^^^^^^^^^^^^ 3790 3791 Syntax: 3792 """"""" 3793 3794 :: 3795 3796 <result> = add <ty> <op1>, <op2> ; yields ty:result 3797 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result 3798 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result 3799 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result 3800 3801 Overview: 3802 """"""""" 3803 3804 The '``add``' instruction returns the sum of its two operands. 3805 3806 Arguments: 3807 """""""""" 3808 3809 The two arguments to the '``add``' instruction must be 3810 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 3811 arguments must have identical types. 3812 3813 Semantics: 3814 """""""""" 3815 3816 The value produced is the integer sum of the two operands. 3817 3818 If the sum has unsigned overflow, the result returned is the 3819 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of 3820 the result. 3821 3822 Because LLVM integers use a two's complement representation, this 3823 instruction is appropriate for both signed and unsigned integers. 3824 3825 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap", 3826 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the 3827 result value of the ``add`` is a :ref:`poison value <poisonvalues>` if 3828 unsigned and/or signed overflow, respectively, occurs. 3829 3830 Example: 3831 """""""" 3832 3833 .. code-block:: llvm 3834 3835 <result> = add i32 4, %var ; yields i32:result = 4 + %var 3836 3837 .. _i_fadd: 3838 3839 '``fadd``' Instruction 3840 ^^^^^^^^^^^^^^^^^^^^^^ 3841 3842 Syntax: 3843 """"""" 3844 3845 :: 3846 3847 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 3848 3849 Overview: 3850 """"""""" 3851 3852 The '``fadd``' instruction returns the sum of its two operands. 3853 3854 Arguments: 3855 """""""""" 3856 3857 The two arguments to the '``fadd``' instruction must be :ref:`floating 3858 point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 3859 Both arguments must have identical types. 3860 3861 Semantics: 3862 """""""""" 3863 3864 The value produced is the floating point sum of the two operands. This 3865 instruction can also take any number of :ref:`fast-math flags <fastmath>`, 3866 which are optimization hints to enable otherwise unsafe floating point 3867 optimizations: 3868 3869 Example: 3870 """""""" 3871 3872 .. code-block:: llvm 3873 3874 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var 3875 3876 '``sub``' Instruction 3877 ^^^^^^^^^^^^^^^^^^^^^ 3878 3879 Syntax: 3880 """"""" 3881 3882 :: 3883 3884 <result> = sub <ty> <op1>, <op2> ; yields ty:result 3885 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result 3886 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result 3887 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result 3888 3889 Overview: 3890 """"""""" 3891 3892 The '``sub``' instruction returns the difference of its two operands. 3893 3894 Note that the '``sub``' instruction is used to represent the '``neg``' 3895 instruction present in most other intermediate representations. 3896 3897 Arguments: 3898 """""""""" 3899 3900 The two arguments to the '``sub``' instruction must be 3901 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 3902 arguments must have identical types. 3903 3904 Semantics: 3905 """""""""" 3906 3907 The value produced is the integer difference of the two operands. 3908 3909 If the difference has unsigned overflow, the result returned is the 3910 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of 3911 the result. 3912 3913 Because LLVM integers use a two's complement representation, this 3914 instruction is appropriate for both signed and unsigned integers. 3915 3916 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap", 3917 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the 3918 result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if 3919 unsigned and/or signed overflow, respectively, occurs. 3920 3921 Example: 3922 """""""" 3923 3924 .. code-block:: llvm 3925 3926 <result> = sub i32 4, %var ; yields i32:result = 4 - %var 3927 <result> = sub i32 0, %val ; yields i32:result = -%var 3928 3929 .. _i_fsub: 3930 3931 '``fsub``' Instruction 3932 ^^^^^^^^^^^^^^^^^^^^^^ 3933 3934 Syntax: 3935 """"""" 3936 3937 :: 3938 3939 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 3940 3941 Overview: 3942 """"""""" 3943 3944 The '``fsub``' instruction returns the difference of its two operands. 3945 3946 Note that the '``fsub``' instruction is used to represent the '``fneg``' 3947 instruction present in most other intermediate representations. 3948 3949 Arguments: 3950 """""""""" 3951 3952 The two arguments to the '``fsub``' instruction must be :ref:`floating 3953 point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 3954 Both arguments must have identical types. 3955 3956 Semantics: 3957 """""""""" 3958 3959 The value produced is the floating point difference of the two operands. 3960 This instruction can also take any number of :ref:`fast-math 3961 flags <fastmath>`, which are optimization hints to enable otherwise 3962 unsafe floating point optimizations: 3963 3964 Example: 3965 """""""" 3966 3967 .. code-block:: llvm 3968 3969 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var 3970 <result> = fsub float -0.0, %val ; yields float:result = -%var 3971 3972 '``mul``' Instruction 3973 ^^^^^^^^^^^^^^^^^^^^^ 3974 3975 Syntax: 3976 """"""" 3977 3978 :: 3979 3980 <result> = mul <ty> <op1>, <op2> ; yields ty:result 3981 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result 3982 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result 3983 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result 3984 3985 Overview: 3986 """"""""" 3987 3988 The '``mul``' instruction returns the product of its two operands. 3989 3990 Arguments: 3991 """""""""" 3992 3993 The two arguments to the '``mul``' instruction must be 3994 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 3995 arguments must have identical types. 3996 3997 Semantics: 3998 """""""""" 3999 4000 The value produced is the integer product of the two operands. 4001 4002 If the result of the multiplication has unsigned overflow, the result 4003 returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the 4004 bit width of the result. 4005 4006 Because LLVM integers use a two's complement representation, and the 4007 result is the same width as the operands, this instruction returns the 4008 correct result for both signed and unsigned integers. If a full product 4009 (e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be 4010 sign-extended or zero-extended as appropriate to the width of the full 4011 product. 4012 4013 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap", 4014 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the 4015 result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if 4016 unsigned and/or signed overflow, respectively, occurs. 4017 4018 Example: 4019 """""""" 4020 4021 .. code-block:: llvm 4022 4023 <result> = mul i32 4, %var ; yields i32:result = 4 * %var 4024 4025 .. _i_fmul: 4026 4027 '``fmul``' Instruction 4028 ^^^^^^^^^^^^^^^^^^^^^^ 4029 4030 Syntax: 4031 """"""" 4032 4033 :: 4034 4035 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 4036 4037 Overview: 4038 """"""""" 4039 4040 The '``fmul``' instruction returns the product of its two operands. 4041 4042 Arguments: 4043 """""""""" 4044 4045 The two arguments to the '``fmul``' instruction must be :ref:`floating 4046 point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 4047 Both arguments must have identical types. 4048 4049 Semantics: 4050 """""""""" 4051 4052 The value produced is the floating point product of the two operands. 4053 This instruction can also take any number of :ref:`fast-math 4054 flags <fastmath>`, which are optimization hints to enable otherwise 4055 unsafe floating point optimizations: 4056 4057 Example: 4058 """""""" 4059 4060 .. code-block:: llvm 4061 4062 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var 4063 4064 '``udiv``' Instruction 4065 ^^^^^^^^^^^^^^^^^^^^^^ 4066 4067 Syntax: 4068 """"""" 4069 4070 :: 4071 4072 <result> = udiv <ty> <op1>, <op2> ; yields ty:result 4073 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result 4074 4075 Overview: 4076 """"""""" 4077 4078 The '``udiv``' instruction returns the quotient of its two operands. 4079 4080 Arguments: 4081 """""""""" 4082 4083 The two arguments to the '``udiv``' instruction must be 4084 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4085 arguments must have identical types. 4086 4087 Semantics: 4088 """""""""" 4089 4090 The value produced is the unsigned integer quotient of the two operands. 4091 4092 Note that unsigned integer division and signed integer division are 4093 distinct operations; for signed integer division, use '``sdiv``'. 4094 4095 Division by zero leads to undefined behavior. 4096 4097 If the ``exact`` keyword is present, the result value of the ``udiv`` is 4098 a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as 4099 such, "((a udiv exact b) mul b) == a"). 4100 4101 Example: 4102 """""""" 4103 4104 .. code-block:: llvm 4105 4106 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var 4107 4108 '``sdiv``' Instruction 4109 ^^^^^^^^^^^^^^^^^^^^^^ 4110 4111 Syntax: 4112 """"""" 4113 4114 :: 4115 4116 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result 4117 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result 4118 4119 Overview: 4120 """"""""" 4121 4122 The '``sdiv``' instruction returns the quotient of its two operands. 4123 4124 Arguments: 4125 """""""""" 4126 4127 The two arguments to the '``sdiv``' instruction must be 4128 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4129 arguments must have identical types. 4130 4131 Semantics: 4132 """""""""" 4133 4134 The value produced is the signed integer quotient of the two operands 4135 rounded towards zero. 4136 4137 Note that signed integer division and unsigned integer division are 4138 distinct operations; for unsigned integer division, use '``udiv``'. 4139 4140 Division by zero leads to undefined behavior. Overflow also leads to 4141 undefined behavior; this is a rare case, but can occur, for example, by 4142 doing a 32-bit division of -2147483648 by -1. 4143 4144 If the ``exact`` keyword is present, the result value of the ``sdiv`` is 4145 a :ref:`poison value <poisonvalues>` if the result would be rounded. 4146 4147 Example: 4148 """""""" 4149 4150 .. code-block:: llvm 4151 4152 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var 4153 4154 .. _i_fdiv: 4155 4156 '``fdiv``' Instruction 4157 ^^^^^^^^^^^^^^^^^^^^^^ 4158 4159 Syntax: 4160 """"""" 4161 4162 :: 4163 4164 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 4165 4166 Overview: 4167 """"""""" 4168 4169 The '``fdiv``' instruction returns the quotient of its two operands. 4170 4171 Arguments: 4172 """""""""" 4173 4174 The two arguments to the '``fdiv``' instruction must be :ref:`floating 4175 point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 4176 Both arguments must have identical types. 4177 4178 Semantics: 4179 """""""""" 4180 4181 The value produced is the floating point quotient of the two operands. 4182 This instruction can also take any number of :ref:`fast-math 4183 flags <fastmath>`, which are optimization hints to enable otherwise 4184 unsafe floating point optimizations: 4185 4186 Example: 4187 """""""" 4188 4189 .. code-block:: llvm 4190 4191 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var 4192 4193 '``urem``' Instruction 4194 ^^^^^^^^^^^^^^^^^^^^^^ 4195 4196 Syntax: 4197 """"""" 4198 4199 :: 4200 4201 <result> = urem <ty> <op1>, <op2> ; yields ty:result 4202 4203 Overview: 4204 """"""""" 4205 4206 The '``urem``' instruction returns the remainder from the unsigned 4207 division of its two arguments. 4208 4209 Arguments: 4210 """""""""" 4211 4212 The two arguments to the '``urem``' instruction must be 4213 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4214 arguments must have identical types. 4215 4216 Semantics: 4217 """""""""" 4218 4219 This instruction returns the unsigned integer *remainder* of a division. 4220 This instruction always performs an unsigned division to get the 4221 remainder. 4222 4223 Note that unsigned integer remainder and signed integer remainder are 4224 distinct operations; for signed integer remainder, use '``srem``'. 4225 4226 Taking the remainder of a division by zero leads to undefined behavior. 4227 4228 Example: 4229 """""""" 4230 4231 .. code-block:: llvm 4232 4233 <result> = urem i32 4, %var ; yields i32:result = 4 % %var 4234 4235 '``srem``' Instruction 4236 ^^^^^^^^^^^^^^^^^^^^^^ 4237 4238 Syntax: 4239 """"""" 4240 4241 :: 4242 4243 <result> = srem <ty> <op1>, <op2> ; yields ty:result 4244 4245 Overview: 4246 """"""""" 4247 4248 The '``srem``' instruction returns the remainder from the signed 4249 division of its two operands. This instruction can also take 4250 :ref:`vector <t_vector>` versions of the values in which case the elements 4251 must be integers. 4252 4253 Arguments: 4254 """""""""" 4255 4256 The two arguments to the '``srem``' instruction must be 4257 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4258 arguments must have identical types. 4259 4260 Semantics: 4261 """""""""" 4262 4263 This instruction returns the *remainder* of a division (where the result 4264 is either zero or has the same sign as the dividend, ``op1``), not the 4265 *modulo* operator (where the result is either zero or has the same sign 4266 as the divisor, ``op2``) of a value. For more information about the 4267 difference, see `The Math 4268 Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a 4269 table of how this is implemented in various languages, please see 4270 `Wikipedia: modulo 4271 operation <http://en.wikipedia.org/wiki/Modulo_operation>`_. 4272 4273 Note that signed integer remainder and unsigned integer remainder are 4274 distinct operations; for unsigned integer remainder, use '``urem``'. 4275 4276 Taking the remainder of a division by zero leads to undefined behavior. 4277 Overflow also leads to undefined behavior; this is a rare case, but can 4278 occur, for example, by taking the remainder of a 32-bit division of 4279 -2147483648 by -1. (The remainder doesn't actually overflow, but this 4280 rule lets srem be implemented using instructions that return both the 4281 result of the division and the remainder.) 4282 4283 Example: 4284 """""""" 4285 4286 .. code-block:: llvm 4287 4288 <result> = srem i32 4, %var ; yields i32:result = 4 % %var 4289 4290 .. _i_frem: 4291 4292 '``frem``' Instruction 4293 ^^^^^^^^^^^^^^^^^^^^^^ 4294 4295 Syntax: 4296 """"""" 4297 4298 :: 4299 4300 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result 4301 4302 Overview: 4303 """"""""" 4304 4305 The '``frem``' instruction returns the remainder from the division of 4306 its two operands. 4307 4308 Arguments: 4309 """""""""" 4310 4311 The two arguments to the '``frem``' instruction must be :ref:`floating 4312 point <t_floating>` or :ref:`vector <t_vector>` of floating point values. 4313 Both arguments must have identical types. 4314 4315 Semantics: 4316 """""""""" 4317 4318 This instruction returns the *remainder* of a division. The remainder 4319 has the same sign as the dividend. This instruction can also take any 4320 number of :ref:`fast-math flags <fastmath>`, which are optimization hints 4321 to enable otherwise unsafe floating point optimizations: 4322 4323 Example: 4324 """""""" 4325 4326 .. code-block:: llvm 4327 4328 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var 4329 4330 .. _bitwiseops: 4331 4332 Bitwise Binary Operations 4333 ------------------------- 4334 4335 Bitwise binary operators are used to do various forms of bit-twiddling 4336 in a program. They are generally very efficient instructions and can 4337 commonly be strength reduced from other instructions. They require two 4338 operands of the same type, execute an operation on them, and produce a 4339 single value. The resulting value is the same type as its operands. 4340 4341 '``shl``' Instruction 4342 ^^^^^^^^^^^^^^^^^^^^^ 4343 4344 Syntax: 4345 """"""" 4346 4347 :: 4348 4349 <result> = shl <ty> <op1>, <op2> ; yields ty:result 4350 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result 4351 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result 4352 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result 4353 4354 Overview: 4355 """"""""" 4356 4357 The '``shl``' instruction returns the first operand shifted to the left 4358 a specified number of bits. 4359 4360 Arguments: 4361 """""""""" 4362 4363 Both arguments to the '``shl``' instruction must be the same 4364 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type. 4365 '``op2``' is treated as an unsigned value. 4366 4367 Semantics: 4368 """""""""" 4369 4370 The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`, 4371 where ``n`` is the width of the result. If ``op2`` is (statically or 4372 dynamically) negative or equal to or larger than the number of bits in 4373 ``op1``, the result is undefined. If the arguments are vectors, each 4374 vector element of ``op1`` is shifted by the corresponding shift amount 4375 in ``op2``. 4376 4377 If the ``nuw`` keyword is present, then the shift produces a :ref:`poison 4378 value <poisonvalues>` if it shifts out any non-zero bits. If the 4379 ``nsw`` keyword is present, then the shift produces a :ref:`poison 4380 value <poisonvalues>` if it shifts out any bits that disagree with the 4381 resultant sign bit. As such, NUW/NSW have the same semantics as they 4382 would if the shift were expressed as a mul instruction with the same 4383 nsw/nuw bits in (mul %op1, (shl 1, %op2)). 4384 4385 Example: 4386 """""""" 4387 4388 .. code-block:: llvm 4389 4390 <result> = shl i32 4, %var ; yields i32: 4 << %var 4391 <result> = shl i32 4, 2 ; yields i32: 16 4392 <result> = shl i32 1, 10 ; yields i32: 1024 4393 <result> = shl i32 1, 32 ; undefined 4394 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4> 4395 4396 '``lshr``' Instruction 4397 ^^^^^^^^^^^^^^^^^^^^^^ 4398 4399 Syntax: 4400 """"""" 4401 4402 :: 4403 4404 <result> = lshr <ty> <op1>, <op2> ; yields ty:result 4405 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result 4406 4407 Overview: 4408 """"""""" 4409 4410 The '``lshr``' instruction (logical shift right) returns the first 4411 operand shifted to the right a specified number of bits with zero fill. 4412 4413 Arguments: 4414 """""""""" 4415 4416 Both arguments to the '``lshr``' instruction must be the same 4417 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type. 4418 '``op2``' is treated as an unsigned value. 4419 4420 Semantics: 4421 """""""""" 4422 4423 This instruction always performs a logical shift right operation. The 4424 most significant bits of the result will be filled with zero bits after 4425 the shift. If ``op2`` is (statically or dynamically) equal to or larger 4426 than the number of bits in ``op1``, the result is undefined. If the 4427 arguments are vectors, each vector element of ``op1`` is shifted by the 4428 corresponding shift amount in ``op2``. 4429 4430 If the ``exact`` keyword is present, the result value of the ``lshr`` is 4431 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are 4432 non-zero. 4433 4434 Example: 4435 """""""" 4436 4437 .. code-block:: llvm 4438 4439 <result> = lshr i32 4, 1 ; yields i32:result = 2 4440 <result> = lshr i32 4, 2 ; yields i32:result = 1 4441 <result> = lshr i8 4, 3 ; yields i8:result = 0 4442 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F 4443 <result> = lshr i32 1, 32 ; undefined 4444 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1> 4445 4446 '``ashr``' Instruction 4447 ^^^^^^^^^^^^^^^^^^^^^^ 4448 4449 Syntax: 4450 """"""" 4451 4452 :: 4453 4454 <result> = ashr <ty> <op1>, <op2> ; yields ty:result 4455 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result 4456 4457 Overview: 4458 """"""""" 4459 4460 The '``ashr``' instruction (arithmetic shift right) returns the first 4461 operand shifted to the right a specified number of bits with sign 4462 extension. 4463 4464 Arguments: 4465 """""""""" 4466 4467 Both arguments to the '``ashr``' instruction must be the same 4468 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type. 4469 '``op2``' is treated as an unsigned value. 4470 4471 Semantics: 4472 """""""""" 4473 4474 This instruction always performs an arithmetic shift right operation, 4475 The most significant bits of the result will be filled with the sign bit 4476 of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger 4477 than the number of bits in ``op1``, the result is undefined. If the 4478 arguments are vectors, each vector element of ``op1`` is shifted by the 4479 corresponding shift amount in ``op2``. 4480 4481 If the ``exact`` keyword is present, the result value of the ``ashr`` is 4482 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are 4483 non-zero. 4484 4485 Example: 4486 """""""" 4487 4488 .. code-block:: llvm 4489 4490 <result> = ashr i32 4, 1 ; yields i32:result = 2 4491 <result> = ashr i32 4, 2 ; yields i32:result = 1 4492 <result> = ashr i8 4, 3 ; yields i8:result = 0 4493 <result> = ashr i8 -2, 1 ; yields i8:result = -1 4494 <result> = ashr i32 1, 32 ; undefined 4495 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0> 4496 4497 '``and``' Instruction 4498 ^^^^^^^^^^^^^^^^^^^^^ 4499 4500 Syntax: 4501 """"""" 4502 4503 :: 4504 4505 <result> = and <ty> <op1>, <op2> ; yields ty:result 4506 4507 Overview: 4508 """"""""" 4509 4510 The '``and``' instruction returns the bitwise logical and of its two 4511 operands. 4512 4513 Arguments: 4514 """""""""" 4515 4516 The two arguments to the '``and``' instruction must be 4517 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4518 arguments must have identical types. 4519 4520 Semantics: 4521 """""""""" 4522 4523 The truth table used for the '``and``' instruction is: 4524 4525 +-----+-----+-----+ 4526 | In0 | In1 | Out | 4527 +-----+-----+-----+ 4528 | 0 | 0 | 0 | 4529 +-----+-----+-----+ 4530 | 0 | 1 | 0 | 4531 +-----+-----+-----+ 4532 | 1 | 0 | 0 | 4533 +-----+-----+-----+ 4534 | 1 | 1 | 1 | 4535 +-----+-----+-----+ 4536 4537 Example: 4538 """""""" 4539 4540 .. code-block:: llvm 4541 4542 <result> = and i32 4, %var ; yields i32:result = 4 & %var 4543 <result> = and i32 15, 40 ; yields i32:result = 8 4544 <result> = and i32 4, 8 ; yields i32:result = 0 4545 4546 '``or``' Instruction 4547 ^^^^^^^^^^^^^^^^^^^^ 4548 4549 Syntax: 4550 """"""" 4551 4552 :: 4553 4554 <result> = or <ty> <op1>, <op2> ; yields ty:result 4555 4556 Overview: 4557 """"""""" 4558 4559 The '``or``' instruction returns the bitwise logical inclusive or of its 4560 two operands. 4561 4562 Arguments: 4563 """""""""" 4564 4565 The two arguments to the '``or``' instruction must be 4566 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4567 arguments must have identical types. 4568 4569 Semantics: 4570 """""""""" 4571 4572 The truth table used for the '``or``' instruction is: 4573 4574 +-----+-----+-----+ 4575 | In0 | In1 | Out | 4576 +-----+-----+-----+ 4577 | 0 | 0 | 0 | 4578 +-----+-----+-----+ 4579 | 0 | 1 | 1 | 4580 +-----+-----+-----+ 4581 | 1 | 0 | 1 | 4582 +-----+-----+-----+ 4583 | 1 | 1 | 1 | 4584 +-----+-----+-----+ 4585 4586 Example: 4587 """""""" 4588 4589 :: 4590 4591 <result> = or i32 4, %var ; yields i32:result = 4 | %var 4592 <result> = or i32 15, 40 ; yields i32:result = 47 4593 <result> = or i32 4, 8 ; yields i32:result = 12 4594 4595 '``xor``' Instruction 4596 ^^^^^^^^^^^^^^^^^^^^^ 4597 4598 Syntax: 4599 """"""" 4600 4601 :: 4602 4603 <result> = xor <ty> <op1>, <op2> ; yields ty:result 4604 4605 Overview: 4606 """"""""" 4607 4608 The '``xor``' instruction returns the bitwise logical exclusive or of 4609 its two operands. The ``xor`` is used to implement the "one's 4610 complement" operation, which is the "~" operator in C. 4611 4612 Arguments: 4613 """""""""" 4614 4615 The two arguments to the '``xor``' instruction must be 4616 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both 4617 arguments must have identical types. 4618 4619 Semantics: 4620 """""""""" 4621 4622 The truth table used for the '``xor``' instruction is: 4623 4624 +-----+-----+-----+ 4625 | In0 | In1 | Out | 4626 +-----+-----+-----+ 4627 | 0 | 0 | 0 | 4628 +-----+-----+-----+ 4629 | 0 | 1 | 1 | 4630 +-----+-----+-----+ 4631 | 1 | 0 | 1 | 4632 +-----+-----+-----+ 4633 | 1 | 1 | 0 | 4634 +-----+-----+-----+ 4635 4636 Example: 4637 """""""" 4638 4639 .. code-block:: llvm 4640 4641 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var 4642 <result> = xor i32 15, 40 ; yields i32:result = 39 4643 <result> = xor i32 4, 8 ; yields i32:result = 12 4644 <result> = xor i32 %V, -1 ; yields i32:result = ~%V 4645 4646 Vector Operations 4647 ----------------- 4648 4649 LLVM supports several instructions to represent vector operations in a 4650 target-independent manner. These instructions cover the element-access 4651 and vector-specific operations needed to process vectors effectively. 4652 While LLVM does directly support these vector operations, many 4653 sophisticated algorithms will want to use target-specific intrinsics to 4654 take full advantage of a specific target. 4655 4656 .. _i_extractelement: 4657 4658 '``extractelement``' Instruction 4659 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4660 4661 Syntax: 4662 """"""" 4663 4664 :: 4665 4666 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty> 4667 4668 Overview: 4669 """"""""" 4670 4671 The '``extractelement``' instruction extracts a single scalar element 4672 from a vector at a specified index. 4673 4674 Arguments: 4675 """""""""" 4676 4677 The first operand of an '``extractelement``' instruction is a value of 4678 :ref:`vector <t_vector>` type. The second operand is an index indicating 4679 the position from which to extract the element. The index may be a 4680 variable of any integer type. 4681 4682 Semantics: 4683 """""""""" 4684 4685 The result is a scalar of the same type as the element type of ``val``. 4686 Its value is the value at position ``idx`` of ``val``. If ``idx`` 4687 exceeds the length of ``val``, the results are undefined. 4688 4689 Example: 4690 """""""" 4691 4692 .. code-block:: llvm 4693 4694 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32 4695 4696 .. _i_insertelement: 4697 4698 '``insertelement``' Instruction 4699 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4700 4701 Syntax: 4702 """"""" 4703 4704 :: 4705 4706 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>> 4707 4708 Overview: 4709 """"""""" 4710 4711 The '``insertelement``' instruction inserts a scalar element into a 4712 vector at a specified index. 4713 4714 Arguments: 4715 """""""""" 4716 4717 The first operand of an '``insertelement``' instruction is a value of 4718 :ref:`vector <t_vector>` type. The second operand is a scalar value whose 4719 type must equal the element type of the first operand. The third operand 4720 is an index indicating the position at which to insert the value. The 4721 index may be a variable of any integer type. 4722 4723 Semantics: 4724 """""""""" 4725 4726 The result is a vector of the same type as ``val``. Its element values 4727 are those of ``val`` except at position ``idx``, where it gets the value 4728 ``elt``. If ``idx`` exceeds the length of ``val``, the results are 4729 undefined. 4730 4731 Example: 4732 """""""" 4733 4734 .. code-block:: llvm 4735 4736 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32> 4737 4738 .. _i_shufflevector: 4739 4740 '``shufflevector``' Instruction 4741 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4742 4743 Syntax: 4744 """"""" 4745 4746 :: 4747 4748 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>> 4749 4750 Overview: 4751 """"""""" 4752 4753 The '``shufflevector``' instruction constructs a permutation of elements 4754 from two input vectors, returning a vector with the same element type as 4755 the input and length that is the same as the shuffle mask. 4756 4757 Arguments: 4758 """""""""" 4759 4760 The first two operands of a '``shufflevector``' instruction are vectors 4761 with the same type. The third argument is a shuffle mask whose element 4762 type is always 'i32'. The result of the instruction is a vector whose 4763 length is the same as the shuffle mask and whose element type is the 4764 same as the element type of the first two operands. 4765 4766 The shuffle mask operand is required to be a constant vector with either 4767 constant integer or undef values. 4768 4769 Semantics: 4770 """""""""" 4771 4772 The elements of the two input vectors are numbered from left to right 4773 across both of the vectors. The shuffle mask operand specifies, for each 4774 element of the result vector, which element of the two input vectors the 4775 result element gets. The element selector may be undef (meaning "don't 4776 care") and the second operand may be undef if performing a shuffle from 4777 only one vector. 4778 4779 Example: 4780 """""""" 4781 4782 .. code-block:: llvm 4783 4784 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, 4785 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32> 4786 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef, 4787 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle. 4788 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef, 4789 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> 4790 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2, 4791 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32> 4792 4793 Aggregate Operations 4794 -------------------- 4795 4796 LLVM supports several instructions for working with 4797 :ref:`aggregate <t_aggregate>` values. 4798 4799 .. _i_extractvalue: 4800 4801 '``extractvalue``' Instruction 4802 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4803 4804 Syntax: 4805 """"""" 4806 4807 :: 4808 4809 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}* 4810 4811 Overview: 4812 """"""""" 4813 4814 The '``extractvalue``' instruction extracts the value of a member field 4815 from an :ref:`aggregate <t_aggregate>` value. 4816 4817 Arguments: 4818 """""""""" 4819 4820 The first operand of an '``extractvalue``' instruction is a value of 4821 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are 4822 constant indices to specify which value to extract in a similar manner 4823 as indices in a '``getelementptr``' instruction. 4824 4825 The major differences to ``getelementptr`` indexing are: 4826 4827 - Since the value being indexed is not a pointer, the first index is 4828 omitted and assumed to be zero. 4829 - At least one index must be specified. 4830 - Not only struct indices but also array indices must be in bounds. 4831 4832 Semantics: 4833 """""""""" 4834 4835 The result is the value at the position in the aggregate specified by 4836 the index operands. 4837 4838 Example: 4839 """""""" 4840 4841 .. code-block:: llvm 4842 4843 <result> = extractvalue {i32, float} %agg, 0 ; yields i32 4844 4845 .. _i_insertvalue: 4846 4847 '``insertvalue``' Instruction 4848 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 4849 4850 Syntax: 4851 """"""" 4852 4853 :: 4854 4855 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type> 4856 4857 Overview: 4858 """"""""" 4859 4860 The '``insertvalue``' instruction inserts a value into a member field in 4861 an :ref:`aggregate <t_aggregate>` value. 4862 4863 Arguments: 4864 """""""""" 4865 4866 The first operand of an '``insertvalue``' instruction is a value of 4867 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is 4868 a first-class value to insert. The following operands are constant 4869 indices indicating the position at which to insert the value in a 4870 similar manner as indices in a '``extractvalue``' instruction. The value 4871 to insert must have the same type as the value identified by the 4872 indices. 4873 4874 Semantics: 4875 """""""""" 4876 4877 The result is an aggregate of the same type as ``val``. Its value is 4878 that of ``val`` except that the value at the position specified by the 4879 indices is that of ``elt``. 4880 4881 Example: 4882 """""""" 4883 4884 .. code-block:: llvm 4885 4886 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef} 4887 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val} 4888 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val} 4889 4890 .. _memoryops: 4891 4892 Memory Access and Addressing Operations 4893 --------------------------------------- 4894 4895 A key design point of an SSA-based representation is how it represents 4896 memory. In LLVM, no memory locations are in SSA form, which makes things 4897 very simple. This section describes how to read, write, and allocate 4898 memory in LLVM. 4899 4900 .. _i_alloca: 4901 4902 '``alloca``' Instruction 4903 ^^^^^^^^^^^^^^^^^^^^^^^^ 4904 4905 Syntax: 4906 """"""" 4907 4908 :: 4909 4910 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result 4911 4912 Overview: 4913 """"""""" 4914 4915 The '``alloca``' instruction allocates memory on the stack frame of the 4916 currently executing function, to be automatically released when this 4917 function returns to its caller. The object is always allocated in the 4918 generic address space (address space zero). 4919 4920 Arguments: 4921 """""""""" 4922 4923 The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements`` 4924 bytes of memory on the runtime stack, returning a pointer of the 4925 appropriate type to the program. If "NumElements" is specified, it is 4926 the number of elements allocated, otherwise "NumElements" is defaulted 4927 to be one. If a constant alignment is specified, the value result of the 4928 allocation is guaranteed to be aligned to at least that boundary. If not 4929 specified, or if zero, the target can choose to align the allocation on 4930 any convenient boundary compatible with the type. 4931 4932 '``type``' may be any sized type. 4933 4934 Semantics: 4935 """""""""" 4936 4937 Memory is allocated; a pointer is returned. The operation is undefined 4938 if there is insufficient stack space for the allocation. '``alloca``'d 4939 memory is automatically released when the function returns. The 4940 '``alloca``' instruction is commonly used to represent automatic 4941 variables that must have an address available. When the function returns 4942 (either with the ``ret`` or ``resume`` instructions), the memory is 4943 reclaimed. Allocating zero bytes is legal, but the result is undefined. 4944 The order in which memory is allocated (ie., which way the stack grows) 4945 is not specified. 4946 4947 Example: 4948 """""""" 4949 4950 .. code-block:: llvm 4951 4952 %ptr = alloca i32 ; yields i32*:ptr 4953 %ptr = alloca i32, i32 4 ; yields i32*:ptr 4954 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr 4955 %ptr = alloca i32, align 1024 ; yields i32*:ptr 4956 4957 .. _i_load: 4958 4959 '``load``' Instruction 4960 ^^^^^^^^^^^^^^^^^^^^^^ 4961 4962 Syntax: 4963 """"""" 4964 4965 :: 4966 4967 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>] 4968 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment> 4969 !<index> = !{ i32 1 } 4970 4971 Overview: 4972 """"""""" 4973 4974 The '``load``' instruction is used to read from memory. 4975 4976 Arguments: 4977 """""""""" 4978 4979 The argument to the ``load`` instruction specifies the memory address 4980 from which to load. The pointer must point to a :ref:`first 4981 class <t_firstclass>` type. If the ``load`` is marked as ``volatile``, 4982 then the optimizer is not allowed to modify the number or order of 4983 execution of this ``load`` with other :ref:`volatile 4984 operations <volatile>`. 4985 4986 If the ``load`` is marked as ``atomic``, it takes an extra 4987 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The 4988 ``release`` and ``acq_rel`` orderings are not valid on ``load`` 4989 instructions. Atomic loads produce :ref:`defined <memmodel>` results 4990 when they may see multiple atomic stores. The type of the pointee must 4991 be an integer type whose bit width is a power of two greater than or 4992 equal to eight and less than or equal to a target-specific size limit. 4993 ``align`` must be explicitly specified on atomic loads, and the load has 4994 undefined behavior if the alignment is not set to a value which is at 4995 least the size in bytes of the pointee. ``!nontemporal`` does not have 4996 any defined semantics for atomic loads. 4997 4998 The optional constant ``align`` argument specifies the alignment of the 4999 operation (that is, the alignment of the memory address). A value of 0 5000 or an omitted ``align`` argument means that the operation has the ABI 5001 alignment for the target. It is the responsibility of the code emitter 5002 to ensure that the alignment information is correct. Overestimating the 5003 alignment results in undefined behavior. Underestimating the alignment 5004 may produce less efficient code. An alignment of 1 is always safe. 5005 5006 The optional ``!nontemporal`` metadata must reference a single 5007 metadata name ``<index>`` corresponding to a metadata node with one 5008 ``i32`` entry of value 1. The existence of the ``!nontemporal`` 5009 metadata on the instruction tells the optimizer and code generator 5010 that this load is not expected to be reused in the cache. The code 5011 generator may select special instructions to save cache bandwidth, such 5012 as the ``MOVNT`` instruction on x86. 5013 5014 The optional ``!invariant.load`` metadata must reference a single 5015 metadata name ``<index>`` corresponding to a metadata node with no 5016 entries. The existence of the ``!invariant.load`` metadata on the 5017 instruction tells the optimizer and code generator that this load 5018 address points to memory which does not change value during program 5019 execution. The optimizer may then move this load around, for example, by 5020 hoisting it out of loops using loop invariant code motion. 5021 5022 Semantics: 5023 """""""""" 5024 5025 The location of memory pointed to is loaded. If the value being loaded 5026 is of scalar type then the number of bytes read does not exceed the 5027 minimum number of bytes needed to hold all bits of the type. For 5028 example, loading an ``i24`` reads at most three bytes. When loading a 5029 value of a type like ``i20`` with a size that is not an integral number 5030 of bytes, the result is undefined if the value was not originally 5031 written using a store of the same type. 5032 5033 Examples: 5034 """"""""" 5035 5036 .. code-block:: llvm 5037 5038 %ptr = alloca i32 ; yields i32*:ptr 5039 store i32 3, i32* %ptr ; yields void 5040 %val = load i32* %ptr ; yields i32:val = i32 3 5041 5042 .. _i_store: 5043 5044 '``store``' Instruction 5045 ^^^^^^^^^^^^^^^^^^^^^^^ 5046 5047 Syntax: 5048 """"""" 5049 5050 :: 5051 5052 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void 5053 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void 5054 5055 Overview: 5056 """"""""" 5057 5058 The '``store``' instruction is used to write to memory. 5059 5060 Arguments: 5061 """""""""" 5062 5063 There are two arguments to the ``store`` instruction: a value to store 5064 and an address at which to store it. The type of the ``<pointer>`` 5065 operand must be a pointer to the :ref:`first class <t_firstclass>` type of 5066 the ``<value>`` operand. If the ``store`` is marked as ``volatile``, 5067 then the optimizer is not allowed to modify the number or order of 5068 execution of this ``store`` with other :ref:`volatile 5069 operations <volatile>`. 5070 5071 If the ``store`` is marked as ``atomic``, it takes an extra 5072 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The 5073 ``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` 5074 instructions. Atomic loads produce :ref:`defined <memmodel>` results 5075 when they may see multiple atomic stores. The type of the pointee must 5076 be an integer type whose bit width is a power of two greater than or 5077 equal to eight and less than or equal to a target-specific size limit. 5078 ``align`` must be explicitly specified on atomic stores, and the store 5079 has undefined behavior if the alignment is not set to a value which is 5080 at least the size in bytes of the pointee. ``!nontemporal`` does not 5081 have any defined semantics for atomic stores. 5082 5083 The optional constant ``align`` argument specifies the alignment of the 5084 operation (that is, the alignment of the memory address). A value of 0 5085 or an omitted ``align`` argument means that the operation has the ABI 5086 alignment for the target. It is the responsibility of the code emitter 5087 to ensure that the alignment information is correct. Overestimating the 5088 alignment results in undefined behavior. Underestimating the 5089 alignment may produce less efficient code. An alignment of 1 is always 5090 safe. 5091 5092 The optional ``!nontemporal`` metadata must reference a single metadata 5093 name ``<index>`` corresponding to a metadata node with one ``i32`` entry of 5094 value 1. The existence of the ``!nontemporal`` metadata on the instruction 5095 tells the optimizer and code generator that this load is not expected to 5096 be reused in the cache. The code generator may select special 5097 instructions to save cache bandwidth, such as the MOVNT instruction on 5098 x86. 5099 5100 Semantics: 5101 """""""""" 5102 5103 The contents of memory are updated to contain ``<value>`` at the 5104 location specified by the ``<pointer>`` operand. If ``<value>`` is 5105 of scalar type then the number of bytes written does not exceed the 5106 minimum number of bytes needed to hold all bits of the type. For 5107 example, storing an ``i24`` writes at most three bytes. When writing a 5108 value of a type like ``i20`` with a size that is not an integral number 5109 of bytes, it is unspecified what happens to the extra bits that do not 5110 belong to the type, but they will typically be overwritten. 5111 5112 Example: 5113 """""""" 5114 5115 .. code-block:: llvm 5116 5117 %ptr = alloca i32 ; yields i32*:ptr 5118 store i32 3, i32* %ptr ; yields void 5119 %val = load i32* %ptr ; yields i32:val = i32 3 5120 5121 .. _i_fence: 5122 5123 '``fence``' Instruction 5124 ^^^^^^^^^^^^^^^^^^^^^^^ 5125 5126 Syntax: 5127 """"""" 5128 5129 :: 5130 5131 fence [singlethread] <ordering> ; yields void 5132 5133 Overview: 5134 """"""""" 5135 5136 The '``fence``' instruction is used to introduce happens-before edges 5137 between operations. 5138 5139 Arguments: 5140 """""""""" 5141 5142 '``fence``' instructions take an :ref:`ordering <ordering>` argument which 5143 defines what *synchronizes-with* edges they add. They can only be given 5144 ``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings. 5145 5146 Semantics: 5147 """""""""" 5148 5149 A fence A which has (at least) ``release`` ordering semantics 5150 *synchronizes with* a fence B with (at least) ``acquire`` ordering 5151 semantics if and only if there exist atomic operations X and Y, both 5152 operating on some atomic object M, such that A is sequenced before X, X 5153 modifies M (either directly or through some side effect of a sequence 5154 headed by X), Y is sequenced before B, and Y observes M. This provides a 5155 *happens-before* dependency between A and B. Rather than an explicit 5156 ``fence``, one (but not both) of the atomic operations X or Y might 5157 provide a ``release`` or ``acquire`` (resp.) ordering constraint and 5158 still *synchronize-with* the explicit ``fence`` and establish the 5159 *happens-before* edge. 5160 5161 A ``fence`` which has ``seq_cst`` ordering, in addition to having both 5162 ``acquire`` and ``release`` semantics specified above, participates in 5163 the global program order of other ``seq_cst`` operations and/or fences. 5164 5165 The optional ":ref:`singlethread <singlethread>`" argument specifies 5166 that the fence only synchronizes with other fences in the same thread. 5167 (This is useful for interacting with signal handlers.) 5168 5169 Example: 5170 """""""" 5171 5172 .. code-block:: llvm 5173 5174 fence acquire ; yields void 5175 fence singlethread seq_cst ; yields void 5176 5177 .. _i_cmpxchg: 5178 5179 '``cmpxchg``' Instruction 5180 ^^^^^^^^^^^^^^^^^^^^^^^^^ 5181 5182 Syntax: 5183 """"""" 5184 5185 :: 5186 5187 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 } 5188 5189 Overview: 5190 """"""""" 5191 5192 The '``cmpxchg``' instruction is used to atomically modify memory. It 5193 loads a value in memory and compares it to a given value. If they are 5194 equal, it tries to store a new value into the memory. 5195 5196 Arguments: 5197 """""""""" 5198 5199 There are three arguments to the '``cmpxchg``' instruction: an address 5200 to operate on, a value to compare to the value currently be at that 5201 address, and a new value to place at that address if the compared values 5202 are equal. The type of '<cmp>' must be an integer type whose bit width 5203 is a power of two greater than or equal to eight and less than or equal 5204 to a target-specific size limit. '<cmp>' and '<new>' must have the same 5205 type, and the type of '<pointer>' must be a pointer to that type. If the 5206 ``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed 5207 to modify the number or order of execution of this ``cmpxchg`` with 5208 other :ref:`volatile operations <volatile>`. 5209 5210 The success and failure :ref:`ordering <ordering>` arguments specify how this 5211 ``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters 5212 must be at least ``monotonic``, the ordering constraint on failure must be no 5213 stronger than that on success, and the failure ordering cannot be either 5214 ``release`` or ``acq_rel``. 5215 5216 The optional "``singlethread``" argument declares that the ``cmpxchg`` 5217 is only atomic with respect to code (usually signal handlers) running in 5218 the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with 5219 respect to all other code in the system. 5220 5221 The pointer passed into cmpxchg must have alignment greater than or 5222 equal to the size in memory of the operand. 5223 5224 Semantics: 5225 """""""""" 5226 5227 The contents of memory at the location specified by the '``<pointer>``' operand 5228 is read and compared to '``<cmp>``'; if the read value is the equal, the 5229 '``<new>``' is written. The original value at the location is returned, together 5230 with a flag indicating success (true) or failure (false). 5231 5232 If the cmpxchg operation is marked as ``weak`` then a spurious failure is 5233 permitted: the operation may not write ``<new>`` even if the comparison 5234 matched. 5235 5236 If the cmpxchg operation is strong (the default), the i1 value is 1 if and only 5237 if the value loaded equals ``cmp``. 5238 5239 A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of 5240 identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic 5241 load with an ordering parameter determined the second ordering parameter. 5242 5243 Example: 5244 """""""" 5245 5246 .. code-block:: llvm 5247 5248 entry: 5249 %orig = atomic load i32* %ptr unordered ; yields i32 5250 br label %loop 5251 5252 loop: 5253 %cmp = phi i32 [ %orig, %entry ], [%old, %loop] 5254 %squared = mul i32 %cmp, %cmp 5255 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 } 5256 %value_loaded = extractvalue { i32, i1 } %val_success, 0 5257 %success = extractvalue { i32, i1 } %val_success, 1 5258 br i1 %success, label %done, label %loop 5259 5260 done: 5261 ... 5262 5263 .. _i_atomicrmw: 5264 5265 '``atomicrmw``' Instruction 5266 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5267 5268 Syntax: 5269 """"""" 5270 5271 :: 5272 5273 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty 5274 5275 Overview: 5276 """"""""" 5277 5278 The '``atomicrmw``' instruction is used to atomically modify memory. 5279 5280 Arguments: 5281 """""""""" 5282 5283 There are three arguments to the '``atomicrmw``' instruction: an 5284 operation to apply, an address whose value to modify, an argument to the 5285 operation. The operation must be one of the following keywords: 5286 5287 - xchg 5288 - add 5289 - sub 5290 - and 5291 - nand 5292 - or 5293 - xor 5294 - max 5295 - min 5296 - umax 5297 - umin 5298 5299 The type of '<value>' must be an integer type whose bit width is a power 5300 of two greater than or equal to eight and less than or equal to a 5301 target-specific size limit. The type of the '``<pointer>``' operand must 5302 be a pointer to that type. If the ``atomicrmw`` is marked as 5303 ``volatile``, then the optimizer is not allowed to modify the number or 5304 order of execution of this ``atomicrmw`` with other :ref:`volatile 5305 operations <volatile>`. 5306 5307 Semantics: 5308 """""""""" 5309 5310 The contents of memory at the location specified by the '``<pointer>``' 5311 operand are atomically read, modified, and written back. The original 5312 value at the location is returned. The modification is specified by the 5313 operation argument: 5314 5315 - xchg: ``*ptr = val`` 5316 - add: ``*ptr = *ptr + val`` 5317 - sub: ``*ptr = *ptr - val`` 5318 - and: ``*ptr = *ptr & val`` 5319 - nand: ``*ptr = ~(*ptr & val)`` 5320 - or: ``*ptr = *ptr | val`` 5321 - xor: ``*ptr = *ptr ^ val`` 5322 - max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison) 5323 - min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison) 5324 - umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned 5325 comparison) 5326 - umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned 5327 comparison) 5328 5329 Example: 5330 """""""" 5331 5332 .. code-block:: llvm 5333 5334 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32 5335 5336 .. _i_getelementptr: 5337 5338 '``getelementptr``' Instruction 5339 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5340 5341 Syntax: 5342 """"""" 5343 5344 :: 5345 5346 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}* 5347 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}* 5348 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx 5349 5350 Overview: 5351 """"""""" 5352 5353 The '``getelementptr``' instruction is used to get the address of a 5354 subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs 5355 address calculation only and does not access memory. 5356 5357 Arguments: 5358 """""""""" 5359 5360 The first argument is always a pointer or a vector of pointers, and 5361 forms the basis of the calculation. The remaining arguments are indices 5362 that indicate which of the elements of the aggregate object are indexed. 5363 The interpretation of each index is dependent on the type being indexed 5364 into. The first index always indexes the pointer value given as the 5365 first argument, the second index indexes a value of the type pointed to 5366 (not necessarily the value directly pointed to, since the first index 5367 can be non-zero), etc. The first type indexed into must be a pointer 5368 value, subsequent types can be arrays, vectors, and structs. Note that 5369 subsequent types being indexed into can never be pointers, since that 5370 would require loading the pointer before continuing calculation. 5371 5372 The type of each index argument depends on the type it is indexing into. 5373 When indexing into a (optionally packed) structure, only ``i32`` integer 5374 **constants** are allowed (when using a vector of indices they must all 5375 be the **same** ``i32`` integer constant). When indexing into an array, 5376 pointer or vector, integers of any width are allowed, and they are not 5377 required to be constant. These integers are treated as signed values 5378 where relevant. 5379 5380 For example, let's consider a C code fragment and how it gets compiled 5381 to LLVM: 5382 5383 .. code-block:: c 5384 5385 struct RT { 5386 char A; 5387 int B[10][20]; 5388 char C; 5389 }; 5390 struct ST { 5391 int X; 5392 double Y; 5393 struct RT Z; 5394 }; 5395 5396 int *foo(struct ST *s) { 5397 return &s[1].Z.B[5][13]; 5398 } 5399 5400 The LLVM code generated by Clang is: 5401 5402 .. code-block:: llvm 5403 5404 %struct.RT = type { i8, [10 x [20 x i32]], i8 } 5405 %struct.ST = type { i32, double, %struct.RT } 5406 5407 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp { 5408 entry: 5409 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13 5410 ret i32* %arrayidx 5411 } 5412 5413 Semantics: 5414 """""""""" 5415 5416 In the example above, the first index is indexing into the 5417 '``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``' 5418 = '``{ i32, double, %struct.RT }``' type, a structure. The second index 5419 indexes into the third element of the structure, yielding a 5420 '``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another 5421 structure. The third index indexes into the second element of the 5422 structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two 5423 dimensions of the array are subscripted into, yielding an '``i32``' 5424 type. The '``getelementptr``' instruction returns a pointer to this 5425 element, thus computing a value of '``i32*``' type. 5426 5427 Note that it is perfectly legal to index partially through a structure, 5428 returning a pointer to an inner element. Because of this, the LLVM code 5429 for the given testcase is equivalent to: 5430 5431 .. code-block:: llvm 5432 5433 define i32* @foo(%struct.ST* %s) { 5434 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1 5435 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2 5436 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3 5437 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4 5438 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5 5439 ret i32* %t5 5440 } 5441 5442 If the ``inbounds`` keyword is present, the result value of the 5443 ``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base 5444 pointer is not an *in bounds* address of an allocated object, or if any 5445 of the addresses that would be formed by successive addition of the 5446 offsets implied by the indices to the base address with infinitely 5447 precise signed arithmetic are not an *in bounds* address of that 5448 allocated object. The *in bounds* addresses for an allocated object are 5449 all the addresses that point into the object, plus the address one byte 5450 past the end. In cases where the base is a vector of pointers the 5451 ``inbounds`` keyword applies to each of the computations element-wise. 5452 5453 If the ``inbounds`` keyword is not present, the offsets are added to the 5454 base address with silently-wrapping two's complement arithmetic. If the 5455 offsets have a different width from the pointer, they are sign-extended 5456 or truncated to the width of the pointer. The result value of the 5457 ``getelementptr`` may be outside the object pointed to by the base 5458 pointer. The result value may not necessarily be used to access memory 5459 though, even if it happens to point into allocated storage. See the 5460 :ref:`Pointer Aliasing Rules <pointeraliasing>` section for more 5461 information. 5462 5463 The getelementptr instruction is often confusing. For some more insight 5464 into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`. 5465 5466 Example: 5467 """""""" 5468 5469 .. code-block:: llvm 5470 5471 ; yields [12 x i8]*:aptr 5472 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1 5473 ; yields i8*:vptr 5474 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1 5475 ; yields i8*:eptr 5476 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1 5477 ; yields i32*:iptr 5478 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0 5479 5480 In cases where the pointer argument is a vector of pointers, each index 5481 must be a vector with the same number of elements. For example: 5482 5483 .. code-block:: llvm 5484 5485 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets, 5486 5487 Conversion Operations 5488 --------------------- 5489 5490 The instructions in this category are the conversion instructions 5491 (casting) which all take a single operand and a type. They perform 5492 various bit conversions on the operand. 5493 5494 '``trunc .. to``' Instruction 5495 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5496 5497 Syntax: 5498 """"""" 5499 5500 :: 5501 5502 <result> = trunc <ty> <value> to <ty2> ; yields ty2 5503 5504 Overview: 5505 """"""""" 5506 5507 The '``trunc``' instruction truncates its operand to the type ``ty2``. 5508 5509 Arguments: 5510 """""""""" 5511 5512 The '``trunc``' instruction takes a value to trunc, and a type to trunc 5513 it to. Both types must be of :ref:`integer <t_integer>` types, or vectors 5514 of the same number of integers. The bit size of the ``value`` must be 5515 larger than the bit size of the destination type, ``ty2``. Equal sized 5516 types are not allowed. 5517 5518 Semantics: 5519 """""""""" 5520 5521 The '``trunc``' instruction truncates the high order bits in ``value`` 5522 and converts the remaining bits to ``ty2``. Since the source size must 5523 be larger than the destination size, ``trunc`` cannot be a *no-op cast*. 5524 It will always truncate bits. 5525 5526 Example: 5527 """""""" 5528 5529 .. code-block:: llvm 5530 5531 %X = trunc i32 257 to i8 ; yields i8:1 5532 %Y = trunc i32 123 to i1 ; yields i1:true 5533 %Z = trunc i32 122 to i1 ; yields i1:false 5534 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7> 5535 5536 '``zext .. to``' Instruction 5537 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5538 5539 Syntax: 5540 """"""" 5541 5542 :: 5543 5544 <result> = zext <ty> <value> to <ty2> ; yields ty2 5545 5546 Overview: 5547 """"""""" 5548 5549 The '``zext``' instruction zero extends its operand to type ``ty2``. 5550 5551 Arguments: 5552 """""""""" 5553 5554 The '``zext``' instruction takes a value to cast, and a type to cast it 5555 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of 5556 the same number of integers. The bit size of the ``value`` must be 5557 smaller than the bit size of the destination type, ``ty2``. 5558 5559 Semantics: 5560 """""""""" 5561 5562 The ``zext`` fills the high order bits of the ``value`` with zero bits 5563 until it reaches the size of the destination type, ``ty2``. 5564 5565 When zero extending from i1, the result will always be either 0 or 1. 5566 5567 Example: 5568 """""""" 5569 5570 .. code-block:: llvm 5571 5572 %X = zext i32 257 to i64 ; yields i64:257 5573 %Y = zext i1 true to i32 ; yields i32:1 5574 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7> 5575 5576 '``sext .. to``' Instruction 5577 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5578 5579 Syntax: 5580 """"""" 5581 5582 :: 5583 5584 <result> = sext <ty> <value> to <ty2> ; yields ty2 5585 5586 Overview: 5587 """"""""" 5588 5589 The '``sext``' sign extends ``value`` to the type ``ty2``. 5590 5591 Arguments: 5592 """""""""" 5593 5594 The '``sext``' instruction takes a value to cast, and a type to cast it 5595 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of 5596 the same number of integers. The bit size of the ``value`` must be 5597 smaller than the bit size of the destination type, ``ty2``. 5598 5599 Semantics: 5600 """""""""" 5601 5602 The '``sext``' instruction performs a sign extension by copying the sign 5603 bit (highest order bit) of the ``value`` until it reaches the bit size 5604 of the type ``ty2``. 5605 5606 When sign extending from i1, the extension always results in -1 or 0. 5607 5608 Example: 5609 """""""" 5610 5611 .. code-block:: llvm 5612 5613 %X = sext i8 -1 to i16 ; yields i16 :65535 5614 %Y = sext i1 true to i32 ; yields i32:-1 5615 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7> 5616 5617 '``fptrunc .. to``' Instruction 5618 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5619 5620 Syntax: 5621 """"""" 5622 5623 :: 5624 5625 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2 5626 5627 Overview: 5628 """"""""" 5629 5630 The '``fptrunc``' instruction truncates ``value`` to type ``ty2``. 5631 5632 Arguments: 5633 """""""""" 5634 5635 The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>` 5636 value to cast and a :ref:`floating point <t_floating>` type to cast it to. 5637 The size of ``value`` must be larger than the size of ``ty2``. This 5638 implies that ``fptrunc`` cannot be used to make a *no-op cast*. 5639 5640 Semantics: 5641 """""""""" 5642 5643 The '``fptrunc``' instruction truncates a ``value`` from a larger 5644 :ref:`floating point <t_floating>` type to a smaller :ref:`floating 5645 point <t_floating>` type. If the value cannot fit within the 5646 destination type, ``ty2``, then the results are undefined. 5647 5648 Example: 5649 """""""" 5650 5651 .. code-block:: llvm 5652 5653 %X = fptrunc double 123.0 to float ; yields float:123.0 5654 %Y = fptrunc double 1.0E+300 to float ; yields undefined 5655 5656 '``fpext .. to``' Instruction 5657 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5658 5659 Syntax: 5660 """"""" 5661 5662 :: 5663 5664 <result> = fpext <ty> <value> to <ty2> ; yields ty2 5665 5666 Overview: 5667 """"""""" 5668 5669 The '``fpext``' extends a floating point ``value`` to a larger floating 5670 point value. 5671 5672 Arguments: 5673 """""""""" 5674 5675 The '``fpext``' instruction takes a :ref:`floating point <t_floating>` 5676 ``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it 5677 to. The source type must be smaller than the destination type. 5678 5679 Semantics: 5680 """""""""" 5681 5682 The '``fpext``' instruction extends the ``value`` from a smaller 5683 :ref:`floating point <t_floating>` type to a larger :ref:`floating 5684 point <t_floating>` type. The ``fpext`` cannot be used to make a 5685 *no-op cast* because it always changes bits. Use ``bitcast`` to make a 5686 *no-op cast* for a floating point cast. 5687 5688 Example: 5689 """""""" 5690 5691 .. code-block:: llvm 5692 5693 %X = fpext float 3.125 to double ; yields double:3.125000e+00 5694 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000 5695 5696 '``fptoui .. to``' Instruction 5697 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5698 5699 Syntax: 5700 """"""" 5701 5702 :: 5703 5704 <result> = fptoui <ty> <value> to <ty2> ; yields ty2 5705 5706 Overview: 5707 """"""""" 5708 5709 The '``fptoui``' converts a floating point ``value`` to its unsigned 5710 integer equivalent of type ``ty2``. 5711 5712 Arguments: 5713 """""""""" 5714 5715 The '``fptoui``' instruction takes a value to cast, which must be a 5716 scalar or vector :ref:`floating point <t_floating>` value, and a type to 5717 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If 5718 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer 5719 type with the same number of elements as ``ty`` 5720 5721 Semantics: 5722 """""""""" 5723 5724 The '``fptoui``' instruction converts its :ref:`floating 5725 point <t_floating>` operand into the nearest (rounding towards zero) 5726 unsigned integer value. If the value cannot fit in ``ty2``, the results 5727 are undefined. 5728 5729 Example: 5730 """""""" 5731 5732 .. code-block:: llvm 5733 5734 %X = fptoui double 123.0 to i32 ; yields i32:123 5735 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1 5736 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1 5737 5738 '``fptosi .. to``' Instruction 5739 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5740 5741 Syntax: 5742 """"""" 5743 5744 :: 5745 5746 <result> = fptosi <ty> <value> to <ty2> ; yields ty2 5747 5748 Overview: 5749 """"""""" 5750 5751 The '``fptosi``' instruction converts :ref:`floating point <t_floating>` 5752 ``value`` to type ``ty2``. 5753 5754 Arguments: 5755 """""""""" 5756 5757 The '``fptosi``' instruction takes a value to cast, which must be a 5758 scalar or vector :ref:`floating point <t_floating>` value, and a type to 5759 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If 5760 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer 5761 type with the same number of elements as ``ty`` 5762 5763 Semantics: 5764 """""""""" 5765 5766 The '``fptosi``' instruction converts its :ref:`floating 5767 point <t_floating>` operand into the nearest (rounding towards zero) 5768 signed integer value. If the value cannot fit in ``ty2``, the results 5769 are undefined. 5770 5771 Example: 5772 """""""" 5773 5774 .. code-block:: llvm 5775 5776 %X = fptosi double -123.0 to i32 ; yields i32:-123 5777 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1 5778 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1 5779 5780 '``uitofp .. to``' Instruction 5781 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5782 5783 Syntax: 5784 """"""" 5785 5786 :: 5787 5788 <result> = uitofp <ty> <value> to <ty2> ; yields ty2 5789 5790 Overview: 5791 """"""""" 5792 5793 The '``uitofp``' instruction regards ``value`` as an unsigned integer 5794 and converts that value to the ``ty2`` type. 5795 5796 Arguments: 5797 """""""""" 5798 5799 The '``uitofp``' instruction takes a value to cast, which must be a 5800 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to 5801 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If 5802 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point 5803 type with the same number of elements as ``ty`` 5804 5805 Semantics: 5806 """""""""" 5807 5808 The '``uitofp``' instruction interprets its operand as an unsigned 5809 integer quantity and converts it to the corresponding floating point 5810 value. If the value cannot fit in the floating point value, the results 5811 are undefined. 5812 5813 Example: 5814 """""""" 5815 5816 .. code-block:: llvm 5817 5818 %X = uitofp i32 257 to float ; yields float:257.0 5819 %Y = uitofp i8 -1 to double ; yields double:255.0 5820 5821 '``sitofp .. to``' Instruction 5822 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5823 5824 Syntax: 5825 """"""" 5826 5827 :: 5828 5829 <result> = sitofp <ty> <value> to <ty2> ; yields ty2 5830 5831 Overview: 5832 """"""""" 5833 5834 The '``sitofp``' instruction regards ``value`` as a signed integer and 5835 converts that value to the ``ty2`` type. 5836 5837 Arguments: 5838 """""""""" 5839 5840 The '``sitofp``' instruction takes a value to cast, which must be a 5841 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to 5842 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If 5843 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point 5844 type with the same number of elements as ``ty`` 5845 5846 Semantics: 5847 """""""""" 5848 5849 The '``sitofp``' instruction interprets its operand as a signed integer 5850 quantity and converts it to the corresponding floating point value. If 5851 the value cannot fit in the floating point value, the results are 5852 undefined. 5853 5854 Example: 5855 """""""" 5856 5857 .. code-block:: llvm 5858 5859 %X = sitofp i32 257 to float ; yields float:257.0 5860 %Y = sitofp i8 -1 to double ; yields double:-1.0 5861 5862 .. _i_ptrtoint: 5863 5864 '``ptrtoint .. to``' Instruction 5865 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5866 5867 Syntax: 5868 """"""" 5869 5870 :: 5871 5872 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2 5873 5874 Overview: 5875 """"""""" 5876 5877 The '``ptrtoint``' instruction converts the pointer or a vector of 5878 pointers ``value`` to the integer (or vector of integers) type ``ty2``. 5879 5880 Arguments: 5881 """""""""" 5882 5883 The '``ptrtoint``' instruction takes a ``value`` to cast, which must be 5884 a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a 5885 type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or 5886 a vector of integers type. 5887 5888 Semantics: 5889 """""""""" 5890 5891 The '``ptrtoint``' instruction converts ``value`` to integer type 5892 ``ty2`` by interpreting the pointer value as an integer and either 5893 truncating or zero extending that value to the size of the integer type. 5894 If ``value`` is smaller than ``ty2`` then a zero extension is done. If 5895 ``value`` is larger than ``ty2`` then a truncation is done. If they are 5896 the same size, then nothing is done (*no-op cast*) other than a type 5897 change. 5898 5899 Example: 5900 """""""" 5901 5902 .. code-block:: llvm 5903 5904 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture 5905 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture 5906 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture 5907 5908 .. _i_inttoptr: 5909 5910 '``inttoptr .. to``' Instruction 5911 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5912 5913 Syntax: 5914 """"""" 5915 5916 :: 5917 5918 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2 5919 5920 Overview: 5921 """"""""" 5922 5923 The '``inttoptr``' instruction converts an integer ``value`` to a 5924 pointer type, ``ty2``. 5925 5926 Arguments: 5927 """""""""" 5928 5929 The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to 5930 cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>` 5931 type. 5932 5933 Semantics: 5934 """""""""" 5935 5936 The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by 5937 applying either a zero extension or a truncation depending on the size 5938 of the integer ``value``. If ``value`` is larger than the size of a 5939 pointer then a truncation is done. If ``value`` is smaller than the size 5940 of a pointer then a zero extension is done. If they are the same size, 5941 nothing is done (*no-op cast*). 5942 5943 Example: 5944 """""""" 5945 5946 .. code-block:: llvm 5947 5948 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture 5949 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture 5950 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture 5951 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers 5952 5953 .. _i_bitcast: 5954 5955 '``bitcast .. to``' Instruction 5956 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 5957 5958 Syntax: 5959 """"""" 5960 5961 :: 5962 5963 <result> = bitcast <ty> <value> to <ty2> ; yields ty2 5964 5965 Overview: 5966 """"""""" 5967 5968 The '``bitcast``' instruction converts ``value`` to type ``ty2`` without 5969 changing any bits. 5970 5971 Arguments: 5972 """""""""" 5973 5974 The '``bitcast``' instruction takes a value to cast, which must be a 5975 non-aggregate first class value, and a type to cast it to, which must 5976 also be a non-aggregate :ref:`first class <t_firstclass>` type. The 5977 bit sizes of ``value`` and the destination type, ``ty2``, must be 5978 identical. If the source type is a pointer, the destination type must 5979 also be a pointer of the same size. This instruction supports bitwise 5980 conversion of vectors to integers and to vectors of other types (as 5981 long as they have the same size). 5982 5983 Semantics: 5984 """""""""" 5985 5986 The '``bitcast``' instruction converts ``value`` to type ``ty2``. It 5987 is always a *no-op cast* because no bits change with this 5988 conversion. The conversion is done as if the ``value`` had been stored 5989 to memory and read back as type ``ty2``. Pointer (or vector of 5990 pointers) types may only be converted to other pointer (or vector of 5991 pointers) types with the same address space through this instruction. 5992 To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>` 5993 or :ref:`ptrtoint <i_ptrtoint>` instructions first. 5994 5995 Example: 5996 """""""" 5997 5998 .. code-block:: llvm 5999 6000 %X = bitcast i8 255 to i8 ; yields i8 :-1 6001 %Y = bitcast i32* %x to sint* ; yields sint*:%x 6002 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V 6003 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*> 6004 6005 .. _i_addrspacecast: 6006 6007 '``addrspacecast .. to``' Instruction 6008 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6009 6010 Syntax: 6011 """"""" 6012 6013 :: 6014 6015 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2 6016 6017 Overview: 6018 """"""""" 6019 6020 The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in 6021 address space ``n`` to type ``pty2`` in address space ``m``. 6022 6023 Arguments: 6024 """""""""" 6025 6026 The '``addrspacecast``' instruction takes a pointer or vector of pointer value 6027 to cast and a pointer type to cast it to, which must have a different 6028 address space. 6029 6030 Semantics: 6031 """""""""" 6032 6033 The '``addrspacecast``' instruction converts the pointer value 6034 ``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex 6035 value modification, depending on the target and the address space 6036 pair. Pointer conversions within the same address space must be 6037 performed with the ``bitcast`` instruction. Note that if the address space 6038 conversion is legal then both result and operand refer to the same memory 6039 location. 6040 6041 Example: 6042 """""""" 6043 6044 .. code-block:: llvm 6045 6046 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x 6047 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y 6048 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z 6049 6050 .. _otherops: 6051 6052 Other Operations 6053 ---------------- 6054 6055 The instructions in this category are the "miscellaneous" instructions, 6056 which defy better classification. 6057 6058 .. _i_icmp: 6059 6060 '``icmp``' Instruction 6061 ^^^^^^^^^^^^^^^^^^^^^^ 6062 6063 Syntax: 6064 """"""" 6065 6066 :: 6067 6068 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result 6069 6070 Overview: 6071 """"""""" 6072 6073 The '``icmp``' instruction returns a boolean value or a vector of 6074 boolean values based on comparison of its two integer, integer vector, 6075 pointer, or pointer vector operands. 6076 6077 Arguments: 6078 """""""""" 6079 6080 The '``icmp``' instruction takes three operands. The first operand is 6081 the condition code indicating the kind of comparison to perform. It is 6082 not a value, just a keyword. The possible condition code are: 6083 6084 #. ``eq``: equal 6085 #. ``ne``: not equal 6086 #. ``ugt``: unsigned greater than 6087 #. ``uge``: unsigned greater or equal 6088 #. ``ult``: unsigned less than 6089 #. ``ule``: unsigned less or equal 6090 #. ``sgt``: signed greater than 6091 #. ``sge``: signed greater or equal 6092 #. ``slt``: signed less than 6093 #. ``sle``: signed less or equal 6094 6095 The remaining two arguments must be :ref:`integer <t_integer>` or 6096 :ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They 6097 must also be identical types. 6098 6099 Semantics: 6100 """""""""" 6101 6102 The '``icmp``' compares ``op1`` and ``op2`` according to the condition 6103 code given as ``cond``. The comparison performed always yields either an 6104 :ref:`i1 <t_integer>` or vector of ``i1`` result, as follows: 6105 6106 #. ``eq``: yields ``true`` if the operands are equal, ``false`` 6107 otherwise. No sign interpretation is necessary or performed. 6108 #. ``ne``: yields ``true`` if the operands are unequal, ``false`` 6109 otherwise. No sign interpretation is necessary or performed. 6110 #. ``ugt``: interprets the operands as unsigned values and yields 6111 ``true`` if ``op1`` is greater than ``op2``. 6112 #. ``uge``: interprets the operands as unsigned values and yields 6113 ``true`` if ``op1`` is greater than or equal to ``op2``. 6114 #. ``ult``: interprets the operands as unsigned values and yields 6115 ``true`` if ``op1`` is less than ``op2``. 6116 #. ``ule``: interprets the operands as unsigned values and yields 6117 ``true`` if ``op1`` is less than or equal to ``op2``. 6118 #. ``sgt``: interprets the operands as signed values and yields ``true`` 6119 if ``op1`` is greater than ``op2``. 6120 #. ``sge``: interprets the operands as signed values and yields ``true`` 6121 if ``op1`` is greater than or equal to ``op2``. 6122 #. ``slt``: interprets the operands as signed values and yields ``true`` 6123 if ``op1`` is less than ``op2``. 6124 #. ``sle``: interprets the operands as signed values and yields ``true`` 6125 if ``op1`` is less than or equal to ``op2``. 6126 6127 If the operands are :ref:`pointer <t_pointer>` typed, the pointer values 6128 are compared as if they were integers. 6129 6130 If the operands are integer vectors, then they are compared element by 6131 element. The result is an ``i1`` vector with the same number of elements 6132 as the values being compared. Otherwise, the result is an ``i1``. 6133 6134 Example: 6135 """""""" 6136 6137 .. code-block:: llvm 6138 6139 <result> = icmp eq i32 4, 5 ; yields: result=false 6140 <result> = icmp ne float* %X, %X ; yields: result=false 6141 <result> = icmp ult i16 4, 5 ; yields: result=true 6142 <result> = icmp sgt i16 4, 5 ; yields: result=false 6143 <result> = icmp ule i16 -4, 5 ; yields: result=false 6144 <result> = icmp sge i16 4, 5 ; yields: result=false 6145 6146 Note that the code generator does not yet support vector types with the 6147 ``icmp`` instruction. 6148 6149 .. _i_fcmp: 6150 6151 '``fcmp``' Instruction 6152 ^^^^^^^^^^^^^^^^^^^^^^ 6153 6154 Syntax: 6155 """"""" 6156 6157 :: 6158 6159 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result 6160 6161 Overview: 6162 """"""""" 6163 6164 The '``fcmp``' instruction returns a boolean value or vector of boolean 6165 values based on comparison of its operands. 6166 6167 If the operands are floating point scalars, then the result type is a 6168 boolean (:ref:`i1 <t_integer>`). 6169 6170 If the operands are floating point vectors, then the result type is a 6171 vector of boolean with the same number of elements as the operands being 6172 compared. 6173 6174 Arguments: 6175 """""""""" 6176 6177 The '``fcmp``' instruction takes three operands. The first operand is 6178 the condition code indicating the kind of comparison to perform. It is 6179 not a value, just a keyword. The possible condition code are: 6180 6181 #. ``false``: no comparison, always returns false 6182 #. ``oeq``: ordered and equal 6183 #. ``ogt``: ordered and greater than 6184 #. ``oge``: ordered and greater than or equal 6185 #. ``olt``: ordered and less than 6186 #. ``ole``: ordered and less than or equal 6187 #. ``one``: ordered and not equal 6188 #. ``ord``: ordered (no nans) 6189 #. ``ueq``: unordered or equal 6190 #. ``ugt``: unordered or greater than 6191 #. ``uge``: unordered or greater than or equal 6192 #. ``ult``: unordered or less than 6193 #. ``ule``: unordered or less than or equal 6194 #. ``une``: unordered or not equal 6195 #. ``uno``: unordered (either nans) 6196 #. ``true``: no comparison, always returns true 6197 6198 *Ordered* means that neither operand is a QNAN while *unordered* means 6199 that either operand may be a QNAN. 6200 6201 Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating 6202 point <t_floating>` type or a :ref:`vector <t_vector>` of floating point 6203 type. They must have identical types. 6204 6205 Semantics: 6206 """""""""" 6207 6208 The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the 6209 condition code given as ``cond``. If the operands are vectors, then the 6210 vectors are compared element by element. Each comparison performed 6211 always yields an :ref:`i1 <t_integer>` result, as follows: 6212 6213 #. ``false``: always yields ``false``, regardless of operands. 6214 #. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1`` 6215 is equal to ``op2``. 6216 #. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1`` 6217 is greater than ``op2``. 6218 #. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1`` 6219 is greater than or equal to ``op2``. 6220 #. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1`` 6221 is less than ``op2``. 6222 #. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1`` 6223 is less than or equal to ``op2``. 6224 #. ``one``: yields ``true`` if both operands are not a QNAN and ``op1`` 6225 is not equal to ``op2``. 6226 #. ``ord``: yields ``true`` if both operands are not a QNAN. 6227 #. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is 6228 equal to ``op2``. 6229 #. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is 6230 greater than ``op2``. 6231 #. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is 6232 greater than or equal to ``op2``. 6233 #. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is 6234 less than ``op2``. 6235 #. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is 6236 less than or equal to ``op2``. 6237 #. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is 6238 not equal to ``op2``. 6239 #. ``uno``: yields ``true`` if either operand is a QNAN. 6240 #. ``true``: always yields ``true``, regardless of operands. 6241 6242 Example: 6243 """""""" 6244 6245 .. code-block:: llvm 6246 6247 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false 6248 <result> = fcmp one float 4.0, 5.0 ; yields: result=true 6249 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true 6250 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false 6251 6252 Note that the code generator does not yet support vector types with the 6253 ``fcmp`` instruction. 6254 6255 .. _i_phi: 6256 6257 '``phi``' Instruction 6258 ^^^^^^^^^^^^^^^^^^^^^ 6259 6260 Syntax: 6261 """"""" 6262 6263 :: 6264 6265 <result> = phi <ty> [ <val0>, <label0>], ... 6266 6267 Overview: 6268 """"""""" 6269 6270 The '``phi``' instruction is used to implement the node in the SSA 6271 graph representing the function. 6272 6273 Arguments: 6274 """""""""" 6275 6276 The type of the incoming values is specified with the first type field. 6277 After this, the '``phi``' instruction takes a list of pairs as 6278 arguments, with one pair for each predecessor basic block of the current 6279 block. Only values of :ref:`first class <t_firstclass>` type may be used as 6280 the value arguments to the PHI node. Only labels may be used as the 6281 label arguments. 6282 6283 There must be no non-phi instructions between the start of a basic block 6284 and the PHI instructions: i.e. PHI instructions must be first in a basic 6285 block. 6286 6287 For the purposes of the SSA form, the use of each incoming value is 6288 deemed to occur on the edge from the corresponding predecessor block to 6289 the current block (but after any definition of an '``invoke``' 6290 instruction's return value on the same edge). 6291 6292 Semantics: 6293 """""""""" 6294 6295 At runtime, the '``phi``' instruction logically takes on the value 6296 specified by the pair corresponding to the predecessor basic block that 6297 executed just prior to the current block. 6298 6299 Example: 6300 """""""" 6301 6302 .. code-block:: llvm 6303 6304 Loop: ; Infinite loop that counts from 0 on up... 6305 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ] 6306 %nextindvar = add i32 %indvar, 1 6307 br label %Loop 6308 6309 .. _i_select: 6310 6311 '``select``' Instruction 6312 ^^^^^^^^^^^^^^^^^^^^^^^^ 6313 6314 Syntax: 6315 """"""" 6316 6317 :: 6318 6319 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty 6320 6321 selty is either i1 or {<N x i1>} 6322 6323 Overview: 6324 """"""""" 6325 6326 The '``select``' instruction is used to choose one value based on a 6327 condition, without IR-level branching. 6328 6329 Arguments: 6330 """""""""" 6331 6332 The '``select``' instruction requires an 'i1' value or a vector of 'i1' 6333 values indicating the condition, and two values of the same :ref:`first 6334 class <t_firstclass>` type. If the val1/val2 are vectors and the 6335 condition is a scalar, then entire vectors are selected, not individual 6336 elements. 6337 6338 Semantics: 6339 """""""""" 6340 6341 If the condition is an i1 and it evaluates to 1, the instruction returns 6342 the first value argument; otherwise, it returns the second value 6343 argument. 6344 6345 If the condition is a vector of i1, then the value arguments must be 6346 vectors of the same size, and the selection is done element by element. 6347 6348 Example: 6349 """""""" 6350 6351 .. code-block:: llvm 6352 6353 %X = select i1 true, i8 17, i8 42 ; yields i8:17 6354 6355 .. _i_call: 6356 6357 '``call``' Instruction 6358 ^^^^^^^^^^^^^^^^^^^^^^ 6359 6360 Syntax: 6361 """"""" 6362 6363 :: 6364 6365 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs] 6366 6367 Overview: 6368 """"""""" 6369 6370 The '``call``' instruction represents a simple function call. 6371 6372 Arguments: 6373 """""""""" 6374 6375 This instruction requires several arguments: 6376 6377 #. The optional ``tail`` and ``musttail`` markers indicate that the optimizers 6378 should perform tail call optimization. The ``tail`` marker is a hint that 6379 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker 6380 means that the call must be tail call optimized in order for the program to 6381 be correct. The ``musttail`` marker provides these guarantees: 6382 6383 #. The call will not cause unbounded stack growth if it is part of a 6384 recursive cycle in the call graph. 6385 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are 6386 forwarded in place. 6387 6388 Both markers imply that the callee does not access allocas or varargs from 6389 the caller. Calls marked ``musttail`` must obey the following additional 6390 rules: 6391 6392 - The call must immediately precede a :ref:`ret <i_ret>` instruction, 6393 or a pointer bitcast followed by a ret instruction. 6394 - The ret instruction must return the (possibly bitcasted) value 6395 produced by the call or void. 6396 - The caller and callee prototypes must match. Pointer types of 6397 parameters or return types may differ in pointee type, but not 6398 in address space. 6399 - The calling conventions of the caller and callee must match. 6400 - All ABI-impacting function attributes, such as sret, byval, inreg, 6401 returned, and inalloca, must match. 6402 6403 Tail call optimization for calls marked ``tail`` is guaranteed to occur if 6404 the following conditions are met: 6405 6406 - Caller and callee both have the calling convention ``fastcc``. 6407 - The call is in tail position (ret immediately follows call and ret 6408 uses value of call or is void). 6409 - Option ``-tailcallopt`` is enabled, or 6410 ``llvm::GuaranteedTailCallOpt`` is ``true``. 6411 - `Platform-specific constraints are 6412 met. <CodeGenerator.html#tailcallopt>`_ 6413 6414 #. The optional "cconv" marker indicates which :ref:`calling 6415 convention <callingconv>` the call should use. If none is 6416 specified, the call defaults to using C calling conventions. The 6417 calling convention of the call must match the calling convention of 6418 the target function, or else the behavior is undefined. 6419 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return 6420 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes 6421 are valid here. 6422 #. '``ty``': the type of the call instruction itself which is also the 6423 type of the return value. Functions that return no value are marked 6424 ``void``. 6425 #. '``fnty``': shall be the signature of the pointer to function value 6426 being invoked. The argument types must match the types implied by 6427 this signature. This type can be omitted if the function is not 6428 varargs and if the function type does not return a pointer to a 6429 function. 6430 #. '``fnptrval``': An LLVM value containing a pointer to a function to 6431 be invoked. In most cases, this is a direct function invocation, but 6432 indirect ``call``'s are just as possible, calling an arbitrary pointer 6433 to function value. 6434 #. '``function args``': argument list whose types match the function 6435 signature argument types and parameter attributes. All arguments must 6436 be of :ref:`first class <t_firstclass>` type. If the function signature 6437 indicates the function accepts a variable number of arguments, the 6438 extra arguments can be specified. 6439 #. The optional :ref:`function attributes <fnattrs>` list. Only 6440 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``' 6441 attributes are valid here. 6442 6443 Semantics: 6444 """""""""" 6445 6446 The '``call``' instruction is used to cause control flow to transfer to 6447 a specified function, with its incoming arguments bound to the specified 6448 values. Upon a '``ret``' instruction in the called function, control 6449 flow continues with the instruction after the function call, and the 6450 return value of the function is bound to the result argument. 6451 6452 Example: 6453 """""""" 6454 6455 .. code-block:: llvm 6456 6457 %retval = call i32 @test(i32 %argc) 6458 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32 6459 %X = tail call i32 @foo() ; yields i32 6460 %Y = tail call fastcc i32 @foo() ; yields i32 6461 call void %foo(i8 97 signext) 6462 6463 %struct.A = type { i32, i8 } 6464 %r = call %struct.A @foo() ; yields { i32, i8 } 6465 %gr = extractvalue %struct.A %r, 0 ; yields i32 6466 %gr1 = extractvalue %struct.A %r, 1 ; yields i8 6467 %Z = call void @foo() noreturn ; indicates that %foo never returns normally 6468 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended 6469 6470 llvm treats calls to some functions with names and arguments that match 6471 the standard C99 library as being the C99 library functions, and may 6472 perform optimizations or generate code for them under that assumption. 6473 This is something we'd like to change in the future to provide better 6474 support for freestanding environments and non-C-based languages. 6475 6476 .. _i_va_arg: 6477 6478 '``va_arg``' Instruction 6479 ^^^^^^^^^^^^^^^^^^^^^^^^ 6480 6481 Syntax: 6482 """"""" 6483 6484 :: 6485 6486 <resultval> = va_arg <va_list*> <arglist>, <argty> 6487 6488 Overview: 6489 """"""""" 6490 6491 The '``va_arg``' instruction is used to access arguments passed through 6492 the "variable argument" area of a function call. It is used to implement 6493 the ``va_arg`` macro in C. 6494 6495 Arguments: 6496 """""""""" 6497 6498 This instruction takes a ``va_list*`` value and the type of the 6499 argument. It returns a value of the specified argument type and 6500 increments the ``va_list`` to point to the next argument. The actual 6501 type of ``va_list`` is target specific. 6502 6503 Semantics: 6504 """""""""" 6505 6506 The '``va_arg``' instruction loads an argument of the specified type 6507 from the specified ``va_list`` and causes the ``va_list`` to point to 6508 the next argument. For more information, see the variable argument 6509 handling :ref:`Intrinsic Functions <int_varargs>`. 6510 6511 It is legal for this instruction to be called in a function which does 6512 not take a variable number of arguments, for example, the ``vfprintf`` 6513 function. 6514 6515 ``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic 6516 function <intrinsics>` because it takes a type as an argument. 6517 6518 Example: 6519 """""""" 6520 6521 See the :ref:`variable argument processing <int_varargs>` section. 6522 6523 Note that the code generator does not yet fully support va\_arg on many 6524 targets. Also, it does not currently support va\_arg with aggregate 6525 types on any target. 6526 6527 .. _i_landingpad: 6528 6529 '``landingpad``' Instruction 6530 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6531 6532 Syntax: 6533 """"""" 6534 6535 :: 6536 6537 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+ 6538 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>* 6539 6540 <clause> := catch <type> <value> 6541 <clause> := filter <array constant type> <array constant> 6542 6543 Overview: 6544 """"""""" 6545 6546 The '``landingpad``' instruction is used by `LLVM's exception handling 6547 system <ExceptionHandling.html#overview>`_ to specify that a basic block 6548 is a landing pad --- one where the exception lands, and corresponds to the 6549 code found in the ``catch`` portion of a ``try``/``catch`` sequence. It 6550 defines values supplied by the personality function (``pers_fn``) upon 6551 re-entry to the function. The ``resultval`` has the type ``resultty``. 6552 6553 Arguments: 6554 """""""""" 6555 6556 This instruction takes a ``pers_fn`` value. This is the personality 6557 function associated with the unwinding mechanism. The optional 6558 ``cleanup`` flag indicates that the landing pad block is a cleanup. 6559 6560 A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and 6561 contains the global variable representing the "type" that may be caught 6562 or filtered respectively. Unlike the ``catch`` clause, the ``filter`` 6563 clause takes an array constant as its argument. Use 6564 "``[0 x i8**] undef``" for a filter which cannot throw. The 6565 '``landingpad``' instruction must contain *at least* one ``clause`` or 6566 the ``cleanup`` flag. 6567 6568 Semantics: 6569 """""""""" 6570 6571 The '``landingpad``' instruction defines the values which are set by the 6572 personality function (``pers_fn``) upon re-entry to the function, and 6573 therefore the "result type" of the ``landingpad`` instruction. As with 6574 calling conventions, how the personality function results are 6575 represented in LLVM IR is target specific. 6576 6577 The clauses are applied in order from top to bottom. If two 6578 ``landingpad`` instructions are merged together through inlining, the 6579 clauses from the calling function are appended to the list of clauses. 6580 When the call stack is being unwound due to an exception being thrown, 6581 the exception is compared against each ``clause`` in turn. If it doesn't 6582 match any of the clauses, and the ``cleanup`` flag is not set, then 6583 unwinding continues further up the call stack. 6584 6585 The ``landingpad`` instruction has several restrictions: 6586 6587 - A landing pad block is a basic block which is the unwind destination 6588 of an '``invoke``' instruction. 6589 - A landing pad block must have a '``landingpad``' instruction as its 6590 first non-PHI instruction. 6591 - There can be only one '``landingpad``' instruction within the landing 6592 pad block. 6593 - A basic block that is not a landing pad block may not include a 6594 '``landingpad``' instruction. 6595 - All '``landingpad``' instructions in a function must have the same 6596 personality function. 6597 6598 Example: 6599 """""""" 6600 6601 .. code-block:: llvm 6602 6603 ;; A landing pad which can catch an integer. 6604 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 6605 catch i8** @_ZTIi 6606 ;; A landing pad that is a cleanup. 6607 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 6608 cleanup 6609 ;; A landing pad which can catch an integer and can only throw a double. 6610 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0 6611 catch i8** @_ZTIi 6612 filter [1 x i8**] [@_ZTId] 6613 6614 .. _intrinsics: 6615 6616 Intrinsic Functions 6617 =================== 6618 6619 LLVM supports the notion of an "intrinsic function". These functions 6620 have well known names and semantics and are required to follow certain 6621 restrictions. Overall, these intrinsics represent an extension mechanism 6622 for the LLVM language that does not require changing all of the 6623 transformations in LLVM when adding to the language (or the bitcode 6624 reader/writer, the parser, etc...). 6625 6626 Intrinsic function names must all start with an "``llvm.``" prefix. This 6627 prefix is reserved in LLVM for intrinsic names; thus, function names may 6628 not begin with this prefix. Intrinsic functions must always be external 6629 functions: you cannot define the body of intrinsic functions. Intrinsic 6630 functions may only be used in call or invoke instructions: it is illegal 6631 to take the address of an intrinsic function. Additionally, because 6632 intrinsic functions are part of the LLVM language, it is required if any 6633 are added that they be documented here. 6634 6635 Some intrinsic functions can be overloaded, i.e., the intrinsic 6636 represents a family of functions that perform the same operation but on 6637 different data types. Because LLVM can represent over 8 million 6638 different integer types, overloading is used commonly to allow an 6639 intrinsic function to operate on any integer type. One or more of the 6640 argument types or the result type can be overloaded to accept any 6641 integer type. Argument types may also be defined as exactly matching a 6642 previous argument's type or the result type. This allows an intrinsic 6643 function which accepts multiple arguments, but needs all of them to be 6644 of the same type, to only be overloaded with respect to a single 6645 argument or the result. 6646 6647 Overloaded intrinsics will have the names of its overloaded argument 6648 types encoded into its function name, each preceded by a period. Only 6649 those types which are overloaded result in a name suffix. Arguments 6650 whose type is matched against another type do not. For example, the 6651 ``llvm.ctpop`` function can take an integer of any width and returns an 6652 integer of exactly the same integer width. This leads to a family of 6653 functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and 6654 ``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is 6655 overloaded, and only one type suffix is required. Because the argument's 6656 type is matched against the return type, it does not require its own 6657 name suffix. 6658 6659 To learn how to add an intrinsic function, please see the `Extending 6660 LLVM Guide <ExtendingLLVM.html>`_. 6661 6662 .. _int_varargs: 6663 6664 Variable Argument Handling Intrinsics 6665 ------------------------------------- 6666 6667 Variable argument support is defined in LLVM with the 6668 :ref:`va_arg <i_va_arg>` instruction and these three intrinsic 6669 functions. These functions are related to the similarly named macros 6670 defined in the ``<stdarg.h>`` header file. 6671 6672 All of these functions operate on arguments that use a target-specific 6673 value type "``va_list``". The LLVM assembly language reference manual 6674 does not define what this type is, so all transformations should be 6675 prepared to handle these functions regardless of the type used. 6676 6677 This example shows how the :ref:`va_arg <i_va_arg>` instruction and the 6678 variable argument handling intrinsic functions are used. 6679 6680 .. code-block:: llvm 6681 6682 define i32 @test(i32 %X, ...) { 6683 ; Initialize variable argument processing 6684 %ap = alloca i8* 6685 %ap2 = bitcast i8** %ap to i8* 6686 call void @llvm.va_start(i8* %ap2) 6687 6688 ; Read a single integer argument 6689 %tmp = va_arg i8** %ap, i32 6690 6691 ; Demonstrate usage of llvm.va_copy and llvm.va_end 6692 %aq = alloca i8* 6693 %aq2 = bitcast i8** %aq to i8* 6694 call void @llvm.va_copy(i8* %aq2, i8* %ap2) 6695 call void @llvm.va_end(i8* %aq2) 6696 6697 ; Stop processing of arguments. 6698 call void @llvm.va_end(i8* %ap2) 6699 ret i32 %tmp 6700 } 6701 6702 declare void @llvm.va_start(i8*) 6703 declare void @llvm.va_copy(i8*, i8*) 6704 declare void @llvm.va_end(i8*) 6705 6706 .. _int_va_start: 6707 6708 '``llvm.va_start``' Intrinsic 6709 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6710 6711 Syntax: 6712 """"""" 6713 6714 :: 6715 6716 declare void @llvm.va_start(i8* <arglist>) 6717 6718 Overview: 6719 """"""""" 6720 6721 The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for 6722 subsequent use by ``va_arg``. 6723 6724 Arguments: 6725 """""""""" 6726 6727 The argument is a pointer to a ``va_list`` element to initialize. 6728 6729 Semantics: 6730 """""""""" 6731 6732 The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro 6733 available in C. In a target-dependent way, it initializes the 6734 ``va_list`` element to which the argument points, so that the next call 6735 to ``va_arg`` will produce the first variable argument passed to the 6736 function. Unlike the C ``va_start`` macro, this intrinsic does not need 6737 to know the last argument of the function as the compiler can figure 6738 that out. 6739 6740 '``llvm.va_end``' Intrinsic 6741 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6742 6743 Syntax: 6744 """"""" 6745 6746 :: 6747 6748 declare void @llvm.va_end(i8* <arglist>) 6749 6750 Overview: 6751 """"""""" 6752 6753 The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been 6754 initialized previously with ``llvm.va_start`` or ``llvm.va_copy``. 6755 6756 Arguments: 6757 """""""""" 6758 6759 The argument is a pointer to a ``va_list`` to destroy. 6760 6761 Semantics: 6762 """""""""" 6763 6764 The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro 6765 available in C. In a target-dependent way, it destroys the ``va_list`` 6766 element to which the argument points. Calls to 6767 :ref:`llvm.va_start <int_va_start>` and 6768 :ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to 6769 ``llvm.va_end``. 6770 6771 .. _int_va_copy: 6772 6773 '``llvm.va_copy``' Intrinsic 6774 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6775 6776 Syntax: 6777 """"""" 6778 6779 :: 6780 6781 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>) 6782 6783 Overview: 6784 """"""""" 6785 6786 The '``llvm.va_copy``' intrinsic copies the current argument position 6787 from the source argument list to the destination argument list. 6788 6789 Arguments: 6790 """""""""" 6791 6792 The first argument is a pointer to a ``va_list`` element to initialize. 6793 The second argument is a pointer to a ``va_list`` element to copy from. 6794 6795 Semantics: 6796 """""""""" 6797 6798 The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro 6799 available in C. In a target-dependent way, it copies the source 6800 ``va_list`` element into the destination ``va_list`` element. This 6801 intrinsic is necessary because the `` llvm.va_start`` intrinsic may be 6802 arbitrarily complex and require, for example, memory allocation. 6803 6804 Accurate Garbage Collection Intrinsics 6805 -------------------------------------- 6806 6807 LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_ 6808 (GC) requires the implementation and generation of these intrinsics. 6809 These intrinsics allow identification of :ref:`GC roots on the 6810 stack <int_gcroot>`, as well as garbage collector implementations that 6811 require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. 6812 Front-ends for type-safe garbage collected languages should generate 6813 these intrinsics to make use of the LLVM garbage collectors. For more 6814 details, see `Accurate Garbage Collection with 6815 LLVM <GarbageCollection.html>`_. 6816 6817 The garbage collection intrinsics only operate on objects in the generic 6818 address space (address space zero). 6819 6820 .. _int_gcroot: 6821 6822 '``llvm.gcroot``' Intrinsic 6823 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6824 6825 Syntax: 6826 """"""" 6827 6828 :: 6829 6830 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata) 6831 6832 Overview: 6833 """"""""" 6834 6835 The '``llvm.gcroot``' intrinsic declares the existence of a GC root to 6836 the code generator, and allows some metadata to be associated with it. 6837 6838 Arguments: 6839 """""""""" 6840 6841 The first argument specifies the address of a stack object that contains 6842 the root pointer. The second pointer (which must be either a constant or 6843 a global value address) contains the meta-data to be associated with the 6844 root. 6845 6846 Semantics: 6847 """""""""" 6848 6849 At runtime, a call to this intrinsic stores a null pointer into the 6850 "ptrloc" location. At compile-time, the code generator generates 6851 information to allow the runtime to find the pointer at GC safe points. 6852 The '``llvm.gcroot``' intrinsic may only be used in a function which 6853 :ref:`specifies a GC algorithm <gc>`. 6854 6855 .. _int_gcread: 6856 6857 '``llvm.gcread``' Intrinsic 6858 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6859 6860 Syntax: 6861 """"""" 6862 6863 :: 6864 6865 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr) 6866 6867 Overview: 6868 """"""""" 6869 6870 The '``llvm.gcread``' intrinsic identifies reads of references from heap 6871 locations, allowing garbage collector implementations that require read 6872 barriers. 6873 6874 Arguments: 6875 """""""""" 6876 6877 The second argument is the address to read from, which should be an 6878 address allocated from the garbage collector. The first object is a 6879 pointer to the start of the referenced object, if needed by the language 6880 runtime (otherwise null). 6881 6882 Semantics: 6883 """""""""" 6884 6885 The '``llvm.gcread``' intrinsic has the same semantics as a load 6886 instruction, but may be replaced with substantially more complex code by 6887 the garbage collector runtime, as needed. The '``llvm.gcread``' 6888 intrinsic may only be used in a function which :ref:`specifies a GC 6889 algorithm <gc>`. 6890 6891 .. _int_gcwrite: 6892 6893 '``llvm.gcwrite``' Intrinsic 6894 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6895 6896 Syntax: 6897 """"""" 6898 6899 :: 6900 6901 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2) 6902 6903 Overview: 6904 """"""""" 6905 6906 The '``llvm.gcwrite``' intrinsic identifies writes of references to heap 6907 locations, allowing garbage collector implementations that require write 6908 barriers (such as generational or reference counting collectors). 6909 6910 Arguments: 6911 """""""""" 6912 6913 The first argument is the reference to store, the second is the start of 6914 the object to store it to, and the third is the address of the field of 6915 Obj to store to. If the runtime does not require a pointer to the 6916 object, Obj may be null. 6917 6918 Semantics: 6919 """""""""" 6920 6921 The '``llvm.gcwrite``' intrinsic has the same semantics as a store 6922 instruction, but may be replaced with substantially more complex code by 6923 the garbage collector runtime, as needed. The '``llvm.gcwrite``' 6924 intrinsic may only be used in a function which :ref:`specifies a GC 6925 algorithm <gc>`. 6926 6927 Code Generator Intrinsics 6928 ------------------------- 6929 6930 These intrinsics are provided by LLVM to expose special features that 6931 may only be implemented with code generator support. 6932 6933 '``llvm.returnaddress``' Intrinsic 6934 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6935 6936 Syntax: 6937 """"""" 6938 6939 :: 6940 6941 declare i8 *@llvm.returnaddress(i32 <level>) 6942 6943 Overview: 6944 """"""""" 6945 6946 The '``llvm.returnaddress``' intrinsic attempts to compute a 6947 target-specific value indicating the return address of the current 6948 function or one of its callers. 6949 6950 Arguments: 6951 """""""""" 6952 6953 The argument to this intrinsic indicates which function to return the 6954 address for. Zero indicates the calling function, one indicates its 6955 caller, etc. The argument is **required** to be a constant integer 6956 value. 6957 6958 Semantics: 6959 """""""""" 6960 6961 The '``llvm.returnaddress``' intrinsic either returns a pointer 6962 indicating the return address of the specified call frame, or zero if it 6963 cannot be identified. The value returned by this intrinsic is likely to 6964 be incorrect or 0 for arguments other than zero, so it should only be 6965 used for debugging purposes. 6966 6967 Note that calling this intrinsic does not prevent function inlining or 6968 other aggressive transformations, so the value returned may not be that 6969 of the obvious source-language caller. 6970 6971 '``llvm.frameaddress``' Intrinsic 6972 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 6973 6974 Syntax: 6975 """"""" 6976 6977 :: 6978 6979 declare i8* @llvm.frameaddress(i32 <level>) 6980 6981 Overview: 6982 """"""""" 6983 6984 The '``llvm.frameaddress``' intrinsic attempts to return the 6985 target-specific frame pointer value for the specified stack frame. 6986 6987 Arguments: 6988 """""""""" 6989 6990 The argument to this intrinsic indicates which function to return the 6991 frame pointer for. Zero indicates the calling function, one indicates 6992 its caller, etc. The argument is **required** to be a constant integer 6993 value. 6994 6995 Semantics: 6996 """""""""" 6997 6998 The '``llvm.frameaddress``' intrinsic either returns a pointer 6999 indicating the frame address of the specified call frame, or zero if it 7000 cannot be identified. The value returned by this intrinsic is likely to 7001 be incorrect or 0 for arguments other than zero, so it should only be 7002 used for debugging purposes. 7003 7004 Note that calling this intrinsic does not prevent function inlining or 7005 other aggressive transformations, so the value returned may not be that 7006 of the obvious source-language caller. 7007 7008 .. _int_read_register: 7009 .. _int_write_register: 7010 7011 '``llvm.read_register``' and '``llvm.write_register``' Intrinsics 7012 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7013 7014 Syntax: 7015 """"""" 7016 7017 :: 7018 7019 declare i32 @llvm.read_register.i32(metadata) 7020 declare i64 @llvm.read_register.i64(metadata) 7021 declare void @llvm.write_register.i32(metadata, i32 @value) 7022 declare void @llvm.write_register.i64(metadata, i64 @value) 7023 !0 = metadata !{metadata !"sp\00"} 7024 7025 Overview: 7026 """"""""" 7027 7028 The '``llvm.read_register``' and '``llvm.write_register``' intrinsics 7029 provides access to the named register. The register must be valid on 7030 the architecture being compiled to. The type needs to be compatible 7031 with the register being read. 7032 7033 Semantics: 7034 """""""""" 7035 7036 The '``llvm.read_register``' intrinsic returns the current value of the 7037 register, where possible. The '``llvm.write_register``' intrinsic sets 7038 the current value of the register, where possible. 7039 7040 This is useful to implement named register global variables that need 7041 to always be mapped to a specific register, as is common practice on 7042 bare-metal programs including OS kernels. 7043 7044 The compiler doesn't check for register availability or use of the used 7045 register in surrounding code, including inline assembly. Because of that, 7046 allocatable registers are not supported. 7047 7048 Warning: So far it only works with the stack pointer on selected 7049 architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of 7050 work is needed to support other registers and even more so, allocatable 7051 registers. 7052 7053 .. _int_stacksave: 7054 7055 '``llvm.stacksave``' Intrinsic 7056 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7057 7058 Syntax: 7059 """"""" 7060 7061 :: 7062 7063 declare i8* @llvm.stacksave() 7064 7065 Overview: 7066 """"""""" 7067 7068 The '``llvm.stacksave``' intrinsic is used to remember the current state 7069 of the function stack, for use with 7070 :ref:`llvm.stackrestore <int_stackrestore>`. This is useful for 7071 implementing language features like scoped automatic variable sized 7072 arrays in C99. 7073 7074 Semantics: 7075 """""""""" 7076 7077 This intrinsic returns a opaque pointer value that can be passed to 7078 :ref:`llvm.stackrestore <int_stackrestore>`. When an 7079 ``llvm.stackrestore`` intrinsic is executed with a value saved from 7080 ``llvm.stacksave``, it effectively restores the state of the stack to 7081 the state it was in when the ``llvm.stacksave`` intrinsic executed. In 7082 practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that 7083 were allocated after the ``llvm.stacksave`` was executed. 7084 7085 .. _int_stackrestore: 7086 7087 '``llvm.stackrestore``' Intrinsic 7088 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7089 7090 Syntax: 7091 """"""" 7092 7093 :: 7094 7095 declare void @llvm.stackrestore(i8* %ptr) 7096 7097 Overview: 7098 """"""""" 7099 7100 The '``llvm.stackrestore``' intrinsic is used to restore the state of 7101 the function stack to the state it was in when the corresponding 7102 :ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is 7103 useful for implementing language features like scoped automatic variable 7104 sized arrays in C99. 7105 7106 Semantics: 7107 """""""""" 7108 7109 See the description for :ref:`llvm.stacksave <int_stacksave>`. 7110 7111 '``llvm.prefetch``' Intrinsic 7112 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7113 7114 Syntax: 7115 """"""" 7116 7117 :: 7118 7119 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>) 7120 7121 Overview: 7122 """"""""" 7123 7124 The '``llvm.prefetch``' intrinsic is a hint to the code generator to 7125 insert a prefetch instruction if supported; otherwise, it is a noop. 7126 Prefetches have no effect on the behavior of the program but can change 7127 its performance characteristics. 7128 7129 Arguments: 7130 """""""""" 7131 7132 ``address`` is the address to be prefetched, ``rw`` is the specifier 7133 determining if the fetch should be for a read (0) or write (1), and 7134 ``locality`` is a temporal locality specifier ranging from (0) - no 7135 locality, to (3) - extremely local keep in cache. The ``cache type`` 7136 specifies whether the prefetch is performed on the data (1) or 7137 instruction (0) cache. The ``rw``, ``locality`` and ``cache type`` 7138 arguments must be constant integers. 7139 7140 Semantics: 7141 """""""""" 7142 7143 This intrinsic does not modify the behavior of the program. In 7144 particular, prefetches cannot trap and do not produce a value. On 7145 targets that support this intrinsic, the prefetch can provide hints to 7146 the processor cache for better performance. 7147 7148 '``llvm.pcmarker``' Intrinsic 7149 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7150 7151 Syntax: 7152 """"""" 7153 7154 :: 7155 7156 declare void @llvm.pcmarker(i32 <id>) 7157 7158 Overview: 7159 """"""""" 7160 7161 The '``llvm.pcmarker``' intrinsic is a method to export a Program 7162 Counter (PC) in a region of code to simulators and other tools. The 7163 method is target specific, but it is expected that the marker will use 7164 exported symbols to transmit the PC of the marker. The marker makes no 7165 guarantees that it will remain with any specific instruction after 7166 optimizations. It is possible that the presence of a marker will inhibit 7167 optimizations. The intended use is to be inserted after optimizations to 7168 allow correlations of simulation runs. 7169 7170 Arguments: 7171 """""""""" 7172 7173 ``id`` is a numerical id identifying the marker. 7174 7175 Semantics: 7176 """""""""" 7177 7178 This intrinsic does not modify the behavior of the program. Backends 7179 that do not support this intrinsic may ignore it. 7180 7181 '``llvm.readcyclecounter``' Intrinsic 7182 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7183 7184 Syntax: 7185 """"""" 7186 7187 :: 7188 7189 declare i64 @llvm.readcyclecounter() 7190 7191 Overview: 7192 """"""""" 7193 7194 The '``llvm.readcyclecounter``' intrinsic provides access to the cycle 7195 counter register (or similar low latency, high accuracy clocks) on those 7196 targets that support it. On X86, it should map to RDTSC. On Alpha, it 7197 should map to RPCC. As the backing counters overflow quickly (on the 7198 order of 9 seconds on alpha), this should only be used for small 7199 timings. 7200 7201 Semantics: 7202 """""""""" 7203 7204 When directly supported, reading the cycle counter should not modify any 7205 memory. Implementations are allowed to either return a application 7206 specific value or a system wide value. On backends without support, this 7207 is lowered to a constant 0. 7208 7209 Note that runtime support may be conditional on the privilege-level code is 7210 running at and the host platform. 7211 7212 '``llvm.clear_cache``' Intrinsic 7213 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7214 7215 Syntax: 7216 """"""" 7217 7218 :: 7219 7220 declare void @llvm.clear_cache(i8*, i8*) 7221 7222 Overview: 7223 """"""""" 7224 7225 The '``llvm.clear_cache``' intrinsic ensures visibility of modifications 7226 in the specified range to the execution unit of the processor. On 7227 targets with non-unified instruction and data cache, the implementation 7228 flushes the instruction cache. 7229 7230 Semantics: 7231 """""""""" 7232 7233 On platforms with coherent instruction and data caches (e.g. x86), this 7234 intrinsic is a nop. On platforms with non-coherent instruction and data 7235 cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate 7236 instructions or a system call, if cache flushing requires special 7237 privileges. 7238 7239 The default behavior is to emit a call to ``__clear_cache`` from the run 7240 time library. 7241 7242 This instrinsic does *not* empty the instruction pipeline. Modifications 7243 of the current function are outside the scope of the intrinsic. 7244 7245 Standard C Library Intrinsics 7246 ----------------------------- 7247 7248 LLVM provides intrinsics for a few important standard C library 7249 functions. These intrinsics allow source-language front-ends to pass 7250 information about the alignment of the pointer arguments to the code 7251 generator, providing opportunity for more efficient code generation. 7252 7253 .. _int_memcpy: 7254 7255 '``llvm.memcpy``' Intrinsic 7256 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7257 7258 Syntax: 7259 """"""" 7260 7261 This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any 7262 integer bit width and for different address spaces. Not all targets 7263 support all bit widths however. 7264 7265 :: 7266 7267 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>, 7268 i32 <len>, i32 <align>, i1 <isvolatile>) 7269 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>, 7270 i64 <len>, i32 <align>, i1 <isvolatile>) 7271 7272 Overview: 7273 """"""""" 7274 7275 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the 7276 source location to the destination location. 7277 7278 Note that, unlike the standard libc function, the ``llvm.memcpy.*`` 7279 intrinsics do not return a value, takes extra alignment/isvolatile 7280 arguments and the pointers can be in specified address spaces. 7281 7282 Arguments: 7283 """""""""" 7284 7285 The first argument is a pointer to the destination, the second is a 7286 pointer to the source. The third argument is an integer argument 7287 specifying the number of bytes to copy, the fourth argument is the 7288 alignment of the source and destination locations, and the fifth is a 7289 boolean indicating a volatile access. 7290 7291 If the call to this intrinsic has an alignment value that is not 0 or 1, 7292 then the caller guarantees that both the source and destination pointers 7293 are aligned to that boundary. 7294 7295 If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is 7296 a :ref:`volatile operation <volatile>`. The detailed access behavior is not 7297 very cleanly specified and it is unwise to depend on it. 7298 7299 Semantics: 7300 """""""""" 7301 7302 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the 7303 source location to the destination location, which are not allowed to 7304 overlap. It copies "len" bytes of memory over. If the argument is known 7305 to be aligned to some boundary, this can be specified as the fourth 7306 argument, otherwise it should be set to 0 or 1 (both meaning no alignment). 7307 7308 '``llvm.memmove``' Intrinsic 7309 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7310 7311 Syntax: 7312 """"""" 7313 7314 This is an overloaded intrinsic. You can use llvm.memmove on any integer 7315 bit width and for different address space. Not all targets support all 7316 bit widths however. 7317 7318 :: 7319 7320 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>, 7321 i32 <len>, i32 <align>, i1 <isvolatile>) 7322 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>, 7323 i64 <len>, i32 <align>, i1 <isvolatile>) 7324 7325 Overview: 7326 """"""""" 7327 7328 The '``llvm.memmove.*``' intrinsics move a block of memory from the 7329 source location to the destination location. It is similar to the 7330 '``llvm.memcpy``' intrinsic but allows the two memory locations to 7331 overlap. 7332 7333 Note that, unlike the standard libc function, the ``llvm.memmove.*`` 7334 intrinsics do not return a value, takes extra alignment/isvolatile 7335 arguments and the pointers can be in specified address spaces. 7336 7337 Arguments: 7338 """""""""" 7339 7340 The first argument is a pointer to the destination, the second is a 7341 pointer to the source. The third argument is an integer argument 7342 specifying the number of bytes to copy, the fourth argument is the 7343 alignment of the source and destination locations, and the fifth is a 7344 boolean indicating a volatile access. 7345 7346 If the call to this intrinsic has an alignment value that is not 0 or 1, 7347 then the caller guarantees that the source and destination pointers are 7348 aligned to that boundary. 7349 7350 If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call 7351 is a :ref:`volatile operation <volatile>`. The detailed access behavior is 7352 not very cleanly specified and it is unwise to depend on it. 7353 7354 Semantics: 7355 """""""""" 7356 7357 The '``llvm.memmove.*``' intrinsics copy a block of memory from the 7358 source location to the destination location, which may overlap. It 7359 copies "len" bytes of memory over. If the argument is known to be 7360 aligned to some boundary, this can be specified as the fourth argument, 7361 otherwise it should be set to 0 or 1 (both meaning no alignment). 7362 7363 '``llvm.memset.*``' Intrinsics 7364 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7365 7366 Syntax: 7367 """"""" 7368 7369 This is an overloaded intrinsic. You can use llvm.memset on any integer 7370 bit width and for different address spaces. However, not all targets 7371 support all bit widths. 7372 7373 :: 7374 7375 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>, 7376 i32 <len>, i32 <align>, i1 <isvolatile>) 7377 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>, 7378 i64 <len>, i32 <align>, i1 <isvolatile>) 7379 7380 Overview: 7381 """"""""" 7382 7383 The '``llvm.memset.*``' intrinsics fill a block of memory with a 7384 particular byte value. 7385 7386 Note that, unlike the standard libc function, the ``llvm.memset`` 7387 intrinsic does not return a value and takes extra alignment/volatile 7388 arguments. Also, the destination can be in an arbitrary address space. 7389 7390 Arguments: 7391 """""""""" 7392 7393 The first argument is a pointer to the destination to fill, the second 7394 is the byte value with which to fill it, the third argument is an 7395 integer argument specifying the number of bytes to fill, and the fourth 7396 argument is the known alignment of the destination location. 7397 7398 If the call to this intrinsic has an alignment value that is not 0 or 1, 7399 then the caller guarantees that the destination pointer is aligned to 7400 that boundary. 7401 7402 If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is 7403 a :ref:`volatile operation <volatile>`. The detailed access behavior is not 7404 very cleanly specified and it is unwise to depend on it. 7405 7406 Semantics: 7407 """""""""" 7408 7409 The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting 7410 at the destination location. If the argument is known to be aligned to 7411 some boundary, this can be specified as the fourth argument, otherwise 7412 it should be set to 0 or 1 (both meaning no alignment). 7413 7414 '``llvm.sqrt.*``' Intrinsic 7415 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7416 7417 Syntax: 7418 """"""" 7419 7420 This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any 7421 floating point or vector of floating point type. Not all targets support 7422 all types however. 7423 7424 :: 7425 7426 declare float @llvm.sqrt.f32(float %Val) 7427 declare double @llvm.sqrt.f64(double %Val) 7428 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val) 7429 declare fp128 @llvm.sqrt.f128(fp128 %Val) 7430 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val) 7431 7432 Overview: 7433 """"""""" 7434 7435 The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand, 7436 returning the same value as the libm '``sqrt``' functions would. Unlike 7437 ``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for 7438 negative numbers other than -0.0 (which allows for better optimization, 7439 because there is no need to worry about errno being set). 7440 ``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt. 7441 7442 Arguments: 7443 """""""""" 7444 7445 The argument and return value are floating point numbers of the same 7446 type. 7447 7448 Semantics: 7449 """""""""" 7450 7451 This function returns the sqrt of the specified operand if it is a 7452 nonnegative floating point number. 7453 7454 '``llvm.powi.*``' Intrinsic 7455 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7456 7457 Syntax: 7458 """"""" 7459 7460 This is an overloaded intrinsic. You can use ``llvm.powi`` on any 7461 floating point or vector of floating point type. Not all targets support 7462 all types however. 7463 7464 :: 7465 7466 declare float @llvm.powi.f32(float %Val, i32 %power) 7467 declare double @llvm.powi.f64(double %Val, i32 %power) 7468 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power) 7469 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power) 7470 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power) 7471 7472 Overview: 7473 """"""""" 7474 7475 The '``llvm.powi.*``' intrinsics return the first operand raised to the 7476 specified (positive or negative) power. The order of evaluation of 7477 multiplications is not defined. When a vector of floating point type is 7478 used, the second argument remains a scalar integer value. 7479 7480 Arguments: 7481 """""""""" 7482 7483 The second argument is an integer power, and the first is a value to 7484 raise to that power. 7485 7486 Semantics: 7487 """""""""" 7488 7489 This function returns the first value raised to the second power with an 7490 unspecified sequence of rounding operations. 7491 7492 '``llvm.sin.*``' Intrinsic 7493 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 7494 7495 Syntax: 7496 """"""" 7497 7498 This is an overloaded intrinsic. You can use ``llvm.sin`` on any 7499 floating point or vector of floating point type. Not all targets support 7500 all types however. 7501 7502 :: 7503 7504 declare float @llvm.sin.f32(float %Val) 7505 declare double @llvm.sin.f64(double %Val) 7506 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val) 7507 declare fp128 @llvm.sin.f128(fp128 %Val) 7508 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val) 7509 7510 Overview: 7511 """"""""" 7512 7513 The '``llvm.sin.*``' intrinsics return the sine of the operand. 7514 7515 Arguments: 7516 """""""""" 7517 7518 The argument and return value are floating point numbers of the same 7519 type. 7520 7521 Semantics: 7522 """""""""" 7523 7524 This function returns the sine of the specified operand, returning the 7525 same values as the libm ``sin`` functions would, and handles error 7526 conditions in the same way. 7527 7528 '``llvm.cos.*``' Intrinsic 7529 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 7530 7531 Syntax: 7532 """"""" 7533 7534 This is an overloaded intrinsic. You can use ``llvm.cos`` on any 7535 floating point or vector of floating point type. Not all targets support 7536 all types however. 7537 7538 :: 7539 7540 declare float @llvm.cos.f32(float %Val) 7541 declare double @llvm.cos.f64(double %Val) 7542 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val) 7543 declare fp128 @llvm.cos.f128(fp128 %Val) 7544 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val) 7545 7546 Overview: 7547 """"""""" 7548 7549 The '``llvm.cos.*``' intrinsics return the cosine of the operand. 7550 7551 Arguments: 7552 """""""""" 7553 7554 The argument and return value are floating point numbers of the same 7555 type. 7556 7557 Semantics: 7558 """""""""" 7559 7560 This function returns the cosine of the specified operand, returning the 7561 same values as the libm ``cos`` functions would, and handles error 7562 conditions in the same way. 7563 7564 '``llvm.pow.*``' Intrinsic 7565 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 7566 7567 Syntax: 7568 """"""" 7569 7570 This is an overloaded intrinsic. You can use ``llvm.pow`` on any 7571 floating point or vector of floating point type. Not all targets support 7572 all types however. 7573 7574 :: 7575 7576 declare float @llvm.pow.f32(float %Val, float %Power) 7577 declare double @llvm.pow.f64(double %Val, double %Power) 7578 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power) 7579 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power) 7580 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power) 7581 7582 Overview: 7583 """"""""" 7584 7585 The '``llvm.pow.*``' intrinsics return the first operand raised to the 7586 specified (positive or negative) power. 7587 7588 Arguments: 7589 """""""""" 7590 7591 The second argument is a floating point power, and the first is a value 7592 to raise to that power. 7593 7594 Semantics: 7595 """""""""" 7596 7597 This function returns the first value raised to the second power, 7598 returning the same values as the libm ``pow`` functions would, and 7599 handles error conditions in the same way. 7600 7601 '``llvm.exp.*``' Intrinsic 7602 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 7603 7604 Syntax: 7605 """"""" 7606 7607 This is an overloaded intrinsic. You can use ``llvm.exp`` on any 7608 floating point or vector of floating point type. Not all targets support 7609 all types however. 7610 7611 :: 7612 7613 declare float @llvm.exp.f32(float %Val) 7614 declare double @llvm.exp.f64(double %Val) 7615 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val) 7616 declare fp128 @llvm.exp.f128(fp128 %Val) 7617 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val) 7618 7619 Overview: 7620 """"""""" 7621 7622 The '``llvm.exp.*``' intrinsics perform the exp function. 7623 7624 Arguments: 7625 """""""""" 7626 7627 The argument and return value are floating point numbers of the same 7628 type. 7629 7630 Semantics: 7631 """""""""" 7632 7633 This function returns the same values as the libm ``exp`` functions 7634 would, and handles error conditions in the same way. 7635 7636 '``llvm.exp2.*``' Intrinsic 7637 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7638 7639 Syntax: 7640 """"""" 7641 7642 This is an overloaded intrinsic. You can use ``llvm.exp2`` on any 7643 floating point or vector of floating point type. Not all targets support 7644 all types however. 7645 7646 :: 7647 7648 declare float @llvm.exp2.f32(float %Val) 7649 declare double @llvm.exp2.f64(double %Val) 7650 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val) 7651 declare fp128 @llvm.exp2.f128(fp128 %Val) 7652 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val) 7653 7654 Overview: 7655 """"""""" 7656 7657 The '``llvm.exp2.*``' intrinsics perform the exp2 function. 7658 7659 Arguments: 7660 """""""""" 7661 7662 The argument and return value are floating point numbers of the same 7663 type. 7664 7665 Semantics: 7666 """""""""" 7667 7668 This function returns the same values as the libm ``exp2`` functions 7669 would, and handles error conditions in the same way. 7670 7671 '``llvm.log.*``' Intrinsic 7672 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 7673 7674 Syntax: 7675 """"""" 7676 7677 This is an overloaded intrinsic. You can use ``llvm.log`` on any 7678 floating point or vector of floating point type. Not all targets support 7679 all types however. 7680 7681 :: 7682 7683 declare float @llvm.log.f32(float %Val) 7684 declare double @llvm.log.f64(double %Val) 7685 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val) 7686 declare fp128 @llvm.log.f128(fp128 %Val) 7687 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val) 7688 7689 Overview: 7690 """"""""" 7691 7692 The '``llvm.log.*``' intrinsics perform the log function. 7693 7694 Arguments: 7695 """""""""" 7696 7697 The argument and return value are floating point numbers of the same 7698 type. 7699 7700 Semantics: 7701 """""""""" 7702 7703 This function returns the same values as the libm ``log`` functions 7704 would, and handles error conditions in the same way. 7705 7706 '``llvm.log10.*``' Intrinsic 7707 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7708 7709 Syntax: 7710 """"""" 7711 7712 This is an overloaded intrinsic. You can use ``llvm.log10`` on any 7713 floating point or vector of floating point type. Not all targets support 7714 all types however. 7715 7716 :: 7717 7718 declare float @llvm.log10.f32(float %Val) 7719 declare double @llvm.log10.f64(double %Val) 7720 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val) 7721 declare fp128 @llvm.log10.f128(fp128 %Val) 7722 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val) 7723 7724 Overview: 7725 """"""""" 7726 7727 The '``llvm.log10.*``' intrinsics perform the log10 function. 7728 7729 Arguments: 7730 """""""""" 7731 7732 The argument and return value are floating point numbers of the same 7733 type. 7734 7735 Semantics: 7736 """""""""" 7737 7738 This function returns the same values as the libm ``log10`` functions 7739 would, and handles error conditions in the same way. 7740 7741 '``llvm.log2.*``' Intrinsic 7742 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7743 7744 Syntax: 7745 """"""" 7746 7747 This is an overloaded intrinsic. You can use ``llvm.log2`` on any 7748 floating point or vector of floating point type. Not all targets support 7749 all types however. 7750 7751 :: 7752 7753 declare float @llvm.log2.f32(float %Val) 7754 declare double @llvm.log2.f64(double %Val) 7755 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val) 7756 declare fp128 @llvm.log2.f128(fp128 %Val) 7757 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val) 7758 7759 Overview: 7760 """"""""" 7761 7762 The '``llvm.log2.*``' intrinsics perform the log2 function. 7763 7764 Arguments: 7765 """""""""" 7766 7767 The argument and return value are floating point numbers of the same 7768 type. 7769 7770 Semantics: 7771 """""""""" 7772 7773 This function returns the same values as the libm ``log2`` functions 7774 would, and handles error conditions in the same way. 7775 7776 '``llvm.fma.*``' Intrinsic 7777 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 7778 7779 Syntax: 7780 """"""" 7781 7782 This is an overloaded intrinsic. You can use ``llvm.fma`` on any 7783 floating point or vector of floating point type. Not all targets support 7784 all types however. 7785 7786 :: 7787 7788 declare float @llvm.fma.f32(float %a, float %b, float %c) 7789 declare double @llvm.fma.f64(double %a, double %b, double %c) 7790 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c) 7791 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c) 7792 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c) 7793 7794 Overview: 7795 """"""""" 7796 7797 The '``llvm.fma.*``' intrinsics perform the fused multiply-add 7798 operation. 7799 7800 Arguments: 7801 """""""""" 7802 7803 The argument and return value are floating point numbers of the same 7804 type. 7805 7806 Semantics: 7807 """""""""" 7808 7809 This function returns the same values as the libm ``fma`` functions 7810 would, and does not set errno. 7811 7812 '``llvm.fabs.*``' Intrinsic 7813 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7814 7815 Syntax: 7816 """"""" 7817 7818 This is an overloaded intrinsic. You can use ``llvm.fabs`` on any 7819 floating point or vector of floating point type. Not all targets support 7820 all types however. 7821 7822 :: 7823 7824 declare float @llvm.fabs.f32(float %Val) 7825 declare double @llvm.fabs.f64(double %Val) 7826 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val) 7827 declare fp128 @llvm.fabs.f128(fp128 %Val) 7828 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val) 7829 7830 Overview: 7831 """"""""" 7832 7833 The '``llvm.fabs.*``' intrinsics return the absolute value of the 7834 operand. 7835 7836 Arguments: 7837 """""""""" 7838 7839 The argument and return value are floating point numbers of the same 7840 type. 7841 7842 Semantics: 7843 """""""""" 7844 7845 This function returns the same values as the libm ``fabs`` functions 7846 would, and handles error conditions in the same way. 7847 7848 '``llvm.copysign.*``' Intrinsic 7849 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7850 7851 Syntax: 7852 """"""" 7853 7854 This is an overloaded intrinsic. You can use ``llvm.copysign`` on any 7855 floating point or vector of floating point type. Not all targets support 7856 all types however. 7857 7858 :: 7859 7860 declare float @llvm.copysign.f32(float %Mag, float %Sgn) 7861 declare double @llvm.copysign.f64(double %Mag, double %Sgn) 7862 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn) 7863 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn) 7864 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn) 7865 7866 Overview: 7867 """"""""" 7868 7869 The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the 7870 first operand and the sign of the second operand. 7871 7872 Arguments: 7873 """""""""" 7874 7875 The arguments and return value are floating point numbers of the same 7876 type. 7877 7878 Semantics: 7879 """""""""" 7880 7881 This function returns the same values as the libm ``copysign`` 7882 functions would, and handles error conditions in the same way. 7883 7884 '``llvm.floor.*``' Intrinsic 7885 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7886 7887 Syntax: 7888 """"""" 7889 7890 This is an overloaded intrinsic. You can use ``llvm.floor`` on any 7891 floating point or vector of floating point type. Not all targets support 7892 all types however. 7893 7894 :: 7895 7896 declare float @llvm.floor.f32(float %Val) 7897 declare double @llvm.floor.f64(double %Val) 7898 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val) 7899 declare fp128 @llvm.floor.f128(fp128 %Val) 7900 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val) 7901 7902 Overview: 7903 """"""""" 7904 7905 The '``llvm.floor.*``' intrinsics return the floor of the operand. 7906 7907 Arguments: 7908 """""""""" 7909 7910 The argument and return value are floating point numbers of the same 7911 type. 7912 7913 Semantics: 7914 """""""""" 7915 7916 This function returns the same values as the libm ``floor`` functions 7917 would, and handles error conditions in the same way. 7918 7919 '``llvm.ceil.*``' Intrinsic 7920 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7921 7922 Syntax: 7923 """"""" 7924 7925 This is an overloaded intrinsic. You can use ``llvm.ceil`` on any 7926 floating point or vector of floating point type. Not all targets support 7927 all types however. 7928 7929 :: 7930 7931 declare float @llvm.ceil.f32(float %Val) 7932 declare double @llvm.ceil.f64(double %Val) 7933 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val) 7934 declare fp128 @llvm.ceil.f128(fp128 %Val) 7935 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val) 7936 7937 Overview: 7938 """"""""" 7939 7940 The '``llvm.ceil.*``' intrinsics return the ceiling of the operand. 7941 7942 Arguments: 7943 """""""""" 7944 7945 The argument and return value are floating point numbers of the same 7946 type. 7947 7948 Semantics: 7949 """""""""" 7950 7951 This function returns the same values as the libm ``ceil`` functions 7952 would, and handles error conditions in the same way. 7953 7954 '``llvm.trunc.*``' Intrinsic 7955 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7956 7957 Syntax: 7958 """"""" 7959 7960 This is an overloaded intrinsic. You can use ``llvm.trunc`` on any 7961 floating point or vector of floating point type. Not all targets support 7962 all types however. 7963 7964 :: 7965 7966 declare float @llvm.trunc.f32(float %Val) 7967 declare double @llvm.trunc.f64(double %Val) 7968 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val) 7969 declare fp128 @llvm.trunc.f128(fp128 %Val) 7970 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val) 7971 7972 Overview: 7973 """"""""" 7974 7975 The '``llvm.trunc.*``' intrinsics returns the operand rounded to the 7976 nearest integer not larger in magnitude than the operand. 7977 7978 Arguments: 7979 """""""""" 7980 7981 The argument and return value are floating point numbers of the same 7982 type. 7983 7984 Semantics: 7985 """""""""" 7986 7987 This function returns the same values as the libm ``trunc`` functions 7988 would, and handles error conditions in the same way. 7989 7990 '``llvm.rint.*``' Intrinsic 7991 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 7992 7993 Syntax: 7994 """"""" 7995 7996 This is an overloaded intrinsic. You can use ``llvm.rint`` on any 7997 floating point or vector of floating point type. Not all targets support 7998 all types however. 7999 8000 :: 8001 8002 declare float @llvm.rint.f32(float %Val) 8003 declare double @llvm.rint.f64(double %Val) 8004 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val) 8005 declare fp128 @llvm.rint.f128(fp128 %Val) 8006 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val) 8007 8008 Overview: 8009 """"""""" 8010 8011 The '``llvm.rint.*``' intrinsics returns the operand rounded to the 8012 nearest integer. It may raise an inexact floating-point exception if the 8013 operand isn't an integer. 8014 8015 Arguments: 8016 """""""""" 8017 8018 The argument and return value are floating point numbers of the same 8019 type. 8020 8021 Semantics: 8022 """""""""" 8023 8024 This function returns the same values as the libm ``rint`` functions 8025 would, and handles error conditions in the same way. 8026 8027 '``llvm.nearbyint.*``' Intrinsic 8028 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8029 8030 Syntax: 8031 """"""" 8032 8033 This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any 8034 floating point or vector of floating point type. Not all targets support 8035 all types however. 8036 8037 :: 8038 8039 declare float @llvm.nearbyint.f32(float %Val) 8040 declare double @llvm.nearbyint.f64(double %Val) 8041 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val) 8042 declare fp128 @llvm.nearbyint.f128(fp128 %Val) 8043 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val) 8044 8045 Overview: 8046 """"""""" 8047 8048 The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the 8049 nearest integer. 8050 8051 Arguments: 8052 """""""""" 8053 8054 The argument and return value are floating point numbers of the same 8055 type. 8056 8057 Semantics: 8058 """""""""" 8059 8060 This function returns the same values as the libm ``nearbyint`` 8061 functions would, and handles error conditions in the same way. 8062 8063 '``llvm.round.*``' Intrinsic 8064 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8065 8066 Syntax: 8067 """"""" 8068 8069 This is an overloaded intrinsic. You can use ``llvm.round`` on any 8070 floating point or vector of floating point type. Not all targets support 8071 all types however. 8072 8073 :: 8074 8075 declare float @llvm.round.f32(float %Val) 8076 declare double @llvm.round.f64(double %Val) 8077 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val) 8078 declare fp128 @llvm.round.f128(fp128 %Val) 8079 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val) 8080 8081 Overview: 8082 """"""""" 8083 8084 The '``llvm.round.*``' intrinsics returns the operand rounded to the 8085 nearest integer. 8086 8087 Arguments: 8088 """""""""" 8089 8090 The argument and return value are floating point numbers of the same 8091 type. 8092 8093 Semantics: 8094 """""""""" 8095 8096 This function returns the same values as the libm ``round`` 8097 functions would, and handles error conditions in the same way. 8098 8099 Bit Manipulation Intrinsics 8100 --------------------------- 8101 8102 LLVM provides intrinsics for a few important bit manipulation 8103 operations. These allow efficient code generation for some algorithms. 8104 8105 '``llvm.bswap.*``' Intrinsics 8106 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8107 8108 Syntax: 8109 """"""" 8110 8111 This is an overloaded intrinsic function. You can use bswap on any 8112 integer type that is an even number of bytes (i.e. BitWidth % 16 == 0). 8113 8114 :: 8115 8116 declare i16 @llvm.bswap.i16(i16 <id>) 8117 declare i32 @llvm.bswap.i32(i32 <id>) 8118 declare i64 @llvm.bswap.i64(i64 <id>) 8119 8120 Overview: 8121 """"""""" 8122 8123 The '``llvm.bswap``' family of intrinsics is used to byte swap integer 8124 values with an even number of bytes (positive multiple of 16 bits). 8125 These are useful for performing operations on data that is not in the 8126 target's native byte order. 8127 8128 Semantics: 8129 """""""""" 8130 8131 The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high 8132 and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32`` 8133 intrinsic returns an i32 value that has the four bytes of the input i32 8134 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the 8135 returned i32 will have its bytes in 3, 2, 1, 0 order. The 8136 ``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this 8137 concept to additional even-byte lengths (6 bytes, 8 bytes and more, 8138 respectively). 8139 8140 '``llvm.ctpop.*``' Intrinsic 8141 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8142 8143 Syntax: 8144 """"""" 8145 8146 This is an overloaded intrinsic. You can use llvm.ctpop on any integer 8147 bit width, or on any vector with integer elements. Not all targets 8148 support all bit widths or vector types, however. 8149 8150 :: 8151 8152 declare i8 @llvm.ctpop.i8(i8 <src>) 8153 declare i16 @llvm.ctpop.i16(i16 <src>) 8154 declare i32 @llvm.ctpop.i32(i32 <src>) 8155 declare i64 @llvm.ctpop.i64(i64 <src>) 8156 declare i256 @llvm.ctpop.i256(i256 <src>) 8157 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>) 8158 8159 Overview: 8160 """"""""" 8161 8162 The '``llvm.ctpop``' family of intrinsics counts the number of bits set 8163 in a value. 8164 8165 Arguments: 8166 """""""""" 8167 8168 The only argument is the value to be counted. The argument may be of any 8169 integer type, or a vector with integer elements. The return type must 8170 match the argument type. 8171 8172 Semantics: 8173 """""""""" 8174 8175 The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within 8176 each element of a vector. 8177 8178 '``llvm.ctlz.*``' Intrinsic 8179 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8180 8181 Syntax: 8182 """"""" 8183 8184 This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any 8185 integer bit width, or any vector whose elements are integers. Not all 8186 targets support all bit widths or vector types, however. 8187 8188 :: 8189 8190 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>) 8191 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>) 8192 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>) 8193 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>) 8194 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>) 8195 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>) 8196 8197 Overview: 8198 """"""""" 8199 8200 The '``llvm.ctlz``' family of intrinsic functions counts the number of 8201 leading zeros in a variable. 8202 8203 Arguments: 8204 """""""""" 8205 8206 The first argument is the value to be counted. This argument may be of 8207 any integer type, or a vectory with integer element type. The return 8208 type must match the first argument type. 8209 8210 The second argument must be a constant and is a flag to indicate whether 8211 the intrinsic should ensure that a zero as the first argument produces a 8212 defined result. Historically some architectures did not provide a 8213 defined result for zero values as efficiently, and many algorithms are 8214 now predicated on avoiding zero-value inputs. 8215 8216 Semantics: 8217 """""""""" 8218 8219 The '``llvm.ctlz``' intrinsic counts the leading (most significant) 8220 zeros in a variable, or within each element of the vector. If 8221 ``src == 0`` then the result is the size in bits of the type of ``src`` 8222 if ``is_zero_undef == 0`` and ``undef`` otherwise. For example, 8223 ``llvm.ctlz(i32 2) = 30``. 8224 8225 '``llvm.cttz.*``' Intrinsic 8226 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8227 8228 Syntax: 8229 """"""" 8230 8231 This is an overloaded intrinsic. You can use ``llvm.cttz`` on any 8232 integer bit width, or any vector of integer elements. Not all targets 8233 support all bit widths or vector types, however. 8234 8235 :: 8236 8237 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>) 8238 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>) 8239 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>) 8240 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>) 8241 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>) 8242 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>) 8243 8244 Overview: 8245 """"""""" 8246 8247 The '``llvm.cttz``' family of intrinsic functions counts the number of 8248 trailing zeros. 8249 8250 Arguments: 8251 """""""""" 8252 8253 The first argument is the value to be counted. This argument may be of 8254 any integer type, or a vectory with integer element type. The return 8255 type must match the first argument type. 8256 8257 The second argument must be a constant and is a flag to indicate whether 8258 the intrinsic should ensure that a zero as the first argument produces a 8259 defined result. Historically some architectures did not provide a 8260 defined result for zero values as efficiently, and many algorithms are 8261 now predicated on avoiding zero-value inputs. 8262 8263 Semantics: 8264 """""""""" 8265 8266 The '``llvm.cttz``' intrinsic counts the trailing (least significant) 8267 zeros in a variable, or within each element of a vector. If ``src == 0`` 8268 then the result is the size in bits of the type of ``src`` if 8269 ``is_zero_undef == 0`` and ``undef`` otherwise. For example, 8270 ``llvm.cttz(2) = 1``. 8271 8272 Arithmetic with Overflow Intrinsics 8273 ----------------------------------- 8274 8275 LLVM provides intrinsics for some arithmetic with overflow operations. 8276 8277 '``llvm.sadd.with.overflow.*``' Intrinsics 8278 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8279 8280 Syntax: 8281 """"""" 8282 8283 This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow`` 8284 on any integer bit width. 8285 8286 :: 8287 8288 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b) 8289 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) 8290 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b) 8291 8292 Overview: 8293 """"""""" 8294 8295 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform 8296 a signed addition of the two arguments, and indicate whether an overflow 8297 occurred during the signed summation. 8298 8299 Arguments: 8300 """""""""" 8301 8302 The arguments (%a and %b) and the first element of the result structure 8303 may be of integer types of any bit width, but they must have the same 8304 bit width. The second element of the result structure must be of type 8305 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed 8306 addition. 8307 8308 Semantics: 8309 """""""""" 8310 8311 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform 8312 a signed addition of the two variables. They return a structure --- the 8313 first element of which is the signed summation, and the second element 8314 of which is a bit specifying if the signed summation resulted in an 8315 overflow. 8316 8317 Examples: 8318 """"""""" 8319 8320 .. code-block:: llvm 8321 8322 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) 8323 %sum = extractvalue {i32, i1} %res, 0 8324 %obit = extractvalue {i32, i1} %res, 1 8325 br i1 %obit, label %overflow, label %normal 8326 8327 '``llvm.uadd.with.overflow.*``' Intrinsics 8328 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8329 8330 Syntax: 8331 """"""" 8332 8333 This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow`` 8334 on any integer bit width. 8335 8336 :: 8337 8338 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b) 8339 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) 8340 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b) 8341 8342 Overview: 8343 """"""""" 8344 8345 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform 8346 an unsigned addition of the two arguments, and indicate whether a carry 8347 occurred during the unsigned summation. 8348 8349 Arguments: 8350 """""""""" 8351 8352 The arguments (%a and %b) and the first element of the result structure 8353 may be of integer types of any bit width, but they must have the same 8354 bit width. The second element of the result structure must be of type 8355 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned 8356 addition. 8357 8358 Semantics: 8359 """""""""" 8360 8361 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform 8362 an unsigned addition of the two arguments. They return a structure --- the 8363 first element of which is the sum, and the second element of which is a 8364 bit specifying if the unsigned summation resulted in a carry. 8365 8366 Examples: 8367 """"""""" 8368 8369 .. code-block:: llvm 8370 8371 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) 8372 %sum = extractvalue {i32, i1} %res, 0 8373 %obit = extractvalue {i32, i1} %res, 1 8374 br i1 %obit, label %carry, label %normal 8375 8376 '``llvm.ssub.with.overflow.*``' Intrinsics 8377 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8378 8379 Syntax: 8380 """"""" 8381 8382 This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow`` 8383 on any integer bit width. 8384 8385 :: 8386 8387 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b) 8388 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) 8389 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b) 8390 8391 Overview: 8392 """"""""" 8393 8394 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform 8395 a signed subtraction of the two arguments, and indicate whether an 8396 overflow occurred during the signed subtraction. 8397 8398 Arguments: 8399 """""""""" 8400 8401 The arguments (%a and %b) and the first element of the result structure 8402 may be of integer types of any bit width, but they must have the same 8403 bit width. The second element of the result structure must be of type 8404 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed 8405 subtraction. 8406 8407 Semantics: 8408 """""""""" 8409 8410 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform 8411 a signed subtraction of the two arguments. They return a structure --- the 8412 first element of which is the subtraction, and the second element of 8413 which is a bit specifying if the signed subtraction resulted in an 8414 overflow. 8415 8416 Examples: 8417 """"""""" 8418 8419 .. code-block:: llvm 8420 8421 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) 8422 %sum = extractvalue {i32, i1} %res, 0 8423 %obit = extractvalue {i32, i1} %res, 1 8424 br i1 %obit, label %overflow, label %normal 8425 8426 '``llvm.usub.with.overflow.*``' Intrinsics 8427 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8428 8429 Syntax: 8430 """"""" 8431 8432 This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow`` 8433 on any integer bit width. 8434 8435 :: 8436 8437 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b) 8438 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) 8439 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b) 8440 8441 Overview: 8442 """"""""" 8443 8444 The '``llvm.usub.with.overflow``' family of intrinsic functions perform 8445 an unsigned subtraction of the two arguments, and indicate whether an 8446 overflow occurred during the unsigned subtraction. 8447 8448 Arguments: 8449 """""""""" 8450 8451 The arguments (%a and %b) and the first element of the result structure 8452 may be of integer types of any bit width, but they must have the same 8453 bit width. The second element of the result structure must be of type 8454 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned 8455 subtraction. 8456 8457 Semantics: 8458 """""""""" 8459 8460 The '``llvm.usub.with.overflow``' family of intrinsic functions perform 8461 an unsigned subtraction of the two arguments. They return a structure --- 8462 the first element of which is the subtraction, and the second element of 8463 which is a bit specifying if the unsigned subtraction resulted in an 8464 overflow. 8465 8466 Examples: 8467 """"""""" 8468 8469 .. code-block:: llvm 8470 8471 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) 8472 %sum = extractvalue {i32, i1} %res, 0 8473 %obit = extractvalue {i32, i1} %res, 1 8474 br i1 %obit, label %overflow, label %normal 8475 8476 '``llvm.smul.with.overflow.*``' Intrinsics 8477 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8478 8479 Syntax: 8480 """"""" 8481 8482 This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow`` 8483 on any integer bit width. 8484 8485 :: 8486 8487 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b) 8488 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) 8489 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b) 8490 8491 Overview: 8492 """"""""" 8493 8494 The '``llvm.smul.with.overflow``' family of intrinsic functions perform 8495 a signed multiplication of the two arguments, and indicate whether an 8496 overflow occurred during the signed multiplication. 8497 8498 Arguments: 8499 """""""""" 8500 8501 The arguments (%a and %b) and the first element of the result structure 8502 may be of integer types of any bit width, but they must have the same 8503 bit width. The second element of the result structure must be of type 8504 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed 8505 multiplication. 8506 8507 Semantics: 8508 """""""""" 8509 8510 The '``llvm.smul.with.overflow``' family of intrinsic functions perform 8511 a signed multiplication of the two arguments. They return a structure --- 8512 the first element of which is the multiplication, and the second element 8513 of which is a bit specifying if the signed multiplication resulted in an 8514 overflow. 8515 8516 Examples: 8517 """"""""" 8518 8519 .. code-block:: llvm 8520 8521 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) 8522 %sum = extractvalue {i32, i1} %res, 0 8523 %obit = extractvalue {i32, i1} %res, 1 8524 br i1 %obit, label %overflow, label %normal 8525 8526 '``llvm.umul.with.overflow.*``' Intrinsics 8527 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8528 8529 Syntax: 8530 """"""" 8531 8532 This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow`` 8533 on any integer bit width. 8534 8535 :: 8536 8537 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b) 8538 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) 8539 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b) 8540 8541 Overview: 8542 """"""""" 8543 8544 The '``llvm.umul.with.overflow``' family of intrinsic functions perform 8545 a unsigned multiplication of the two arguments, and indicate whether an 8546 overflow occurred during the unsigned multiplication. 8547 8548 Arguments: 8549 """""""""" 8550 8551 The arguments (%a and %b) and the first element of the result structure 8552 may be of integer types of any bit width, but they must have the same 8553 bit width. The second element of the result structure must be of type 8554 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned 8555 multiplication. 8556 8557 Semantics: 8558 """""""""" 8559 8560 The '``llvm.umul.with.overflow``' family of intrinsic functions perform 8561 an unsigned multiplication of the two arguments. They return a structure --- 8562 the first element of which is the multiplication, and the second 8563 element of which is a bit specifying if the unsigned multiplication 8564 resulted in an overflow. 8565 8566 Examples: 8567 """"""""" 8568 8569 .. code-block:: llvm 8570 8571 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) 8572 %sum = extractvalue {i32, i1} %res, 0 8573 %obit = extractvalue {i32, i1} %res, 1 8574 br i1 %obit, label %overflow, label %normal 8575 8576 Specialised Arithmetic Intrinsics 8577 --------------------------------- 8578 8579 '``llvm.fmuladd.*``' Intrinsic 8580 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8581 8582 Syntax: 8583 """"""" 8584 8585 :: 8586 8587 declare float @llvm.fmuladd.f32(float %a, float %b, float %c) 8588 declare double @llvm.fmuladd.f64(double %a, double %b, double %c) 8589 8590 Overview: 8591 """"""""" 8592 8593 The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add 8594 expressions that can be fused if the code generator determines that (a) the 8595 target instruction set has support for a fused operation, and (b) that the 8596 fused operation is more efficient than the equivalent, separate pair of mul 8597 and add instructions. 8598 8599 Arguments: 8600 """""""""" 8601 8602 The '``llvm.fmuladd.*``' intrinsics each take three arguments: two 8603 multiplicands, a and b, and an addend c. 8604 8605 Semantics: 8606 """""""""" 8607 8608 The expression: 8609 8610 :: 8611 8612 %0 = call float @llvm.fmuladd.f32(%a, %b, %c) 8613 8614 is equivalent to the expression a \* b + c, except that rounding will 8615 not be performed between the multiplication and addition steps if the 8616 code generator fuses the operations. Fusion is not guaranteed, even if 8617 the target platform supports it. If a fused multiply-add is required the 8618 corresponding llvm.fma.\* intrinsic function should be used 8619 instead. This never sets errno, just as '``llvm.fma.*``'. 8620 8621 Examples: 8622 """"""""" 8623 8624 .. code-block:: llvm 8625 8626 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c 8627 8628 Half Precision Floating Point Intrinsics 8629 ---------------------------------------- 8630 8631 For most target platforms, half precision floating point is a 8632 storage-only format. This means that it is a dense encoding (in memory) 8633 but does not support computation in the format. 8634 8635 This means that code must first load the half-precision floating point 8636 value as an i16, then convert it to float with 8637 :ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can 8638 then be performed on the float value (including extending to double 8639 etc). To store the value back to memory, it is first converted to float 8640 if needed, then converted to i16 with 8641 :ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an 8642 i16 value. 8643 8644 .. _int_convert_to_fp16: 8645 8646 '``llvm.convert.to.fp16``' Intrinsic 8647 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8648 8649 Syntax: 8650 """"""" 8651 8652 :: 8653 8654 declare i16 @llvm.convert.to.fp16(float %a) 8655 8656 Overview: 8657 """"""""" 8658 8659 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion 8660 from single precision floating point format to half precision floating 8661 point format. 8662 8663 Arguments: 8664 """""""""" 8665 8666 The intrinsic function contains single argument - the value to be 8667 converted. 8668 8669 Semantics: 8670 """""""""" 8671 8672 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion 8673 from single precision floating point format to half precision floating 8674 point format. The return value is an ``i16`` which contains the 8675 converted number. 8676 8677 Examples: 8678 """"""""" 8679 8680 .. code-block:: llvm 8681 8682 %res = call i16 @llvm.convert.to.fp16(float %a) 8683 store i16 %res, i16* @x, align 2 8684 8685 .. _int_convert_from_fp16: 8686 8687 '``llvm.convert.from.fp16``' Intrinsic 8688 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8689 8690 Syntax: 8691 """"""" 8692 8693 :: 8694 8695 declare float @llvm.convert.from.fp16(i16 %a) 8696 8697 Overview: 8698 """"""""" 8699 8700 The '``llvm.convert.from.fp16``' intrinsic function performs a 8701 conversion from half precision floating point format to single precision 8702 floating point format. 8703 8704 Arguments: 8705 """""""""" 8706 8707 The intrinsic function contains single argument - the value to be 8708 converted. 8709 8710 Semantics: 8711 """""""""" 8712 8713 The '``llvm.convert.from.fp16``' intrinsic function performs a 8714 conversion from half single precision floating point format to single 8715 precision floating point format. The input half-float value is 8716 represented by an ``i16`` value. 8717 8718 Examples: 8719 """"""""" 8720 8721 .. code-block:: llvm 8722 8723 %a = load i16* @x, align 2 8724 %res = call float @llvm.convert.from.fp16(i16 %a) 8725 8726 Debugger Intrinsics 8727 ------------------- 8728 8729 The LLVM debugger intrinsics (which all start with ``llvm.dbg.`` 8730 prefix), are described in the `LLVM Source Level 8731 Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_ 8732 document. 8733 8734 Exception Handling Intrinsics 8735 ----------------------------- 8736 8737 The LLVM exception handling intrinsics (which all start with 8738 ``llvm.eh.`` prefix), are described in the `LLVM Exception 8739 Handling <ExceptionHandling.html#format_common_intrinsics>`_ document. 8740 8741 .. _int_trampoline: 8742 8743 Trampoline Intrinsics 8744 --------------------- 8745 8746 These intrinsics make it possible to excise one parameter, marked with 8747 the :ref:`nest <nest>` attribute, from a function. The result is a 8748 callable function pointer lacking the nest parameter - the caller does 8749 not need to provide a value for it. Instead, the value to use is stored 8750 in advance in a "trampoline", a block of memory usually allocated on the 8751 stack, which also contains code to splice the nest value into the 8752 argument list. This is used to implement the GCC nested function address 8753 extension. 8754 8755 For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)`` 8756 then the resulting function pointer has signature ``i32 (i32, i32)*``. 8757 It can be created as follows: 8758 8759 .. code-block:: llvm 8760 8761 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86 8762 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0 8763 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval) 8764 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1) 8765 %fp = bitcast i8* %p to i32 (i32, i32)* 8766 8767 The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to 8768 ``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``. 8769 8770 .. _int_it: 8771 8772 '``llvm.init.trampoline``' Intrinsic 8773 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8774 8775 Syntax: 8776 """"""" 8777 8778 :: 8779 8780 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>) 8781 8782 Overview: 8783 """"""""" 8784 8785 This fills the memory pointed to by ``tramp`` with executable code, 8786 turning it into a trampoline. 8787 8788 Arguments: 8789 """""""""" 8790 8791 The ``llvm.init.trampoline`` intrinsic takes three arguments, all 8792 pointers. The ``tramp`` argument must point to a sufficiently large and 8793 sufficiently aligned block of memory; this memory is written to by the 8794 intrinsic. Note that the size and the alignment are target-specific - 8795 LLVM currently provides no portable way of determining them, so a 8796 front-end that generates this intrinsic needs to have some 8797 target-specific knowledge. The ``func`` argument must hold a function 8798 bitcast to an ``i8*``. 8799 8800 Semantics: 8801 """""""""" 8802 8803 The block of memory pointed to by ``tramp`` is filled with target 8804 dependent code, turning it into a function. Then ``tramp`` needs to be 8805 passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can 8806 be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new 8807 function's signature is the same as that of ``func`` with any arguments 8808 marked with the ``nest`` attribute removed. At most one such ``nest`` 8809 argument is allowed, and it must be of pointer type. Calling the new 8810 function is equivalent to calling ``func`` with the same argument list, 8811 but with ``nval`` used for the missing ``nest`` argument. If, after 8812 calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is 8813 modified, then the effect of any later call to the returned function 8814 pointer is undefined. 8815 8816 .. _int_at: 8817 8818 '``llvm.adjust.trampoline``' Intrinsic 8819 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8820 8821 Syntax: 8822 """"""" 8823 8824 :: 8825 8826 declare i8* @llvm.adjust.trampoline(i8* <tramp>) 8827 8828 Overview: 8829 """"""""" 8830 8831 This performs any required machine-specific adjustment to the address of 8832 a trampoline (passed as ``tramp``). 8833 8834 Arguments: 8835 """""""""" 8836 8837 ``tramp`` must point to a block of memory which already has trampoline 8838 code filled in by a previous call to 8839 :ref:`llvm.init.trampoline <int_it>`. 8840 8841 Semantics: 8842 """""""""" 8843 8844 On some architectures the address of the code to be executed needs to be 8845 different than the address where the trampoline is actually stored. This 8846 intrinsic returns the executable address corresponding to ``tramp`` 8847 after performing the required machine specific adjustments. The pointer 8848 returned can then be :ref:`bitcast and executed <int_trampoline>`. 8849 8850 Memory Use Markers 8851 ------------------ 8852 8853 This class of intrinsics provides information about the lifetime of 8854 memory objects and ranges where variables are immutable. 8855 8856 .. _int_lifestart: 8857 8858 '``llvm.lifetime.start``' Intrinsic 8859 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8860 8861 Syntax: 8862 """"""" 8863 8864 :: 8865 8866 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>) 8867 8868 Overview: 8869 """"""""" 8870 8871 The '``llvm.lifetime.start``' intrinsic specifies the start of a memory 8872 object's lifetime. 8873 8874 Arguments: 8875 """""""""" 8876 8877 The first argument is a constant integer representing the size of the 8878 object, or -1 if it is variable sized. The second argument is a pointer 8879 to the object. 8880 8881 Semantics: 8882 """""""""" 8883 8884 This intrinsic indicates that before this point in the code, the value 8885 of the memory pointed to by ``ptr`` is dead. This means that it is known 8886 to never be used and has an undefined value. A load from the pointer 8887 that precedes this intrinsic can be replaced with ``'undef'``. 8888 8889 .. _int_lifeend: 8890 8891 '``llvm.lifetime.end``' Intrinsic 8892 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8893 8894 Syntax: 8895 """"""" 8896 8897 :: 8898 8899 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>) 8900 8901 Overview: 8902 """"""""" 8903 8904 The '``llvm.lifetime.end``' intrinsic specifies the end of a memory 8905 object's lifetime. 8906 8907 Arguments: 8908 """""""""" 8909 8910 The first argument is a constant integer representing the size of the 8911 object, or -1 if it is variable sized. The second argument is a pointer 8912 to the object. 8913 8914 Semantics: 8915 """""""""" 8916 8917 This intrinsic indicates that after this point in the code, the value of 8918 the memory pointed to by ``ptr`` is dead. This means that it is known to 8919 never be used and has an undefined value. Any stores into the memory 8920 object following this intrinsic may be removed as dead. 8921 8922 '``llvm.invariant.start``' Intrinsic 8923 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8924 8925 Syntax: 8926 """"""" 8927 8928 :: 8929 8930 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>) 8931 8932 Overview: 8933 """"""""" 8934 8935 The '``llvm.invariant.start``' intrinsic specifies that the contents of 8936 a memory object will not change. 8937 8938 Arguments: 8939 """""""""" 8940 8941 The first argument is a constant integer representing the size of the 8942 object, or -1 if it is variable sized. The second argument is a pointer 8943 to the object. 8944 8945 Semantics: 8946 """""""""" 8947 8948 This intrinsic indicates that until an ``llvm.invariant.end`` that uses 8949 the return value, the referenced memory location is constant and 8950 unchanging. 8951 8952 '``llvm.invariant.end``' Intrinsic 8953 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8954 8955 Syntax: 8956 """"""" 8957 8958 :: 8959 8960 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>) 8961 8962 Overview: 8963 """"""""" 8964 8965 The '``llvm.invariant.end``' intrinsic specifies that the contents of a 8966 memory object are mutable. 8967 8968 Arguments: 8969 """""""""" 8970 8971 The first argument is the matching ``llvm.invariant.start`` intrinsic. 8972 The second argument is a constant integer representing the size of the 8973 object, or -1 if it is variable sized and the third argument is a 8974 pointer to the object. 8975 8976 Semantics: 8977 """""""""" 8978 8979 This intrinsic indicates that the memory is mutable again. 8980 8981 General Intrinsics 8982 ------------------ 8983 8984 This class of intrinsics is designed to be generic and has no specific 8985 purpose. 8986 8987 '``llvm.var.annotation``' Intrinsic 8988 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 8989 8990 Syntax: 8991 """"""" 8992 8993 :: 8994 8995 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>) 8996 8997 Overview: 8998 """"""""" 8999 9000 The '``llvm.var.annotation``' intrinsic. 9001 9002 Arguments: 9003 """""""""" 9004 9005 The first argument is a pointer to a value, the second is a pointer to a 9006 global string, the third is a pointer to a global string which is the 9007 source file name, and the last argument is the line number. 9008 9009 Semantics: 9010 """""""""" 9011 9012 This intrinsic allows annotation of local variables with arbitrary 9013 strings. This can be useful for special purpose optimizations that want 9014 to look for these annotations. These have no other defined use; they are 9015 ignored by code generation and optimization. 9016 9017 '``llvm.ptr.annotation.*``' Intrinsic 9018 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9019 9020 Syntax: 9021 """"""" 9022 9023 This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a 9024 pointer to an integer of any width. *NOTE* you must specify an address space for 9025 the pointer. The identifier for the default address space is the integer 9026 '``0``'. 9027 9028 :: 9029 9030 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>) 9031 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>) 9032 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>) 9033 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>) 9034 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>) 9035 9036 Overview: 9037 """"""""" 9038 9039 The '``llvm.ptr.annotation``' intrinsic. 9040 9041 Arguments: 9042 """""""""" 9043 9044 The first argument is a pointer to an integer value of arbitrary bitwidth 9045 (result of some expression), the second is a pointer to a global string, the 9046 third is a pointer to a global string which is the source file name, and the 9047 last argument is the line number. It returns the value of the first argument. 9048 9049 Semantics: 9050 """""""""" 9051 9052 This intrinsic allows annotation of a pointer to an integer with arbitrary 9053 strings. This can be useful for special purpose optimizations that want to look 9054 for these annotations. These have no other defined use; they are ignored by code 9055 generation and optimization. 9056 9057 '``llvm.annotation.*``' Intrinsic 9058 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9059 9060 Syntax: 9061 """"""" 9062 9063 This is an overloaded intrinsic. You can use '``llvm.annotation``' on 9064 any integer bit width. 9065 9066 :: 9067 9068 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>) 9069 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>) 9070 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>) 9071 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>) 9072 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>) 9073 9074 Overview: 9075 """"""""" 9076 9077 The '``llvm.annotation``' intrinsic. 9078 9079 Arguments: 9080 """""""""" 9081 9082 The first argument is an integer value (result of some expression), the 9083 second is a pointer to a global string, the third is a pointer to a 9084 global string which is the source file name, and the last argument is 9085 the line number. It returns the value of the first argument. 9086 9087 Semantics: 9088 """""""""" 9089 9090 This intrinsic allows annotations to be put on arbitrary expressions 9091 with arbitrary strings. This can be useful for special purpose 9092 optimizations that want to look for these annotations. These have no 9093 other defined use; they are ignored by code generation and optimization. 9094 9095 '``llvm.trap``' Intrinsic 9096 ^^^^^^^^^^^^^^^^^^^^^^^^^ 9097 9098 Syntax: 9099 """"""" 9100 9101 :: 9102 9103 declare void @llvm.trap() noreturn nounwind 9104 9105 Overview: 9106 """"""""" 9107 9108 The '``llvm.trap``' intrinsic. 9109 9110 Arguments: 9111 """""""""" 9112 9113 None. 9114 9115 Semantics: 9116 """""""""" 9117 9118 This intrinsic is lowered to the target dependent trap instruction. If 9119 the target does not have a trap instruction, this intrinsic will be 9120 lowered to a call of the ``abort()`` function. 9121 9122 '``llvm.debugtrap``' Intrinsic 9123 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9124 9125 Syntax: 9126 """"""" 9127 9128 :: 9129 9130 declare void @llvm.debugtrap() nounwind 9131 9132 Overview: 9133 """"""""" 9134 9135 The '``llvm.debugtrap``' intrinsic. 9136 9137 Arguments: 9138 """""""""" 9139 9140 None. 9141 9142 Semantics: 9143 """""""""" 9144 9145 This intrinsic is lowered to code which is intended to cause an 9146 execution trap with the intention of requesting the attention of a 9147 debugger. 9148 9149 '``llvm.stackprotector``' Intrinsic 9150 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9151 9152 Syntax: 9153 """"""" 9154 9155 :: 9156 9157 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>) 9158 9159 Overview: 9160 """"""""" 9161 9162 The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it 9163 onto the stack at ``slot``. The stack slot is adjusted to ensure that it 9164 is placed on the stack before local variables. 9165 9166 Arguments: 9167 """""""""" 9168 9169 The ``llvm.stackprotector`` intrinsic requires two pointer arguments. 9170 The first argument is the value loaded from the stack guard 9171 ``@__stack_chk_guard``. The second variable is an ``alloca`` that has 9172 enough space to hold the value of the guard. 9173 9174 Semantics: 9175 """""""""" 9176 9177 This intrinsic causes the prologue/epilogue inserter to force the position of 9178 the ``AllocaInst`` stack slot to be before local variables on the stack. This is 9179 to ensure that if a local variable on the stack is overwritten, it will destroy 9180 the value of the guard. When the function exits, the guard on the stack is 9181 checked against the original guard by ``llvm.stackprotectorcheck``. If they are 9182 different, then ``llvm.stackprotectorcheck`` causes the program to abort by 9183 calling the ``__stack_chk_fail()`` function. 9184 9185 '``llvm.stackprotectorcheck``' Intrinsic 9186 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9187 9188 Syntax: 9189 """"""" 9190 9191 :: 9192 9193 declare void @llvm.stackprotectorcheck(i8** <guard>) 9194 9195 Overview: 9196 """"""""" 9197 9198 The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already 9199 created stack protector and if they are not equal calls the 9200 ``__stack_chk_fail()`` function. 9201 9202 Arguments: 9203 """""""""" 9204 9205 The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the 9206 the variable ``@__stack_chk_guard``. 9207 9208 Semantics: 9209 """""""""" 9210 9211 This intrinsic is provided to perform the stack protector check by comparing 9212 ``guard`` with the stack slot created by ``llvm.stackprotector`` and if the 9213 values do not match call the ``__stack_chk_fail()`` function. 9214 9215 The reason to provide this as an IR level intrinsic instead of implementing it 9216 via other IR operations is that in order to perform this operation at the IR 9217 level without an intrinsic, one would need to create additional basic blocks to 9218 handle the success/failure cases. This makes it difficult to stop the stack 9219 protector check from disrupting sibling tail calls in Codegen. With this 9220 intrinsic, we are able to generate the stack protector basic blocks late in 9221 codegen after the tail call decision has occurred. 9222 9223 '``llvm.objectsize``' Intrinsic 9224 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9225 9226 Syntax: 9227 """"""" 9228 9229 :: 9230 9231 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>) 9232 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>) 9233 9234 Overview: 9235 """"""""" 9236 9237 The ``llvm.objectsize`` intrinsic is designed to provide information to 9238 the optimizers to determine at compile time whether a) an operation 9239 (like memcpy) will overflow a buffer that corresponds to an object, or 9240 b) that a runtime check for overflow isn't necessary. An object in this 9241 context means an allocation of a specific class, structure, array, or 9242 other object. 9243 9244 Arguments: 9245 """""""""" 9246 9247 The ``llvm.objectsize`` intrinsic takes two arguments. The first 9248 argument is a pointer to or into the ``object``. The second argument is 9249 a boolean and determines whether ``llvm.objectsize`` returns 0 (if true) 9250 or -1 (if false) when the object size is unknown. The second argument 9251 only accepts constants. 9252 9253 Semantics: 9254 """""""""" 9255 9256 The ``llvm.objectsize`` intrinsic is lowered to a constant representing 9257 the size of the object concerned. If the size cannot be determined at 9258 compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending 9259 on the ``min`` argument). 9260 9261 '``llvm.expect``' Intrinsic 9262 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9263 9264 Syntax: 9265 """"""" 9266 9267 This is an overloaded intrinsic. You can use ``llvm.expect`` on any 9268 integer bit width. 9269 9270 :: 9271 9272 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>) 9273 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>) 9274 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>) 9275 9276 Overview: 9277 """"""""" 9278 9279 The ``llvm.expect`` intrinsic provides information about expected (the 9280 most probable) value of ``val``, which can be used by optimizers. 9281 9282 Arguments: 9283 """""""""" 9284 9285 The ``llvm.expect`` intrinsic takes two arguments. The first argument is 9286 a value. The second argument is an expected value, this needs to be a 9287 constant value, variables are not allowed. 9288 9289 Semantics: 9290 """""""""" 9291 9292 This intrinsic is lowered to the ``val``. 9293 9294 '``llvm.donothing``' Intrinsic 9295 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 9296 9297 Syntax: 9298 """"""" 9299 9300 :: 9301 9302 declare void @llvm.donothing() nounwind readnone 9303 9304 Overview: 9305 """"""""" 9306 9307 The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the 9308 only intrinsic that can be called with an invoke instruction. 9309 9310 Arguments: 9311 """""""""" 9312 9313 None. 9314 9315 Semantics: 9316 """""""""" 9317 9318 This intrinsic does nothing, and it's removed by optimizers and ignored 9319 by codegen. 9320 9321 Stack Map Intrinsics 9322 -------------------- 9323 9324 LLVM provides experimental intrinsics to support runtime patching 9325 mechanisms commonly desired in dynamic language JITs. These intrinsics 9326 are described in :doc:`StackMaps`. 9327