1 ================================ 2 Source Level Debugging with LLVM 3 ================================ 4 5 .. contents:: 6 :local: 7 8 Introduction 9 ============ 10 11 This document is the central repository for all information pertaining to debug 12 information in LLVM. It describes the :ref:`actual format that the LLVM debug 13 information takes <format>`, which is useful for those interested in creating 14 front-ends or dealing directly with the information. Further, this document 15 provides specific examples of what debug information for C/C++ looks like. 16 17 Philosophy behind LLVM debugging information 18 -------------------------------------------- 19 20 The idea of the LLVM debugging information is to capture how the important 21 pieces of the source-language's Abstract Syntax Tree map onto LLVM code. 22 Several design aspects have shaped the solution that appears here. The 23 important ones are: 24 25 * Debugging information should have very little impact on the rest of the 26 compiler. No transformations, analyses, or code generators should need to 27 be modified because of debugging information. 28 29 * LLVM optimizations should interact in :ref:`well-defined and easily described 30 ways <intro_debugopt>` with the debugging information. 31 32 * Because LLVM is designed to support arbitrary programming languages, 33 LLVM-to-LLVM tools should not need to know anything about the semantics of 34 the source-level-language. 35 36 * Source-level languages are often **widely** different from one another. 37 LLVM should not put any restrictions of the flavor of the source-language, 38 and the debugging information should work with any language. 39 40 * With code generator support, it should be possible to use an LLVM compiler 41 to compile a program to native machine code and standard debugging 42 formats. This allows compatibility with traditional machine-code level 43 debuggers, like GDB or DBX. 44 45 The approach used by the LLVM implementation is to use a small set of 46 :ref:`intrinsic functions <format_common_intrinsics>` to define a mapping 47 between LLVM program objects and the source-level objects. The description of 48 the source-level program is maintained in LLVM metadata in an 49 :ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end 50 currently uses working draft 7 of the `DWARF 3 standard 51 <http://www.eagercon.com/dwarf/dwarf3std.htm>`_). 52 53 When a program is being debugged, a debugger interacts with the user and turns 54 the stored debug information into source-language specific information. As 55 such, a debugger must be aware of the source-language, and is thus tied to a 56 specific language or family of languages. 57 58 Debug information consumers 59 --------------------------- 60 61 The role of debug information is to provide meta information normally stripped 62 away during the compilation process. This meta information provides an LLVM 63 user a relationship between generated code and the original program source 64 code. 65 66 Currently, debug information is consumed by DwarfDebug to produce dwarf 67 information used by the gdb debugger. Other targets could use the same 68 information to produce stabs or other debug forms. 69 70 It would also be reasonable to use debug information to feed profiling tools 71 for analysis of generated code, or, tools for reconstructing the original 72 source from generated code. 73 74 TODO - expound a bit more. 75 76 .. _intro_debugopt: 77 78 Debugging optimized code 79 ------------------------ 80 81 An extremely high priority of LLVM debugging information is to make it interact 82 well with optimizations and analysis. In particular, the LLVM debug 83 information provides the following guarantees: 84 85 * LLVM debug information **always provides information to accurately read 86 the source-level state of the program**, regardless of which LLVM 87 optimizations have been run, and without any modification to the 88 optimizations themselves. However, some optimizations may impact the 89 ability to modify the current state of the program with a debugger, such 90 as setting program variables, or calling functions that have been 91 deleted. 92 93 * As desired, LLVM optimizations can be upgraded to be aware of the LLVM 94 debugging information, allowing them to update the debugging information 95 as they perform aggressive optimizations. This means that, with effort, 96 the LLVM optimizers could optimize debug code just as well as non-debug 97 code. 98 99 * LLVM debug information does not prevent optimizations from 100 happening (for example inlining, basic block reordering/merging/cleanup, 101 tail duplication, etc). 102 103 * LLVM debug information is automatically optimized along with the rest of 104 the program, using existing facilities. For example, duplicate 105 information is automatically merged by the linker, and unused information 106 is automatically removed. 107 108 Basically, the debug information allows you to compile a program with 109 "``-O0 -g``" and get full debug information, allowing you to arbitrarily modify 110 the program as it executes from a debugger. Compiling a program with 111 "``-O3 -g``" gives you full debug information that is always available and 112 accurate for reading (e.g., you get accurate stack traces despite tail call 113 elimination and inlining), but you might lose the ability to modify the program 114 and call functions where were optimized out of the program, or inlined away 115 completely. 116 117 :ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test 118 optimizer's handling of debugging information. It can be run like this: 119 120 .. code-block:: bash 121 122 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level 123 % make TEST=dbgopt 124 125 This will test impact of debugging information on optimization passes. If 126 debugging information influences optimization passes then it will be reported 127 as a failure. See :doc:`TestingGuide` for more information on LLVM test 128 infrastructure and how to run various tests. 129 130 .. _format: 131 132 Debugging information format 133 ============================ 134 135 LLVM debugging information has been carefully designed to make it possible for 136 the optimizer to optimize the program and debugging information without 137 necessarily having to know anything about debugging information. In 138 particular, the use of metadata avoids duplicated debugging information from 139 the beginning, and the global dead code elimination pass automatically deletes 140 debugging information for a function if it decides to delete the function. 141 142 To do this, most of the debugging information (descriptors for types, 143 variables, functions, source files, etc) is inserted by the language front-end 144 in the form of LLVM metadata. 145 146 Debug information is designed to be agnostic about the target debugger and 147 debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic 148 pass to decode the information that represents variables, types, functions, 149 namespaces, etc: this allows for arbitrary source-language semantics and 150 type-systems to be used, as long as there is a module written for the target 151 debugger to interpret the information. 152 153 To provide basic functionality, the LLVM debugger does have to make some 154 assumptions about the source-level language being debugged, though it keeps 155 these to a minimum. The only common features that the LLVM debugger assumes 156 exist are :ref:`source files <format_files>`, and :ref:`program objects 157 <format_global_variables>`. These abstract objects are used by a debugger to 158 form stack traces, show information about local variables, etc. 159 160 This section of the documentation first describes the representation aspects 161 common to any source-language. :ref:`ccxx_frontend` describes the data layout 162 conventions used by the C and C++ front-ends. 163 164 Debug information descriptors 165 ----------------------------- 166 167 In consideration of the complexity and volume of debug information, LLVM 168 provides a specification for well formed debug descriptors. 169 170 Consumers of LLVM debug information expect the descriptors for program objects 171 to start in a canonical format, but the descriptors can include additional 172 information appended at the end that is source-language specific. All debugging 173 information objects start with a tag to indicate what type of object it is. 174 The source-language is allowed to define its own objects, by using unreserved 175 tag numbers. We recommend using with tags in the range 0x1000 through 0x2000 176 (there is a defined ``enum DW_TAG_user_base = 0x1000``.) 177 178 The fields of debug descriptors used internally by LLVM are restricted to only 179 the simple data types ``i32``, ``i1``, ``float``, ``double``, ``mdstring`` and 180 ``mdnode``. 181 182 .. code-block:: llvm 183 184 !1 = metadata !{ 185 i32, ;; A tag 186 ... 187 } 188 189 <a name="LLVMDebugVersion">The first field of a descriptor is always an 190 ``i32`` containing a tag value identifying the content of the descriptor. 191 The remaining fields are specific to the descriptor. The values of tags are 192 loosely bound to the tag values of DWARF information entries. However, that 193 does not restrict the use of the information supplied to DWARF targets. 194 195 The details of the various descriptors follow. 196 197 Compile unit descriptors 198 ^^^^^^^^^^^^^^^^^^^^^^^^ 199 200 .. code-block:: llvm 201 202 !0 = metadata !{ 203 i32, ;; Tag = 17 (DW_TAG_compile_unit) 204 metadata, ;; Source directory (including trailing slash) & file pair 205 i32, ;; DWARF language identifier (ex. DW_LANG_C89) 206 metadata ;; Producer (ex. "4.0.1 LLVM (LLVM research group)") 207 i1, ;; True if this is optimized. 208 metadata, ;; Flags 209 i32 ;; Runtime version 210 metadata ;; List of enums types 211 metadata ;; List of retained types 212 metadata ;; List of subprograms 213 metadata ;; List of global variables 214 metadata ;; List of imported entities 215 metadata ;; Split debug filename 216 } 217 218 These descriptors contain a source language ID for the file (we use the DWARF 219 3.0 ID numbers, such as ``DW_LANG_C89``, ``DW_LANG_C_plus_plus``, 220 ``DW_LANG_Cobol74``, etc), a reference to a metadata node containing a pair of 221 strings for the source file name and the working directory, as well as an 222 identifier string for the compiler that produced it. 223 224 Compile unit descriptors provide the root context for objects declared in a 225 specific compilation unit. File descriptors are defined using this context. 226 These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They 227 keep track of subprograms, global variables, type information, and imported 228 entities (declarations and namespaces). 229 230 .. _format_files: 231 232 File descriptors 233 ^^^^^^^^^^^^^^^^ 234 235 .. code-block:: llvm 236 237 !0 = metadata !{ 238 i32, ;; Tag = 41 (DW_TAG_file_type) 239 metadata, ;; Source directory (including trailing slash) & file pair 240 } 241 242 These descriptors contain information for a file. Global variables and top 243 level functions would be defined using this context. File descriptors also 244 provide context for source line correspondence. 245 246 Each input file is encoded as a separate file descriptor in LLVM debugging 247 information output. 248 249 .. _format_global_variables: 250 251 Global variable descriptors 252 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ 253 254 .. code-block:: llvm 255 256 !1 = metadata !{ 257 i32, ;; Tag = 52 (DW_TAG_variable) 258 i32, ;; Unused field. 259 metadata, ;; Reference to context descriptor 260 metadata, ;; Name 261 metadata, ;; Display name (fully qualified C++ name) 262 metadata, ;; MIPS linkage name (for C++) 263 metadata, ;; Reference to file where defined 264 i32, ;; Line number where defined 265 metadata, ;; Reference to type descriptor 266 i1, ;; True if the global is local to compile unit (static) 267 i1, ;; True if the global is defined in the compile unit (not extern) 268 {}*, ;; Reference to the global variable 269 metadata, ;; The static member declaration, if any 270 } 271 272 These descriptors provide debug information about global variables. They 273 provide details such as name, type and where the variable is defined. All 274 global variables are collected inside the named metadata ``!llvm.dbg.cu``. 275 276 .. _format_subprograms: 277 278 Subprogram descriptors 279 ^^^^^^^^^^^^^^^^^^^^^^ 280 281 .. code-block:: llvm 282 283 !2 = metadata !{ 284 i32, ;; Tag = 46 (DW_TAG_subprogram) 285 metadata, ;; Source directory (including trailing slash) & file pair 286 metadata, ;; Reference to context descriptor 287 metadata, ;; Name 288 metadata, ;; Display name (fully qualified C++ name) 289 metadata, ;; MIPS linkage name (for C++) 290 i32, ;; Line number where defined 291 metadata, ;; Reference to type descriptor 292 i1, ;; True if the global is local to compile unit (static) 293 i1, ;; True if the global is defined in the compile unit (not extern) 294 i32, ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual 295 i32, ;; Index into a virtual function 296 metadata, ;; indicates which base type contains the vtable pointer for the 297 ;; derived class 298 i32, ;; Flags - Artificial, Private, Protected, Explicit, Prototyped. 299 i1, ;; isOptimized 300 {}*, ;; Reference to the LLVM function 301 metadata, ;; Lists function template parameters 302 metadata, ;; Function declaration descriptor 303 metadata, ;; List of function variables 304 i32 ;; Line number where the scope of the subprogram begins 305 } 306 307 These descriptors provide debug information about functions, methods and 308 subprograms. They provide details such as name, return types and the source 309 location where the subprogram is defined. 310 311 Block descriptors 312 ^^^^^^^^^^^^^^^^^ 313 314 .. code-block:: llvm 315 316 !3 = metadata !{ 317 i32, ;; Tag = 11 (DW_TAG_lexical_block) 318 metadata, ;; Source directory (including trailing slash) & file pair 319 metadata, ;; Reference to context descriptor 320 i32, ;; Line number 321 i32, ;; Column number 322 i32, ;; DWARF path discriminator value 323 i32 ;; Unique ID to identify blocks from a template function 324 } 325 326 This descriptor provides debug information about nested blocks within a 327 subprogram. The line number and column numbers are used to dinstinguish two 328 lexical blocks at same depth. 329 330 .. code-block:: llvm 331 332 !3 = metadata !{ 333 i32, ;; Tag = 11 (DW_TAG_lexical_block) 334 metadata, ;; Source directory (including trailing slash) & file pair 335 metadata ;; Reference to the scope we're annotating with a file change 336 } 337 338 This descriptor provides a wrapper around a lexical scope to handle file 339 changes in the middle of a lexical block. 340 341 .. _format_basic_type: 342 343 Basic type descriptors 344 ^^^^^^^^^^^^^^^^^^^^^^ 345 346 .. code-block:: llvm 347 348 !4 = metadata !{ 349 i32, ;; Tag = 36 (DW_TAG_base_type) 350 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 351 metadata, ;; Reference to context 352 metadata, ;; Name (may be "" for anonymous types) 353 i32, ;; Line number where defined (may be 0) 354 i64, ;; Size in bits 355 i64, ;; Alignment in bits 356 i64, ;; Offset in bits 357 i32, ;; Flags 358 i32 ;; DWARF type encoding 359 } 360 361 These descriptors define primitive types used in the code. Example ``int``, 362 ``bool`` and ``float``. The context provides the scope of the type, which is 363 usually the top level. Since basic types are not usually user defined the 364 context and line number can be left as NULL and 0. The size, alignment and 365 offset are expressed in bits and can be 64 bit values. The alignment is used 366 to round the offset when embedded in a :ref:`composite type 367 <format_composite_type>` (example to keep float doubles on 64 bit boundaries). 368 The offset is the bit offset if embedded in a :ref:`composite type 369 <format_composite_type>`. 370 371 The type encoding provides the details of the type. The values are typically 372 one of the following: 373 374 .. code-block:: llvm 375 376 DW_ATE_address = 1 377 DW_ATE_boolean = 2 378 DW_ATE_float = 4 379 DW_ATE_signed = 5 380 DW_ATE_signed_char = 6 381 DW_ATE_unsigned = 7 382 DW_ATE_unsigned_char = 8 383 384 .. _format_derived_type: 385 386 Derived type descriptors 387 ^^^^^^^^^^^^^^^^^^^^^^^^ 388 389 .. code-block:: llvm 390 391 !5 = metadata !{ 392 i32, ;; Tag (see below) 393 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 394 metadata, ;; Reference to context 395 metadata, ;; Name (may be "" for anonymous types) 396 i32, ;; Line number where defined (may be 0) 397 i64, ;; Size in bits 398 i64, ;; Alignment in bits 399 i64, ;; Offset in bits 400 i32, ;; Flags to encode attributes, e.g. private 401 metadata, ;; Reference to type derived from 402 metadata, ;; (optional) Name of the Objective C property associated with 403 ;; Objective-C an ivar, or the type of which this 404 ;; pointer-to-member is pointing to members of. 405 metadata, ;; (optional) Name of the Objective C property getter selector. 406 metadata, ;; (optional) Name of the Objective C property setter selector. 407 i32 ;; (optional) Objective C property attributes. 408 } 409 410 These descriptors are used to define types derived from other types. The value 411 of the tag varies depending on the meaning. The following are possible tag 412 values: 413 414 .. code-block:: llvm 415 416 DW_TAG_formal_parameter = 5 417 DW_TAG_member = 13 418 DW_TAG_pointer_type = 15 419 DW_TAG_reference_type = 16 420 DW_TAG_typedef = 22 421 DW_TAG_ptr_to_member_type = 31 422 DW_TAG_const_type = 38 423 DW_TAG_volatile_type = 53 424 DW_TAG_restrict_type = 55 425 426 ``DW_TAG_member`` is used to define a member of a :ref:`composite type 427 <format_composite_type>` or :ref:`subprogram <format_subprograms>`. The type 428 of the member is the :ref:`derived type <format_derived_type>`. 429 ``DW_TAG_formal_parameter`` is used to define a member which is a formal 430 argument of a subprogram. 431 432 ``DW_TAG_typedef`` is used to provide a name for the derived type. 433 434 ``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``, 435 ``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the 436 :ref:`derived type <format_derived_type>`. 437 438 :ref:`Derived type <format_derived_type>` location can be determined from the 439 context and line number. The size, alignment and offset are expressed in bits 440 and can be 64 bit values. The alignment is used to round the offset when 441 embedded in a :ref:`composite type <format_composite_type>` (example to keep 442 float doubles on 64 bit boundaries.) The offset is the bit offset if embedded 443 in a :ref:`composite type <format_composite_type>`. 444 445 Note that the ``void *`` type is expressed as a type derived from NULL. 446 447 .. _format_composite_type: 448 449 Composite type descriptors 450 ^^^^^^^^^^^^^^^^^^^^^^^^^^ 451 452 .. code-block:: llvm 453 454 !6 = metadata !{ 455 i32, ;; Tag (see below) 456 metadata, ;; Source directory (including trailing slash) & file pair (may be null) 457 metadata, ;; Reference to context 458 metadata, ;; Name (may be "" for anonymous types) 459 i32, ;; Line number where defined (may be 0) 460 i64, ;; Size in bits 461 i64, ;; Alignment in bits 462 i64, ;; Offset in bits 463 i32, ;; Flags 464 metadata, ;; Reference to type derived from 465 metadata, ;; Reference to array of member descriptors 466 i32, ;; Runtime languages 467 metadata, ;; Base type containing the vtable pointer for this type 468 metadata, ;; Template parameters 469 metadata ;; A unique identifier for type uniquing purpose (may be null) 470 } 471 472 These descriptors are used to define types that are composed of 0 or more 473 elements. The value of the tag varies depending on the meaning. The following 474 are possible tag values: 475 476 .. code-block:: llvm 477 478 DW_TAG_array_type = 1 479 DW_TAG_enumeration_type = 4 480 DW_TAG_structure_type = 19 481 DW_TAG_union_type = 23 482 DW_TAG_subroutine_type = 21 483 DW_TAG_inheritance = 28 484 485 The vector flag indicates that an array type is a native packed vector. 486 487 The members of array types (tag = ``DW_TAG_array_type``) are 488 :ref:`subrange descriptors <format_subrange>`, each 489 representing the range of subscripts at that level of indexing. 490 491 The members of enumeration types (tag = ``DW_TAG_enumeration_type``) are 492 :ref:`enumerator descriptors <format_enumerator>`, each representing the 493 definition of enumeration value for the set. All enumeration type descriptors 494 are collected inside the named metadata ``!llvm.dbg.cu``. 495 496 The members of structure (tag = ``DW_TAG_structure_type``) or union (tag = 497 ``DW_TAG_union_type``) types are any one of the :ref:`basic 498 <format_basic_type>`, :ref:`derived <format_derived_type>` or :ref:`composite 499 <format_composite_type>` type descriptors, each representing a field member of 500 the structure or union. 501 502 For C++ classes (tag = ``DW_TAG_structure_type``), member descriptors provide 503 information about base classes, static members and member functions. If a 504 member is a :ref:`derived type descriptor <format_derived_type>` and has a tag 505 of ``DW_TAG_inheritance``, then the type represents a base class. If the member 506 of is a :ref:`global variable descriptor <format_global_variables>` then it 507 represents a static member. And, if the member is a :ref:`subprogram 508 descriptor <format_subprograms>` then it represents a member function. For 509 static members and member functions, ``getName()`` returns the members link or 510 the C++ mangled name. ``getDisplayName()`` the simplied version of the name. 511 512 The first member of subroutine (tag = ``DW_TAG_subroutine_type``) type elements 513 is the return type for the subroutine. The remaining elements are the formal 514 arguments to the subroutine. 515 516 :ref:`Composite type <format_composite_type>` location can be determined from 517 the context and line number. The size, alignment and offset are expressed in 518 bits and can be 64 bit values. The alignment is used to round the offset when 519 embedded in a :ref:`composite type <format_composite_type>` (as an example, to 520 keep float doubles on 64 bit boundaries). The offset is the bit offset if 521 embedded in a :ref:`composite type <format_composite_type>`. 522 523 .. _format_subrange: 524 525 Subrange descriptors 526 ^^^^^^^^^^^^^^^^^^^^ 527 528 .. code-block:: llvm 529 530 !42 = metadata !{ 531 i32, ;; Tag = 33 (DW_TAG_subrange_type) 532 i64, ;; Low value 533 i64 ;; High value 534 } 535 536 These descriptors are used to define ranges of array subscripts for an array 537 :ref:`composite type <format_composite_type>`. The low value defines the lower 538 bounds typically zero for C/C++. The high value is the upper bounds. Values 539 are 64 bit. ``High - Low + 1`` is the size of the array. If ``Low > High`` 540 the array bounds are not included in generated debugging information. 541 542 .. _format_enumerator: 543 544 Enumerator descriptors 545 ^^^^^^^^^^^^^^^^^^^^^^ 546 547 .. code-block:: llvm 548 549 !6 = metadata !{ 550 i32, ;; Tag = 40 (DW_TAG_enumerator) 551 metadata, ;; Name 552 i64 ;; Value 553 } 554 555 These descriptors are used to define members of an enumeration :ref:`composite 556 type <format_composite_type>`, it associates the name to the value. 557 558 Local variables 559 ^^^^^^^^^^^^^^^ 560 561 .. code-block:: llvm 562 563 !7 = metadata !{ 564 i32, ;; Tag (see below) 565 metadata, ;; Context 566 metadata, ;; Name 567 metadata, ;; Reference to file where defined 568 i32, ;; 24 bit - Line number where defined 569 ;; 8 bit - Argument number. 1 indicates 1st argument. 570 metadata, ;; Reference to the type descriptor 571 i32, ;; flags 572 metadata ;; (optional) Reference to inline location 573 metadata ;; (optional) Reference to a complex expression (see below) 574 } 575 576 These descriptors are used to define variables local to a sub program. The 577 value of the tag depends on the usage of the variable: 578 579 .. code-block:: llvm 580 581 DW_TAG_auto_variable = 256 582 DW_TAG_arg_variable = 257 583 584 An auto variable is any variable declared in the body of the function. An 585 argument variable is any variable that appears as a formal argument to the 586 function. 587 588 The context is either the subprogram or block where the variable is defined. 589 Name the source variable name. Context and line indicate where the variable 590 was defined. Type descriptor defines the declared type of the variable. 591 592 .. _format_common_intrinsics: 593 594 Debugger intrinsic functions 595 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 596 597 LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to 598 provide debug information at various points in generated code. 599 600 ``llvm.dbg.declare`` 601 ^^^^^^^^^^^^^^^^^^^^ 602 603 .. code-block:: llvm 604 605 void %llvm.dbg.declare(metadata, metadata) 606 607 This intrinsic provides information about a local element (e.g., variable). 608 The first argument is metadata holding the alloca for the variable. The second 609 argument is metadata containing a description of the variable. 610 611 ``llvm.dbg.value`` 612 ^^^^^^^^^^^^^^^^^^ 613 614 .. code-block:: llvm 615 616 void %llvm.dbg.value(metadata, i64, metadata) 617 618 This intrinsic provides information when a user source variable is set to a new 619 value. The first argument is the new value (wrapped as metadata). The second 620 argument is the offset in the user source variable where the new value is 621 written. The third argument is metadata containing a description of the user 622 source variable. 623 624 Object lifetimes and scoping 625 ============================ 626 627 In many languages, the local variables in functions can have their lifetimes or 628 scopes limited to a subset of a function. In the C family of languages, for 629 example, variables are only live (readable and writable) within the source 630 block that they are defined in. In functional languages, values are only 631 readable after they have been defined. Though this is a very obvious concept, 632 it is non-trivial to model in LLVM, because it has no notion of scoping in this 633 sense, and does not want to be tied to a language's scoping rules. 634 635 In order to handle this, the LLVM debug format uses the metadata attached to 636 llvm instructions to encode line number and scoping information. Consider the 637 following C fragment, for example: 638 639 .. code-block:: c 640 641 1. void foo() { 642 2. int X = 21; 643 3. int Y = 22; 644 4. { 645 5. int Z = 23; 646 6. Z = X; 647 7. } 648 8. X = Y; 649 9. } 650 651 Compiled to LLVM, this function would be represented like this: 652 653 .. code-block:: llvm 654 655 define void @foo() #0 { 656 entry: 657 %X = alloca i32, align 4 658 %Y = alloca i32, align 4 659 %Z = alloca i32, align 4 660 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 661 ; [debug line = 2:7] [debug variable = X] 662 store i32 21, i32* %X, align 4, !dbg !12 663 call void @llvm.dbg.declare(metadata !{i32* %Y}, metadata !13), !dbg !14 664 ; [debug line = 3:7] [debug variable = Y] 665 store i32 22, i32* %Y, align 4, !dbg !14 666 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 667 ; [debug line = 5:9] [debug variable = Z] 668 store i32 23, i32* %Z, align 4, !dbg !17 669 %0 = load i32* %X, align 4, !dbg !18 670 [debug line = 6:5] 671 store i32 %0, i32* %Z, align 4, !dbg !18 672 %1 = load i32* %Y, align 4, !dbg !19 673 [debug line = 8:3] 674 store i32 %1, i32* %X, align 4, !dbg !19 675 ret void, !dbg !20 676 } 677 678 ; Function Attrs: nounwind readnone 679 declare void @llvm.dbg.declare(metadata, metadata) #1 680 681 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" 682 "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" 683 "no-infs-fp-math"="false" "no-nans-fp-math"="false" 684 "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" 685 "use-soft-float"="false" } 686 attributes #1 = { nounwind readnone } 687 688 !llvm.dbg.cu = !{!0} 689 !llvm.module.flags = !{!8} 690 !llvm.ident = !{!9} 691 692 !0 = metadata !{i32 786449, metadata !1, i32 12, 693 metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)", 694 i1 false, metadata !"", i32 0, metadata !2, metadata !2, metadata !3, 695 metadata !2, metadata !2, metadata !""} ; [ DW_TAG_compile_unit ] \ 696 [/private/tmp/foo.c] \ 697 [DW_LANG_C99] 698 !1 = metadata !{metadata !"t.c", metadata !"/private/tmp"} 699 !2 = metadata !{i32 0} 700 !3 = metadata !{metadata !4} 701 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 702 metadata !"foo", metadata !"", i32 1, metadata !6, 703 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 704 void ()* @foo, null, null, metadata !2, i32 1} 705 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 706 !5 = metadata !{i32 786473, metadata !1} ; [ DW_TAG_file_type ] \ 707 [/private/tmp/t.c] 708 !6 = metadata !{i32 786453, i32 0, null, metadata !"", i32 0, i64 0, i64 0, 709 i64 0, i32 0, null, metadata !7, i32 0, null, null, null} 710 ; [ DW_TAG_subroutine_type ] \ 711 [line 0, size 0, align 0, offset 0] [from ] 712 !7 = metadata !{null} 713 !8 = metadata !{i32 2, metadata !"Dwarf Version", i32 2} 714 !9 = metadata !{metadata !"clang version 3.4 (trunk 193128) (llvm/trunk 193139)"} 715 !10 = metadata !{i32 786688, metadata !4, metadata !"X", metadata !5, i32 2, 716 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [X] \ 717 [line 2] 718 !11 = metadata !{i32 786468, null, null, metadata !"int", i32 0, i64 32, 719 i64 32, i64 0, i32 0, i32 5} ; [ DW_TAG_base_type ] [int] \ 720 [line 0, size 32, align 32, offset 0, enc DW_ATE_signed] 721 !12 = metadata !{i32 2, i32 0, metadata !4, null} 722 !13 = metadata !{i32 786688, metadata !4, metadata !"Y", metadata !5, i32 3, 723 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Y] \ 724 [line 3] 725 !14 = metadata !{i32 3, i32 0, metadata !4, null} 726 !15 = metadata !{i32 786688, metadata !16, metadata !"Z", metadata !5, i32 5, 727 metadata !11, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [Z] \ 728 [line 5] 729 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0, 730 i32 0} \ 731 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 732 !17 = metadata !{i32 5, i32 0, metadata !16, null} 733 !18 = metadata !{i32 6, i32 0, metadata !16, null} 734 !19 = metadata !{i32 8, i32 0, metadata !4, null} ; [ DW_TAG_imported_declaration ] 735 !20 = metadata !{i32 9, i32 0, metadata !4, null} 736 737 This example illustrates a few important details about LLVM debugging 738 information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and 739 location information, which are attached to an instruction, are applied 740 together to allow a debugger to analyze the relationship between statements, 741 variable definitions, and the code used to implement the function. 742 743 .. code-block:: llvm 744 745 call void @llvm.dbg.declare(metadata !{i32* %X}, metadata !10), !dbg !12 746 ; [debug line = 2:7] [debug variable = X] 747 748 The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the 749 variable ``X``. The metadata ``!dbg !12`` attached to the intrinsic provides 750 scope information for the variable ``X``. 751 752 .. code-block:: llvm 753 754 !12 = metadata !{i32 2, i32 0, metadata !4, null} 755 !4 = metadata !{i32 786478, metadata !1, metadata !5, metadata !"foo", 756 metadata !"foo", metadata !"", i32 1, metadata !6, 757 i1 false, i1 true, i32 0, i32 0, null, i32 0, i1 false, 758 void ()* @foo, null, null, metadata !2, i32 1} 759 ; [ DW_TAG_subprogram ] [line 1] [def] [foo] 760 761 Here ``!12`` is metadata providing location information. It has four fields: 762 line number, column number, scope, and original scope. The original scope 763 represents inline location if this instruction is inlined inside a caller, and 764 is null otherwise. In this example, scope is encoded by ``!4``, a 765 :ref:`subprogram descriptor <format_subprograms>`. This way the location 766 information attached to the intrinsics indicates that the variable ``X`` is 767 declared at line number 2 at a function level scope in function ``foo``. 768 769 Now lets take another example. 770 771 .. code-block:: llvm 772 773 call void @llvm.dbg.declare(metadata !{i32* %Z}, metadata !15), !dbg !17 774 ; [debug line = 5:9] [debug variable = Z] 775 776 The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for 777 variable ``Z``. The metadata ``!dbg !17`` attached to the intrinsic provides 778 scope information for the variable ``Z``. 779 780 .. code-block:: llvm 781 782 !16 = metadata !{i32 786443, metadata !1, metadata !4, i32 4, i32 0, i32 0, 783 i32 0} 784 ; [ DW_TAG_lexical_block ] [/private/tmp/t.c] 785 !17 = metadata !{i32 5, i32 0, metadata !16, null} 786 787 Here ``!15`` indicates that ``Z`` is declared at line number 5 and 788 column number 0 inside of lexical scope ``!16``. The lexical scope itself 789 resides inside of subprogram ``!4`` described above. 790 791 The scope information attached with each instruction provides a straightforward 792 way to find instructions covered by a scope. 793 794 .. _ccxx_frontend: 795 796 C/C++ front-end specific debug information 797 ========================================== 798 799 The C and C++ front-ends represent information about the program in a format 800 that is effectively identical to `DWARF 3.0 801 <http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information 802 content. This allows code generators to trivially support native debuggers by 803 generating standard dwarf information, and contains enough information for 804 non-dwarf targets to translate it as needed. 805 806 This section describes the forms used to represent C and C++ programs. Other 807 languages could pattern themselves after this (which itself is tuned to 808 representing programs in the same way that DWARF 3 does), or they could choose 809 to provide completely different forms if they don't fit into the DWARF model. 810 As support for debugging information gets added to the various LLVM 811 source-language front-ends, the information used should be documented here. 812 813 The following sections provide examples of various C/C++ constructs and the 814 debug information that would best describe those constructs. 815 816 C/C++ source file information 817 ----------------------------- 818 819 Given the source files ``MySource.cpp`` and ``MyHeader.h`` located in the 820 directory ``/Users/mine/sources``, the following code: 821 822 .. code-block:: c 823 824 #include "MyHeader.h" 825 826 int main(int argc, char *argv[]) { 827 return 0; 828 } 829 830 a C/C++ front-end would generate the following descriptors: 831 832 .. code-block:: llvm 833 834 ... 835 ;; 836 ;; Define the compile unit for the main source file "/Users/mine/sources/MySource.cpp". 837 ;; 838 !0 = metadata !{ 839 i32 786449, ;; Tag 840 metadata !1, ;; File/directory name 841 i32 4, ;; Language Id 842 metadata !"clang version 3.4 ", 843 i1 false, ;; Optimized compile unit 844 metadata !"", ;; Compiler flags 845 i32 0, ;; Runtime version 846 metadata !2, ;; Enumeration types 847 metadata !2, ;; Retained types 848 metadata !3, ;; Subprograms 849 metadata !2, ;; Global variables 850 metadata !2, ;; Imported entities (declarations and namespaces) 851 metadata !"" ;; Split debug filename 852 } 853 854 ;; 855 ;; Define the file for the file "/Users/mine/sources/MySource.cpp". 856 ;; 857 !1 = metadata !{ 858 metadata !"MySource.cpp", 859 metadata !"/Users/mine/sources" 860 } 861 !5 = metadata !{ 862 i32 786473, ;; Tag 863 metadata !1 864 } 865 866 ;; 867 ;; Define the file for the file "/Users/mine/sources/Myheader.h" 868 ;; 869 !14 = metadata !{ 870 i32 786473, ;; Tag 871 metadata !15 872 } 873 !15 = metadata !{ 874 metadata !"./MyHeader.h", 875 metadata !"/Users/mine/sources", 876 } 877 878 ... 879 880 ``llvm::Instruction`` provides easy access to metadata attached with an 881 instruction. One can extract line number information encoded in LLVM IR using 882 ``Instruction::getMetadata()`` and ``DILocation::getLineNumber()``. 883 884 .. code-block:: c++ 885 886 if (MDNode *N = I->getMetadata("dbg")) { // Here I is an LLVM instruction 887 DILocation Loc(N); // DILocation is in DebugInfo.h 888 unsigned Line = Loc.getLineNumber(); 889 StringRef File = Loc.getFilename(); 890 StringRef Dir = Loc.getDirectory(); 891 } 892 893 C/C++ global variable information 894 --------------------------------- 895 896 Given an integer global variable declared as follows: 897 898 .. code-block:: c 899 900 int MyGlobal = 100; 901 902 a C/C++ front-end would generate the following descriptors: 903 904 .. code-block:: llvm 905 906 ;; 907 ;; Define the global itself. 908 ;; 909 %MyGlobal = global int 100 910 ... 911 ;; 912 ;; List of debug info of globals 913 ;; 914 !llvm.dbg.cu = !{!0} 915 916 ;; Define the compile unit. 917 !0 = metadata !{ 918 i32 786449, ;; Tag 919 i32 0, ;; Context 920 i32 4, ;; Language 921 metadata !"foo.cpp", ;; File 922 metadata !"/Volumes/Data/tmp", ;; Directory 923 metadata !"clang version 3.1 ", ;; Producer 924 i1 true, ;; Deprecated field 925 i1 false, ;; "isOptimized"? 926 metadata !"", ;; Flags 927 i32 0, ;; Runtime Version 928 metadata !1, ;; Enum Types 929 metadata !1, ;; Retained Types 930 metadata !1, ;; Subprograms 931 metadata !3, ;; Global Variables 932 metadata !1, ;; Imported entities 933 "", ;; Split debug filename 934 } ; [ DW_TAG_compile_unit ] 935 936 ;; The Array of Global Variables 937 !3 = metadata !{ 938 metadata !4 939 } 940 941 ;; 942 ;; Define the global variable itself. 943 ;; 944 !4 = metadata !{ 945 i32 786484, ;; Tag 946 i32 0, ;; Unused 947 null, ;; Unused 948 metadata !"MyGlobal", ;; Name 949 metadata !"MyGlobal", ;; Display Name 950 metadata !"", ;; Linkage Name 951 metadata !6, ;; File 952 i32 1, ;; Line 953 metadata !7, ;; Type 954 i32 0, ;; IsLocalToUnit 955 i32 1, ;; IsDefinition 956 i32* @MyGlobal, ;; LLVM-IR Value 957 null ;; Static member declaration 958 } ; [ DW_TAG_variable ] 959 960 ;; 961 ;; Define the file 962 ;; 963 !5 = metadata !{ 964 metadata !"foo.cpp", ;; File 965 metadata !"/Volumes/Data/tmp", ;; Directory 966 } 967 !6 = metadata !{ 968 i32 786473, ;; Tag 969 metadata !5 ;; Unused 970 } ; [ DW_TAG_file_type ] 971 972 ;; 973 ;; Define the type 974 ;; 975 !7 = metadata !{ 976 i32 786468, ;; Tag 977 null, ;; Unused 978 null, ;; Unused 979 metadata !"int", ;; Name 980 i32 0, ;; Line 981 i64 32, ;; Size in Bits 982 i64 32, ;; Align in Bits 983 i64 0, ;; Offset 984 i32 0, ;; Flags 985 i32 5 ;; Encoding 986 } ; [ DW_TAG_base_type ] 987 988 C/C++ function information 989 -------------------------- 990 991 Given a function declared as follows: 992 993 .. code-block:: c 994 995 int main(int argc, char *argv[]) { 996 return 0; 997 } 998 999 a C/C++ front-end would generate the following descriptors: 1000 1001 .. code-block:: llvm 1002 1003 ;; 1004 ;; Define the anchor for subprograms. 1005 ;; 1006 !6 = metadata !{ 1007 i32 786484, ;; Tag 1008 metadata !1, ;; File 1009 metadata !1, ;; Context 1010 metadata !"main", ;; Name 1011 metadata !"main", ;; Display name 1012 metadata !"main", ;; Linkage name 1013 i32 1, ;; Line number 1014 metadata !4, ;; Type 1015 i1 false, ;; Is local 1016 i1 true, ;; Is definition 1017 i32 0, ;; Virtuality attribute, e.g. pure virtual function 1018 i32 0, ;; Index into virtual table for C++ methods 1019 i32 0, ;; Type that holds virtual table. 1020 i32 0, ;; Flags 1021 i1 false, ;; True if this function is optimized 1022 Function *, ;; Pointer to llvm::Function 1023 null, ;; Function template parameters 1024 null, ;; List of function variables (emitted when optimizing) 1025 1 ;; Line number of the opening '{' of the function 1026 } 1027 ;; 1028 ;; Define the subprogram itself. 1029 ;; 1030 define i32 @main(i32 %argc, i8** %argv) { 1031 ... 1032 } 1033 1034 C/C++ basic types 1035 ----------------- 1036 1037 The following are the basic type descriptors for C/C++ core types: 1038 1039 bool 1040 ^^^^ 1041 1042 .. code-block:: llvm 1043 1044 !2 = metadata !{ 1045 i32 786468, ;; Tag 1046 null, ;; File 1047 null, ;; Context 1048 metadata !"bool", ;; Name 1049 i32 0, ;; Line number 1050 i64 8, ;; Size in Bits 1051 i64 8, ;; Align in Bits 1052 i64 0, ;; Offset in Bits 1053 i32 0, ;; Flags 1054 i32 2 ;; Encoding 1055 } 1056 1057 char 1058 ^^^^ 1059 1060 .. code-block:: llvm 1061 1062 !2 = metadata !{ 1063 i32 786468, ;; Tag 1064 null, ;; File 1065 null, ;; Context 1066 metadata !"char", ;; Name 1067 i32 0, ;; Line number 1068 i64 8, ;; Size in Bits 1069 i64 8, ;; Align in Bits 1070 i64 0, ;; Offset in Bits 1071 i32 0, ;; Flags 1072 i32 6 ;; Encoding 1073 } 1074 1075 unsigned char 1076 ^^^^^^^^^^^^^ 1077 1078 .. code-block:: llvm 1079 1080 !2 = metadata !{ 1081 i32 786468, ;; Tag 1082 null, ;; File 1083 null, ;; Context 1084 metadata !"unsigned char", 1085 i32 0, ;; Line number 1086 i64 8, ;; Size in Bits 1087 i64 8, ;; Align in Bits 1088 i64 0, ;; Offset in Bits 1089 i32 0, ;; Flags 1090 i32 8 ;; Encoding 1091 } 1092 1093 short 1094 ^^^^^ 1095 1096 .. code-block:: llvm 1097 1098 !2 = metadata !{ 1099 i32 786468, ;; Tag 1100 null, ;; File 1101 null, ;; Context 1102 metadata !"short int", 1103 i32 0, ;; Line number 1104 i64 16, ;; Size in Bits 1105 i64 16, ;; Align in Bits 1106 i64 0, ;; Offset in Bits 1107 i32 0, ;; Flags 1108 i32 5 ;; Encoding 1109 } 1110 1111 unsigned short 1112 ^^^^^^^^^^^^^^ 1113 1114 .. code-block:: llvm 1115 1116 !2 = metadata !{ 1117 i32 786468, ;; Tag 1118 null, ;; File 1119 null, ;; Context 1120 metadata !"short unsigned int", 1121 i32 0, ;; Line number 1122 i64 16, ;; Size in Bits 1123 i64 16, ;; Align in Bits 1124 i64 0, ;; Offset in Bits 1125 i32 0, ;; Flags 1126 i32 7 ;; Encoding 1127 } 1128 1129 int 1130 ^^^ 1131 1132 .. code-block:: llvm 1133 1134 !2 = metadata !{ 1135 i32 786468, ;; Tag 1136 null, ;; File 1137 null, ;; Context 1138 metadata !"int", ;; Name 1139 i32 0, ;; Line number 1140 i64 32, ;; Size in Bits 1141 i64 32, ;; Align in Bits 1142 i64 0, ;; Offset in Bits 1143 i32 0, ;; Flags 1144 i32 5 ;; Encoding 1145 } 1146 1147 unsigned int 1148 ^^^^^^^^^^^^ 1149 1150 .. code-block:: llvm 1151 1152 !2 = metadata !{ 1153 i32 786468, ;; Tag 1154 null, ;; File 1155 null, ;; Context 1156 metadata !"unsigned int", 1157 i32 0, ;; Line number 1158 i64 32, ;; Size in Bits 1159 i64 32, ;; Align in Bits 1160 i64 0, ;; Offset in Bits 1161 i32 0, ;; Flags 1162 i32 7 ;; Encoding 1163 } 1164 1165 long long 1166 ^^^^^^^^^ 1167 1168 .. code-block:: llvm 1169 1170 !2 = metadata !{ 1171 i32 786468, ;; Tag 1172 null, ;; File 1173 null, ;; Context 1174 metadata !"long long int", 1175 i32 0, ;; Line number 1176 i64 64, ;; Size in Bits 1177 i64 64, ;; Align in Bits 1178 i64 0, ;; Offset in Bits 1179 i32 0, ;; Flags 1180 i32 5 ;; Encoding 1181 } 1182 1183 unsigned long long 1184 ^^^^^^^^^^^^^^^^^^ 1185 1186 .. code-block:: llvm 1187 1188 !2 = metadata !{ 1189 i32 786468, ;; Tag 1190 null, ;; File 1191 null, ;; Context 1192 metadata !"long long unsigned int", 1193 i32 0, ;; Line number 1194 i64 64, ;; Size in Bits 1195 i64 64, ;; Align in Bits 1196 i64 0, ;; Offset in Bits 1197 i32 0, ;; Flags 1198 i32 7 ;; Encoding 1199 } 1200 1201 float 1202 ^^^^^ 1203 1204 .. code-block:: llvm 1205 1206 !2 = metadata !{ 1207 i32 786468, ;; Tag 1208 null, ;; File 1209 null, ;; Context 1210 metadata !"float", 1211 i32 0, ;; Line number 1212 i64 32, ;; Size in Bits 1213 i64 32, ;; Align in Bits 1214 i64 0, ;; Offset in Bits 1215 i32 0, ;; Flags 1216 i32 4 ;; Encoding 1217 } 1218 1219 double 1220 ^^^^^^ 1221 1222 .. code-block:: llvm 1223 1224 !2 = metadata !{ 1225 i32 786468, ;; Tag 1226 null, ;; File 1227 null, ;; Context 1228 metadata !"double",;; Name 1229 i32 0, ;; Line number 1230 i64 64, ;; Size in Bits 1231 i64 64, ;; Align in Bits 1232 i64 0, ;; Offset in Bits 1233 i32 0, ;; Flags 1234 i32 4 ;; Encoding 1235 } 1236 1237 C/C++ derived types 1238 ------------------- 1239 1240 Given the following as an example of C/C++ derived type: 1241 1242 .. code-block:: c 1243 1244 typedef const int *IntPtr; 1245 1246 a C/C++ front-end would generate the following descriptors: 1247 1248 .. code-block:: llvm 1249 1250 ;; 1251 ;; Define the typedef "IntPtr". 1252 ;; 1253 !2 = metadata !{ 1254 i32 786454, ;; Tag 1255 metadata !3, ;; File 1256 metadata !1, ;; Context 1257 metadata !"IntPtr", ;; Name 1258 i32 0, ;; Line number 1259 i64 0, ;; Size in bits 1260 i64 0, ;; Align in bits 1261 i64 0, ;; Offset in bits 1262 i32 0, ;; Flags 1263 metadata !4 ;; Derived From type 1264 } 1265 ;; 1266 ;; Define the pointer type. 1267 ;; 1268 !4 = metadata !{ 1269 i32 786447, ;; Tag 1270 null, ;; File 1271 null, ;; Context 1272 metadata !"", ;; Name 1273 i32 0, ;; Line number 1274 i64 64, ;; Size in bits 1275 i64 64, ;; Align in bits 1276 i64 0, ;; Offset in bits 1277 i32 0, ;; Flags 1278 metadata !5 ;; Derived From type 1279 } 1280 ;; 1281 ;; Define the const type. 1282 ;; 1283 !5 = metadata !{ 1284 i32 786470, ;; Tag 1285 null, ;; File 1286 null, ;; Context 1287 metadata !"", ;; Name 1288 i32 0, ;; Line number 1289 i64 0, ;; Size in bits 1290 i64 0, ;; Align in bits 1291 i64 0, ;; Offset in bits 1292 i32 0, ;; Flags 1293 metadata !6 ;; Derived From type 1294 } 1295 ;; 1296 ;; Define the int type. 1297 ;; 1298 !6 = metadata !{ 1299 i32 786468, ;; Tag 1300 null, ;; File 1301 null, ;; Context 1302 metadata !"int", ;; Name 1303 i32 0, ;; Line number 1304 i64 32, ;; Size in bits 1305 i64 32, ;; Align in bits 1306 i64 0, ;; Offset in bits 1307 i32 0, ;; Flags 1308 i32 5 ;; Encoding 1309 } 1310 1311 C/C++ struct/union types 1312 ------------------------ 1313 1314 Given the following as an example of C/C++ struct type: 1315 1316 .. code-block:: c 1317 1318 struct Color { 1319 unsigned Red; 1320 unsigned Green; 1321 unsigned Blue; 1322 }; 1323 1324 a C/C++ front-end would generate the following descriptors: 1325 1326 .. code-block:: llvm 1327 1328 ;; 1329 ;; Define basic type for unsigned int. 1330 ;; 1331 !5 = metadata !{ 1332 i32 786468, ;; Tag 1333 null, ;; File 1334 null, ;; Context 1335 metadata !"unsigned int", 1336 i32 0, ;; Line number 1337 i64 32, ;; Size in Bits 1338 i64 32, ;; Align in Bits 1339 i64 0, ;; Offset in Bits 1340 i32 0, ;; Flags 1341 i32 7 ;; Encoding 1342 } 1343 ;; 1344 ;; Define composite type for struct Color. 1345 ;; 1346 !2 = metadata !{ 1347 i32 786451, ;; Tag 1348 metadata !1, ;; Compile unit 1349 null, ;; Context 1350 metadata !"Color", ;; Name 1351 i32 1, ;; Line number 1352 i64 96, ;; Size in bits 1353 i64 32, ;; Align in bits 1354 i64 0, ;; Offset in bits 1355 i32 0, ;; Flags 1356 null, ;; Derived From 1357 metadata !3, ;; Elements 1358 i32 0, ;; Runtime Language 1359 null, ;; Base type containing the vtable pointer for this type 1360 null ;; Template parameters 1361 } 1362 1363 ;; 1364 ;; Define the Red field. 1365 ;; 1366 !4 = metadata !{ 1367 i32 786445, ;; Tag 1368 metadata !1, ;; File 1369 metadata !1, ;; Context 1370 metadata !"Red", ;; Name 1371 i32 2, ;; Line number 1372 i64 32, ;; Size in bits 1373 i64 32, ;; Align in bits 1374 i64 0, ;; Offset in bits 1375 i32 0, ;; Flags 1376 metadata !5 ;; Derived From type 1377 } 1378 1379 ;; 1380 ;; Define the Green field. 1381 ;; 1382 !6 = metadata !{ 1383 i32 786445, ;; Tag 1384 metadata !1, ;; File 1385 metadata !1, ;; Context 1386 metadata !"Green", ;; Name 1387 i32 3, ;; Line number 1388 i64 32, ;; Size in bits 1389 i64 32, ;; Align in bits 1390 i64 32, ;; Offset in bits 1391 i32 0, ;; Flags 1392 metadata !5 ;; Derived From type 1393 } 1394 1395 ;; 1396 ;; Define the Blue field. 1397 ;; 1398 !7 = metadata !{ 1399 i32 786445, ;; Tag 1400 metadata !1, ;; File 1401 metadata !1, ;; Context 1402 metadata !"Blue", ;; Name 1403 i32 4, ;; Line number 1404 i64 32, ;; Size in bits 1405 i64 32, ;; Align in bits 1406 i64 64, ;; Offset in bits 1407 i32 0, ;; Flags 1408 metadata !5 ;; Derived From type 1409 } 1410 1411 ;; 1412 ;; Define the array of fields used by the composite type Color. 1413 ;; 1414 !3 = metadata !{metadata !4, metadata !6, metadata !7} 1415 1416 C/C++ enumeration types 1417 ----------------------- 1418 1419 Given the following as an example of C/C++ enumeration type: 1420 1421 .. code-block:: c 1422 1423 enum Trees { 1424 Spruce = 100, 1425 Oak = 200, 1426 Maple = 300 1427 }; 1428 1429 a C/C++ front-end would generate the following descriptors: 1430 1431 .. code-block:: llvm 1432 1433 ;; 1434 ;; Define composite type for enum Trees 1435 ;; 1436 !2 = metadata !{ 1437 i32 786436, ;; Tag 1438 metadata !1, ;; File 1439 metadata !1, ;; Context 1440 metadata !"Trees", ;; Name 1441 i32 1, ;; Line number 1442 i64 32, ;; Size in bits 1443 i64 32, ;; Align in bits 1444 i64 0, ;; Offset in bits 1445 i32 0, ;; Flags 1446 null, ;; Derived From type 1447 metadata !3, ;; Elements 1448 i32 0 ;; Runtime language 1449 } 1450 1451 ;; 1452 ;; Define the array of enumerators used by composite type Trees. 1453 ;; 1454 !3 = metadata !{metadata !4, metadata !5, metadata !6} 1455 1456 ;; 1457 ;; Define Spruce enumerator. 1458 ;; 1459 !4 = metadata !{i32 786472, metadata !"Spruce", i64 100} 1460 1461 ;; 1462 ;; Define Oak enumerator. 1463 ;; 1464 !5 = metadata !{i32 786472, metadata !"Oak", i64 200} 1465 1466 ;; 1467 ;; Define Maple enumerator. 1468 ;; 1469 !6 = metadata !{i32 786472, metadata !"Maple", i64 300} 1470 1471 Debugging information format 1472 ============================ 1473 1474 Debugging Information Extension for Objective C Properties 1475 ---------------------------------------------------------- 1476 1477 Introduction 1478 ^^^^^^^^^^^^ 1479 1480 Objective C provides a simpler way to declare and define accessor methods using 1481 declared properties. The language provides features to declare a property and 1482 to let compiler synthesize accessor methods. 1483 1484 The debugger lets developer inspect Objective C interfaces and their instance 1485 variables and class variables. However, the debugger does not know anything 1486 about the properties defined in Objective C interfaces. The debugger consumes 1487 information generated by compiler in DWARF format. The format does not support 1488 encoding of Objective C properties. This proposal describes DWARF extensions to 1489 encode Objective C properties, which the debugger can use to let developers 1490 inspect Objective C properties. 1491 1492 Proposal 1493 ^^^^^^^^ 1494 1495 Objective C properties exist separately from class members. A property can be 1496 defined only by "setter" and "getter" selectors, and be calculated anew on each 1497 access. Or a property can just be a direct access to some declared ivar. 1498 Finally it can have an ivar "automatically synthesized" for it by the compiler, 1499 in which case the property can be referred to in user code directly using the 1500 standard C dereference syntax as well as through the property "dot" syntax, but 1501 there is no entry in the ``@interface`` declaration corresponding to this ivar. 1502 1503 To facilitate debugging, these properties we will add a new DWARF TAG into the 1504 ``DW_TAG_structure_type`` definition for the class to hold the description of a 1505 given property, and a set of DWARF attributes that provide said description. 1506 The property tag will also contain the name and declared type of the property. 1507 1508 If there is a related ivar, there will also be a DWARF property attribute placed 1509 in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG 1510 for that property. And in the case where the compiler synthesizes the ivar 1511 directly, the compiler is expected to generate a ``DW_TAG_member`` for that 1512 ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used 1513 to access this ivar directly in code, and with the property attribute pointing 1514 back to the property it is backing. 1515 1516 The following examples will serve as illustration for our discussion: 1517 1518 .. code-block:: objc 1519 1520 @interface I1 { 1521 int n2; 1522 } 1523 1524 @property int p1; 1525 @property int p2; 1526 @end 1527 1528 @implementation I1 1529 @synthesize p1; 1530 @synthesize p2 = n2; 1531 @end 1532 1533 This produces the following DWARF (this is a "pseudo dwarfdump" output): 1534 1535 .. code-block:: none 1536 1537 0x00000100: TAG_structure_type [7] * 1538 AT_APPLE_runtime_class( 0x10 ) 1539 AT_name( "I1" ) 1540 AT_decl_file( "Objc_Property.m" ) 1541 AT_decl_line( 3 ) 1542 1543 0x00000110 TAG_APPLE_property 1544 AT_name ( "p1" ) 1545 AT_type ( {0x00000150} ( int ) ) 1546 1547 0x00000120: TAG_APPLE_property 1548 AT_name ( "p2" ) 1549 AT_type ( {0x00000150} ( int ) ) 1550 1551 0x00000130: TAG_member [8] 1552 AT_name( "_p1" ) 1553 AT_APPLE_property ( {0x00000110} "p1" ) 1554 AT_type( {0x00000150} ( int ) ) 1555 AT_artificial ( 0x1 ) 1556 1557 0x00000140: TAG_member [8] 1558 AT_name( "n2" ) 1559 AT_APPLE_property ( {0x00000120} "p2" ) 1560 AT_type( {0x00000150} ( int ) ) 1561 1562 0x00000150: AT_type( ( int ) ) 1563 1564 Note, the current convention is that the name of the ivar for an 1565 auto-synthesized property is the name of the property from which it derives 1566 with an underscore prepended, as is shown in the example. But we actually 1567 don't need to know this convention, since we are given the name of the ivar 1568 directly. 1569 1570 Also, it is common practice in ObjC to have different property declarations in 1571 the @interface and @implementation - e.g. to provide a read-only property in 1572 the interface,and a read-write interface in the implementation. In that case, 1573 the compiler should emit whichever property declaration will be in force in the 1574 current translation unit. 1575 1576 Developers can decorate a property with attributes which are encoded using 1577 ``DW_AT_APPLE_property_attribute``. 1578 1579 .. code-block:: objc 1580 1581 @property (readonly, nonatomic) int pr; 1582 1583 .. code-block:: none 1584 1585 TAG_APPLE_property [8] 1586 AT_name( "pr" ) 1587 AT_type ( {0x00000147} (int) ) 1588 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic) 1589 1590 The setter and getter method names are attached to the property using 1591 ``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes. 1592 1593 .. code-block:: objc 1594 1595 @interface I1 1596 @property (setter=myOwnP3Setter:) int p3; 1597 -(void)myOwnP3Setter:(int)a; 1598 @end 1599 1600 @implementation I1 1601 @synthesize p3; 1602 -(void)myOwnP3Setter:(int)a{ } 1603 @end 1604 1605 The DWARF for this would be: 1606 1607 .. code-block:: none 1608 1609 0x000003bd: TAG_structure_type [7] * 1610 AT_APPLE_runtime_class( 0x10 ) 1611 AT_name( "I1" ) 1612 AT_decl_file( "Objc_Property.m" ) 1613 AT_decl_line( 3 ) 1614 1615 0x000003cd TAG_APPLE_property 1616 AT_name ( "p3" ) 1617 AT_APPLE_property_setter ( "myOwnP3Setter:" ) 1618 AT_type( {0x00000147} ( int ) ) 1619 1620 0x000003f3: TAG_member [8] 1621 AT_name( "_p3" ) 1622 AT_type ( {0x00000147} ( int ) ) 1623 AT_APPLE_property ( {0x000003cd} ) 1624 AT_artificial ( 0x1 ) 1625 1626 New DWARF Tags 1627 ^^^^^^^^^^^^^^ 1628 1629 +-----------------------+--------+ 1630 | TAG | Value | 1631 +=======================+========+ 1632 | DW_TAG_APPLE_property | 0x4200 | 1633 +-----------------------+--------+ 1634 1635 New DWARF Attributes 1636 ^^^^^^^^^^^^^^^^^^^^ 1637 1638 +--------------------------------+--------+-----------+ 1639 | Attribute | Value | Classes | 1640 +================================+========+===========+ 1641 | DW_AT_APPLE_property | 0x3fed | Reference | 1642 +--------------------------------+--------+-----------+ 1643 | DW_AT_APPLE_property_getter | 0x3fe9 | String | 1644 +--------------------------------+--------+-----------+ 1645 | DW_AT_APPLE_property_setter | 0x3fea | String | 1646 +--------------------------------+--------+-----------+ 1647 | DW_AT_APPLE_property_attribute | 0x3feb | Constant | 1648 +--------------------------------+--------+-----------+ 1649 1650 New DWARF Constants 1651 ^^^^^^^^^^^^^^^^^^^ 1652 1653 +--------------------------------+-------+ 1654 | Name | Value | 1655 +================================+=======+ 1656 | DW_AT_APPLE_PROPERTY_readonly | 0x1 | 1657 +--------------------------------+-------+ 1658 | DW_AT_APPLE_PROPERTY_readwrite | 0x2 | 1659 +--------------------------------+-------+ 1660 | DW_AT_APPLE_PROPERTY_assign | 0x4 | 1661 +--------------------------------+-------+ 1662 | DW_AT_APPLE_PROPERTY_retain | 0x8 | 1663 +--------------------------------+-------+ 1664 | DW_AT_APPLE_PROPERTY_copy | 0x10 | 1665 +--------------------------------+-------+ 1666 | DW_AT_APPLE_PROPERTY_nonatomic | 0x20 | 1667 +--------------------------------+-------+ 1668 1669 Name Accelerator Tables 1670 ----------------------- 1671 1672 Introduction 1673 ^^^^^^^^^^^^ 1674 1675 The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a 1676 debugger needs. The "``pub``" in the section name indicates that the entries 1677 in the table are publicly visible names only. This means no static or hidden 1678 functions show up in the "``.debug_pubnames``". No static variables or private 1679 class variables are in the "``.debug_pubtypes``". Many compilers add different 1680 things to these tables, so we can't rely upon the contents between gcc, icc, or 1681 clang. 1682 1683 The typical query given by users tends not to match up with the contents of 1684 these tables. For example, the DWARF spec states that "In the case of the name 1685 of a function member or static data member of a C++ structure, class or union, 1686 the name presented in the "``.debug_pubnames``" section is not the simple name 1687 given by the ``DW_AT_name attribute`` of the referenced debugging information 1688 entry, but rather the fully qualified name of the data or function member." 1689 So the only names in these tables for complex C++ entries is a fully 1690 qualified name. Debugger users tend not to enter their search strings as 1691 "``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or 1692 "``a::b::c``". So the name entered in the name table must be demangled in 1693 order to chop it up appropriately and additional names must be manually entered 1694 into the table to make it effective as a name lookup table for debuggers to 1695 se. 1696 1697 All debuggers currently ignore the "``.debug_pubnames``" table as a result of 1698 its inconsistent and useless public-only name content making it a waste of 1699 space in the object file. These tables, when they are written to disk, are not 1700 sorted in any way, leaving every debugger to do its own parsing and sorting. 1701 These tables also include an inlined copy of the string values in the table 1702 itself making the tables much larger than they need to be on disk, especially 1703 for large C++ programs. 1704 1705 Can't we just fix the sections by adding all of the names we need to this 1706 table? No, because that is not what the tables are defined to contain and we 1707 won't know the difference between the old bad tables and the new good tables. 1708 At best we could make our own renamed sections that contain all of the data we 1709 need. 1710 1711 These tables are also insufficient for what a debugger like LLDB needs. LLDB 1712 uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then 1713 often asked to look for type "``foo``" or namespace "``bar``", or list items in 1714 namespace "``baz``". Namespaces are not included in the pubnames or pubtypes 1715 tables. Since clang asks a lot of questions when it is parsing an expression, 1716 we need to be very fast when looking up names, as it happens a lot. Having new 1717 accelerator tables that are optimized for very quick lookups will benefit this 1718 type of debugging experience greatly. 1719 1720 We would like to generate name lookup tables that can be mapped into memory 1721 from disk, and used as is, with little or no up-front parsing. We would also 1722 be able to control the exact content of these different tables so they contain 1723 exactly what we need. The Name Accelerator Tables were designed to fix these 1724 issues. In order to solve these issues we need to: 1725 1726 * Have a format that can be mapped into memory from disk and used as is 1727 * Lookups should be very fast 1728 * Extensible table format so these tables can be made by many producers 1729 * Contain all of the names needed for typical lookups out of the box 1730 * Strict rules for the contents of tables 1731 1732 Table size is important and the accelerator table format should allow the reuse 1733 of strings from common string tables so the strings for the names are not 1734 duplicated. We also want to make sure the table is ready to be used as-is by 1735 simply mapping the table into memory with minimal header parsing. 1736 1737 The name lookups need to be fast and optimized for the kinds of lookups that 1738 debuggers tend to do. Optimally we would like to touch as few parts of the 1739 mapped table as possible when doing a name lookup and be able to quickly find 1740 the name entry we are looking for, or discover there are no matches. In the 1741 case of debuggers we optimized for lookups that fail most of the time. 1742 1743 Each table that is defined should have strict rules on exactly what is in the 1744 accelerator tables and documented so clients can rely on the content. 1745 1746 Hash Tables 1747 ^^^^^^^^^^^ 1748 1749 Standard Hash Tables 1750 """""""""""""""""""" 1751 1752 Typical hash tables have a header, buckets, and each bucket points to the 1753 bucket contents: 1754 1755 .. code-block:: none 1756 1757 .------------. 1758 | HEADER | 1759 |------------| 1760 | BUCKETS | 1761 |------------| 1762 | DATA | 1763 `------------' 1764 1765 The BUCKETS are an array of offsets to DATA for each hash: 1766 1767 .. code-block:: none 1768 1769 .------------. 1770 | 0x00001000 | BUCKETS[0] 1771 | 0x00002000 | BUCKETS[1] 1772 | 0x00002200 | BUCKETS[2] 1773 | 0x000034f0 | BUCKETS[3] 1774 | | ... 1775 | 0xXXXXXXXX | BUCKETS[n_buckets] 1776 '------------' 1777 1778 So for ``bucket[3]`` in the example above, we have an offset into the table 1779 0x000034f0 which points to a chain of entries for the bucket. Each bucket must 1780 contain a next pointer, full 32 bit hash value, the string itself, and the data 1781 for the current string value. 1782 1783 .. code-block:: none 1784 1785 .------------. 1786 0x000034f0: | 0x00003500 | next pointer 1787 | 0x12345678 | 32 bit hash 1788 | "erase" | string value 1789 | data[n] | HashData for this bucket 1790 |------------| 1791 0x00003500: | 0x00003550 | next pointer 1792 | 0x29273623 | 32 bit hash 1793 | "dump" | string value 1794 | data[n] | HashData for this bucket 1795 |------------| 1796 0x00003550: | 0x00000000 | next pointer 1797 | 0x82638293 | 32 bit hash 1798 | "main" | string value 1799 | data[n] | HashData for this bucket 1800 `------------' 1801 1802 The problem with this layout for debuggers is that we need to optimize for the 1803 negative lookup case where the symbol we're searching for is not present. So 1804 if we were to lookup "``printf``" in the table above, we would make a 32 hash 1805 for "``printf``", it might match ``bucket[3]``. We would need to go to the 1806 offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do 1807 so, we need to read the next pointer, then read the hash, compare it, and skip 1808 to the next bucket. Each time we are skipping many bytes in memory and 1809 touching new cache pages just to do the compare on the full 32 bit hash. All 1810 of these accesses then tell us that we didn't have a match. 1811 1812 Name Hash Tables 1813 """""""""""""""" 1814 1815 To solve the issues mentioned above we have structured the hash tables a bit 1816 differently: a header, buckets, an array of all unique 32 bit hash values, 1817 followed by an array of hash value data offsets, one for each hash value, then 1818 the data for all hash values: 1819 1820 .. code-block:: none 1821 1822 .-------------. 1823 | HEADER | 1824 |-------------| 1825 | BUCKETS | 1826 |-------------| 1827 | HASHES | 1828 |-------------| 1829 | OFFSETS | 1830 |-------------| 1831 | DATA | 1832 `-------------' 1833 1834 The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By 1835 making all of the full 32 bit hash values contiguous in memory, we allow 1836 ourselves to efficiently check for a match while touching as little memory as 1837 possible. Most often checking the 32 bit hash values is as far as the lookup 1838 goes. If it does match, it usually is a match with no collisions. So for a 1839 table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash 1840 values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and 1841 ``OFFSETS`` as: 1842 1843 .. code-block:: none 1844 1845 .-------------------------. 1846 | HEADER.magic | uint32_t 1847 | HEADER.version | uint16_t 1848 | HEADER.hash_function | uint16_t 1849 | HEADER.bucket_count | uint32_t 1850 | HEADER.hashes_count | uint32_t 1851 | HEADER.header_data_len | uint32_t 1852 | HEADER_DATA | HeaderData 1853 |-------------------------| 1854 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes 1855 |-------------------------| 1856 | HASHES | uint32_t[n_hashes] // 32 bit hash values 1857 |-------------------------| 1858 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data 1859 |-------------------------| 1860 | ALL HASH DATA | 1861 `-------------------------' 1862 1863 So taking the exact same data from the standard hash example above we end up 1864 with: 1865 1866 .. code-block:: none 1867 1868 .------------. 1869 | HEADER | 1870 |------------| 1871 | 0 | BUCKETS[0] 1872 | 2 | BUCKETS[1] 1873 | 5 | BUCKETS[2] 1874 | 6 | BUCKETS[3] 1875 | | ... 1876 | ... | BUCKETS[n_buckets] 1877 |------------| 1878 | 0x........ | HASHES[0] 1879 | 0x........ | HASHES[1] 1880 | 0x........ | HASHES[2] 1881 | 0x........ | HASHES[3] 1882 | 0x........ | HASHES[4] 1883 | 0x........ | HASHES[5] 1884 | 0x12345678 | HASHES[6] hash for BUCKETS[3] 1885 | 0x29273623 | HASHES[7] hash for BUCKETS[3] 1886 | 0x82638293 | HASHES[8] hash for BUCKETS[3] 1887 | 0x........ | HASHES[9] 1888 | 0x........ | HASHES[10] 1889 | 0x........ | HASHES[11] 1890 | 0x........ | HASHES[12] 1891 | 0x........ | HASHES[13] 1892 | 0x........ | HASHES[n_hashes] 1893 |------------| 1894 | 0x........ | OFFSETS[0] 1895 | 0x........ | OFFSETS[1] 1896 | 0x........ | OFFSETS[2] 1897 | 0x........ | OFFSETS[3] 1898 | 0x........ | OFFSETS[4] 1899 | 0x........ | OFFSETS[5] 1900 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3] 1901 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3] 1902 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3] 1903 | 0x........ | OFFSETS[9] 1904 | 0x........ | OFFSETS[10] 1905 | 0x........ | OFFSETS[11] 1906 | 0x........ | OFFSETS[12] 1907 | 0x........ | OFFSETS[13] 1908 | 0x........ | OFFSETS[n_hashes] 1909 |------------| 1910 | | 1911 | | 1912 | | 1913 | | 1914 | | 1915 |------------| 1916 0x000034f0: | 0x00001203 | .debug_str ("erase") 1917 | 0x00000004 | A 32 bit array count - number of HashData with name "erase" 1918 | 0x........ | HashData[0] 1919 | 0x........ | HashData[1] 1920 | 0x........ | HashData[2] 1921 | 0x........ | HashData[3] 1922 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1923 |------------| 1924 0x00003500: | 0x00001203 | String offset into .debug_str ("collision") 1925 | 0x00000002 | A 32 bit array count - number of HashData with name "collision" 1926 | 0x........ | HashData[0] 1927 | 0x........ | HashData[1] 1928 | 0x00001203 | String offset into .debug_str ("dump") 1929 | 0x00000003 | A 32 bit array count - number of HashData with name "dump" 1930 | 0x........ | HashData[0] 1931 | 0x........ | HashData[1] 1932 | 0x........ | HashData[2] 1933 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1934 |------------| 1935 0x00003550: | 0x00001203 | String offset into .debug_str ("main") 1936 | 0x00000009 | A 32 bit array count - number of HashData with name "main" 1937 | 0x........ | HashData[0] 1938 | 0x........ | HashData[1] 1939 | 0x........ | HashData[2] 1940 | 0x........ | HashData[3] 1941 | 0x........ | HashData[4] 1942 | 0x........ | HashData[5] 1943 | 0x........ | HashData[6] 1944 | 0x........ | HashData[7] 1945 | 0x........ | HashData[8] 1946 | 0x00000000 | String offset into .debug_str (terminate data for hash) 1947 `------------' 1948 1949 So we still have all of the same data, we just organize it more efficiently for 1950 debugger lookup. If we repeat the same "``printf``" lookup from above, we 1951 would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit 1952 hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which 1953 is the index into the ``HASHES`` table. We would then compare any consecutive 1954 32 bit hashes values in the ``HASHES`` array as long as the hashes would be in 1955 ``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo 1956 ``n_buckets`` is still 3. In the case of a failed lookup we would access the 1957 memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes 1958 before we know that we have no match. We don't end up marching through 1959 multiple words of memory and we really keep the number of processor data cache 1960 lines being accessed as small as possible. 1961 1962 The string hash that is used for these lookup tables is the Daniel J. 1963 Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a 1964 very good hash for all kinds of names in programs with very few hash 1965 collisions. 1966 1967 Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``. 1968 1969 Details 1970 ^^^^^^^ 1971 1972 These name hash tables are designed to be generic where specializations of the 1973 table get to define additional data that goes into the header ("``HeaderData``"), 1974 how the string value is stored ("``KeyType``") and the content of the data for each 1975 hash value. 1976 1977 Header Layout 1978 """"""""""""" 1979 1980 The header has a fixed part, and the specialized part. The exact format of the 1981 header is: 1982 1983 .. code-block:: c 1984 1985 struct Header 1986 { 1987 uint32_t magic; // 'HASH' magic value to allow endian detection 1988 uint16_t version; // Version number 1989 uint16_t hash_function; // The hash function enumeration that was used 1990 uint32_t bucket_count; // The number of buckets in this hash table 1991 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table 1992 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment 1993 // Specifically the length of the following HeaderData field - this does not 1994 // include the size of the preceding fields 1995 HeaderData header_data; // Implementation specific header data 1996 }; 1997 1998 The header starts with a 32 bit "``magic``" value which must be ``'HASH'`` 1999 encoded as an ASCII integer. This allows the detection of the start of the 2000 hash table and also allows the table's byte order to be determined so the table 2001 can be correctly extracted. The "``magic``" value is followed by a 16 bit 2002 ``version`` number which allows the table to be revised and modified in the 2003 future. The current version number is 1. ``hash_function`` is a ``uint16_t`` 2004 enumeration that specifies which hash function was used to produce this table. 2005 The current values for the hash function enumerations include: 2006 2007 .. code-block:: c 2008 2009 enum HashFunctionType 2010 { 2011 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function 2012 }; 2013 2014 ``bucket_count`` is a 32 bit unsigned integer that represents how many buckets 2015 are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit 2016 hash values that are in the ``HASHES`` array, and is the same number of offsets 2017 are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size 2018 in bytes of the ``HeaderData`` that is filled in by specialized versions of 2019 this table. 2020 2021 Fixed Lookup 2022 """""""""""" 2023 2024 The header is followed by the buckets, hashes, offsets, and hash value data. 2025 2026 .. code-block:: c 2027 2028 struct FixedTable 2029 { 2030 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below 2031 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table 2032 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above 2033 }; 2034 2035 ``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The 2036 ``hashes`` array contains all of the 32 bit hash values for all names in the 2037 hash table. Each hash in the ``hashes`` table has an offset in the ``offsets`` 2038 array that points to the data for the hash value. 2039 2040 This table setup makes it very easy to repurpose these tables to contain 2041 different data, while keeping the lookup mechanism the same for all tables. 2042 This layout also makes it possible to save the table to disk and map it in 2043 later and do very efficient name lookups with little or no parsing. 2044 2045 DWARF lookup tables can be implemented in a variety of ways and can store a lot 2046 of information for each name. We want to make the DWARF tables extensible and 2047 able to store the data efficiently so we have used some of the DWARF features 2048 that enable efficient data storage to define exactly what kind of data we store 2049 for each name. 2050 2051 The ``HeaderData`` contains a definition of the contents of each HashData chunk. 2052 We might want to store an offset to all of the debug information entries (DIEs) 2053 for each name. To keep things extensible, we create a list of items, or 2054 Atoms, that are contained in the data for each name. First comes the type of 2055 the data in each atom: 2056 2057 .. code-block:: c 2058 2059 enum AtomType 2060 { 2061 eAtomTypeNULL = 0u, 2062 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding 2063 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question 2064 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2 2065 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags 2066 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags 2067 }; 2068 2069 The enumeration values and their meanings are: 2070 2071 .. code-block:: none 2072 2073 eAtomTypeNULL - a termination atom that specifies the end of the atom list 2074 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name 2075 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE 2076 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is 2077 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...) 2078 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...) 2079 2080 Then we allow each atom type to define the atom type and how the data for each 2081 atom type data is encoded: 2082 2083 .. code-block:: c 2084 2085 struct Atom 2086 { 2087 uint16_t type; // AtomType enum value 2088 uint16_t form; // DWARF DW_FORM_XXX defines 2089 }; 2090 2091 The ``form`` type above is from the DWARF specification and defines the exact 2092 encoding of the data for the Atom type. See the DWARF specification for the 2093 ``DW_FORM_`` definitions. 2094 2095 .. code-block:: c 2096 2097 struct HeaderData 2098 { 2099 uint32_t die_offset_base; 2100 uint32_t atom_count; 2101 Atoms atoms[atom_count0]; 2102 }; 2103 2104 ``HeaderData`` defines the base DIE offset that should be added to any atoms 2105 that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``, 2106 ``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines 2107 what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large 2108 each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data 2109 should be interpreted. 2110 2111 For the current implementations of the "``.apple_names``" (all functions + 2112 globals), the "``.apple_types``" (names of all types that are defined), and 2113 the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom`` 2114 array to be: 2115 2116 .. code-block:: c 2117 2118 HeaderData.atom_count = 1; 2119 HeaderData.atoms[0].type = eAtomTypeDIEOffset; 2120 HeaderData.atoms[0].form = DW_FORM_data4; 2121 2122 This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is 2123 encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have 2124 multiple matching DIEs in a single file, which could come up with an inlined 2125 function for instance. Future tables could include more information about the 2126 DIE such as flags indicating if the DIE is a function, method, block, 2127 or inlined. 2128 2129 The KeyType for the DWARF table is a 32 bit string table offset into the 2130 ".debug_str" table. The ".debug_str" is the string table for the DWARF which 2131 may already contain copies of all of the strings. This helps make sure, with 2132 help from the compiler, that we reuse the strings between all of the DWARF 2133 sections and keeps the hash table size down. Another benefit to having the 2134 compiler generate all strings as DW_FORM_strp in the debug info, is that 2135 DWARF parsing can be made much faster. 2136 2137 After a lookup is made, we get an offset into the hash data. The hash data 2138 needs to be able to deal with 32 bit hash collisions, so the chunk of data 2139 at the offset in the hash data consists of a triple: 2140 2141 .. code-block:: c 2142 2143 uint32_t str_offset 2144 uint32_t hash_data_count 2145 HashData[hash_data_count] 2146 2147 If "str_offset" is zero, then the bucket contents are done. 99.9% of the 2148 hash data chunks contain a single item (no 32 bit hash collision): 2149 2150 .. code-block:: none 2151 2152 .------------. 2153 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2154 | 0x00000004 | uint32_t HashData count 2155 | 0x........ | uint32_t HashData[0] DIE offset 2156 | 0x........ | uint32_t HashData[1] DIE offset 2157 | 0x........ | uint32_t HashData[2] DIE offset 2158 | 0x........ | uint32_t HashData[3] DIE offset 2159 | 0x00000000 | uint32_t KeyType (end of hash chain) 2160 `------------' 2161 2162 If there are collisions, you will have multiple valid string offsets: 2163 2164 .. code-block:: none 2165 2166 .------------. 2167 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main") 2168 | 0x00000004 | uint32_t HashData count 2169 | 0x........ | uint32_t HashData[0] DIE offset 2170 | 0x........ | uint32_t HashData[1] DIE offset 2171 | 0x........ | uint32_t HashData[2] DIE offset 2172 | 0x........ | uint32_t HashData[3] DIE offset 2173 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print") 2174 | 0x00000002 | uint32_t HashData count 2175 | 0x........ | uint32_t HashData[0] DIE offset 2176 | 0x........ | uint32_t HashData[1] DIE offset 2177 | 0x00000000 | uint32_t KeyType (end of hash chain) 2178 `------------' 2179 2180 Current testing with real world C++ binaries has shown that there is around 1 2181 32 bit hash collision per 100,000 name entries. 2182 2183 Contents 2184 ^^^^^^^^ 2185 2186 As we said, we want to strictly define exactly what is included in the 2187 different tables. For DWARF, we have 3 tables: "``.apple_names``", 2188 "``.apple_types``", and "``.apple_namespaces``". 2189 2190 "``.apple_names``" sections should contain an entry for each DWARF DIE whose 2191 ``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or 2192 ``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``, 2193 ``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains 2194 ``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and 2195 static variables). All global and static variables should be included, 2196 including those scoped within functions and classes. For example using the 2197 following code: 2198 2199 .. code-block:: c 2200 2201 static int var = 0; 2202 2203 void f () 2204 { 2205 static int var = 0; 2206 } 2207 2208 Both of the static ``var`` variables would be included in the table. All 2209 functions should emit both their full names and their basenames. For C or C++, 2210 the full name is the mangled name (if available) which is usually in the 2211 ``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the 2212 function basename. If global or static variables have a mangled name in a 2213 ``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the 2214 simple name found in the ``DW_AT_name`` attribute. 2215 2216 "``.apple_types``" sections should contain an entry for each DWARF DIE whose 2217 tag is one of: 2218 2219 * DW_TAG_array_type 2220 * DW_TAG_class_type 2221 * DW_TAG_enumeration_type 2222 * DW_TAG_pointer_type 2223 * DW_TAG_reference_type 2224 * DW_TAG_string_type 2225 * DW_TAG_structure_type 2226 * DW_TAG_subroutine_type 2227 * DW_TAG_typedef 2228 * DW_TAG_union_type 2229 * DW_TAG_ptr_to_member_type 2230 * DW_TAG_set_type 2231 * DW_TAG_subrange_type 2232 * DW_TAG_base_type 2233 * DW_TAG_const_type 2234 * DW_TAG_constant 2235 * DW_TAG_file_type 2236 * DW_TAG_namelist 2237 * DW_TAG_packed_type 2238 * DW_TAG_volatile_type 2239 * DW_TAG_restrict_type 2240 * DW_TAG_interface_type 2241 * DW_TAG_unspecified_type 2242 * DW_TAG_shared_type 2243 2244 Only entries with a ``DW_AT_name`` attribute are included, and the entry must 2245 not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero 2246 value). For example, using the following code: 2247 2248 .. code-block:: c 2249 2250 int main () 2251 { 2252 int *b = 0; 2253 return *b; 2254 } 2255 2256 We get a few type DIEs: 2257 2258 .. code-block:: none 2259 2260 0x00000067: TAG_base_type [5] 2261 AT_encoding( DW_ATE_signed ) 2262 AT_name( "int" ) 2263 AT_byte_size( 0x04 ) 2264 2265 0x0000006e: TAG_pointer_type [6] 2266 AT_type( {0x00000067} ( int ) ) 2267 AT_byte_size( 0x08 ) 2268 2269 The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``. 2270 2271 "``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs. 2272 If we run into a namespace that has no name this is an anonymous namespace, and 2273 the name should be output as "``(anonymous namespace)``" (without the quotes). 2274 Why? This matches the output of the ``abi::cxa_demangle()`` that is in the 2275 standard C++ library that demangles mangled names. 2276 2277 2278 Language Extensions and File Format Changes 2279 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 2280 2281 Objective-C Extensions 2282 """""""""""""""""""""" 2283 2284 "``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an 2285 Objective-C class. The name used in the hash table is the name of the 2286 Objective-C class itself. If the Objective-C class has a category, then an 2287 entry is made for both the class name without the category, and for the class 2288 name with the category. So if we have a DIE at offset 0x1234 with a name of 2289 method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add 2290 an entry for "``NSString``" that points to DIE 0x1234, and an entry for 2291 "``NSString(my_additions)``" that points to 0x1234. This allows us to quickly 2292 track down all Objective-C methods for an Objective-C class when doing 2293 expressions. It is needed because of the dynamic nature of Objective-C where 2294 anyone can add methods to a class. The DWARF for Objective-C methods is also 2295 emitted differently from C++ classes where the methods are not usually 2296 contained in the class definition, they are scattered about across one or more 2297 compile units. Categories can also be defined in different shared libraries. 2298 So we need to be able to quickly find all of the methods and class functions 2299 given the Objective-C class name, or quickly find all methods and class 2300 functions for a class + category name. This table does not contain any 2301 selector names, it just maps Objective-C class names (or class names + 2302 category) to all of the methods and class functions. The selectors are added 2303 as function basenames in the "``.debug_names``" section. 2304 2305 In the "``.apple_names``" section for Objective-C functions, the full name is 2306 the entire function name with the brackets ("``-[NSString 2307 stringWithCString:]``") and the basename is the selector only 2308 ("``stringWithCString:``"). 2309 2310 Mach-O Changes 2311 """""""""""""" 2312 2313 The sections names for the apple hash tables are for non-mach-o files. For 2314 mach-o files, the sections should be contained in the ``__DWARF`` segment with 2315 names as follows: 2316 2317 * "``.apple_names``" -> "``__apple_names``" 2318 * "``.apple_types``" -> "``__apple_types``" 2319 * "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit) 2320 * "``.apple_objc``" -> "``__apple_objc``" 2321 2322